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Abstract

It is shown that a multivariate exponential power distribution is a scale mixture of
normal distributions, with respect to a probability distribution function, when its
kurtosis parameter belongs to the interval (0,1]. The corresponding mixing prob-
ability distribution function is presented. This result is used to design a Bayesian
hierarchical model and an algorithm to generate samples of the posterior distribu-
tion; these are applied to a problem of Quantitative Genetics.
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1 Introduction

The multivariate exponential power distribution was introduced by Gómez et
al. [10] as a wide class of distributions, extending the class of normal distri-
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butions with others having higher or lower tails.

In this paper it is shown that a multivariate exponential power distribution is a
scale mixture of normal distributions, in the strict sense (namely, with respect
to a probability distribution function) if and only if its kurtosis parameter
(see Gómez et al. [10]) belongs to the interval (0, 1] ; in this case, the mixing
probability distribution function is also shown. This result is used, within
a Bayesian framework, to design a hierarchical model and an algorithm to
generate samples of the posterior distribution of the parameters; these are
applied to a problem of Quantitative Genetics.

The results presented here are derived from the results on the relationship be-
tween elliptical distributions and scale mixture of normal distributions shown
in Gómez-Sánchez-Manzano et al. [13]. Additional references for this relation-
ship can be found there.

In the unidimensional case, West [23] shows the normal scale mixture property
of some exponential power distributions and puts their mixing distributions in
connection with stable distributions. These results are extended in the present
paper. In the unidimensional case, too, Choy and Smith [5] use the mixture
representation to simulate posterior distributions, within the context of ran-
dom effects linear models.

The characterization of the exponential power distribution as a scale mixture
of normal distributions simplifies some aspects of its study.

On the one hand, its marginal distributions and some affine transformations,
which are not easy to directly work with, because they have not a closed form
but one depending on an integral, become easier within the framework of
mixtures of normal distributions, since they result to be mixtures of normals,
too (see Gómez-Sánchez-Manzano et al. [13]).

On the other hand, from a Bayesian inference point of view, posterior distri-
butions, when obtained in the usual direct way, are not suitable to work with,
because they turn out to be formally complicated; their marginal distributions
are cumbersome to obtain, because of difficulties of integration, and, besides,
there is no practical way to find algorithms to simulate samples from them.
We get around this difficulty, by taking the exponential power distribution
as a mixture of normal distributions and using a more suitable hierarchical
model. In this way, the conditional posterior distributions of the mean and
scale parameters follow the well known scheme of the normal and Wishart
distributions, and the posterior distribution of the kurtosis parameter is re-
lated to a product of densities of stable distributions. Thus, Gibbs sampler
methods can be applied straightforwardly.

As for information about the multivariate exponential power distribution, its
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definition and properties can be found in Gómez et al. [10]. This distribution
is a generalization of the univariate one (see Subbotin [21] and Box and Tiao
[4], p. 157) and can be included in the class of Kotz type distributions (see
Fang et al. [7], p. 69, and Nadarajah [17]), which, in its turn, is a subset of the
more general class of elliptical distributions; a survey on absolutely continuous
elliptical distributions, with additional references, can be found in Gómez et
al. [12]. A matrix generalization of the exponential power distribution can be
found in Gómez et al. [11].

The multivariate exponential power distribution has been used in fields where
departures for normality were needed. It has been used by J. K. Lindsey to
obtain robust models for nonlinear repeated measurements (Lindsey [15]), to
modeling dependencies among responses, as an alternative to models based
upon the multivariate t distribution, and also to obtain robust models for the
physiology of breathing. Basu et al. [2] use the multivariate exponential power
distribution, as a heavy tailed distribution, in the field of speech recognition.

In section 2 we study the normal scale property. In section 3 we design a
Bayesian hierarchical model and the algorithm to deal with the posterior dis-
tribution of the parameters. Finally, in section 4 we apply this methodology
to a problem of Quantitative Genetics.

2 The mixture and the mixing distribution function

We consider the exponential power distribution and use the notation X ∼
EPn (µ, Σ, β) as shown in Gómez et al. [10]. We also consider scale mix-
tures of normal distributions and use the notation X ∼ SMNn (µ, Σ, H)
as shown in Gómez-Sánchez-Manzano et al. [13]. For β ∈ (0,∞) , we put

gβ(t) = exp
{
−1

2
tβ

}
. It is clear that X ∼ EPn (µ, Σ, β) if and only if X

has the elliptical distribution En (µ, Σ, gβ) (see Gómez-Sánchez-Manzano et
al. [13]).

We shall also refer to stable distributions. For α ∈ (0, 1) and σ > 0, we
denote by Sα ( · ; σ) the density of the (positive) stable distribution having
characteristic function (see Samorodnitsky and Taqqu [20], p. 8)

ϕ(t) = exp
{
−σα |t|α e−iπ

2
αsign(t)

}
. (2.1)

For α ∈ (0, 1) , the Laplace transform of the distribution function F of the
density Sα ( · ; σ) is (see Samorodnitsky and Taqqu [20], p. 15) LF (t) =

exp {−σαtα} . In particular, for σ = 2−1/α we have the density Sα

(
· ; 2−1/α

)

and then LF (t) = exp
{
−1

2
tα

}
= gα (t) .
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Theorem 1 (The mixture) The exponential power distribution EPn(µ, Σ,
β) is a scale mixture of normal distributions if and only if β ∈ (0, 1].

If X ∼ EPn (µ, Σ, β) , with β ∈ (0, 1], then X ∼ SMNn (µ, Σ, Hβ) , where, for
β ∈ (0, 1), Hβ is the absolutely continuous distribution function whose density
hβ is given, for v > 0, by

hβ(v) =
21+n

2
− n

2β Γ
(
1 + n

2

)

Γ
(
1 + n

2β

) vn−3Sβ

(
v−2; 21− 1

β

)
; (2.2)

and for β = 1, H1 is the distribution function degenerate in 1.

PROOF. First we prove that for β ∈ (1,∞) the distribution EPn (µ, Σ, β) is
not a scale mixture of normal distributions. Since function gβ is continuous, it
is sufficient to prove that it does not satisfy condition (3.8) shown in theorem
8 of Gómez-Sánchez-Manzano et al. [13]. We will see that there exists a t > 0

such that (−1)2 g
(2)
β (t) < 0. We have: (−1)2 g

(2)
β (t) = (1

2
βtβ−2gβ(t))(1

2
βtβ − β

+ 1). The factor 1
2
βtβ−2gβ(t) is positive for any t > 0. The limit of the second

factor when t tends to 0 is limt→0

(
1
2
βtβ − β + 1

)
= −β + 1 < 0; then there is

a t > 0 for which this second factor is negative and so (−1)2 g
(2)
β (t) < 0.

If β ∈ (0, 1), then gβ = LF , where F is the distribution function of the density

Sβ

(
· ; 2−1/β

)
; from theorem 10 and corollary 11 of Gómez-Sánchez-Manzano

et al. [13] we obtain that X ∼ SMNn (µ, Σ, Hβ) , where Hβ has density hβ

given, for v > 0, by

hβ (v) =
2

n
2 (1− 1

β )Γ
(
1 + n

2

)

Γ
(
1 + n

2β

) vn−3Sβ

(
1

2
v−2; 2−

1
β

)
. (2.3)

On the other hand, we see from (2.1) that if a random variable W has density
fW (w) = Sβ (w; σ) then Z = 2W has density fZ (z) = Sβ (z; 2σ) ; but

fZ (z) =
1

2
fW

(
z

2

)
=

1

2
Sβ

(
1

2
z; σ

)
;

therefore, Sβ

(
1
2
z; σ

)
= 2Sβ (z; 2σ) . By applying this to (2.3) we get (2.2).

For the case β = 1, distribution EPn (µ, Σ, 1) is the normal distribution
Nn (µ, Σ) . 2

Note that if V is the “mixing variable”, having density hβ, then the variable
W = 2(1/β)−1V −2 has density proportional to w−n/2Sβ (w, 1).
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As for the marginal distributions, they are very simple now: if X ∼ EPn(µ, Σ,
β), with β ∈ (0, 1], and X(p) = (X1, ..., Xp)

′ , with p ≤ n, then X(p) ∼
SMNp(µ(p), Σ(p), Hβ), where µ(p) and Σ(p) are the corresponding subvector and
submatrix of µ an Σ, and Hβ is the same distribution function shown in the-
orem 1 for vector X (see Gómez-Sánchez-Manzano et al. [13]).

As an example, we consider the case when β = 1
2
. We have the EPn

(
µ, Σ, 1

2

)

distribution, which is the double exponential distribution; from theorem 1 we
obtain that this is the SMNn

(
µ, Σ, H1/2

)
distribution with

h 1
2
(v) =

Γ
(

n
2

)

2
n
2 Γ (n)

vn−3S 1
2

(
v−2;

1

2

)
. (2.4)

Now (see Samorodnitsky and Taqqu [20], p. 10), S1/2 (y; σ) = 1
2
π−1/2σ1/2y−3/2

exp
(
−1

4
σy−1

)
, for y > 0; this density, often called Lévy density, is an inverted-

gamma distribution IG
(

1
2
, σ

4

)
. Thus, function (2.4) is

h 1
2
(v) =

1

2
3n+1

2 Γ
(

n+1
2

)vn exp
{
−1

8
v2

}
I(0,∞) (v) .

This is a generalized gamma density (Johnson et al. [14]); if n = 1, this is a
Rayleigh density (Johnson et al. [14]). The variable V 2 has the gamma distri-
bution G(n+1

2
, 1

8
). If n = 1, the variable V 2/8 has the exponential distribution

Exp(1); this agrees with the results shown for this case in Andrews and Mal-
lows [1] and West [23].

3 A hierarchical Bayesian model

Now we apply the former results, within a Bayesian framework, to deal with
the posterior distribution of parameters µ, Σ, β of an exponential power
distribution, once a prior distribution was assigned to them and a sample
X = (X1, ..., Xm) from this distribution has been observed to take the value
x = (x1, ..., xm).

The point is that, when obtained in the usual direct way, the posterior distri-
butions are not suitable to work with, as we said in section 1. So, in the case
when β ∈ (0, 1) , we consider the EPn (µ, Σ, β) distribution as the mixture
SMNn (µ, Σ, Hβ), and use a hierarchical model instead. In fact, we introduce
a vector V = (V1, . . . , Vm) of m new parameters and consider each sample

component Xj as coming independently from a normal Nn

(
µ, V 2

j Σ
)

distribu-
tion, with variance depending on Vj; now, β is an hyperparameter and the
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density of each Vj conditional to β is hβ; we suppose, as usual, that µ, Σ, β
are independent.

From a strictly probabilistic point of view, we have the set {µ, Σ, β, V1, . . . ,
Vm, X1, . . . , Xm} of 2m+3 variables, and the dependency relationship among
them is represented by this diagram:

β

↙ ↓ ↘
µ Σ V1 · · · Vj · · · Vm
︸ ︷︷ ︸

↙ ↓ ↘
X1 · · · Xj · · · Xm

More precisely, the following conditions are met:

(1) The variables µ, Σ, β are independent and their marginal respective (prior)
density functions are denoted by fµ, fΣ and fβ; the support of β is a sub-
set of the interval (0, 1) .

(2) For all j ∈ {1, . . . ,m} , Vj is independent of µ and Σ and, for a fixed β,
it is also independent of variables V1, . . . , Vj−1, Vj+1, . . . , Vm. Actually, its
conditional density function is fVj |µ,Σ,β,V1,...,Vj−1,Vj+1,...,Vm = hβ, given by
(2.2).

(3) For all j ∈ {1, . . .m}, the variable Xj, for a fixed value of Vj, depends
only on µ and Σ; actually, its conditional distribution is

(
Xj | µ, Σ, β, v, x1, . . . , xj−1, xj+1, . . . , xm

)
∼ Nn

(
µ, v2

j Σ
)
.

We are interested in the use of a Gibbs sampler to simulate samples of the
posterior distribution of the parameters µ, Σ, β. To do this, we need the
conditional posterior distributions of all the parameters; these are shown in
the next theorem.

Theorem 2 (Conditional distributions) We assume the three above con-
ditions.

(i) The density function of µ conditional to the remaining variables is

fµ|Σ,β,V,X (µ | Σ, β, v,x) ∝ fµ (µ) Nn (µ; a, S) , (3.5)
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where Nn means the normal n-variate density function and

a =




m∑

j=1

v−2
j



−1

m∑

j=1

v−2
j xj;

S =




m∑

j=1

v−2
j



−1

Σ.

(ii) The density function of Σ conditional to the remaining variables is

fΣ|µ,β,V,X (Σ | µ, β, v,x) ∝ fΣ (Σ) |Σ| 12 (n+1) IW (Σ; A,m) , (3.6)

where IW is the inverse Wishart density function

IW (Σ; A,m) ∝ |Σ|−m+n+1
2 exp

{
−1

2
tr

(
A−1Σ−1

)}
,

and A =
∑m

j=1 v−2
j (xj − µ) (xj − µ)

′
.

(iii) The density function of β conditional to the remaining variables is

fβ|µ,Σ,V,X (β | µ, Σ, v,x) ∝ fβ (β)


21+n

2
− n

2β Γ
(
1 + n

2

)

Γ
(
1 + n

2β

)



m
m∏

j=1

Sβ

(
v−2

j ; 21− 1
β

)
.

(3.7)
(iv) For all j ∈ {1, . . . m}, the density function of Vj conditional to the re-

maining variables is

fVj |µ,Σ,β,V1,...,Vj−1,Vj+1,...,Vm,X (vj | µ, Σ, β, v1, . . . , vj−1, vj+1, . . . vm,x) ∝
∝ vn−3

j Sβ

(
v−2

j ; 21− 1
β

)
Nn

(
xj; µ, v2

j Σ
)
.

for vj > 0.

PROOF. The joint distribution function of the 2m + 3 variables is

fµ,Σ,β,V,X (µ, Σ,x, v) =

= fµ(µ)fΣ(Σ)fβ (β)




m∏

j=1

hβ (vj)




m∏

j=1

Nn

(
xj; µ, v2

j Σ
)
. (3.8)

The density function of each variable conditional to the remaining variables
is proportional to (3.8). From this, the conditional density function of µ is

proportional to fµ(µ)
m∏

j=1

Nn

(
xj; µ, v2

j Σ
)

; the conditional density function of Σ

is proportional to fΣ(Σ)
m∏

j=1

Nn

(
xj; µ, v2

j Σ
)

; the conditional density function of
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β is proportional to fβ (β)




m∏

j=1

hβ (vj)


 ; and, for all j, the conditional density

function of Vj is proportional to hβ (vj) Nn

(
xj; µ, v2

j Σ
)
. The results of the

theorem are straightforwardly obtained by operating on these expressions. 2

Note that, for all j, the conditional density function of the variable Wj =

2(1/β)−1V −2
j is proportional to w−(n/2)Sβ (w; 1) Nn

(
xj; µ, 21−(1/β)w−1Σ

)
, for

w > 0.

As for the prior densities of µ and Σ, in many cases it will be useful to take
for them the Jeffreys non informative priors, which turn out to be fµ(µ) = 1

and fΣ(Σ) ∝ |Σ|−(n+1)/2 (see Maŕın [16]). For the parameter β, for the sake
of simplicity, the principle of insufficient reason (see Bernardo and Smith [3])
can be applied, which gives fβ (β) = I(0,1) (β) . By doing this, the expressions
(3.5), (3.6) and (3.7) reduce respectively to Nn (µ; a, S) , IW (Σ; A,m) and


21+n

2
− n

2β Γ
(
1 + n

2

)

Γ
(
1 + n

2β

)



m
m∏

j=1

Sβ

(
v−2

j ; 21− 1
β

)
.

The following Gibbs sampler algorithm, designed according to theorem 2, can
be used to generate samples of the posterior distribution of the parameters,
based on the prior suggested above.

Algorithm 3 (Gibbs sampler)

(1) Make t = 0. Set initial values (µ0, Σ0, V 0
1 , ..., V 0

m, β0) .
(2) Generate µt+1 ∼ Nn (a, S), where

a =




m∑

j=1

(
vt

j

)−2



−1

m∑

j=1

(
vt

j

)−2
xj;

S =




m∑

j=1

(
vt

j

)−2



−1

Σt.

(3) Generate Σt+1 ∼ IW (A,m), where

A =
m∑

j=1

(
vt

j

)−2 (
xj − µt+1

) (
xj − µt+1

)′
.

(4) For j = 1, . . . , m,

(a) make W t = 2(1/βt)−1 (V t)
−2

;
(b) generate W t+1

j with the next procedure:

(i) generate U ∼ U(0, 1).
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(ii) generate Y ∼ Sβt ( · ; 1).

(iii) If U < exp
{
λ

(
W t

j − Y
)}

, where

λ =
1

2

(
xj − µt+1

)′
Σ−1

(
xj − µt+1

)
,

make W t+1
j = Y ; else, make W t+1

j = W t
j.

(c) make V t+1
j =

(
21−(1/βt)W t+1

j

)−1/2

.

(5) Generate

βt+1 ∼

2

1+n
2
− n

2βt Γ
(
1 + n

2

)

Γ
(
1 + n

2βt

)



m
m∏

j=1

Sβt

((
vt+1

j

)−2
; 2

1− 1
βt

)
.

(6) Make t = t + 1. Go to Step 2.

Note that in step 4b a Metropolis-Hasting step is used. Alternatively, a slice
sampler step (see Godsill [9]) could be used.

Simulation of variable β in step 5 may be cumbersome because its distribution
is very peaked over the mode; in this case a Metropolis-Hasting algorithm is
little efficient because its taxes of acceptance are very low; and a slice sampler
method goes very slowly. Thence, a table method (see Devroye [6]) may be the
good choice.

4 Application on the distribution of mutational effects of genetical
quantitative traits

In evolutionary studies of Quantitative Genetics it is important to identify
the individual spontaneous mutations affecting the expression of, so called,
neutral traits (not related with surviving of species). The effect of mutations
is observed on different traits as morphological quantitative characters. In this
way, it is relevant to study the distribution of this expressed traits in terms of
its moments (see Garćıa-Dorado and Maŕın [8] for further details). The shape
and kurtosis of the distribution of traits is relevant to future adaptations;
the existence of higher kurtosis than the normal distribution is related with
the existence of few mutations with large effects (see Turelli [22] for technical
details).

A classical experimental methodology in the field of Quantitative Genetics
to deal with the previous problem is based basically on mating among sib-
lings. Thence, all the observed variability, after several generations is due to
accumulated mutations.
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We deal with flies of the species Drosophila melanogaster raised under stan-
dard conditions of laboratory, by means of a system of regular mating between
siblings, in order to facilitate the accumulation of spontaneous mutations. In
each Drosophila two morphological characters, length and width of wings, are
measured in units of screen. We assume that these characters are distributed
according to a bivariate power exponential distribution EP2(µ, Σ, β) and we
undertake the estimation of its parameters, in particular the kurtosis parame-
ter, in order to determine the presence and effects of accumulated mutations.

As experimental data, we use a sample of size 100 (see Santiago et al. [19])
and we try to estimate its parameters by using the methodology described in
this work.

We have implemented algorithm 3 by means of a MatLab program, with the
subroutines related to stable distributions implemented by using the library
fBasics from the R project, which, in its turn, uses an algorithm of Nolan [18];
the program D(COM)Server have been used to link all of them. We have run
30000 iterations, rejected the 10000 first ones as burn-in iterations, and taken
the last 20000 results as a sample of (µ, Σ, β) . We summarize the obtained
sample by showing the marginal means, standard deviations and quantiles of
µ1, µ2, tr (Σ) and β in table 1.

Table 1. Posterior characteristics

µ1 µ2 tr (Σ) β

Mean 1205.44 464.57 1705.53 0.92

Std.Dev. 4.11 1.86 259.50 0.02

5% 1198.75 461.53 1317.85 0.87

25% 1202.66 463.32 1523.97 0.90

50% 1205.46 464.57 1682.61 0.92

75% 1208.21 465.80 1867.21 0.93

95% 1212.18 467.63 2163.55 0.95

Figure 1 shows the histogram and density plots for β.

We see that the posterior mean is less than 1, which is the value corresponding
to the normal distribution, and that the whole distribution is located under
this value. This implies that accumulation of spontaneous mutations produces
a distribution of effects with a little higher kurtosis than the normal distri-
bution in such a way that it is expected that Natural Selection may be weak
over this traits to remove mutations.
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