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Industrial revolution leads to the manufacturing of multicomponent products; to guarantee the sufficiency of the product and
consumer satisfaction, the producer has to study the lifetime of the products. This leads to the use of bivariate and multivariate
lifetime distributions in reliability engineering. The most popular and applicable is Marshall-Olkin family of distributions. In this
paper, a new bivariate lifetime distribution which is the bivariate inverted Kumaraswamy (BIK) distribution is found and its
properties are illustrated. Estimation using both maximum likelihood and Bayesian approaches is accomplished. Using different
selection criteria, it is found that BIK provides the best performance compared with other bivariate distributions like bivariate
exponential and bivariate inverse Weibull distributions. As a generalization, the multivariate inverted Kumaraswamy (MIK)
distribution is derived. Few studies have been conducted on the multivariate Marshall-Olkin lifetime distributions. To the best of
our knowledge, none of them handle estimation process. In this paper, we developed an algorithm to show how to estimate the
unknown parameters of MIK using both maximum likelihood and Bayesian approaches. This algorithm could be applied in
estimating other Marshall-Olkin multivariate lifetime distributions.

1. Introduction

Global competition in combination with using higher
manufacturing technologies results in producing two or
multicomponent products. This led to the use of bivariate
and multivariate distributions in reliability engineering.
Different families of distributions were constructed. One of
the most commonly used is the Marshall-Olkin (MO)
family. It is widely used due to its flexibility in considering
different situations of failures (i.e., the first component has
lifetime smaller, greater, or equal to the lifetime of other
components).

In the literature, several lifetime distributions were de-
rived as members of the bivariate Marshall-Olkin family.
Marshall and Olkin [1] presented a bivariate exponential
distribution with exponential marginals and loss of memory
property. Using the same strategy, Kundu and Dey [2],
Bareto-Souza and Lemonte [3], Muhammed [4], and
Alqallaf and Kundu [5] introduced the bivariate Weibull,

bivariate Kumaraswamy, bivariate generalized Burr, and
bivariate inverse generalized exponential distributions, re-
spectively. Using the maximum instead of the minimum in
the MO scheme, Kundu and Gupta [6, 7] introduced the
bivariate generalized exponential and bivariate proportional
reversed hazard distributions, respectively. Moreover, Sar-
han et al. [8] presented bivariate generalized linear failure
rate distribution. Recently, Muhammed [9] introduced bi-
variate inverse Weibull (BIW) distribution.

Sometimes, the use of bivariate distributions may not be
sufficient and there exists a need for multivariate distributions.
For example, in air fighter jets, the natural lifetime since being
manufactured and the flying time since being put into service
are recorded. Studying the reliability of the air fighter jets using
only two variables may not be good enough. One should take
into consideration the lifetime of the engine, the wing, and the
fuselage. This leads to the use of multivariate distribution. For
more details, see Li and Li [10]. There is no much work
performed in the multivariate case. Sarhan et al. [8] and Kundu
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and Gupta [11] derived the multivariate generalized linear
failure rate and multivariate inverse Weibull distributions,
respectively. To the best of our knowledge, there is no work
dealing with estimating the unknown parameters for multi-
variate Marshall-Olkin family.

Several authors tackled the estimation problem for bi-
variate MO distributions. For example, Kundu and Gupta
[6], Muhammed [9], Aly et al. [12], Eliwa and El-Morshedy
[13], EI-Morshedy et al. [14], and Sarhan [4, 5, 15] estimated
the unknown parameters using maximum likelihood ap-
proach for different bivariate lifetime distributions. On the
other hand, Hanagal and Ahmadi [16], Kundu and Gupta
[17], and Lin et al. [11, 13-15, 18] applied Bayesian approach
for estimating certain bivariate lifetime distributions.

The univariate inverted Kumaraswamy (IK) distribution
has several applications in different fields (see Abd Al-Fattah
et al. [19] and Abdul Hammed et al. [20]), for example, in
medical research, life testing problems, and stress-strength
analysis. Also, in reliability and biological studies, IK dis-
tribution may be used to model failure rates. Due to its
expected wide applicability, we are interested in deriving
bivariate inverted Kumaraswamy (BIK) distribution. BIK
could be applied in different fields like sports, engineering,
and medicine as will be explained using three different real
datasets. We expect better performance of BIK than other
bivariate distributions. No one has derived the distribution
before or found its mathematical properties.

The main purpose of this paper is to introduce BIK as a
new Marshall-Olkin bivariate distribution in order to be
applied efficiently in several fields. As a generalization, the
multivariate inverted Kumaraswamy (MIK) distribution is
derived. To the best of our knowledge, there is no work
dealing with estimating the unknown parameters for mul-
tivariate Marshall-Olkin family. Here, estimation of MIK
parameters is found using both maximum likelihood and
Bayesian approaches. This work could be applied to all
Marshall-Olkin multivariate distributions.

The paper is organized as follows. In Section 2, the bi-
varijate inverted Kumaraswamy distribution is derived, and
the cumulative distribution function and probability density
function are presented. Also, the marginals and conditional
distributions of the proposed model are obtained. Moreover,
the product moments and the moment generating function
are derived. In Section 3, the maximum likelihood esti-
mators of the model parameters, asymptotic Fisher infor-
mation matrix, and Bayesian estimators are obtained.
Multivariate inverted Kumaraswamy distribution and its
properties are illustrated in Section 4. The maximum like-
lihood and Bayesian estimators of the parameters under
multivariate case are obtained in Section 5. Numerical
analysis using both simulation, and real datasets are pre-
sented in Section 6. Finally, the paper is concluded in Section
7.

2. Bivariate Inverted
Kumaraswamy Distribution

In this section, we will derive the bivariate inverted
Kumaraswamy distribution as a new member in the MO
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family. Its properties such as the marginal and conditional
distributions, joint moment generating function, and
product moments are studied.

2.1. Derivation of the Bivariate Inverted Kumaraswamy
Distribution. The probability density function (pdf) and the
cumulative distribution function (cdf) of the univariate
inverted Kumaraswamy distribution (IK), respectively, are
as follows (for more details, see [19]):

fico Ba)= aB (1+x)“V(1-1+x)"", x>0, ap>0,
(1)
Fig (x, ﬁ,a)=(l—(l+x)_“)ﬁ, x>0, a,>0. (2)

Assume that U}, i = 1, 2, 3, are three random variables,
such that U; follows IK (f;, «). Define X, = max(U,, U,)
and X, = max(U,, U;). Hence, the bivariate vector (X, X;)
follows BIK with shape parameters f3;, «, i = 1, 2, 3. The
joint cdf of (X, X,) has the following form:

Fx, x,(x1,%,) = P(X; < x1, X, <x,)

= P(max(U,U,) <x,, max(U,,U;) <x,),

= P(U1 <x, Uy<x,,Us < min(xl’xz)), (3)
=P(U,<x,, U,<x,,Us<2),

= Fic (%1, By &) Figc (x5, B> @) Fic (2, B3 @),

where z = min (x,, x,). The joint cdf can also be written as
follows:

Fi (51 By + Bss @) Fie (x5, By ), if xq < x5,
Fric (%1, By> @) Frc (%2, By + By ), if x5 <61,

Fr (%, By + B, + B3, ),

Fxl,x2 (xl,xz) =

ifx; =x, =x,
(4)

where F¢ is as illustrated in equation (2).

Proposition 1. The joint pdf of (X, X,) has the following

form:

F1(xpxy), ifxg <xy,

fa2(x1:%,),

f3 (x))

Fxx, (x1,%) = if x, < x,, (5)
itx, =x, =x,
where
F1(xnx0) = frc (e By + Bas @) fixc (%2 o @)
Fa(xx3) = frc (o0 Br> @) f1xc (%20 By + P> ), (6)

_ Bs
f3(x) = mfm (%, By + By + B3> @),

in which f is as illustrated in equation (1).
Proof. See Appendix A.l.

The joint pdf of (X, X,) can be expressed as a mixture of
absolutely continuous part and singular part as follows. [
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Proposition 2. If (X,,X,) follows BIK (B, B,, 35> &), then where
BBy B
P (o) =gl e ) g g P
(7)
Fuoen) =B BB (L () P - () P -2
By + B,
/33 -1 —a\Bi+Br+Ps (8)

Bkl

F(2) = (1-(1+2) 9P,
where z = min{x,, x,}, F,(.) and F, (.,.) are the singular and
absolute parts, respectively.

Proof. See Appendix A.l. O

Bi+ B

fxl,xz (x1,%;) = B, + P, + P

where
fr(xpx,)if x; <2,
fa(xpxz) A +/i2/;ﬁ3 { >
2 fa(xpx,)if x, < x| (10)
fs(@) = fix (2B, + B, + Bs).

{ [oc(/j’l(:fi) + 1]1
(2]

2.2. Properties of Bivariate Inverted Kumaraswamy
Distribution. In this section, we illustrate different prop-
erties of BIK distribution. We provide marginal, conditional
distributions, joint moment generating function, and
product moments.

Proposition 3 (Marginal and conditional distributions). If
(X, X,) follows BIK (B, 35, B3> @), then

(a) X, follows IK (3, + f5,a) and X, follows IK (B,+ f35, ).
(b) max {X,, X,} follows IK (B, + f3, + 35> ).

fa(xl’xZ) +

Corollary 1. The joint pdf of (X,,X,) can be written as

follows:

Ps

> 9
Ry RE ®

The absolutely continuous part of BIK can be uni-
modal depending on the values of §,,5,,5; and a.
fa(x1,x,) is unimodal if S, +fB;<p, (under the case
X, <Xx,) or B, + 5 <[, (under the case x; >x,). The re-
spective modes are

v 1/a
+1
-1, [ocﬁz] _1],)
a+1

(11)
a(fy+ps) +1 e 1
a+1 '
(c) Fx,ix,<x, (1) =
(1= (L) P A= A 4x) ™, i <,
(1= (1+x)" P, if x, < x,.
Proof. See Appendix A.l. O

Proposition 4 (Moment generating function). If (X, X;)
follows BIK (B, 3,, B3> &), then the joint moment generating
function of X, and X, is given by M (t,,t,) = I, +1, +15,
where
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o

00 i i ) 0o 4i ] ' )
I =B, (B +B5) Zi, Z < >(—1)1_k2 Zt, z ( >(—1)1_k1
=0 " k,=0 =pe k=0

'X{B<1_&) 2) <1_&’/31+ﬁ3)_ - B<2 fath 52>X3F2<2 k2+k1 1_*11 Bi- /,’3;2_&;2_,_[;2_@;1)})
a a—k a a

L ol i ,
Ba +ﬁ3)z;}00§1, Z < >(_1)J-k1 z% Z <k >(_1)z—k2

i=0 " k,=0

k k « k, +k k, +k k k, +k
-X{B<1—;1,/31>B<1—;2,/52+ﬁ3>—“_sz<2 ! 2[31>X3F2<2 ‘a 2 1——1 B, - m;z-f;um-%u)},

- /3150: (t, :-!tz) i<k>(_1)ik3<l _S, B, + B, +ﬁ3>,

i=0 k=0

(12)

where PF by, .. b HOINNE Yoo (0o - ,(bp)k/ Proposition 5 (Product moments). If (X, X,) follows BIK
(cDi-- (c )k)(uk/k’) (b)) = T(b+1)/F(b) i=1,..., p, (cj) (By> Bys B3> &), then the product moments of X, and X, are

=F(c+])/F(c) j=1,...,q pand q are nonnegative integers,  given by E(X;X}) =], + ], + J5, where
and B (.,.) is beta function.

Proof. See Appendix A.l. O

11=§<—1>r-"< )Z( 1>”< )m(m%)[ (1-L g +8.)8(1- L 52)

« i+j i+ j ) _l _l+7]
—a_jB(2—7’52>3F2<2—7)1—;1—ﬁl—/3372 “>2 + B )}
r . r
]2_2(_1)r1< >Z( D™ j< >/31(/32+ﬁ3)
i=0 1/ j=0

L

i i r+s e r+s k k
'3F2(2_]T’1_&>1_f32_,837 2_ 7‘*:317 >} ]3—2( 1) k< P >ﬁ33<1_a>ﬁ1+ﬁ2+ﬁ3>3<1_ Eﬁz‘*ﬁs)-
(13)
Proof. See Appendix A.l. O  3.1. Using Maximum Likelihood Approach. In this section,

we derive the maximum likelihood (ML) estimators of the

unknown parameters of BIK distribution.

Suppose

. . . {(x11>%51)5 - - o (X1, %5,,)} 1s @ random sample of size n from
3. Estimation of Bivariate Inverted BIK (B, 3,, 85> «); then, the ML estimators of the unknown

Kumaraswamy Distribution parameters are obtained as follows.

The log likelihood function of the sample of size n is
In this section, we estimate the unknown parameters using  given by logL(6) = Yier,10g f1 (x15, x5) + Yier log f,

both maximum likelihood and Bayesian approaches. (313> %3) + Lier10g f 5 (x;), where
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I ={i; 2 < xy}

I,

{i 20> x5,

I3

{i§ X1 = Xpi = xi}’

I= 11U12UI3, ()

1] =m,
|12| =1y,
|I3| = N3,

n o +n,+n; =mn,

where |I;| denotes the cardinality of the set I, for j = 1,2,3. Thus,

log L(0) = (2n, + 2n, + n3)loga + nylog (B, + B;) + mylog(B,) + mylog (B,) + mylog(B, + B5) + nslog(B)

—(oc+1)<| Z log(1+xy;) + Z 10g(1+x2i)+Zlog(1+xi)}
iel, UI,

iel, I, iely

log(1-(1+xy;) "
+(/31+ﬁ3‘1)z s-0 '

i€l

+ (B - 1) Z log (1= (1+x5)"")

iel,

+ (B =1) Y log (1= (1+xy,)"%)

i€l,

log(1—(1+xy) "
+(f32+/33_1)z s(0-0 )

iel,

+(Br+ Bt Ps—1) Z log(1—-(1+x;)""),

iel;

where 0 = (a, f;, 55, B3)-

The first derivatives of the log likelihood with respect to
the unknown parameters and also the observed Fisher in-
formation matrix are obtained in Appendix A.2. The ML
estimates 0 = (&, 3;, B,,3;) of 8= (af3,5, ;) are nu-
merically obtained in Section 6.

3.2. Using Bayesian Approach. Let (X,,X,) follow BIK (0),
where 0 = (a, 5;, 5, 33) is the vector of unknown parame-
ters. The posterior pdf of parameters can be obtained as
follows:

P(O] (X,, X;)) oc L((X1, X5); 0)P(6),  (16)

where P () is the prior distribution.

(15)

Pena and Gupta [21] considered Bayesian estimation
of the parameters for Marshall-Olkin bivariate expo-
nential distribution (BVE), in series and parallel systems.
They obtained posterior mode using gamma Dirichlet
distribution as prior distribution. Angali et al. [22]
considered Bayesian estimation for BVE using gamma
prior.

Similar to [22], we considered a gamma prior distri-
bution with the following pdf:

P(B;a;b;) Ocﬁfrlexp (=biB;)s

(17)
P(a,a,,b,) oca® exp (-bya),

where i = 1, 2, 3 and a;,b;,a,,b, are the hyperparameters.

The posterior pdf has the following form:



P(8] (X, X,)) o
i=1
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1_[ o (/31 + /33)ﬁ2 (1 + xli)f(cxu) (1 n XZi)—(om)

X (1 - (1 + xli)—a)ﬂ1+ﬁ3—1 (1 - (1 + xZi)—fX)ﬁz—l
H o (ﬁz + /33)[;1 (1 + xli)—(ml) (1 + xz:’)i(‘”l)
i=1

X (1= (1420 ) (1= (14 y) )P

13

(18)

H afi; (1 + xi)_("‘“) (1 _ (1 n xi)—a)ﬁ1+ﬁz+ﬁ3—l

i=1

3
X [ B exp(-b;p;)a™ "exp (-b,a).
i=1

It is observed that Bayesian estimators under square
error loss function cannot be obtained in explicit forms.
Therefore, we obtain the posterior mean using MCMC
technique which is illustrated in Section 6.

4. Multivariate Inverted
Kumaraswamy Distribution

In literature, there is no much work that dealt with mul-
tivariate MO distributions. Sarhan et al. [8] derived the
multivariate generalized linear failure rate distribution.
Kundu and Gupta [11] derived the multivariate inverse
Weibull distribution. Here, we will introduce a new mul-
tivariate MO distribution, which is the multivariate inverted
Kumaraswamy (MIK) distribution. It is a generalization of
the BIK considered in Section 2. We expect that MIK will be
of great importance for several applied fields. In the fol-
lowing two sections, the derivation of MIK is explained and
some of its properties are studied.

4.1. Derivation of MIK. In this section, we will derive the cdf
and pdf of MIK.

LetU,, ..., U,,,; be m+1 independent random vari-
ables such that U; ~ IK(f;, ), fori =1, ..., m+ 1. Define

X;= max{Uj,UmH}, Then,

X = (X, ...,X,)" is an m-variate IK with parameters
B> --->Busr> @), and it will be denoted by MIK
(m, B1s ... i1, @). We have the following results regarding
MIK distribution.

j=1 ...,m.

Proposition 6. If X = (X, ..., X,,,) ~MIK(m,f,,...,
Bi1, @), then the joint cdf of X for x, >0, ...,x,, >0 is

m+1

Fy(x) = H F (x5 ), (19)
i=1

where x = (xy, ..., x,,) and x,,,; = min{x,, ...,x,}.

Proof. We prove by generalizing the same method illus-
trated in Section 2.

Similar to the bivariate case, the MIK distribution can be
written as, for m > 1,

Fﬁ(f):kpa(i)*'(l_k)ljs(&)’ (20)

where 0<k<1 and F, and F, denote the absolute and
continuous parts, respectively. The corresponding pdf can
also be written as

fx(x) =k fa(x)+ (1 -R)f(x). (21)

The absolutely continuous part of f, (x) can be obtained
from
0" Fx (%1, -5 %y)

22
0x1,...,0x,, (22)

>

where x = (x,..., xm)T belongs to the set where Fy (x) is
absolutely continuous, if and only if xs are different. For
each x, where x; are different, there exists a permutation p =
{i;, ...,i,} such that x; <,--+, <x;,.

Define fp (%) = fix (xi> By + Brwsrs
@) fric (Xig> Bins @) - f i (Kigns Pigns @) Then, for
X <oy < X 0"Fy (xy, -..,x,)/0x,,...,0
Xy =k fo(xys..sx,) = f,(x; ... X;), where k can be

obtained as follows:

k=1, (23)
p
where

JRmfu(xl,...,xm)dxl,...,dxm =;J

Xim=0

Xim Xiz
. R Ofp(xl,...,xm)dxil,...,dxim
X, = =

im-1 Xi

- Z Jp:
p
(24)

Since
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X, m
inf fp (x50 xm)dxil = FIK(xi2§/3i1 + B> 0‘) g fIK(xij’ﬁij’ “>’
B z
L ~ L - fp (%155 X, )dox dxyy = W FIK(xi3;ﬁi1 +pB;, + ﬁmw“) HflK(xij’ﬁif“)’
i~ i< i iy m+1 j=3 (25)
] — ﬁiz [;’3 X X ﬁim
g ﬁil +ﬁi2+ﬁm+l ﬂzl +/312+ﬁ13+ﬁm+1 ﬁil T +18im+ﬁm+1
then
B, B B,
k = i3 X X im . (26)
Z ﬁzl + ﬁrz + ﬁm+1 /311 +/312 +ﬁz3 + ﬁm+l ﬁil REEERI ﬁim +/3m+1

and for all X <o, <X, falx) = l/kfp (x).

Now, let Il { beesib €I ={1, ..., m} such that
i) <,++, <1ip. fx(x) can be written as
fx(x)=kf,(x)+ Z Z ki fy, (x (27)
I=21,cI

where f; is a pdf with respect to (m -1+ 1) dimensional
Lebesgue measure on the hyperplane
Ap={x eR™ x; =+, The exact meaning of
fx(x) is as follows.

~ For any Borel measurable set B € R",

p(x €B) =ij fa@)+)Y Y kz,jBlfz,(&), (28)

=21, clI

= xil}'

where B _BN A, is the projection of set B onto (m —1+1)
dimensional hyperplane Ay

Now, we provide k; and f1,(x). Note that if xeA;, then
x has the following form
X

B
=(x1 X X X

For a given x € R"™, we define g, from the (m—-1+1)
dimensional hyperplane A; to R as follows:

gy (x) = fix (x*>ﬂm+1’“)F1K<X*> Zﬁv“) H Fuc (x> By @),

iel, iel-I,

(30)

if x;>x* for i € I - I; and zero otherwise. Similar to k, we
can obtain k;, as follows:

kz, = J 911( x)dx z J°° ijm rﬂ

prn Y Xima=0 J xjp =0 J x;,=0

gy, (x)dx"dx;y, .., dx,

_ Z ﬁm+1 /311 ﬁjmfl
- bl
Prp; Ziellﬂi + ﬁm+1 zlellﬁt + ﬁm+l + ﬂ], zid/}i + ﬁm+1

Fu(x) = ,}g (x).
(31)
O

4.2. Properties of MIK. In this section, we will get the
marginal and conditional distributions of MIK.

Proposition 7. If X=(X,,...,
ﬁm’ﬁmﬂ"x)’ then
(a) Xy ~IK (0, By + Bpusr)s - > Xy ~ IK(at, B + Byi)-

(b) The conditional distribution of (X,,...,X,) given
{Xs+1 SXgpo- - >Xm < xm} is

X,,) ~ MIK (m, B,, ...,
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S
H FIK(xj,ﬁj,(x) ifz=v
P(X, <%0y X, €50y €% Xy €%,) =4 . (32
j_Hl FIK(xj’ﬁp "‘) Fix (2 Bus1> @) Fig (05 Boper> @) if 2 <0
. . Fy (215 %9, x3) = Fi (%1, By + By @) Fiic (%2, B2 @) Fic (%3, B3> @),
© ;v::re zzzszn;nn{qxlg).(.l. ’xS}’ Y :XII;IT{EE()'(S . ’ﬁxM} Fy (215 29, 3) = Fi (%1, B1> @) Fiic (%3, B + B> @) Fic (%3, B3> @),
Bos Brus 1> @)- ’ T : e F3 (%1, %, x3) = Fig (1, By @) Fig (%3, B2 @) Fic (%3, B + s ),
@) If T = max{X,,...,X,}, then Fy(x,x3) = Fi (%, By + By + By @) Figc (x5, B3, @),
T ~IK (B4, +Br1> @)- F5(x,%;) = Fre (x, By + B3 + By @) Fiic (%2, B2 @),
Fe (%, x,) = Fii (%, By + B3 + Pu» @) Fic (x15 By @),
Proof. (a, c) B taking the limit for the joint cdf. (b, d) Could F7 () = Fuc (6 By + By + By + By ),
be directly obtained from the definition of the multivariate Fy(x,x3) = Fi (x, By + By ) Fi (x5, B + B> @),
inverted Kumaraswamy distribution. O Fy(x,x,) = Fr (%, By + B3> @) Fri (x5, 5 + P> @),
Fyg(x,x,) = Fig (%, By + B3, ) Figc (%1, By + B> ).

5. Estimation of the Multivariate Inverted
Kumaraswamy Distribution

Although estimating the unknown parameters of a certain
multivariate MO distribution is very important, no one in
the literature was interested in it. Therefore, in this section,
we will consider the process of estimation for MIK pa-
rameters. The proposed techniques could be applied for any
multivariate MO distribution. Here, we will apply both
maximum likelihood and Bayesian approaches.

5.1. Using Maximum Likelihood Approach. In this section,
for simplification, we consider the case when we have three
random variables X, X,, and X;. Applying Proposition 6,
we have the following cdf:

4
Fy(x) = HFIK (x5 B ). (33)
i=1

The cdf can be rewritten as

Fi(xp,%5,x3), if x; <x, <x30rx; <x3 <Xy,
F, (x1, x5, %3), if x, <x <x30rx, <x3<x,
Fy(xp,%5,x3),  if X3 <x; <X, 00 X3 <2, < x4
F,(x,x3), ifx; =x, =x<x;,
F5(x X)), ifx; =x; = x<x,,
Fx,,XZ,X3 (xl»xpxs) = .
’ F6(x X)s ifx, =x; =x<x,
F,(x), ifx; =x,=x; =x,
Fg (x,x3), ifx; =x, =x>x;,
Fy(x,x,), ifx; =x;=x>x,,
Fio (% x7), ifx, =x;=x>x,

(34)

where

(35)

The pdf can be obtained by taking the derivative, except
for f,, where we should take into consideration that the sum
of all probabilities equals one.

Now, suppose {(x11, %51, X31)s -+ > (X1, Xo X3,)} 15 @
random sample of size n from MIK(«, f31,5,, 5 B4); the
problem is to find the ML estimators of the unknown pa-
rameters. Consider the following notation:

Iy = {5 %0 < Xy < X3},

I, ={i; xy; < x5; < X},

Iy ={i; % < x3; < x5},

I, ={i; xp; < x5; < xy3}

Is ={i; x5 < x; < x5},

Ig ={i; x5 < x5 < x13}

I, =

Iy ={i;xy; = x5 = x; <}, (36)

—
o
Il

i X5 = X3 = %, <Xy}

BXy = X = X3 = xi}>

—~ ~

— —

— o
] I

i Xy = Xy = %> X3}

B Xy = X3 = X;> Xy}

~
—
[3S]

I

{i;
{i;
{i;
{i;
{i;
7 =1 %y = x5 = x; <x3;},
{i;
{i;
{i;
{i;
{i;
={i;

i Xy = X3 = %> %y}

13
|=npi=12...,13 Y n=n
=1
where |I;

jl denotes the cardinality of the set I;, for
j=1,2,...,13.

The log likelihood function of the sample of size n is
given by
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log(L(0)) =

iel, UI,

Z log{(x3 (Bi +B)B:Bs (1 + xli)i(wl) (1-(1+ xli)ia)ﬁﬁﬁrlx (1+ xz,‘)i(m)

S = (14 ) P (4 ) X (1- (1 +x3i)—a)[§3—1}

iel, I,

X (1= (1)

+ Z logjl (Bs + BB (1 +xy) (et (1-(1+ xli)_m)ﬁl_1

iels | JIg

X (1= (1) P
iel,
ielg

iely

) log{“z (B + By + Ba)Bs (1 +x,) D (1= (14 ) )P Fhe
) 10g{oc2 (By + By + Ba)Ba (1 4+ x,) ) (1= (14 x) )P Bhe

+ Z 1Og{“2 (B, + B3+ Bu)Bi (1 + xi)f('m) (1-(1+ xi)”")ﬁﬁﬁ“ﬁf

+ z log{ocS(l +x) -1+ xi)’“)ﬁl*ﬁﬁﬁﬁﬁrl}

iel},

+ Z log{a® (B, +B,) (Bs + o) (1 + xi)’(““) (1-(1+ xi)*fx)ﬁﬁrﬁr

iel,,

iel),

+ Z log{“z (Bi +B3) (B + By) (1 + xi)_({“l) (1-(1+ x,‘)_a)ﬂﬁﬁle (1+ xz,»)_(‘m) 1-(1+ le.)_“)ﬁﬁﬁfl}

+ ) logla? (B, + B:) (B + B (14 ) (1= (1 1) ) B X (14,) 0 (1= (1 ),

i€l

9
+ Z 108{“3 (By+Ba)BiB5 (1 + xli)i(aﬂ) (1-(1+ xli)ia)/jlilx (1+ x2i)7(a+1) (1-(1+ 3“21‘)%)&%{1 (1+ x3i)7(a+1)
X (1+ xz:‘)_(aﬂ) (1-(1+ xz:‘)_a)ﬁz_l (1+ xsi)_(aﬂ)
X (1) P (1= ()
X (1) P 1= ()
X (1) (=)
X (1) (U (L) P
(37)

where 0 = (a, B, B, B3, By)-

_ Bs(Bi+By) Bo(Bi+Bs) Bi(Br+Bs)
S_(ﬁl+ﬁ2+/33+ﬁ4)_ﬂ1 +/32+ﬁ4_/31+/33+54_ﬂ3+ﬁ2+ﬁ4
=3(By+ B+ Bs).
(38)

It is seen that the ML estimates could not be obtained in
explicit forms, and hence we need to use numerical analysis
to obtain them.

5.2. Using Bayesian Approach. Let (X,,X,,X;) be three
random variables from MIK (0), where 0 = («, 31, 5,, B3> B4)

is the vector of unknown parameters. The posterior pdf can
be obtained as follows:

P(0] (X, X5, X5)) oc L((X}, X5, X;5); 0)P(6), (39)

where P () is the prior distribution.
We considered a gamma prior distribution with the
following pdf:

P(Ba;b;) oc B ~bip;),
Goonb) < (o
P(a,ayb,) oca® exp (~bya),

wherei =1, 2, 3,4 and a;,b;, a,, b, are the hyperparameters.
The posterior pdf has the following form:
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P(0] X) o H o (By +By)BsBs (1 + xli)i(‘m) (1

iel, UI,
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_ (1 n xli)*tx)ﬁl*ﬁrl

X (1 +X21) () (1 —(1+xy) a)ﬁfl (1 +x3i)_(a+1)X (1-(1 +x3i)_a)ﬂfl

X [] @

iel; U1,

ﬁz +By)BiBs (1 +xy;) (et (1-(1+ xu)ia)ﬁlil

X ()™ (1= (L) P (1) VX (1= (1))

.XH

iel; |JIg

X (T4 2,) (1= (14 1

X H o’ (Bi+ By + Ba)Bs (1 + xi)i(aﬂ) (1

.XH(XZ (B, + Bs + BBy (1+x,) (1
H ﬁz + 5 +/34)ﬁ1(1+x) (a+1)(

X [Tas(ax) (1= (1) PRI (8,4 B,) (B + i) (1+ %) (1

i€l
—(a+1) —a\BstPy—1
X (L) (1= (T +xy) ")

XL (B +Bs)(By+Ba) (1 +x) (1

i€l

H (Ba+B3) (By +Ba) (1 + xi)_(“ﬂ) (1

i€l

4
XA
i=1

exp (~bif;)a"” exp (~b,a).

As in the bivariate case, Bayesian estimation will be
obtained numerically using MCMC which is illustrated in
the next section.

6. Numerical Analysis

In this section, both simulation and MCMC techniques are
carried out to investigate the performance of the derived BIK
and MIK distributions. The estimation is performed using
both ML and Bayesian approaches. Three real datasets are
analyzed in case of BIK and another one for the case of MIK.

6.1. For BIK Distribution. In this section, we perform a
simulation study to get the estimates of the unknown pa-
rameters of BIK distribution. Also, three real datasets are
analyzed.

6.1.1. A Simulation Study. Here, we present an algorithm to
generate BIK distribution (Algorithm 1). To perform a
simulation study, we first need to select initial values for the

() PP (1) 01

—(1+x) )PP (14 x,

ﬁs +Bu)BiBr (1 +xy;)” (o) (1-(1+ xn)ia)’gl_l

) VX (1= (L)

() PPN () D (1 (1))

() )
i)i(‘M) (1-(1+ xli)ﬂx)ﬁlil

(L) P

iel};

-(1+ xi)_a)ﬁﬁﬁflx (1+ xz:’)_(“ﬂ) (1-(1+ xzi)_a)pﬁﬁrl

-(1+ xi)_a)ﬁﬁﬁflx (1+ xli)_(Ml) (1-(1+ xlz’)_a)ﬁﬁﬁrl

(41)

parameters. Here, the following eight different populations
are considered:
(i) Case 1: « =0.2,$3, =0.2,5, =0.2,5;, = 0.2.
(i) Case 2: a = 0.5, 8, = 0.5, 8, = 0.5, 85 = 0.5.
(iii) Case 3: a = 0.8,8, = 0.8,8, = 0.8, 5, = 0.8.
(iv) Case 4: o = 1.5,3, = 1.2, 3, = 1.3, 3, = 2.5.
(v) Case 5: a=2,3,=2,5,=2,5;=2
(vi) Case 6: a« = 2,3, =2.5,5, = 3,5, =3.5.
(vii) Case 7: a« = 2.5,3) = 2.5,3, = 3,35 = 2.5.
(viii) Case 8: a =3.5,5, = 4,3, = 3.5, = 3.5.

The parameters are selected to cover different shapes of
the distribution. It can be seen from Figure 1 that

(i) For cases 1 and 2, the surface plot of the absolutely
continuous part of the joint probability density
function is decreasing.

(ii) For cases 3 to 8, the surface plot of the absolutely
continuous part of the joint probability density
function is increasing till it reaches the mode; then, it
is decreasing.
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The following algorithm is to generate (X, X,) from BIK distribution.

Step 1: generate U,, U,, and U; from uniform (0, 1).

Step 2: compute T} = (1 —U}/ﬁ‘)““, T,=(1- U;/ﬂz)l/“, and T3 = (1 - U;%)“"‘.
Step 3: define Z, =1/T, - 1,Z,=1/T, - 1,and Z; = 1/T; - 1.

Step 4: obtain X, = max(Z,, Z;), X, = max(Z,, Zs).

ALGORITHM 1: An Algorithm to Generate BIK Distribution.

(© (d)

(& (h)

F1Gure 1: Different shapes of the absolutely continuous part of BIK pdf. (a) « = 0.2, 31 =0.2, 8,=0.2, $5=0.2; (b) « = 0.5, 5, = 0.5, $, = 0.5, 3= 0.5; (¢)
a=0.8, ﬁl =0.8, /32 =0.8, ﬂ3 =0.8; (d) a=2, ﬁl =2, ﬁz =2, ﬁ3 =2; (e) a=15, ﬁl =12, ﬂz =13, ﬁ3 =2.5; (f) o= Z)ﬂl =25,
Ba =3, 3=35(g) a=25, =25, ,=3, =25 (h) a=3.5 =4, f,=3.5, f3=35.

(1) Maximum Likelihood Approach. The maximum likeli-  with 1000 replications and three different sample sizes
hood estimates of the model parameters are obtained by = #n = 30, 50, and 70 and eight different populations.

maximizing the log likelihood function given by equation Absolute bias (ABias), mean square error (MSE), confi-
(15). Monte Carlo simulation is performed using R package  dence width (CW), and coverage probability (CP) are obtained
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TaBLE 1: The results of MLEs and Bayesian estimates.

MLE Bayesian

@ By B, Bs 4 B B, Bs
ABias 0020 0015 0015 0010 0016 0012 0.008 0.012
=30 MSE 0.003  0.004 0.004 0004 0003 0004 0.004 0.003
CW (CL) 0214 0248 0248 0248 0213 0243 0239  0.230
CP 0950 0938 0957 0948 0943 0932 0949  0.951
ABias 0011 0009 0008 0.007 0010 0.009 0004  0.009
MSE 0.002  0.002 0002 0.002 0002 0.002 0002 0.002
®=02p,=024=02p4=02  n=50  ywcy 0176 0176 0176 0176 0162 088 0185 0179
CP 0954 0940 0938 0951 0956 0943 0949  0.942
ABias 0010  0.006 0006 0.006 0.008 0.006 0004  0.007
. MSE 0.001  0.002 0002 0001 0001 0.002 0002 0.0l
CW (CL) 0124 0176 0176 0124 0136 0157 0156  0.143
CP 0952 0957 0946 0951 0958 0945 0949  0.948
ABias 0032 0048 0046  0.032 0028 0041  0.027  0.038
o30 MSE 0011 0034 0034 0026 0011 0031 0030 0025
CW (CL) 0392 0702 0702 0620 0394 0.664 0659  0.587
CP 0947 0945 0956 0951 0942 0930 0945  0.951
ABias 0018  0.028 0026 0022 0020 0027 002 0025
MSE 0.006 0.018 0018 0.014 0006 0017 0018 0.014
®=05p5=05p=05p=05 n=50 (CL) 0304 0512 0512 0464 0299 0501  0.504  0.448
CP 0.948 0944 0945 0957 0954 0949 0946  0.937
ABias 0017 0019 0021 0019 0013 0021 0017 0019
=70 MSE 0.004 0012 0012 0010 0004 0012 0012 0010
CW (CL) 0248 0430 0430 0392 0250 0417 0418  0.375
CP 0945 0958 0948 0950 0951 0929 0951  0.946
ABias 0.045  0.088 008 0066 0037 0072 0.073  0.060
1o 30 MSE 0.022 0101 0099 0076 0022 009 0091  0.068
CW (CL) 0554 1196 1188 1.052 0557 1129 1133  0.979
CP 0941 0951 0954 0946 0940 0939 0950  0.951
ABias 0.026 0051 0049 0.040  0.026 0.059 0.049  0.040
MSE 0013 0052 0051 0040 0013 0.052 0050 0.038
«=08p =08 p,=08p=08 n=50 ) 0430 0868 0868 0764 0425 0.854 0850  0.744
CP 0950 0944 0941 0956 0956 0948  0.948  0.940
ABias 0024 0.036 0039 0035 0019 0.037 0030  0.030
. MSE 0.009 0.034 0036 0028 0009 0.034 0033 0026
CW (CL) 0350 0712 0722 0.644 0358 0703 0703  0.619
CP 0944 0956 0949 0949 0958  0.940 0952  0.946
ABias 0.068 0.142 0158 0307 0023 0120 0162 0.137
o30 MSE 0062 0391 0442 0913 0059 0355  0.447  0.664
CW (CL) 0936 2388 2532 3548 0924 2207 2417  3.063
CP 0950 0940 0950 0950 0940 0950  0.930  0.960
ABias 0046  0.099 0111 0191 0018 0.076 0.03  0.091
MSE 0.035 0203 0231 0444 0034 0.8 0219  0.369
a=15p =12 p=13p=25 n=50 (CL) 0712 1722 1.834 2504 0703 1.633 1738  2.043
CP 0960 0950 0950 0.960 0960 0920 0.950  0.970
ABias 0.039 0068 0082 0157 0013 0.068 0.051  0.090
. MSE 0026 034 0153 0301 0023 0131 0139 0258
CW (CL) 0608 1408 1498 1.627 0586 1364 1416  1.941
CP 0930 0940 0940 0960 0910 0940  0.950  0.960
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TasLE 1: Continued.
MLE Bayesian
4 Bi B, Bs 4 By B, Bs
ABias 0.094 0296 0295 0237 0060 0264 0247 0147
=30 MSE 0.099 0.890 0.892 0680 0.094 0811 0.790  0.519
CW (CL) 1176 3510 3518  3.09 1166 3312 3237 2723
CP 0943 0949 0950 0952 0949 0931 0948  0.952
ABias 0055 0.169 0166 0.136 0040 0185 0169  0.101
MSE 0.055 0.427 0428 0326  0.055 0432 0418  0.290
®=2p=2p=2p=2 n=30 Cw(CL) 1176 3510 3518 3096 0.898 2443 2388  2.050
CP 0953 0946 0941 0961 0952 0946 0945  0.952
ABias 0051 0123 0119 0051 0031 0129 0.0l  0.063
. MSE 0.040 0281 0285 0226 0038 0277 0263 0195
CW (CL) 0754 2022 2030 1804 0753 1979 1948  1.695
CP 0942 0953 0945 0942 0961 0942 0949  0.942
ABias 0.086 0383 0493 0507 0037 0268 0426 0.78
=30 MSE 0.089 1.832  2.583 2476 0219 1497 2411 0908
CW (CL) 1122 5088 599 5840 0843 4543 5563  3.387
CP 0950 0950 0950 0950 0942 0950 0.880  0.938
ABias 0053 0226 0279 0297 0019 0197 0304  0.095
MSE 0051 0870 1.194 1132 0.049 0815 1197  0.865
®=2p=25p=3p=35 n=30 CW(CL) 0858 3548 4141 4006 0842 3376 3996 3541
CP 0950 0940 0940 0970 0930 0910 0.930  0.950
ABias 0049  0.73 0236 0244 0014 0166 0.149  0.091
70 MSE 0036 0574 0.800 0766  0.033  0.543  0.688  0.607
CW (CL) 0712 2.894 3382 3294 0697 2770 3116  2.997
CP 0.940 0940 0950 0960 0950 0930 0930  0.960
ABias 0111 0390 0489 0326 0.067 0374 0418  0.168
=30 MSE 0140 1535 2191 1234 0134 1435 1938  0.891
CW (CL) 1402 4610 5476 4164 1395 4375 5016  3.545
CP 0943 0950 0954 0947 0946 0903 0915  0.955
ABias 0.068 0232 0279 0.183 0041 0236 0262  0.108
MSE 0079 0737 1017 0577 0078 0725 0977  0.496
«=25p=25p, =355 =25 n=30 Cw(CL) 1066 3240 3798 2892 1074 3167  3.657  2.697
CP 0950 0940 0949 0961 0949 0917  0.88  0.952
ABias 0060 0.64 0214 0.160 0028 0166 0166  0.069
. MSE 0057 0479  0.669 0399 0037 0472  0.622 0333
CW (CL) 0902 2636 3.094 2394 0903 2581 2972 2217
CP 0948 0950 0950 0943 0966 0.887  0.883  0.950
ABias 0152 0717 0607 0533  0.068 0.663 0536 0115
=30 MSE 0.257 4574 3552 2.888 0237 4168 3127  1.682
CW (CL) 1.896 7.898 6994 6322 1873 7403 6356  4.974
CP 0938 0949 0949 0954 0836 0928 0955 0956
ABias 0.091 0414 0352 0289  0.053 0438 0357  0.33
MSE 0143 2075 1.637 1277 0141  2.080 1606  1.038
®=35p =4p=35p=35 n=50 CW(CL) 1440 5410 4822 4282 1448 5311 4641 3905
CP 0952 0947 0934 0966 0761 0919 0932  0.963
ABias 0.082 0309 0268 0259 0031 0283 0232  0.060
B MSE 0103 1352 1.066 0883  0.099 1297 1012  0.701
n=70 CW(CL) 1214 4394 3908 3542 1222 4275 3773 3240
CP 0940 0951 0945 0953  0.696 0928  0.957  0.953

and presented in Table 1. The numerical steps and the cor-
responding equations are explained in detail in Appendix B.1.

(2) Bayesian Approach. Using Bayesian approach under
square error loss function, the Bayesian estimator is the
posterior mean. However, it is hard to obtain the posterior
mean theoretically as we have four parameters to estimate.
One can use Markov Chain Monte Carlo (MCMC) simu-
lation method to obtain it numerically.

The MCMC method uses simulation techniques to ob-
tain a Markov sequence such that it has a limiting distri-
bution. In the Bayesian approach, the limiting distribution is
the posterior pdf as it includes all needed information about
the parameters 6.

Here, the MCMC method can be used to set up a Markov
chain of parameters 0 with distribution P (0 | (X, X,)). The
mean of the sequence can be considered as the posterior
mean.
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To perform MCMC, we used both R and WinBugs
packages. Gamma prior is used with the same three sample
sizes and eight populations used in ML approach. The R
package with 1000 replications is used, and for each repli-
cation, WinBugs is used with 1000 replications to generate
the sequence of Markov chain.

We used the Geweke test to examine the convergence of
the generated Markov chain sequence. Geweke statistic (z,,)
converges to normal distribution for large sample sizes.
Hence, large absolute values of z, are considered as a re-
jection for convergence. Only those converged sequences are
used in the analysis. For more details about the Geweke test,
see [16].

ABias, MSE, confidence length (CL), and CP are ob-
tained and presented in Table 1. The numerical steps and the
corresponding equations are explained in detail in Appendix
B.1.

From Table 1, it can be seen that under different
combinations of the parameters and for different sample
sizes, ABias and MSE are relatively small. This indicates that
both Bayesian and ML approaches work efficiently in esti-
mating the parameters of BIK.

Comparing ML and Bayesian estimates, it is found
that Bayesian estimates have less than or equal mean
square error (MSE) than ML ones. This is clear from
Figure 2.

Also, it can be seen that as the sample size (n) increases,
the ABias, MSE, CW, and CL decrease for both ML and
Bayesian as seen from Figure 3. Moreover, it can be seen that
for most cases, the CP is around 0.95.

6.1.2. Real Datasets. Here, we analyze three real datasets to
show the applicability of BIK in several fields like sports,
engineering, and medicine.

(1) Football Data. The dataset has been obtained from
Meintanis [23]; he used the bivariate MO exponential
distribution (BE) to analyze the data. The data are about
football (soccer) where at least one goal scored by the
home team and at least one goal scored directly from a
penalty kick, a foul kick, or any other direct kick (all of
them together will be called as kick goal) by any team have
been considered. Here, the variables are the time in
minutes of the first kick goal scored by any team (X;) and
the time of the first goal of any type scored by the home
team (X,).

The bivariate dataset has the following structure:
X, <X,, X;=X,,and X, > X,. Since, X; = X, has a pos-
itive probability, we need a singular distribution to analyze
this dataset. Here, we analyze the data using BIK distribution
defined by equation (4). All the data points have been di-
vided by 100. This is not going to make any difference in the
statistical inference.

First, before analyzing the data, we fit inverted
Kumaraswamy distribution to X, X, and max (X;, X,). To
guess the initial values for the parameters of BIK model, the
MLEs of the shape parameters (a,f) of the respective
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inverted Kumaraswamy distribution for X, X, and max
(X;, X,) are obtained. To check the model’s fitness, we first
need to illustrate goodness-of-fit tests.

Goodness-of-fit (GOF) tests are hypothesis tests re-
garding the distribution of some random variable (X) in a
population. The objective of applying GOF tests is to
measure how well the data agree with a given distribution as
its population. For example, if we want to examine if the
random variable (X) follows distribution F,(x), then the
null hypothesis is

Hy: F(x) = Fy(x). (42)

One approach for applying GOF tests is based on the
empirical distribution function (EDF) (F,(x)) which is
defined as follows:

number of elements in the sample < x
F,(x) = P

43
total sample size (n) (43)

This approach is based on defining a statistic to measure
the discrepancy between F,(x) and F,(x). The most used
statistics are modified Cramér—von Mises statistic (W*) and
Anderson-Darling statistic (A*) which have the following

formulas:
W 1 +”[F( ) 21'—1]2
= — X —_ N
12n SNy

N Sr2i— 1
A =—n—2;[ 1271 ln(FO(x(i))) (44)

+(1 _2;—;1>ln(1 ~Fo(xq))

where x ;) is the value of the i order statistics in the sample.

Large values of test statistics (or small corresponding p
value) lead to the rejection of the null hypothesis. For more
details about GOF tests, see D’Agostnio and Stephens [24].

Here, we apply GOF tests in order to see whether the fit
based on univariate inverted Kumaraswamy distributions is
reasonable for this dataset. We computed the modified
Cramér-von Mises statistic (W*) and Anderson-Darling
statistic (A*). The values of these statistics and the corre-
sponding p values (in brackets) for X,, X,, and max
(X;, X,) are illustrated in Table 2.

Based on the values of these statistics and the corresponding
p values, the inverted Kumaraswamy distribution cannot be
rejected for modeling the marginals and the maximum. In
Table 3, the ML estimates and the posterior mean using gamma
priors are obtained for the parameters of BIK. Also, credible
interval length and confidence width are illustrated.

Now, we try to compare the performance of BIK, bi-
variate exponential (BE), and bivariate inverted Weibull
(BIW) to fit this dataset. To select between models, several
information criteria (IC) were presented; the main idea
behind IC is to afford a balance between good fit and
complexity of the model as follows:

IC = -2log (L) + kp, (45)
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Ficure 3: (a) MSE and (b) ABias for a.
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TaBLE 2: Cramér-von Mises statistic (W*) and Anderson-Darling
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TaBLE 4: Information criteria.

statistic (A*) for IK. Log (L) AIC  BIC CAIC HQIC
X, X, max (X, X,) k — 2 In(n) In(n+1) In (In (n))

A* 0.966 (0.375) 0.549 (0.696) 1.395 (0.204) BIK —23.53" 55.06 615 61.61 57.33

wH 0.139 (0.426) 0.083 (0.679) 0.233 (0.212) BE —44.56"" 9512 99.95 100.03 96.82

BIW  —-30.25*** 685  74.94 75.05 70.77

TaBLE 3: The estimates based on ML and Bayesian approaches.

Approach a B B B

ML MLE 5258 1.763 0.560 1.411

Confidence interval width 2.824 2.026 0.886 1.374

. Posterior mean 4.727 1.673 0.679 1.442
Bayesian

Credible interval length  2.168 1.286 0.491 1.061

where k is the penalized term and p refers to number of
parameters in the model.

The most commonly used IC in model selections are
Akaike information criteria (AIC), Bayesian information
criteria (BIC), the consistent Akaike information criteria
(CAIC), and Hannan-Quinn information criteria (HQIC).
Each IC has a different penalty term illustrated in the first
row of Table 4.

By analyzing equation (45), we can see that the first term
(—2log (L)) tends to decrease when the model provides good
fit. But, the second term tends to increase as the number of
parameters in the model increases. The model with the
lowest IC is the best (for more details about IC, see Vrieze
[25]).

The log likelihood value, AIC, BIC, CAIC, and HQIC are
represented in Table 4. All of the criteria suggest that BIK
provides the best fit compared with BE and BIW models.
This may show the importance of BIK.

(2) Motor Data. The dataset has been obtained from [26].
The data are about failure time in days for a parallel system
containing two motors. The variables are time to failure for
the first motor (X,) and time to failure for the second motor
(X,). All data points have been divided by 1000. We applied
GOF tests on IK, IW, and E distributions. From Table 5,
based on the values of (W*), (A*), and the corresponding p
values, only IK distribution can be used for modeling the
marginals and the maximum. Hence, only BIK can be used
for modeling this dataset.

ML estimates and the posterior mean using gamma priors
are obtained for the parameters of BIK. Also, credible interval
length and confidence width are illustrated in Table 6.

(3) Diabetic Retinopathy Data. The dataset has been obtained
from [27]. The data are used by the National Eye Institute to
study the effect of laser treatment on the blindness in pa-
tients with diabetic retinopathy. At the beginning of clinical
trial, for each patient, one eye is randomly selected for laser
treatment. The variables are time to failure for treated eye
(X,) and time to failure for untreated eye (X,). All data
points have been divided by 1000. We applied GOF on IK,
IW, and E distributions. From Table 7, it can be seen that
only IK distribution can be used for modeling the marginals

*Based on the estimates in Table 3. **Based on the estimates obtained by
Meintanis [23]. ***Based on the estimates presented by Muhammed [9].

TaBLE 5: (W*) and (A*) for IK, IW, and E.

Model X, X, max (X, X,)

A* 1133 (0.294)  0.294 (0.942) 0.488 (0.756)

K w0204 (0261) 0036 (0.958)  0.081 (0.692)

W A* 1.491 (0.179) 0.874 (0.429) 7.165 (0.0003)
W* 0267 (0.168) 0.119 (0.505) 1.509 (9.18 X 10~%)

g AT 3902(0009) 3363 (0014) 944 (33x10°°)

W* 0778 (0.007)  0.672 (0.014)  5.964 (2.2 107 1)

TaBLE 6: The estimates based on ML and Bayesian approaches.

Approach o By B, Bs
MLE 16.977 12.603 13.067 0.01
ML Confidence interval 0 5o0 1959 20,046 18.730
width
Posterior mean 16.950 12.900 13.210 0.034
Bayesian Credible interval 9.020 19152 20720 0.594
length
TaBLE 7: (W*) and (A*) for IK, IW, and E.
Model X, X, max (X, X,)

A* 0.662 (0.591)  0.570 (0.676) 0.707 (0.551)

IK W* 0.092 (0.627) 0.099 (0.594) 0.090 (0.635)

A* 2.538 (0.048) 73.841 (8.4x107°) 166.45 (8.4x107%)

W 0369 (0.087) 11.41 (2.2x10°16) 1825 (2.2x 10-16)

A* 3.886 (0.009) 214.7 (8.4x107%) 271.7 (8.4x1079)
W* 0.671 (0.015) 22.4 (22x1071°) 231 (2.2x10719)

and the maximum. Hence, only BIK can be used for
modeling this dataset.

In Table 8, ML estimates and the posterior mean using
gamma priors are obtained for the parameters of BIK. Also,
credible interval length and confidence width are illustrated.

From these three datasets, we can conclude that the
derived BIK distribution will be of great importance.

6.2. For MIK Distribution. In this section, we present nu-
merical results of estimation using a simulation study and a
real dataset.

6.2.1. A Simulation Study. Here, we present an algorithm to
generate MIK distribution. Also, we illustrate the simulation
results for both ML and Bayesian approaches (Algorithm 2).

(1) Maximum Likelihood Approach. To obtain the maximum
likelihood estimates, a Monte Carlo simulation is performed
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TaBLE 8: The estimates based on ML and Bayesian approaches.
Approach « B B, Bs
ML MLE 3.830 2.889 2.570 0.900
Confidence interval width 1.288 2114 1.952 1.044
Bavesian Posterior mean 3.586 2.739 2.3796 0.907
Y Credible interval length 0.930 1.326 1.133 0.700
The following algorithm is to generate (X, X,, X;3) from MIK distribution.
Step 1: generate U,, U,,Us;, and U, from uniform (0, 1).
Step 2: compute T, = (1 - U}/ﬁ‘)”“, T,=(1- U;/ﬁz)”“, T,=(1- Ué/ﬂ’)l/“, and T, = (1- Ui/ﬁ“)”“.
Step 3: define Z, = 1/T, - 1,Z, = 1/T, - 1, Zy = 1/T5 - 1, and Z, = /T, — 1.
Step 4: obtain X, = max(Z,, Z,), X, = max(Z,, Z,), and X; = max(Z;, Z,).
ALGORITHM 2: An algorithm to generate MIK distribution.
TaBLE 9: The results of MLEs and Bayesian estimates for MIK.
MLE Bayesian
a B B, Bs o B B, Bs
ABias 0.046 0.063 0.050 0.061 0.045 0.037 0.020 0.032
n=30 MSE 0.020 0.045 0.042 0.045 0.019 0.040 0.037 0.039
- CW (CL) 0.526 0.794 0.774 0.794 0.505 0.761 0.735 0.749
CP 0.953 0.973 0.954 0.949 0.939 0.925 0.948 0.933
ABias 0.035 0.033 0.046 0.040 0.039 0.005 0.020 0.019
MSE 0.011 0.023 0.025 0.025 0.012 0.021 0.022 0.023
«=09,p, =09, B, =09, =09 n=30 CW (CL) 0.392 0.582 0.594 0.594 0.391 0.567 0.573 0.578
CP 0.960 0.968 0.950 0.960 0.945 0.946 0.929 0.943
ABias 0.020 0.026 0.021 0.032 0.029 0.001 0.005 0.006
n="70 MSE 0.007 0.017 0.015 0.017 0.008 0.015 0.015 0.015
B CW (CL) 0.328 0.496 0.480 0.496 0.328 0.477 0.472 0.479
CP 0.945 0.951 0.958 0.964 0.930 0.931 0.933 0.950
ABias 0.135 0.083 0.224 0.089 0.119 0.043 0.199 0.046
=30 MSE 0.084 0.044 0.282 0.046 0.078 0.033 0.248 0.034
B CW (CL) 1.008 0.754 1.888 0.764 0.977 0.685 1.756 0.687
CP 0.918 0.961 0.973 0.952 0.927 0.940 0.948 0.935
ABias 0.111 0.067 0.155 0.062 0.085 0.015 0.167 0.022
MSE 0.051 0.025 0.148 0.025 0.044 0.018 0.148 0.018
«=18p =08 p,=18p,=08 n=30 CW (CL) 0.774 0.568 1.380 0.568 0.749 0.511 1.335 0.516
CP 0.939 0.962 0.950 0.958 0.935 0.956 0.925 0.938
ABias 0.086 0.057 0.155 0.049 0.072 0.011 0.120 0.015
n=70 MSE 0.034 0.017 0.113 0.016 0.031 0.012 0.094 0.013
- CW (CL) 0.644 0.464 1.170 0.464 0.628 0.432 1.019 0.433
CP 0.914 0.969 0.930 0.977 0.919 0.951 0.928 0.948
ABias 0.112 0.210 0.173 0.219 0.090 0.195 0.169 0.167
n=30 MSE 0.064 0.262 0.236 0.269 0.060 0.245 0.229 0.224
- CW (CL) 0.886 1.830 1.780 1.842 0.884 1.763 1.725 1.718
CP 0.921 0.962 0.972 0.962 0.917 0.942 0.953 0.934
ABias 0.081 0.137 0.150 0.147 0.074 0.130 0.162 0.115
MSE 0.037 0.134 0.141 0.139 0.036 0.128 0.143 0.123
«=18p =18 p,=18p =18 n=30 CW (CL) 0.678 1.330 1.346 1.340 0.677 1.299 1.324 1.288
CP 0.951 0.972 0.944 0.965 0.944 0.964 0.922 0.952
ABias 0.059 0.113 0.116 0.122 0.054 0.097 0.128 0.091
=70 MSE 0.024 0.092 0.093 0.095 0.024 0.086 0.095 0.084
B CW (CL) 0.568 1.102 1.108 1.368 0.562 1.075 1.090 1.074
CP 0.932 0.952 0.949 0.959 0.941 0.941 0.928 0.946
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TaBLE 9: Continued.

MLE Bayesian

4 Bi B, Bs 4 By B, Bs
ABias 0119 0159 0208 0273 0084 0.30 0189 0196
_30 MSE 0076 0179 0310 0367 0066 0143 0280  0.286
CW (CL) 0976 1478  2.026 2118 0940 1371 1900  1.924
CP 0923 0964 0979 0964 0923 0945 0952  0.945
ABias 0092 0103 0173 0176 0075 0.092 0157 0124
MSE 0.044 0086 0.I81  0.067 0041 0.080 0.165 0154
a=2p =155 =2p =2 n=30 cw(CL) 0744 1074 1524 1524 0726 1036 1444 1435
CP 0948 0969 0944 0965 0945 0963 0927 0954
ABias 0065 0.086 0122 0.35 0045 0062 0104  0.097
. MSE 0029 0055 0115 0119 0027 0053 0105 0104
CW (CL) 0620 0.894 1240 1256 0.606 0856 1188  1.189
CP 0927 0950 0957 0967 0933 0945 0950  0.950
ABias 0.284 0245 0298  0.33 0106 0264 0240 0209
30 MSE 0494 0456 0508  0.098  0.093 0463 0441  0.410
CW (CL) 2520 2466 2538 1108 1110 2424 2366  2.340
CP 0967 0973 0967 0934 0943 0948 0954  0.950
ABias 0184 0204 0198 0095 0070 0.56 0200 0132
MSE 0251 0254 0260 0056 0.052 0232 0257 0219
=240 =24, =24p,=24 n=50 (CL) 1.826 1.856 1.842 0850 0846 1779 1.804  1.751
CP 0975 0952 0964 0952 0955 0966 0925  0.955
ABias 0146 0136 0157 0070 0.059 0149 0139 0117
70 MSE 0170 0166 0176 0038 0.037 0168 0165 0156
CW (CL) 1514 1508 1524 0712 0713 1491 1481  1.469
CP 0944 0952 0962 0939 0938 0928 0950  0.956
ABias 0168 0168 0151 0175 0146 0151  0.141 0138
=30 MSE 0135 0173 0163 0177 0.24 0155 0.149  0.149
CW (CL) 1282 1492 1466 1498 1240 1408 1388  1.387
CP 0931 0961 0979 0963 0919 0943 0955  0.950
ABias 0125 0120 0119 0125 0.09 0102  0.102  0.094
MSE 0078  0.092 0115 0.095 0069 0.083 0.152  0.082
«=25P =15 =158 =15 n=50 ey 0976 1094 1102 1102 0947  1.047 1043 1.044
CP 0946 0969 0952 0966 0949 0956 0923  0.953
ABias 0.092  0.100 0.094 0.094 008 0.092 0.105 0.062
=70 MSE 0051 0064 0062 0062 0.050 0.060 0063  0.054
CW (CL) 0812 0910 0902 0902 0799 0876 0.878  0.862
CP 0913 0942 0950 0971 0927 0949 0921  0.966
ABias 0157 0377 0318 0374 0117 0361 0293  0.249
30 MSE 0141 0837 0795 0833 0131 0796 0716  0.658
CW (CL) 1336 3268 3.180 3264 1328 3150 3.025 2975
CP 0936 0966 0974 0969 0944 0932 0961  0.956
ABias 0121 0242 0283 0258 0.096 0214 0281  0.174
MSE 0.083 0420 0456 0434 0079 0397 0451  0.367
a=3p =3 p=3p=3 n=50 Cw(CL) 1022 2356 2404 2374 1024 2306 2345 2248
CP 0941 0975 0951 0963 0939 0962 0929  0.958
ABias 0074 0165 0159 0188  0.058 0150 0.58  0.37
70 MSE 0052 0269 0266 0281 0051 0259 0264  0.249
CW (CL) 0850 1928 1.924 1944 0855 1893 1.892  1.876
CP 0937 0951 0961 0963 0943 0938 0948  0.956
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TasLE 9: Continued.
MLE Bayesian
4 Bi B, Bs 4 By B, Bs
ABias 0154 0339 0283 0455 0103 0284 0243 0257
_30 MSE 0139 0700 0.633 1221 0.26 0621 0582  0.896
CW (CL) 1330 2998 2916 3948 1314 2834 2755 3513
CP 0937 0964 0977 0970 0.864 0938  0.847 0914
ABias 0121 0218 0252 0324 0087 0169 0233 0210
MSE 0.083 0354 0381 0642 0076 0320 0362  0.529
®=3p =28p,=28p; =35 n=30 cw(CL) 1022 2168 2208 2872 1018 2098 2136 2697
CP 0947 0973 0955 0965 0.805 0974 0797  0.857
ABias 0.081 0156 0148 0238 0.053 0121 0.33 0137
. MSE 0054 0230 0227 0414 0050 0211 0217 0344
CW (CL) 0850 1780 1774 2342  0.849 1726 1733  2.220
CP 0933 0951 0965 0963 0800 0947 0706  0.839
ABias 0154 0374 0477 0370 0109 0327 0455  0.230
=30 MSE 0136 0.827 1558 0822 0120 0726 1441  0.617
CW (CL) 1312 3250 4520 3244 1284 3.048 4307 2914
CP 0937 0963 0973 0971 0941 0951 0970  0.963
ABias 0116 0232 0406 0256 0091 0206 0388  0.171
MSE 0079 0409 0915 0430 0073 0380 0.851  0.354
a=3p =3 =4p=3 n=30 CW(CL) 1008 2336 3394 2366 0989 2254 3254 2213
CP 0942 0973 0960 0965 0942 0953 0965 0952
ABias 0074 0163 0234 0182 0058 0156 0228  0.123
. MSE 0051 0266 0530 0276 0.049 0257 0513 0241
CW (CL) 0840 1916 2702 1932 0834 1.869 2636  1.847
CP 0943 0956 0960 0960 0955 0965 0967  0.958
ABias 0171 0450 0378 0.536 0.00 0402 0389  0.238
=30 MSE 0176 1190 1.074 1.666 0.57  1.095 1.071  1.149
CW (CL) 1502 3.894 3782 4604 1486 3702  3.660  4.027
CP 0939 0963 0975 0969 0949 0952 0931  0.937
ABias 0132 0281 0330 0371 0.080 0253 0268  0.166
MSE 0104 0587 0639 0859  0.093 0562 0573  0.653
®=35p=358,=35p=4 n=30 cw(CL) 1156 2794  2.854 3328 1146 2739 2715  3.059
CP 0944 0972 0959 0966 0936 0961 0900  0.903
ABias 0.085 0.97 0185 0261  0.055 0145 0194  0.159
. MSE 0.068 0381 0372 0545 0065 0351 0378  0.465
CW (CL) 0968 2292 2280 2708 0967 2230 2258  2.583
CP 0940 0952 0963 0970 0950 0959 0871  0.864
ABias 0172 0450 0378 0445 0.107 0369 0323  0.250
o30 MSE 0179 1194 1079 1188 0162 1.056 0992  0.885
CW (CL) 1514 3902 3792 3900 1503 3.689 3593  3.488
CP 0941 0966 0975 0971 0955 0945 0959  0.955
ABias 0133 0284 0331 0308 0100 0263 0308 0199
MSE 0106 0592 0.643 0617  0.099 0573  0.610  0.516
®=35p=35p=35p=35 n=50 (CL) 1162 2383 2862 2832 1160 2755 2755  2.665
CP 0946 0971 0959 0965 0946 0964 0929  0.949
ABias 0.087 0204 018 0224 0059 0163 0182 0144
o0 MSE 0069 0387 0375 0398 0066 0362 0374  0.346
CW (CL) 0968 2302 2286 2312 0978 2252 2259 2220
CP 0937 0954 0963 0963 0941 0951 0956  0.956
ABias 0234 0152 0199 0330 0177 0143 0185  0.236
_30 MSE 0351 0162 0302 0590 0272 0155 0284 0474
CW (CL) 1928 1462 2006 2722 1906 1415 1912  2.486
CP 0932 0963 0974 0971 0950 0941  0.945  0.954
ABias 0178 0100 0167 0231 0141 0092  0.55  0.167
MSE 0173 0085 0177 0306 0162 0.083 0169  0.260
a=4p =15p=2p =25 n=30 cw(CL) 1472 1074 1514 1972 1468 1059 1468 1871
CP 0944 0972 0950 0963 0960 0958 0953  0.929
ABias 0136 0082 0120 0193 0121 0073 0137 0126
- MSE 0117 005 0113 0209 0116 0057 0120 0177
CW (CL) 1234 0894 1234 1626 1241 0883 1236  1.559
CP 0929 0950 0962 0971 0943 0939 0946 0935
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FIGURE 4: MSE of (a) a = 3.5, (b) 3; = 3.5, (c) B, = 3.5, and (d) 35 = 3.5.

using R package with 1000 replications and three different
sample sizes n = 30, 50, and 70. Different initial values of
the parameters are arbitrarily chosen, varying between small
and large values to cover different cases of the distribution.
The parameter S, is assumed known for simplicity. The
following twelve populations are considered.
(i) @ =0.9,8, = 0.9,5, = 0.9, B; = 0.9.
(i) a = 1.8,8, = 0.8, 8, = 1.8, 5 = 0.8.
(ifi) & = 1.8, 4, = 1.8,8, = 1.8, B; = L.8.
(iv) a=2,5,=15,5,=2, 5=2.
(V) a = 24,8, =2.4,B, = 2.4, B; = 2.4.
(vi) @ = 2.5,8, = 1.5,8, = 1.5, B, = L.5.

(vil)) a=3,58,=3,3,=3, 55, =3.
(vii) & = 3,8, = 2.8,B, = 2.8, B, = 3.5.
(ix) a=3,6,=3,5,=4,3=3.

(x) a=3.5[8,=353,=35, =4
(xi) @ = 3.5,B, = 3.5,B, = 3.5, 5 = 3.5.
(xii) o = 4,5, = 1.5,, = 2, B = 2.5.

To check the behavior of the estimates, ABias, MSE, CW,
and CP are computed in Table 9. The algorithm is explained
in detail in Appendix B.2.

(2) Bayesian Approach. Similar to the bivariate case, MCMC
simulation is used to obtain the posterior mean numerically.
Absolute bias (ABias), mean square error (MSE), confidence
length (CL), and coverage probability (CP) are obtained and
presented in Table 9. The algorithm is explained in detail in
Appendix B.2.

From Table 9, it can be seen that for different combi-
nations of the parameters and for different sample sizes,
ABias and MSE are relatively small. This indicates that both
Bayesian and ML approaches work efficiently in estimating
the parameters of MIK.

Comparing ML and Bayesian estimates, it is found that
Bayesian estimates have less than or equal mean square error
(MSE) than ML ones as seen from Figure 4. Also, for the
majority of cases, Bayesian estimates have smaller ABias
than ML ones.

Also, it can be seen that as the sample size (1) increases,
the ABias, MSE, CW, and CL decrease for both ML and



Mathematical Problems in Engineering 21
0.6 0.3 -
0.5 4 0.25 4
0.4 0.2 4
m 3
“ 0.3 4 A 0.15 4
< ﬁ 0.15
0.2 0.1 4
0.1 4 0.05 -
0 0 T T |
ny n n3
706=3,ﬁ1=3,ﬁ2:3:ﬂ3:3 7“:3’51:3’ﬁ2=3’[33:3
— @=35p,=35p,=35/p;=35 — «=35,p,=350,=35p5=35
— a=18B,=186,=18 ;=18 o a=18,p,=18,4,=18,;=18
a=24,B,=24,p,=24,B,=24 a=24,B,=24,3,=24,5;=24
— a=3,p,=28,p,=28p;=35 — a=3,,=28p,=28p3=35
— @=35,=35p,=4,;=35 — a=35,p,=35p,=4,p;=35
 a=4,p,=15p,=2,B,=25  a=4,B,=15p,=2,p;=25
—_ 0623,ﬁ1:3>ﬁ2:4”83:3 7(x=3’ﬁ1=3’ﬁ2=4’ﬁ3=3
a=2,B,=15p,=2,B,=2 a=2,B,=15/p,=2,p5=2
a=25B=150,=15p;=15 a=25p8,=15pB,=15pB;=15
— a=18p,=083,=18,=08 —— a=18,5,=08,5,=18,$,=038
— @=09,5,=09,5,=09,5,=09  a=09,5,=09,8,=09,;=09
() (b)
FiGURE 5: (a) MSE and (b) ABias for a.
TaBLE 10: (W) and (A*) for IK, IW, and E.
Model X, X, X, max (X, X,)
K A* 0.31 (0.93) 0.43 (0.82) 0.49 (0.76) 0.50 (0.75)
w* 0.04 (0.94) 0.07 (0.76) 0.08 (0.68) 0.08 (0.72)
w A* 13.60 (7x107°) 14.48 (7x107°) 15.80 (7x107°) 14.20 (7x107°)
wr 2.79 (2x1077) 2.99 (5% 10°%) 3.30 (9% 1079) 2.91 (7x10°%)
B A* 23.95 (7 x 10°°) 2418 (7% 1079) 24.75 (7 x 10°°) 2429 (7 x 10°°)
w* 5.06 (2x10719) 5.12 (2x10710) 5.26 (2x10719) 5.14 (2x10719)
TaBLE 11: The estimates based on ML and Bayesian approaches.
Approach o B B> Bs
ML MLE 46.949 264.199 245.852 245.519
Confidence interval width 8.126 269.684 256.424 263.866
Bavesian Posterior mean 48.697 270.528 226.877 257.231
Y Credible interval length 4.270 69.215 61.110 64.305

Bayesian as seen from Figure 5. Moreover, it can be seen that
for most cases, the CP is around 0.95.

6.2.2. A Real Dataset. Here, we analyze a real dataset to show
the applicability of MIK. The dataset has been obtained from
Bland and Altman [28]. It represents a set of systolic blood
pressure measurement for 85 patients made by a semiau-
tomatic blood pressure monitor; three readings were made
for each patient. The variables are as follows:

X : first systolic blood pressure measurement.
X,: second systolic blood pressure measurement.

X5 third systolic blood pressure measurement.

All data points have been divided by 1000. This is not
going to make any difference in the statistical inference. We
applied GOF tests in order to check if the fit based on IK, IW,
and E distributions is reasonable in this case. We computed
the modified Cramér-von Mises statistic (W*) and
Anderson-Darling statistic (A*). The values of these sta-
tistics and the corresponding p values (in brackets) for X,
X,, X3, and max (X, X,, X;) are illustrated in Table 10.

Based on the values of these statistics and the corre-
sponding p values, only IK distribution can be used for
modeling the marginals and the maximum. Hence, only
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MIK can be used for modeling these data. In Table 11, the
ML estimates and the posterior mean using gamma priors
are obtained for the parameters of MIK (f3, is considered
known for simplicity). Also, credible interval length and
confidence width are illustrated.

7. Conclusion

In this paper, bivariate inverted Kumaraswamy (BIK) dis-
tribution is derived as a new member of bivariate Mar-
shall-Olkin family. Its properties are also studied.
Estimation is performed using both maximum likelihood
(ML) and Bayesian approaches. To see the applicability of
BIK distribution, three real datasets in different fields like
sports, engineering, and biology have been analyzed. It is
observed that the BIK model provides the best fit. Due to the
wide applicability and great performance of the BIK model, a
generalization to multivariate inverted Kumaraswamy
(MIK) distribution is performed. To the best of our
knowledge, estimation of multivariate Marshall-Olkin

0

o0

But [ [7 f1(xpx,)dxdx, = B/ + B, + P and
fo 01 fa(xy,x)dxydxy = Bi/By + By + B

Hence, we have Igo f3(x)dx = B3/, + 3, + Bs.

Therefore,

f3G0) =Bs/Bi+ B+ Bs frc (%, By + By + B3, ).

A.1.2. Proposition 2. Let A be the following event:
A ={U, <Us}n{U, <U,}.

Then, P(A) = Bs/B, +f, + 5 and p(A) =B, + By/f+
B + Bs.

Therefore, Fy y (x1,x,) =P(X;<x,,X,<x, |A)P(A)+
P(X,<x,,X,<x,|A)P(A).

For z=min (x,,x,),P(X;<x,,X,<x,|A)=[1- (1+
z)"%PrPs and P(X, <x,, X, <x, | A) can be obtained by
subtraction.

It can be seen that [1 — (1 + z)”¢]P*P*Ps is the singular
part as its second partial .derivative is zero when x; # x,.
Thus, P(X, <x;, X, <x,|A) P(A) is the absolutely contin-
uous part as its mixed partial derivative is a density function.

(A.2)

A.1.3. Proposition 3
(a) Fy x, (x1>%5) = Frg (x1, Br> ) Fiy (%, B, )F i (2,

B3> @)
where z = min (x,, x,).
lim OFXsz (x1,%,) =(1-(1+ xl)fa)ls‘%,
Xy, —

- (A.3)
lim OFXsz (x1,%,) = (1= (1 +x,) 06)/52+ﬁ3.

J JO f1 (x5 x,)dx;dx, + J.O JO £ (1, x,)dx,dx; + J.o fi(x)dx =1.
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family was not studied before. Here, estimation of MIK is
performed using both ML and Bayesian approaches. A very
convenient algorithm is proposed for both approaches. This
algorithm could be applied for any multivariate Marshal-
1-Olkin distributions. Finally, a real dataset has been ana-
lyzed to illustrate the applicability of MIK distribution, and it
is observed that the MIK model provides good fit, while
multivariate inverse Weibull and multivariate exponential
distributions failed to fit this dataset.

Appendix

A
A.1. Proofs of Propositions I to 5

A.L.1. Proposition 1. 'The first two cases X; < X, and X; > X,
are easily obtained by taking (?ZFX1 x, (%1, %,)/0x,0x,. Now,
to get f;(x), we use the fact that

(A1)

(b) P(max{X,,X,}<x) =P(X,;<x,X,<x)=P(U, <
x, Uy <x,U;4 <x)=(1-(1 +x)foc)/31+l32+/33'

(c) Conditional distribution of X, given X, < x, is given
by

Fr (%15 By + B3> @) Figc (%2, By @)

if x, <x
Fii (%5, B, + B3> @) e

FX,|Xz§xz (%) = >
Frg (%1, By @) if x, <x

(A.4)

that is,

(I=(1+x) " 1-1+x,)%" ifx <x,
Fy ix,x, (%1) =

(1-(1+x) " if x, < x,.

(A.5)

A.1.4. Proposition 4. Starting with

Mot = B ) - |

Lyx X
f(xp, %)™ dxy diy,
all x,x,

(A.6)

substituting for f (x,, x,) by the corresponding formula, and
then using change of variable technique and the following
facts, the formula is derived.



Mathematical Problems in Engineering 23

o n n n x*
e = Zjﬂ (p+q" = Z( > g ,B, (o, B) ——2F1((x,1 - B;a+1;x)and
n=0 i=0 1 (A.7)
1
: j u (1= ,F, (e, ds hsu) = B(a, )3F, (@ ¢, ds hy o+ B 1).
0
A.L.5. Proposition 5. Starting with substituting for f (x;,x,) by corresponding formula, and
L . then applying change of variable technique and the fol-
E(x)x}) = ”anx ; f (e xp)x x5dxdxy, s =1,2,3,.0, lowing facts, the formula is derived.
(A.8)

n n o 1
(p+a) = Z( >p'q"-’, (@) = %ZFZ (1-Bia+1; x)J0 U (1 - wfLE, (o d; s u)du = B(a, B)F, (¢, ds hy o+ B 1).

i=0 i

(A.9)
A.2. Maximum Likelihood Estimators for BIK
dlogL  m
—+ log(1—(1+xy;) log(1 - (1 + x;
B, Pi+bs LGIZUIZ sl 1 tgg s s
dlogL mo —a
+ log (1 — (1 + xy log(1- (1+x; =0,
B B R Z () Z ot
OlogL __m, . +Zlogl—(1+x )+ Y log(1—(1+xy) ")+ Y log(1-(1+x) %) =0
- 1i 2i -
Bz Pr+Ps B+ ps /33 eI, icl, iel,
dloglL 2n,+2n,+n
ag == 23 Z log (1 +xy;) + Z log(1+x2i)+zlog(l+xi) (A.10)
o o iel, U1, iel, U1, icl,
(1+xy;) "log(1 +xy,) (1+xy) "log(1 + x5)
-1 -1
(/31 +ﬁ3 );;; 1-— 1 +x11) o + (ﬁZ )lezl‘; 1- (1 +x2i)_a
(1+xy;) “log(1+ xh) (1+xy) “log(1 +xy)
-1 -1
+ (B )1;‘; 1-(1+ xli)—a B hs ),gzjz —(1+x5)" “
(1+x;) “log(1 + x;)
+(ﬁ1+/32+/33_1),‘5213 1_(1+xi)—(x =0.
PP Iy 0 Iy Iy
The MLEs 6 = (&, f;, 5, B5) of 8= («, By, B,,f35) are 0 L. L. I
obtained by solving the above nonlinear system of equations. (o, By Bas ﬁ3)l7x‘ﬁ 3.3 = 22 123 424 , (A1)
The solutions are numerically obtained in Section 6. RERERANNN R ST FERN FERN £

The asymptotic variance covariance matrix is given by Iy, Ly Iy I,
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x,) “log(L+ ) 5 (1+3) "log(1 + )

1-(1+ 9‘11‘)7a i, 1-(l+x)™"

(A.12)

_ __y () Mlog(l v xy) g (1) Tlog(Ltxy) g (14) Tlog(1 +x)

1-(1+ xZi)_a ier,  1-(1+ xi)_a

24
where
~0*logL n, n,
Iy = 8[32 T 5 2t
1 BB, (ﬁl +/32) B
I _—azlogL B n
Y 0BBs rp (B+Bs)
_—d’logL _‘Z (1+x1,-)7alog(l+x1i)_z (1+
T 0poa 5 ie, 1—(1+x,)" iel,
~0*logL n 1,
I, = aﬁ2 AA=TZ+A7A2’
2 BaoPs ﬁz (ﬁZ +ﬂ3)
I _—azlogL 3 1,
23 = =
9B,0P; B, (ﬂz +/33)2
I -0%log L
24 0p0a |3 i€l 1- (1 + xz,-)_“ iel,
I _—leogL _mLom LM
33 op R A VAN Yk
3 BBB P (ﬁl +ﬁ3) (ﬁz +ﬁ3)
! _—azlogL
M 0Bs0a |5 el 1—(1+x;)" iel,
~0*log L 6
Iy = =) Hp
% I ppa ;
where
21y +2n, + ny
1= 2

o

>

= (o) y (L) o)
5 (om0

1)y (L ) “log(1+ )]

N2
el (1 - (1+ xzi)_a>

H;, :(Bz -

>

H=(-1)Y (1+x,) “[log(1+ x21i)] ’
el (1 - (1+ xli)_a)

>

>

Hy=(fy e, -1) y L) llos )
o (1-ex)T)

H, :(Bl +Bz +33 B 1) Z (1+ xi)_“[log({; le)] .
iel; (1— (1+x;) )

(A.13)

(1+x,) “log(1 +xy,) N Z (1+ xZi)_alog(l )

~ Z (1+ xi)_alog(l + xi))

1-(1+x)°

1—(1+xy)" iel,

Using the asymptotic distribution of the MLEs, the
confidence intervals can be obtained as

E * Zy/2 \/‘Ta\r(g)y

where 8 = (@, B, By Bs)s \Ta\r(Q is the estimated variance,

(A.14)

and z,, is the upper y'"2percentile of the standard normal
table.

B
B.1. Algorithms for BIK

B.1.1. Monte Carlo Simulation Algorithm for BIK. The fol-
lowing algorithm is used to perform Monte Carlo simulation
study using R package and get ML estimates for BIK
distribution.

Step 1: n independent samples (X;,X,) from BIK
distribution are generated as follows:

(a) Generate U,, U,, and U; from uniform (0, 1).
1 Ya 3
(b) Compute T, = (1= U™, Ty = (1-Uy™)'™,
and T, = (1-U;"™)""
(c) Define Z, =UT,-1,2,=1T,-1, and
Zy=1/T, - 1.
(d) Obtain X, = max(Z,, Z;), X, = max(Z,, Z;).
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Step 2: the maximum likelihood estimates (MLEs) and
the corresponding variance (Var) are obtained and

stored.
Step 3: lower (L) and upper (U) bounds for 95%
confidence interval (CI) are calculated (i.e.,

L(U) = MLE — (+)1.96 = \/Var) and stored.

)

i=1

average of MLE (AMLE) =

number of converged datasets MLE
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Step 4: the three previous steps are repeated 1000 times.

Step 5: for converged datasets (this is obtained from R
using optim function), the average of MLE, variance,
and CI is obtained as follows:

i

X

number of converged data sets
i=1 \

number of converged datasets’

i

(B.1)

average of Var (AVar) =

)

number of converged datasets
i: CI

number of converged datasets’

1 i

average of CI (ACI) =

Step 6: absolute bias (ABias), mean square error (MSE),
and confidence width (CW) are obtained as follows:

ABias =|AMLE - intial value|,

MSE = AVar + Bias’,
CW = upper limit of ACI - lower limit of ACI.

(B.2)

CP

_ number of times the intial value falls inside the converged samples’ CI

number of converged datasets

Step 7: the coverage probability (CP) is obtained as
follows:

number of converged samples

B.1.2. MCMC Simulation Algorithm for BIK. The following
algorithm is used to perform Markov Chain Monte Carlo
(MCMC) simulation study using R and WinBugs packages
and get Bayesian estimates for BIK distribution.

Step 1: using R package: n independent samples
(X,, X;) from BIK distribution are generated using the
same procedure in Appendix B.1.1.

Step 2: the generated dataset is sent to WinBugs
package and gamma priors are defined.

Step 3: WinBugs is used with 1000 replications to
generate the sequence of Markov chain.

average of posterior means (APM) =

(B.3)

Step 4: WinBugs provides posterior mean (PM),
standard deviation (SD), and credible interval (CI).

Step 5: results are sent back to R package and stored.
Step 6: the five previous steps are repeated 1000 times.

Step 7: for converged datasets (i.e., Geweke test results
<1.96, it is obtained using coda function in R package),
the average of posterior mean (PM), variance (Var),
and credible interval (CI) is obtained as follows:

number of converged datasets

Virka—

number of converged datasets’
number of converged datasets

zizl (SDi)Z

i

(B.4)

average of Var (AVar) =

average of CI (ACI) =

number of converged datasets’
Z?:ulmber of converged datasets CI

number of converged datasets’

i
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Step 8: absolute bias (ABias), mean square error (MSE),
and credible length (CL) are obtained as follows:

ABias = |APM - intial value]. (B.5)

MSE and CL are the same as in Appendix B.1.1.

Step 9: the coverage probability (CP) is the same as step
7 in Appendix B.1.1.

B.2. Algorithms for MIK

B.2.1. Monte Carlo Simulation Algorithm for MIK. The
following algorithm is used to perform Monte Carlo sim-
ulation study using R package and get ML estimates for MIK
distribution.

Step 1: nindependent samples (X, X,, X5) from MIK

distribution are generated as follows:

(a) Generate U, U,,U;, and U, from uniform (0, 1).

(b) Compute T, = (1-U/PyYe T, = (1-UYP)Ve,
Ty = (1-U™)" and T, = (1- U™,

(c) Define Z,=1T,-1,Z,=1T,-1, Z;=1/T,
-land Z, = 1/T, - 1.

(d) Obtain X, = max(Z,, Z,), X, = max(Z,,Z,), and
X5 =max(Z;,2Z,)

Steps 2 till 7 are the same as in Appendix B.1.1.

B.2.2. MCMC Simulation Algorithm for MIK. The following
algorithm is used to perform Markov Chain Monte Carlo
(MCMC) simulation study using R and WinBugs packages
and get Bayesian estimates for MIK distribution.

Step 1: using R package: n independent samples
(X, X,, X3) from MIK distribution are generated
using the same procedure in Appendix B.2.1.

Steps 2 till 9 are the same as in Appendix B.1.2.

Data Availability

The datasets used in the example application are available at
[23, 26-28].
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