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ABSTRACT

Currently, the most successful approach to steganography in

empirical objects, such as digital media, is to cast the em-

bedding problem as source coding with a fidelity constraint.

The sender specifies the costs of changing each cover element

and then embeds a given payload by minimizing the total em-

bedding cost. Since efficient practical codes exist that em-

bed near the rate–distortion bound, the remaining task left

to the steganographer is the fidelity measure – the choice of

the costs. In the past, the costs were obtained either in an

ad hoc manner or determined from the effects of embedding

in a chosen feature space. In this paper, we adopt a differ-

ent strategy in which the cover is modeled as a sequence of

independent but not necessarily identically distributed quan-

tized Gaussians and the embedding change probabilities are

derived to minimize the total KL divergence within the chosen

model for a given embedding operation and payload. Despite

the simplicity of the adopted model, the resulting stegosystem

exhibits security that is comparable to current state-of-the-art

methods methods across a wide range of payloads.

Index Terms— Steganography, multivariate Gaussian

cover, additive distortion function, syndrome-trellis codes,

steganalysis

1. INTRODUCTION AND PRIOR ART

Fundamentally, there exist three types of steganographic sys-

tems – steganography by cover synthesis, cover selection, and

cover modification [1]. While the first two are important for

studying theoretical aspects of steganography, only the third

one can be used to embed payloads that are large enough to

make the stegosystem practical.

Steganography by cover modification can be approached

from several different directions. Model-based approaches
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start with adopting a cover model that the embedding algo-

rithm is forced to preserve [2, 3, 4]. Although the resulting

stegosystem is undetectable within the chosen model, such

systems are (sometimes extremely) detectable within alterna-

tive representations of the cover source. A more pragmatic

approach is to admit that one will never construct a perfectly

secure system for empirical objects and design the steganog-

raphy to minimize a distortion function that is related to statis-

tical detectability. Here, right from the beginning the sender

gives up perfect security, and, instead, minimizes the stegano-

graphic Fisher information to maximize the size of the secure

payload that can be embedded at a fixed level of statistical

detectability. This approach has been extraordinarily success-

ful and lead to practical embedding schemes that current best

steganalyzers cannot reliably detect even at rather large pay-

loads [5, 6, 7].

The most common distortion function is additive w.r.t.

cover elements. The designer starts by assigning costs of

changing each cover element (pixel or quantized JPEG DCT

coefficient) and then embeds a given payload with the small-

est possible distortion. This problem can be formulated

as source coding with fidelity constraint [8] for which effi-

cient near-optimal codes exist – the syndrome–trellis codes

(STCs) [9]. Freed from having to invent coding schemes for

every embedding scheme, the stego designer only needs to

specify the pixel costs.

The caveat of this design is, of course, the costs. Ide-

ally, they should be defined to minimize the statistical de-

tectability. However, the relationship between costs and sta-

tistical detectability is currently not clear. Intuitively, the

costs should be high in well-modelable smooth regions and

low in noisy/textured content, where modeling the content

becomes difficult. The cost could be parametrized and then

optimized w.r.t. a specific cover representation and source

(feature space and image database) as in HUGO [5]. Since

such adaptive schemes concentrate the embedding modifica-

tions into smaller regions, one might need to properly model

the interactions between the embedding changes, which in-

evitably leads to non-additive distortion functions and neces-

sitates more complex methods, such as the Gibbs construc-



tion [10]. Non-additive distortions could be made additive

using the so-called additive approximation or majorized by

a bounding distortion [10], allowing again embedding using

STCs. In [11], the costs were optimized w.r.t. a specific

feature space to minimize the margin between the classes of

cover and stego features. The method constructed in this man-

ner was later shown to be extremely detectable in an appropri-

ately extended (but still low-dimensional) feature space [12].

While applying the same idea with a richer representation of

covers [13, 14] might be ultimately successful, it is unclear

how to scale this approach with increased diversity of the fea-

tures.

In this paper, we approach the problem of designing the

pixel costs in a different manner. In the next three sections,

we start with a simple cover model and embedding opera-

tion and compute the embedding change probabilities to mini-

mize the KL divergence between the cover and stego objects.1

The model is a sequence of independent (but not necessarily

identically distributed) quantized Gaussians. Similar models

are not new and were already used in steganography, e.g.,

in [15]. The non-stationarity of this model can capture the

varying content in images, while the assumption of indepen-

dence permits an especially simple analytical treatment. We

chose the Least Significant Bit Matching (LSBM) as the em-

bedding operation because one can easily derive its stegano-

graphic Fisher information [16, 17]. The method of Lagrange

multipliers is used to derive the optimal embedding change

probabilities for a given payload and image. Curiously, the

embedding profile (cost) now depends on the payload. In

Section 5.2, we test the security of the embedding algorithm,

which we call MG (Multivariate Gaussian), on a database of

images with rich cover models and compare the detectability

with HUGO [5], which, at the time of writing this paper, was

the most secure steganographic algorithm for images repre-

sented in the spatial domain. Despite the simplicity of the

chosen cover model, the MG algorithm offers better security

than HUGO for payloads larger than 0.3 bpp. For smaller pay-

loads, HUGO is slightly more secure. Even though the MG

algorithm does not lead to a major improvement over existing

state of the art, we believe that the methodology introduced

in this paper is significant and further improvement can be

expected with more complex cover models.

2. COVER MODEL

Given a uniform scalar quantizer Q△ with quantization step

△ and range M = {j△|j ∈ Z}, the cover will be mod-

eled as a sequence of n independent random variables, X =
(X1,, . . . , Xn), which are quantized zero-mean Gaussians

Q△(N(0, vi)) with p.m.f.’s p(i) = (p
(i)
j ), j ∈ M.2 In this

1Note that we are not forcing the stego algorithm to preserve the model

but merely to disturb it in the least possible way.
2We note that the results derived in this paper hold under the slightly more

general cover model Xi ∼ Q△(N(µi, vi)) with an integer µi.

article, the integers i ∈ {1, . . . , n} and j ∈ Z will be exclu-

sively used to index pixels and bins in M, respectively. Thus,

below, we refrain from adding the respective ranges of both

indices to declutter the text.

The embedding modifies each pixel independently with

probability βi, changing the cover to a sequence of indepen-

dent random variables (stego object), Y = (Y1,, . . . , Yn),

with distributions q(i)(βi) = (q
(i)
j ), j ∈ M. One can say

that βi is the ith change rate.

With increasing βi, the KL divergence between the cover

and stego objects increases. For small change rates, the KL

divergence is well-approximated with its leading quadratic

term:3

n
∑

i=1

DKL(p
(i)||q(i)(βi)) ≈

n
∑

i=1

1

2
β2
i Ii(0), (1)

where Ii(0) is the steganographic Fisher information (FI)
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∑

j

1

p
(i)
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3. EMBEDDING: ADAPTIVE LSBM

In this article, we consider LSBM as the embedding opera-

tion. It is used almost solely in all stegosystems designed

for digital images in both raster and transfer-domain formats.

LSBM changes pixel i by ±1 with probabilities β+
i = β−

i =
βi. Under these assumptions, the stego pixel distribution and

its partial derivative become (we drop the pixel index i for

better readability):

qj(β) = (1− 2β)pj + β(pj−1 + pj+1), (3)

∂qj
∂β

∣

∣

∣

∣

β=0

= −2pj + pj+1 + pj−1. (4)

The FI will be computed in the fine quantization limit. Us-

ing

F△(x) ,

x+△/2
ˆ

x−△/2

fv(t)dt (5)

for Gaussian density fv(x) with variance v and zero mean, the

Mean Value Theorem (MVT) gives for the quantized Gaus-

sian cover

pj = F△(j△) = △fv(j
′△) (6)

for some j′ ∈ (j−1/2, j+1/2). The values pj±1 = F△((j±
1)△) can be obtained using Taylor expansion of F△(x) at

x = j△:

pj±1 =

∞
∑

l=0

F
(l)
△

(j△)
(±△)l

l!
, (7)

3In fact, this approximation is valid also for “large” change rates in the

fine quantization limit (when vi ≫ △).



where F
(l)
△

is the lth derivative of F△. After substituting (6)

and (7) in (4), simplifying, and using the MVT, for each l ≥ 1

and x, F
(l)
△

(x) = f
(l−1)
v (x + △/2) − f

(l−1)
v (x − △/2) =

△f
(l)
v (φl) for some φl ∈ (x−△/2, x+△/2):

∂qj
∂β

∣

∣

∣

∣

β=0

= △3f ′′
v (j△) +O(△4). (8)

Finally, the Fisher information

I(0) =
∑

j

1

pj

(

∂qj
∂β

∣

∣

∣

∣

β=0

)2

≈
∑
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(
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(9)

≈ △4

ˆ

R

(

f ′′
v (x)

)2

fv(x)
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△4

v2
. (10)

Eq. (10) was obtained by approximating the “Riemann sum”

in (9) with an integral and evaluating it for Gaussian density

fv.

4. MINIMIZING THE KL DIVERGENCE

In this section, we derive the change rates βi (and thus the

pixel costs) for the payload-limited sender (PLS) that mini-

mizes the KL divergence. The total relative payload that can

be embedded in the image is the sum of entropies of p.m.f.’s

{βi, βi, 1− 2βi},

αn =
n
∑

i=1

h(βi), (11)

where h(x) = −2x lnx − (1 − 2x) ln(1 − 2x) is expressed

in nats. The optimal choice of βi that minimizes the total KL

divergence (1) subject to the payload constraint (11) can be

found using the method of Lagrange multipliers. Differenti-

ating the objective function w.r.t. βi gives:

∂

∂βi

(

n
∑

k=1

1

2
β2
kIk(0)−

1

λ

[

n
∑

k=1

h(βk)− αn

])

= 0, (12)

βiIi(0)−
2

λ
ln

1− 2βi

βi
= 0, (13)

which needs to be solved numerically for each pixel i. Solv-

ing (13) for βi is equivalent to finding x satisfying λIi(0)/2 =
x ln(x − 2), where x = β−1

i ≥ 3 since h(x) is maximized

for x = 1/3. To solve this equation quickly for all pix-

els, the inverse function to y = x ln(x − 2) was tabulated

for y ≤ 103 and an asymptotic iterative solution was imple-

mented for y > 103. From the requirement that the found

βi be minima, the second derivative of the objective function

w.r.t. βi must be positive, which means that λ > 0. For the

PLS, the Lagrange multiplier λ is determined from the pay-

load constraint (11).

Since the probabilities minimizing an additive distortion

function with pixel costs ρi satisfy βi = 1/(1 + exp(λρi))
(see, e.g., [9]), the pixel costs corresponding to embedding

probabilities βi are

ρi = ln(1/βi − 1). (14)

Because the costs are unique up to a multiplicative con-

stant, we normalize them so that maxi ρi = 1. By ordering ρi
from the smallest to the largest, we obtain the so-called cost

profile.

5. EXPERIMENTS

5.1. Cover model estimation and embedding

For a given relative payload α and grayscale image x = {xi},

xi ∈ {0, . . . , 255}, the sender first computes the costs ρi
using (14). Even though pixel values are not realizations

of independent zero-mean Gaussians, the pixels are locally

strongly correlated. Assuming that Xi from a small (e.g.,

3 × 3) neighborhood Ni have the same mean and variance,

the variance vi of Xi can be estimated as

vi = max{1, ENi
[x2

i ]− (ENi
[xi])

2}, (15)

where ENi
is the sample mean over Ni. The maximum with

1 was added for numerical stability.

The actual embedding was simulated at the rate–distortion

bound both for the MG algorithm and HUGO, which we in-

cluded for comparison as the current state-of-the-art algo-

rithm for images in raster format as of November 2012. In

practice, the ternary version of STCs [9] could be used to

implement the actual embedding algorithm near its payload–

distortion bound.4

5.2. Steganalysis

To see how the detectability increases with increased payload,

steganalysis was carried out using supervised machine learn-

ing by building a binary classifier for the class of cover im-

ages and stego images embedded with a fixed relative pay-

load. Images were represented using the state-of-the-art spa-

tial rich model (SRM) [13] with q = 1 with total dimension-

ality 12,753. The machine learning was the ensemble [18] run

with default settings with the Fisher linear discriminant as the

base learner. The cover source was the BOSSbase 1.01 [19]

containing 10,000 grayscale 512× 512 images originally ob-

tained by seven cameras in raw format (DNG, CR2), demo-

saicked, and resized/cropped using a script also available on-

line. The detection performance was evaluated in a standard

manner using the minimal total error under equal prior proba-

bilities of both hypotheses,PE = minPFA

1
2 (PFA+PMD), av-

eraged over ten random splits of the database into two halves.5

4STCs are known to have a small coding loss that diminishes to zero with

increasing constraint height.
5PFA and PMD are the false-alarm and missed-detection rates.



Fig. 1. Test image (left) and the embedding changes displayed

in white when embedding relative payload 0.4 bpp (right).
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Fig. 2. Cost profiles ρi for image in Fig. 1 for six relative pay-

loads 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 bpp (top curve corresponds

to 0.05 bpp) and sorted embedding change probabilities βi

(top curve corresponds to 0.5 bpp).

In Fig. 1, we show one test image from BOSSbase and the

embedding changes in white for payload 0.4 bpp (bits per

pixel). Like HUGO, the MG algorithm is content-adaptive,

concentrating the embedding changes in edges and textures.

Working out the optimal embedding change probabilities for

different payloads α for this image (Fig. 2), we discover that,

in contrast with embedding schemes that fix the costs, the cost

profile now depends on the payload. This is because we min-

imize the KL divergence in a multivariate Gaussian model

rather than an embedding cost fixed for each pixel in the be-

ginning.

Fig. 3 shows the average detection error PE as a function

of the relative payload for the MG algorithm and for HUGO.

HUGO was run with its parameters γ = σ = 1 and threshold

T = 255. Both algorithms perform similarly for payloads

up to 0.3 bpp. Then, the adaptivity of MG seems better than

that of HUGO. The difference in detectability at α = 1 is

caused by the fact that MG uses ternary embedding and thus

still preserves some adaptability while HUGO at this payload

loses its adaptive character.

6. CONCLUSIONS

Constructing steganographic schemes using additive distor-

tion functions is a modern trend in steganography for digital

media. Since the coding part of the problem has been re-

solved, the most crucial element is the design of the individ-

ual pixel costs. In general, finding a relationship between the

costs and statistical detectability is a very hard problem and

one that will probably remain open for many years to come

because of the complexity of digital media. In this paper, we

adopt a rather simple model – a multivariate quantized Gaus-

sian distribution and derive the pixel costs to minimize the KL

divergence when embedding using least-significant bit match-

ing. In contrast to schemes built by fixing the pixel costs, the

distortion profile for this embedding algorithm depends on the

payload. Despite the simplicity of the cover model, the MG

algorithm exhibits security comparable to the current state-

of-the-art algorithm HUGO. This provides hope that this ap-

proach to minimum-distortion steganography has a promise

and might provide superior performance with more complex

models.

With more complex models, the most problematic issue

seems to be estimation of the local parameters, such as the

covariance matrix for a joint Gaussian model or the transition

probability matrix for a Markov model. Estimating these ob-

jects will inevitably run into the difficulty of having to trade

off between estimator variance and bias.
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Fig. 3. Average detection error PE as a function of relative

payload for MG and HUGO.
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