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Multivariate Image Segmentation Using Semantic
Region Growing With Adaptive Edge Penalty
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Abstract—Multivariate image segmentation is a challenging
task, influenced by large intraclass variation that reduces class
distinguishability as well as increased feature space sparseness
and solution space complexity that impose computational cost
and degrade algorithmic robustness. To deal with these problems,
a Markov random field (MRF) based multivariate segmentation
algorithm called “multivariate iterative region growing using
semantics” (MIRGS) is presented. In MIRGS, the impact of
intraclass variation and computational cost are reduced using
the MRF spatial context model incorporated with adaptive edge
penalty and applied to regions. Semantic region growing starting
from watershed over-segmentation and performed alternatively
with segmentation gradually reduces the solution space size, which
improves segmentation effectiveness. As a multivariate iterative
algorithm, MIRGS is highly sensitive to initial conditions. To sup-
press initialization sensitivity, it employs a region-level �-means
(RKM) based initialization method, which consistently provides
accurate initial conditions at low computational cost. Experiments
show the superiority of RKM relative to two commonly used
initialization methods. Segmentation tests on a variety of synthetic
and natural multivariate images demonstrate that MIRGS consis-
tently outperforms three other published algorithms.

Index Terms—Initialization sensitivity, Markov random field
(MRF), multilevel logistic (MLL) model, multivariate segmenta-
tion, region adjacency graph (RAG), semantic region growing,
vector-valued image, watershed.

I. INTRODUCTION

C
OMPUTER vision applications often require segmen-

tation of digital imagery into semantically meaningful

regions. The segmented regions can provide a basis for sub-

sequent tasks such as object detection and recognition, scene

understanding and content-based image retrieval. Therefore,

ultimate performance depends upon segmentation accuracy.

Rapid advances in image technologies lead to various types of

digital images. Multivariate (vector-valued) imagery (e.g., color

images) depicts each site using a vector that characterizes the
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same scene from distinct aspects, where the number of vector

elements is called the feature space dimension. Univariate im-

agery (e.g., grayscale images) can be regarded as a special mul-

tivariate case in which each site is depicted by a scalar. This

paper focuses on multivariate 2-D imagery which is defined on

a discrete 2-D rectangular lattice.

Multivariate image segmentation has been widely applied in

diverse fields [1]–[4]. Although theoretically feasible to extend

many univariate segmentation techniques to their multivariate

counterparts, practical performance is influenced by the mul-

tivariate nature of the image. Intraclass variation is typically

present since semantically meaningful regions (classes) are

often inhomogeneous due to scene characteristics, imaging en-

vironment, and image noise. Large intraclass variation usually

reduces class distinguishability and, thus, degrades segmenta-

tion performance. Multivariate imagery is especially sensitive

to large intraclass variation since every component image is

a variation contributor. Moreover, computational cost of seg-

mentation algorithms increases while algorithmic robustness

tends to decrease with increasing feature space sparseness and

solution space complexity.

Markov random field (MRF) based image segmentation [5]

is advocated for its intrinsic capability of reducing the impact

of intraclass variation using spatial context information. Yu and

Clausi [4], [6] built an iterative region growing using semantics

(IRGS) algorithm for univariate image segmentation, which

incorporates edge information with the MRF model. IRGS uses

watershed over-segmentation to build a region adjacency graph

(RAG), which then undergoes vertex labeling and merging by

alternating segmentation and semantic region growing pro-

cedures. Although IRGS demonstrates superior segmentation

ability, it cannot take multivariate images as inputs. Moreover,

IRGS is sensitive to initial conditions and may not consistently

provide accurate segmentation results.

We present a region-level MRF-based segmentation algo-

rithm named multivariate IRGS (MIRGS), which advances

the merits of the univariate IRGS to deal with multivariate

imagery. Similar to IRGS, MIRGS is also sensitive to initial

conditions, which becomes more pronounced as the feature

space dimension increases. Therefore, a region-level -means

(RKM) method is used to provide robust initialization for

MIRGS at low computational cost.

The next section describes the mathematical background for

multivariate image segmentation. Section III presents the re-

gion-level MLL model based segmentation, which leads to the

full description of MIRGS that is tested in Section IV.

1057-7149/$26.00 © 2010 IEEE
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II. BACKGROUND

A. Image Segmentation Problem Statement

Let denote a discrete

2-D rectangular lattice of size . rep-

resents the multivariate 2-D image defined on , where

is the -dimensional feature vector defined

on site . Here, each image site denotes a pixel. represents

the univariate component image of . Suppose an image is

to be segmented into classes. Let denote

the set of class labels. is the random label

field defined on , where is the random variable taking a

value in .

Given an observed image with

as an instance of , image segmentation

aims at finding a label field configuration to

optimize certain criteria defined on and . The obtained con-

figuration partitions into disjoint subsets where

corresponds to a region or cluster of regions with defined

similar characteristics.

B. Multivariate Image Segmentation Techniques

Multivariate imagery may be produced by capturing several

images of a particular scene under varying circumstances (such

as frequency) or by extracting multiple features from each site

in a univariate image.

Among existing multivariate segmentation techniques, fea-

ture space thresholding and clustering methods [1], [7], [8] are

simple and time-efficient. However, they produce noisy seg-

mentations due to ignoring spatial context. Edge based methods

[9]–[11] segment using region boundaries. Although less sensi-

tive to regional inhomogeneity, edge-based performance is in-

fluenced by ill-defined noisy edges and often degrades when

multiple region boundaries are to be found in a globally optimal

sense.

Region based segmentation methods [2], [12], [13] merge or

split regions using region statistics as descriptors and, as such,

are less sensitive to noise. However, choosing suitable merging

and splitting criteria and thresholds is difficult especially when

region statistics are nonstationary.

Model based segmentation methods [9], [10], [14], [15]

have solid mathematical foundations. They perform well given

accurate model formulations and efficient optimization tech-

niques but are challenged by nonstationary image properties.

Hybridization [4], [6], [16], [17] provides a method to combine

the strength of region, edge and model based approaches.

C. MRF-Based Image Segmentation

Given that is a MRF with respect to a certain neighborhood

system on , the MRF-based image segmentation framework

[5], [14] can be formulated in a general form as

(1)

where is the conditional probability density function of

the observed image given a label field configuration .

follows the Gibbs distribution [5]

(2)

where denotes temperature typically assumed to be 1 and

represents the Gibbs energy function of the configuration

, which equals the sum of clique potentials over all possible

cliques in where each clique is a subset of [5].

The MRF-based segmentation can be formulated at the re-

gion level [4], [6], [18]–[22] using the region adjacency graph

(RAG) [7] based image representation. A RAG is denoted by

where and represent the set of vertices and the

set of arcs connecting neighboring vertices. Each vertex

depicts an image region with denoting the set of image sites

constituting that region. Each arc represents the boundary

between two neighboring regions.

In the region-level MRF-based segmentation, an input image

is first over-segmented into disjoint and relatively homogenous

regions upon which the RAG is constructed. Suppose that a cer-

tain neighborhood system and cliques are defined on [18].

Let denote the Markov random

label field on [18] with being its

instance. Here, denotes the label for all sites . The

region-level MRF-based segmentation is formulated as

(3)

Here, follows the Gibbs distribution with its energy

function defined according to a certain MRF model on

. Under the class-conditionally independent assumption, the

can be formulated as

(4)

Compared to the pixel-level formulation, the region-level

approach can dramatically reduce the solution space to facil-

itate optimization. Moreover, taking image regions instead of

pixels as processing units implicitly reduces the influence of

intraregion variation. However, performance is influenced by

the initial over-segmentation. Too many initial regions may still

lead to poor suboptimal solutions. Too few initial regions may

sacrifice some important structure information, which cannot

be recovered. Therefore, a desirable initial over-segmentation

scheme should produce a minimal number of regions with

boundaries preserved. Existing over-segmentation schemes

include watershed transform [21]–[23], partition mode test

[24], tone-region based segmentation [25], pixons extraction

[20], normalized cuts [26] and superpixel lattices [27].

The MRF-based image segmentation corresponds to a combi-

natorial optimization problem. Various optimization techniques

[5] have been used to search for its optimal solution.
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D. Initialization of MRF-Based Segmentation

Most optimization techniques solving the MRF-based seg-

mentation problem are iterative and, thus, initialization-sensi-

tive. However, typically such papers do not describe their ini-

tialization methods or use random initialization that can lead to

poor suboptimal solutions.

Initialization for the MRF-based segmentation is concerned

with both feature model class statistics and the label field

configuration, which are interrelated. The initialized feature

model class statistics can determine the initial label field

configuration and vice-versa. Among existing initialization

methods, -means and finite mixture models [3], [28], [29] are

simple and relatively time-efficient although they themselves

are sensitive to initial conditions. A multiagent system [30]

provides an evolutionary optimization framework using the

population-based initialization, which solves segmentation

problems at high computational cost. Tree-structure vector

quantization, agglomerative hierarchical clustering and region

growing or splitting schemes [31]–[33] explore proper initial

conditions in a hierarchical manner, which can be effective but

time-consuming. Existing initialization methods are typically

performed in the feature space without considering spatial

context information. Therefore, the obtained initial conditions

may correspond to unfavorable solutions for the MRF-based

segmentation and prevent convergence to preferred solutions.

III. MIRGS ALGORITHM

A. Multilevel Logistic (MLL) Model Based Segmentation

The MLL model [5] is a popular MRF spatial context model,

which imposes the local label consistency constraint to suppress

noisy label field configurations. Its typical pixel-level formula-

tion on only considers pair-site cliques with the corresponding

Gibbs energy function defined as

(5)

if

otherwise
(6)

where and denote a pair-site clique consisting

of two neighboring sites and its potential, represents

all pair-site cliques on , and is a positive number. Since

(5) is intrinsically related to the total class boundary length, the

pixel-level MLL model actually penalizes the existence of class

boundaries.

The MLL model formulated on leads to the region-level

MLL model based segmentation. Depending upon the definition

of region boundaries as RAG arcs, the MLL model on may

have different forms. If each pixel belongs to one of the regions

obtained from the initial over-segmentation, i.e., ,

region boundaries will be implicitly defined in-between image

sites and characterized by sets of neighboring pixel pairs astride

the boundary. In such a case, the region-level MLL model be-

comes the same as the pixel-level one. However, region bound-

aries, thus, defined cannot be efficiently stored and manipulated

as RAG arcs.

Fig. 1. Over-segmentation example using watershed transform. (a) Grayscale
image �� (378 � 279) described in Section IV-A. (b) Over-segmentation
within the region enclosed by the black box in (a) using watershed transform.

Here, we use an onsite region boundary definition [29] as

follows:

1) ;

2) ;

3) ;

4)

where denotes the one-pixel boundary outlining region .

This definition indicates that each pixel belongs to either a re-

gion or a region boundary, where all regions are mutually sepa-

rated by region boundaries. A region’s boundary pixels are nor-

mally boundary pixels for at least one other neighboring region,

e.g., represents the set of common boundary sites be-

tween neighboring regions and . Region boundaries, thus,

defined can be easily represented using the popular chain code

data structure [7]. Therefore, their storage and manipulation as

RAG arcs are both space and time efficient.

According to this onsite boundary definition, the Gibbs en-

ergy function of the region-level MLL model is defined as

(7)

if

otherwise
(8)

where and denote a pair-vertex clique in-

volving two neighboring vertices and and its potential.

represents all pair-vertex cliques on . Since (7) equals

times the total class boundary length, this region-level MLL

model also penalizes the existence of class boundaries.

We use the well-established watershed transform [23] for the

initial over-segmentation due to its high efficiency. An over-seg-

mentation example is shown in Fig. 1. This transform partitions

an input image into disjoint and relatively homogenous regions

(catchment basins) as well as one-pixel region borders (water-

sheds) based upon the gradient magnitude image. The number

of catchment basins equals the number of local minima detected

in the gradient magnitude image.

Using (4), assume that defines a class-conditional

multivariate Gaussian distribution, the region-level MLL model

based segmentation can be formulated as

(9)
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(10)

(11)

Here, and are energy functions related to

the feature and spatial context models. and denote mean

vector and covariance matrix of class . denotes the

set of common boundary sites between classes and . Note

that equals (7), and is regarded as a weighting

factor. In multivariate segmentation, increases pro-

portionally with the feature space dimension while

does not. Therefore, has to be dependent upon to make a

proper balance between and . To ensure the

proper balance, we normalize in (9) by .

In the MRF-based segmentation, an inaccurate spatial con-

text at early stages of optimization can mislead the estimation

of feature model class statistics. The estimation error can be

propagated in subsequent iterations, which generally results

in an incorrect segmentation. To address this issue, Deng and

Clausi [15] introduced a variable weighting into the

feature model, which is hereby extended to the region level

(12)

where is a constant parameter and is the current iteration.

This adaptive weighting scheme gradually increases the influ-

ence of the spatial context model to prevent an inaccurate spatial

context to mislead the estimation of feature model class statis-

tics at early iterations. Note that the feature model normalization

issue has already been taken into account in (12) via .

After all iterations for solving (9) or (12) are finished, we

need to deal with region boundary sites . Among

them, sites not belonging to class boundaries are directly as-

signed to the same class to which all its neighboring regions

belong. Class boundary sites may be removed using maximum-

likelihood classification [7] so that each site is assigned to one

of the classes to which its neighbors belong, namely,

where denotes the neighborhood of site and is ob-

tained from the completed iterations of MIRGS.

Hereafter, the region-level MLL model based segmentation

with and without the variable weighting factor are named

as (constant MLL) and (variable MLL).

B. MIRGS Properties

The multivariate extension from IRGS to MIRGS involves

both major and minor changes.

Major changes are related to the region boundary definition.

IRGS defines region boundaries in-between image sites, which

is not desirable for the following reasons:

• Watershed pixels obtained by watershed transform must be

assigned to one of its neighboring regions. Common as-

signment criteria based upon region statistics are less ef-

fective due to feature space sparseness especially in mul-

tivariate cases. Consequently, watershed pixels located at

edges may be wrongly assigned to undesirable regions and

cannot be rectified subsequently. Such incorrect assign-

ment may distort regional statistics, which successively in-

fluences segmentation performance. Moreover, this water-

shed removal step is time-consuming.

• Region boundaries are characterized by sets of neighboring

pixel pairs astride the boundary and cannot be represented

in a convenient data structure. Therefore, it is space and

time consuming to store region boundaries as RAG arcs

and to manipulate them.

• IRGS defines edge strength as intensity value differences

between neighboring sites astride the boundary. However,

a more reasonable measurement of edge strength is the gra-

dient magnitudes calculated on image sites.

MIRGS uses the onsite region boundary definition

(Section III-A) to address these undesirable aspects. Specif-

ically, watersheds are directly used as region boundaries to

avoid the problematic watershed removal process. Chain code

[7] based boundary representation enables efficient storage and

manipulation of region boundaries as RAG arcs. Edge strength

is naturally defined as gradient magnitudes on boundary sites.

Minor changes include:

• IRGS calculates the gradient magnitude image using a tra-

ditional gradient operator [8], which is only applicable to

univariate input images. MIRGS calculates gradient from

multivariate input images using a vector gradient method

[34], which extends watershed transform to multivariate

imagery.

• MIRGS generalizes the univariate feature model of IRGS

into its multivariate counterpart, which is further normal-

ized by the feature space dimension.

• MIRGS generalizes the univariate Fisher criterion used by

IRGS to adjust the spatial context model’s parameter to its

multivariate counterpart used by MIRGS.

MIRGS inherits many attractive properties from the uni-

variate IRGS [6]:

• MIRGS uses a monotonically decreasing edge penalty

function with the region-level MLL model.

• MIRGS changes edge penalty at each iteration to generate

a sequence of spatial context models.

• MIRGS performs on a hierarchical RAG with the

bottom-up nonincreasing vertex number, which gradually

reduces the solution space size to improve segmentation

effectiveness.

By incorporating an edge penalty function with (11)

in the formulation (9)

(13)

(14)
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MIRGS can be formulated as (15), shown at the bottom of

the page, where is a monotonically decreasing edge

penalty function with representing the normalized

gradient magnitude on site as the edge strength measurement.

Here, is defined as an exponential function with a varying

parameter . takes positive values and monotonically

increases with the iteration number , which controls how

quickly penalty decays with increasing edge strength. As

increases, the penalty difference between strong and weak

edge strength decreases. When approaches infinity, edge

penalty equals one. Therefore, the formulation (15) can be

regarded as making a smooth transition from the feature model

based segmentation to the MLL model based segmentation as

iteration proceeds, which implicitly solves the issue addressed

by [15].

MIRGS applies watershed transform [23] on the gradient

magnitude image calculated from the given multivariate image

(Section III-C) to produce an over-segmentation upon which

the initial RAG is built. Before the first iteration, feature model

class statistics ( and ) and the label field configuration

(class labels of vertices in the RAG) are initialized. At the

iteration, given the current feature model class statis-

tics, Gibbs sampling [14] is applied on the current RAG to find

a suboptimal solution for (15). Specifically, each RAG vertex is

visited once in a random order. Suppose is being visited

and the current label field configuration is , probabil-

ities ,

are first calculated using the Gibbs distribution with

the energy term defined as per (15) and the temperature param-

eter being a fixed constant. Then, class label is set to with

probability . After Gibbs sampling, a greedy semantic region

growing process is carried out to update the RAG. Specifically,

consider each adjacent vertex pair that has the same class label

in the current RAG, e.g., vertex pair and . The merging

criterion is defined by analogy with Section 4.1 in [6] as1

(16)

1If the cardinality of � , � , or � is too small, the corresponding covari-
ance matrices might become singular and, thus, have their determinant values
equal to zero, which nullifies logarithm operations. As such, we assign a small
positive value ��� � to the determinant of any singular covariance matrix so
as to always make feasible the calculation of (16).

where and denotes the covariance matrix

with respect to . Among all of the adjacent vertex pairs

under consideration, the neighboring regions corresponding

to the vertex pair having the smallest are merged if this

is negative, and subsequently update the RAG and the

corresponding region statistics. This merging process is re-

peated until the smallest is non-negative. Feature model

class statistics ( and ) are then recomputed based upon the

updated RAG as

if

otherwise
(17)

(18)

(19)

Here, singular will be regularized [35]. Iterations continue

until the prespecified maximum iteration number is

reached.

C. Gradient Magnitude Computation on Multivariate Imagery

Both watershed transform [23] and edge strength measuring

require a single gradient magnitude image derived from mul-

tivariate imagery. This is calculated using the vector gradient

method [34]. Instead of combining gradient magnitudes de-

rived independently from each univariate component image

according to certain rules, the vector gradient method directly

calculates the gradient in a vector field.

Given the observed multivariate image , the vector gradient

approach computes the gradient magnitude and direction on

site as the square root of the largest eigenvalue of the matrix

and its corresponding eigenvector, where is an

matrix defined as

...
...

...
...

(20)

where and denote the first partial deriva-

tives of the univariate component image of on site with

respect to vertical and horizontal directions, respectively. In

MIRGS, partial derivatives are computed using the Gaussian

derivative method [7]. The largest eigenvalue of the matrix

(15)
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can be calculated analytically using Eqns. (4)–(8) in

[34]. Accordingly, the gradient magnitude on site is with

its normalized value calculated as

(21)

D. Parameter Description

The parameter in (15) can be either set empirically as a fixed

value a priori [36] or estimated iteratively during segmentation

[37], [38]. The former is ad hoc with respect to the images under

examination while the latter is influenced by image noise and

complexity. Following [6], at each iteration, MIRGS first uses

a lookup table generated by the Monte Carlo method [38] to

obtain an intermediate parameter according to the ratio of

the current total class boundary length over the image size, and

then determines using and the two-class Fisher criterion

[35]

(22)

(23)

(24)

(25)

where is the minimum two-class Fisher criterion value among

all class pairs, and are two parameters controlling the

adjusting rule, and denote the pooled within-class

scatter matrix and between-class scatter matrix regarding

classes and , and represents the cardinality of .

measures the overall class separability in the feature space,

so that the larger the , the better the separability. Therefore,

when the feature model dominates the energy function (15)

at early iterations, is relatively large and accordingly is

large to emphasize the spatial context model. When the spatial

context model gradually plays a dominant role with increasing

iterations, decreases to reduce so as to avoid the under-seg-

mentation risk [6].

The parameter in the edge penalty function is defined

in a manner similar to [6]

if

if
(26)

where takes a value in [0, 1] to which percent of the class

boundary sites have the smaller in comparison.

E. RKM-Based Initialization

Multivariate iterative image segmentation, like MIRGS, re-

quires robust initialization to consistently achieve satisfying so-

lutions. Initialization sensitivity in multivariate cases is more

severe than that in univariate cases due to increased feature

space sparseness and solution space complexity. Thus, a re-

gion-level -means (RKM) based initialization method is incor-

porated into MIRGS to provide robust initialization. RKM takes

TABLE I
ALGORITHMIC DESCRIPTION OF MIRGS

image regions produced by watershed over-segmentation as

processing units instead of pixels.

RKM seeks a set of optimal class mean vectors ,

to minimize the following energy function:

(27)

To reduce initialization sensitivity, RKM employs a multistart

scheme. sets of class mean vectors are randomly initial-

ized. Each set performs iterations. At each iteration, the

label field configuration is updated using the current class

mean vectors according to the nearest center rule as

(28)

, is then recomputed using (17) and (18). From the

derived sets of class mean vectors, the set with the smallest

energy (27) is chosen as the starting point and refined further

by iterations. Both multistart and further refining

iterations can save time by terminating once the ratio of

the absolute energy difference between consecutive iterations

over the energy at the former iteration is below .

Class mean vectors obtained by RKM can determine a label

field configuration using (28) from which class covariance

matrices can be calculated using (17) and (19). Regularization

[35] will be applied in the case of singular covariance matrices.

Such class mean vectors, class covariance matrices, and label

field configuration provide the initial condition for further

segmentation.

The RKM-based initialization method has several attractive

features:

• low computational cost due to its simple formulation and

region-level optimization;

• minimal initialization sensitivity;

• implicitly takes into account spatial context information

via (28), i.e., class labels on any sites in one region depend
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Fig. 2. Original synthetic images for generating noisy test images.
(a) Grayscale image (378 � 279) of three gray levels: 96, 144, 160. (b) Color
image (378 � 279) of three RGB colors: (39, 39, 117), (78, 78, 78), (117, 156,
39).

upon the feature properties on all sites in the same region

and, thus, can provide accurate initial conditions for the

MRF-based segmentation.

F. Overall Algorithm

The overall algorithm of MIRGS is described in Table I. In

unsual cases, the final segmentation result obtained by MIRGS

contains the number of classes fewer than . This is triggered

by step 5 and considered as segmentation failure.

IV. EXPERIMENTS

Segmentation tests are performed on various synthetic and

natural multivariate images to evaluate two aspects:

1) Initialization Analysis: Determine which of the three

initialization methods (random—RAND, expectation-

maximization Gaussian mixture model—GMM, and

RKM) provides accurate initial conditions for further

segmentation.

2) Segmentation Analysis: Using the preferred initialization

method from 1), compare the (i) accuracy and (ii) compu-

tation time of three MRF-based segmentation algorithms:

, and MIRGS as well as GMM, where

GMM acts as a base reference case.

A. Test Images

1) Grayscale Images: The synthetic grayscale image

shown in Fig. 3(a) is a univariate image. It is generated by adding

Gaussian noise with mean 0 and variance 0.01 to a

synthetic grayscale image shown in Fig. 2(a), which has three

gray levels (96, 144, 160) corresponding to three classes (back-

ground, circle and triangle). Here, denotes the normalized

variance, i.e., where is the actual variance

used. The histogram of [Fig. 3(c)] shows that the image

noise creates tremendous intraclass variation resulting in a uni-

modal distribution.

2) Color Images: Segmentation tests on color images are

performed in the CIE color space [39] due to CIE

’s desirable perceptually uniform property. Two types

of color images with synthetic and natural intraclass variation

are used.

The synthetic color image shown in Fig. 2(b) is a color ver-

sion of Fig. 2(a), which consists of three RGB colors [(39, 39,

117), (78, 78, 78), (117, 156, 39)] corresponding to the three

Fig. 3. Histograms of two noisy test image examples. (a) Grayscale image
�� . (a) Color image �� . (c) Histogram of (a). (d) Histogram of (b) in
the normalized CIE � � � space.

classes. Additive Gaussian noise ( and , 0.03,

0.05, 0.07, 0.09) and multiplicative Gaussian noise ( and

, 0.3, 0.5, 0.7, 0.9), are independently imposed on each

RGB channel of Fig. 2(b), respectively to generate two groups

of synthetic color images ( and ). Fig. 3(d) illustrates

the histogram of an example image (Fig. 3(b)) in the nor-

malized CIE color space where each of , and

component images is normalized to [0, 255]. As in Fig. 3(d), the

individual class distributions are not distinct.

Natural color images are inherently characterized by consid-

erable intraclass variation since classes in the scene are typically

not homogeneous. Here, three natural color images (NC1, NC2,

NC3) are used (Fig. 6). NC1 contains three classes (horses,

green grasses and yellow flowers), NC2 contains three classes

(grass field, car and raceway), and NC3 contains four classes

(lake, mountain, blue sky, and clouds).

3) Textured Images: Three categories of nine Brodatz [40]

mosaic images (Fig. 5) corresponding to different degrees of

segmentation difficulty are used. The filter bank composed of

24 complex Gabor filters at four frequencies (22.63, 11.31, 5.66,

and 2.83 pixels per cycle) and six orientations (0 , 30 , 60 ,

90 , 120 , and 150 ) is applied on each image [41]. The magni-

tudes of 24 filtered complex images constitute the multivariate

features.

Category 1 includes three published mosaic images that have

relatively small intraclass variation and, thus, easy to segment:

T1 [15], [42] with four Brodatz textures2 D68, D55, D84, and

D77, T2 [43] with five Brodatz textures D77, D84, D55, D53

,and D24, and T3 [41], [42] with five Brodatz textures D77, D55,

D84, D17, and D24. As indicated in [42], the D17 (herring bone)

should be regarded as containing two different textures when

orientation-sensitive Gabor filters are used. Therefore, there are

four, five, six classes in T1, T2, and T3, respectively. Textured

images in this category are relatively easy to segment since their

2The � denotes the numbering system used in the Brodatz album.
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TABLE II
MAXIMUM VALUE (MAX), 3RD QUARTILE (Q3), 1ST QUARTILE (Q1), MINIMUM VALUE (MIN) AND MEAN VALUE (MEAN) OF ��� (%) AND � BY APPLYING

MIRGS USING RANDOM, GMM AND RKM INITIALIZATION 10 TIMES ON GRAYSCALE IMAGE �� , COLOR IMAGE �� AND TEXTURED IMAGE T2

TABLE III
MAXIMUM VALUE (MAX), 3RD QUARTILE (Q3), 1ST QUARTILE (Q1), MINIMUM VALUE (MIN) AND MEAN VALUE (MEAN) OF COMPUTATION TIME (MINUTES)

OF THE INITIALIZATION PART AND THE WHOLE SEGMENTATION BY APPLYING MIRGS USING RANDOM, GMM AND RKM INITIALIZATION 10 TIMES ON

GRAYSCALE IMAGE �� , COLOR IMAGE �� AND TEXTURED IMAGE T2

intraclass variation in the feature space is not too large to con-

siderably reduce class separability.

Category 2 involves three mosaic images created using com-

posite textures to artificially increase intraclass variation, which

leads to higher segmentation difficulty. The composite texture is

generated by linearly combining intensities of several Brodatz

textures on each image site. T4 is composed of D5 (top-left),

(top-right), D84 (bottom-left) and D92

(bottom-right). T5 is composed of (top-left),

(top-right), (bottom-left)

and (bottom-right). Due to the use of a

common component texture D1, the class separability among

all 4 composite textures in the feature space is reduced. T6 is

created from (top-left),

(top-right), (bottom-left) and

(bottom-right) where the weight of the

common component D104 in composite textures is increased to

further reduce the class separability in the feature space.

Category 3 contains three mosaic images generated using

Brodatz textures with similar visual perception. T7 consists of

D84 (top-left), D54 (top-right), D112 (bottom-left) and D22

(bottom-right). T8 consists of D81 (top-left), D85 (top-right),

D82 (bottom-left) and D80 (bottom-right). T9 consists of D6

(top-left), D19 (top-right), D55 (bottom-left) and D84 (bottom-

right).

B. Experimental Setup—Initialization Analysis

Three initialization methods—random (RAND), expectation-

maximization Gaussian mixture model (GMM) clustering [35],

and RKM—will be compared in terms of their capability to ini-

tialize MIRGS for segmenting gray, color and textured images

( , and T2) that have different feature space di-

mensions (1, 3, and 24).

RAND randomly labels each vertex in the initial RAG (i.e.,

randomly initializes ) and then calculates initial feature model

class statistics using (17)–(19). GMM is a pixel-level initializa-

tion method, which here uses the multistart pixel-level -means

for its own initialization. The final class mean vectors and co-

variance matrices estimated by GMM are used as initial feature

model class statistics from which the initial is determined

using the feature model. In both RAND and GMM, singular co-

variance matrices are regularized.

For GMM and RKM, setting to 25 and to 20 pro-

vides a good tradeoff between accurate initialization and reason-

able computational speed. is set to 500, which is normally

not exhausted since the early stopping criterion is met.

MIRGS’s parameters are obtained by trial and error and re-

main the same for all tests: , , . In

fact, is more dependent upon applications than other param-

eters [44]. We fixed the value of throughout our experiment

since we found that can produce satisfactory segmen-

tation results for the current test suite. In MIRGS, Gibbs sam-

pling is performed using a small constant temperature 0.01. The

number of classes is specified a priori.

With ground truth, segmentation accuracy (namely the

percentage of correctly labeled pixels) and kappa coefficient

[45] (that measures the degree of agreement between the seg-

mentation result and ground truth) can be determined. They are

used to quantitatively evaluate segmentation performance.
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Fig. 4. Poorest segmentation results corresponding to the minimum ��� and ����� among 10 runs by applying MIRGS with RAND, GMM and RKM initializa-
tion on grayscale image �� , color image �� and textured image T2, respectively. Results with regard to the RKM initialization are most visually agreeable
to segmentation ground truth.

TABLE IV
MEAN VALUES OF ��� (%) AND � OVER 10 RUNS BY APPLYING GMM,
���� , ���� AND MIRGS ON TWO GROUPS OF 10 SYNTHETIC

COLOR IMAGES WITH ADDITIVE AND MULTIPLICATIVE GAUSSIAN NOISE AT

VARYING NOISE LEVELS (AN EXAMPLE IS SHOWN IN FIG. 4). BOLD SHOWS

OPTIMAL MEAN VALUES OF ��� AND � AS WELL AS THOSE INDISCERNIBLE

FROM THE OPTIMAL BASED UPON WILCOXON SIGNED-RANK TEST

WITH SIGNIFICANCE LEVEL 0.05

All algorithms are implemented in C++, encapsulated in the

MAGIC system [46], and performed on a Windows XP PC with

an Intel P4 3.0 GHz CPU using 1 GB memory. Computation

time is recorded for each case.

For each test image, MIRGS uses each initialization method

10 times starting from different random seeds while all three

initialization methods use the same random seed with respect to

any individual run.

TABLE V
MEAN VALUES OF ��� (%) AND � OVER 10 RUNS BY APPLYING GMM,

���� , ���� AND MIRGS ON THREE CATEGORIES OF NINE TEXTURED

IMAGES AS SHOWN IN FIG. 5. BOLD SHOWS OPTIMAL MEAN VALUES OF ���

AND � AS WELL AS THOSE INDISCERNIBLE FROM THE OPTIMAL BASED UPON

WILCOXON SIGNED-RANK TEST WITH SIGNIFICANCE LEVEL 0.05. “CAT”
STANDS FOR “CATEGORY”

C. Tests—Initialization Analysis

For each test image, , , and computation time of the ini-

tialization part and the whole MIRGS segmentation over 10 runs

are summarized in Tables II and III. Minimum and maximum

values (Min and Max), first and third quartiles (Q1 and Q3), and

the mean value (Mean) are shown. Fig. 4 illustrates the poorest

segmentation results corresponding to the Min of and

in Table II.

RAND is the fastest initialization method (Table III) but

shows inconsistent segmentation performance (Table II). For

all three test images, interquartile ranges between Q1 and

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2010 at 13:21:42 UTC from IEEE Xplore.  Restrictions apply. 



2166 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 8, AUGUST 2010

Fig. 5. Segmentation results on three groups of nine textured images using GMM, ���� , ���� and MIRGS. Each row refers to one textured image (T1
to T9 from top to bottom with image size/number of classes to be segmented in bracket). Each column from left to right shows the original image, segmentation
ground truth and segmentation results obtained by GMM, ���� , ���� and MIRGS. MIRGS consistently gives the most visually agreeable results.

Q3 with respect to both and are large. Discrepancies

between average and best segmentation results, as indicated by

differences between Mean and Max regarding both and ,

are also large. In fact, although very promising segmentation

results corresponding to the high Max of and can be

obtained, extremely poor results for RAND indicated by the

low Min of and reveal the occurrence of segmentation

failure, as shown in Fig. 4.
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The GMM-based initialization method is less sensitive to ini-

tial random seeds. Accordingly, MIRGS initialized by GMM

yields consistent segmentation performance, which is demon-

strated in Table II by small interquartile ranges as well as small

differences between Mean and Max with respect to both and

for all three test images. However, GMM has high computa-

tional cost. As indicated in Table III, the GMM-based initializa-

tion is very time-consuming. For all three test images, its com-

putation time is longer than the subsequent segmentation part.

Since no spatial context information is taken into account,

GMM may provide unfavorable initial conditions for MIRGS

and, thus, lead to unsatisfactory segmentation results. For the

univariate image, the GMM-based initialization facilitates

MIRGS to achieve very good performance in all of 10 runs

(Table II). For the multivariate color and texture feature images,

the GMM-based initialization consistently generates unsatis-

factory segmentation results. GMM fails in all of 10 runs for

the color image, with one such example shown in Fig. 4. In

fact, one of three class mean vectors and covariance matrices

derived by GMM corresponds to a noise-induced class with rel-

atively small size. According to the initial determined using

the feature model, only a few vertices in the initial RAG are

assigned with this noise-induced class. Since most neighbors of

these vertices belong to other classes, MIRGS inevitably yields

the segmentation result with one class missed, causing failure.

The RKM-based initialization method consistently provides

accurate initial conditions for MIRGS. Table II indicates

MIRGS incorporating RKM yields strong performance in all

of 10 runs for all three test images. Regarding both and

, high Max and Min, small interquartile ranges, and small

differences between Mean and Max are noted. Even the poorest

result corresponding to the Min of and as shown in Fig. 4

is visually close to ground truth. RKM has low computational

cost. As depicted in Table III, for all three test images, compu-

tation time of RKM is significantly shorter than that of GMM,

and is trivial compared to that of the subsequent MIRGS.

As such, RKM is the most effective method to suppress ini-

tialization sensitivity among the three schemes.

D. Experimental Setup—Segmentation Analysis

Four segmentation methods—GMM, , and

MIRGS—will be compared using a variety of multivariate im-

ages (two groups of 10 synthetic color images and ,

three categories of nine textured images T1–T9, and three nat-

ural color images NC1–NC3) to investigate the influence of in-

traclass variation on segmentation performance.

GMM uses the same formulation and parameter setting as

in initialization analysis, which is a base case to refer the suc-

cess of the other methods. The other three methods all use the

RKM-based initialization and the adjustment rule (22)–(25)

with the same parameter settings for a fair performance com-

parison. For , is set to 80 as in [15]. Gibbs sampler

with a simulated annealing schedule is ap-

plied using 300 iterations to solve and . RKM

and MIRGS use the same parameter settings as in initialization

analysis. For all segmentation methods, the number of classes

is specified a priori.

Segmentation performance is measured using and if

ground truth accompanies test images. Computation time is

recorded to evaluate computational speed.

For each test image, each segmentation method is applied

10 times starting from different random seeds while all four

methods share the same random seed with respect to any in-

dividual run.

E. Tests—Segmentation Accuracy

For synthetic color and textured images accompanied by

ground truth, mean values of and over 10 runs are

reported in Tables IV and V. The Wilcoxon signed-rank test

[47] with significance level 0.05 is applied on values of

or in 10 runs regarding any two segmentation algorithms to

determine whether the performance difference between these

two algorithms is statistically significant. For each test image,

the segmentation method with the highest mean and

values is reported in bold. Any method that generates mean

and values not statistically significantly different from

the highest is also shown in bold. In Tables IV and V, MIRGS

performs best for all test images.

For synthetic color images (Table IV), performance of all

segmentation algorithms reduces as the noise level increases.

This is most noticeable for GMM, moderate for , and

slight for and MIRGS. For textured image (Table V),

GMM has the poorest performance. and per-

form well on Category 1, but unsatisfactorily on the more diffi-

cult categories 2 and 3. Fig. 5 illustrates one segmentation ex-

ample with respect to each segmentation algorithm applied on

every textured image to provide direct visual perception. All

segmentation algorithms produce consistent segmentation re-

sults over 10 runs. Obviously, all segmentation algorithms ex-

cept MIRGS yield spotty segmentation results especially along

class and image borders where higher intraclass variation may

occur. MIRGS generates visually agreeable segmentation re-

sults on all of nine textured images.

For natural color images without ground truth, segmentation

results have to be evaluated via visual perception. Fig. 6 shows

one example of segmentation results in 10 runs with respect

to each segmentation algorithm applied on every natural color

image. All segmentation algorithms produce consistent seg-

mentation results over 10 runs. Different classes are separated

by closed boundary lines with distinct colors. For image NC1,

MIRGS successfully partitions the scene into three classes

(horses, green grass and yellow flowers). cannot ef-

fectively differentiate grass and flowers and incorrectly assigns

some body parts of horses (white spot on the head of the large

horse and hooves in the forelegs of both small and large horses)

to the class of grass. also mistakenly splits some

body parts of horses (white spot on the head and one hoof in

the foreleg of the large horse). For image NC2, three classes

(grass field, car and raceway) are well demarcated by MIRGS.

splits the car into several pierces and incorrectly

assign some pieces to the class of grass field. roughly

separates three classes with large errors occurring around class

borders. For image NC3, MIRGS generally separates the four

classes (lake including a small sailboat inside, mountain, blue

sky and clouds) except for a small region of dark cloud that is
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Fig. 6. Segmentation results on three natural color images using GMM, ���� , ���� and MIRGS with respect to one example run. Each row refers to one
natural color image (NC1 to NC3 from top to bottom with image size/number of classes to be segmented in bracket). Each column from left to right denotes the
original image and segmentation results obtained by GMLL,���� ,���� and MIRGS. Class boundaries are outlined in distinct colors. MIRGS consistently
gives the most visually agreeable results.

TABLE VI
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES) AVERAGED

OVER 10 RUNS BY APPLYING GMM, ���� , ���� AND MIRGS ON

TWO GROUPS OF 10 SYNTHETIC COLOR IMAGES WITH ADDITIVE AND

MULTIPLICATIVE GAUSSIAN NOISE AT VARYING NOISE LEVELS

incorrectly assigned to the lake class due to the strong feature

similarity. This error similarly occurs in the results obtained by

the other three methods. and cannot properly

differentiate lake and mountain. For all three test images,

the GMM always yields spotty segmentation results due to

intraclass variation.

Overall, MIRGS has the strongest capability of handling in-

traclass variation among four algorithms.

F. Tests—Segmentation Computation Time

MIRGS adopts semantic region growing to yield a hierar-

chical RAG based image representation with bottom-up nonin-

creasing vertex numbers. Although such a hierarchical structure

reduces the size of the solution space and, thus, tends to speed up

segmentation, its construction may be time-consuming. Com-

putational complexity regarding region merging and the subse-

quent updating of the RAG depends upon the complexity of the

image under segmentation.

TABLE VII
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES)
AVERAGED OVER 10 RUNS BY APPLYING GMM, ���� , ����
AND MIRGS ON THREE CATEGORIES OF NINE TEXTURED IMAGES.

“CAT” STANDS FOR “CATEGORY”

TABLE VIII
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES) AVERAGED

OVER 10 RUNS BY APPLYING GMM, ���� , ���� AND MIRGS ON

THREE NATURAL COLOR IMAGES

Tables VI, VII and VIII report computation time (minutes)

with respect to the segmentation experiments in Section IV-E.

Generally speaking, MIRGS has reasonable computation time

for all test images, which is comparable to that of GMM. In most

cases except for natural color images NC1 and NC3, MIRGS

takes longer computation time than and due

to the computational cost associated with the region growing

procedure, however this extra computing time is warranted to

capture accurate segmentation.

V. CONCLUSION

We present a MRF-based multivariate segmentation algo-

rithm named MIRGS, which extends the applicability of IRGS
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to multivariate images while inheriting the merits of IRGS. To

suppress initialization sensitivity, MIRGS uses a RKM-based

initialization method, which consistently provides accurate

initial conditions at low computational cost. The superiority

of RKM relative to two commonly used initialization schemes

has been demonstrated on images with different feature space

dimensions. For a variety of synthetic and natural multivariate

images, MIRGS consistently achieves the highest segmentation

accuracy compared to three other published algorithms.

Computation time of MIRGS is closely related to the con-

struction time of the hierarchical RAG. Therefore, fast methods

to establish the hierarchical RAG are important for future inves-

tigation. Moreover, to automatically determine the number of

classes instead of prespecifying it as an algorithmic parameter

is desirable. Some previous attempts [32] made in the context of

the MRF-based segmentation deserve being investigated under

the MIRGS framework. In addition, MIRGS mentioned in this

paper is performed in an unsupervised manner, which does not

take into account any domain knowledge. However, the domain

knowledge can be easily incorporated into (15) and used in step

5 in Table I to produce the supervised MIRGS, which deserves

future investigation.
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