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Industrial revolution leads to the manufacturing of multicomponent products; to guarantee the sufficiency of the product and
consumer satisfaction, the producer has to study the lifetime of the products. )is leads to the use of bivariate and multivariate
lifetime distributions in reliability engineering. )e most popular and applicable is Marshall–Olkin family of distributions. In this
paper, a new bivariate lifetime distribution which is the bivariate inverted Kumaraswamy (BIK) distribution is found and its
properties are illustrated. Estimation using both maximum likelihood and Bayesian approaches is accomplished. Using different
selection criteria, it is found that BIK provides the best performance compared with other bivariate distributions like bivariate
exponential and bivariate inverse Weibull distributions. As a generalization, the multivariate inverted Kumaraswamy (MIK)
distribution is derived. Few studies have been conducted on the multivariate Marshall–Olkin lifetime distributions. To the best of
our knowledge, none of them handle estimation process. In this paper, we developed an algorithm to show how to estimate the
unknown parameters of MIK using both maximum likelihood and Bayesian approaches. )is algorithm could be applied in
estimating other Marshall–Olkin multivariate lifetime distributions.

1. Introduction

Global competition in combination with using higher
manufacturing technologies results in producing two or
multicomponent products. )is led to the use of bivariate
and multivariate distributions in reliability engineering.
Different families of distributions were constructed. One of
the most commonly used is the Marshall–Olkin (MO)
family. It is widely used due to its flexibility in considering
different situations of failures (i.e., the first component has
lifetime smaller, greater, or equal to the lifetime of other
components).

In the literature, several lifetime distributions were de-
rived as members of the bivariate Marshall–Olkin family.
Marshall and Olkin [1] presented a bivariate exponential
distribution with exponential marginals and loss of memory
property. Using the same strategy, Kundu and Dey [2],
Bareto-Souza and Lemonte [3], Muhammed [4], and
Alqallaf and Kundu [5] introduced the bivariate Weibull,

bivariate Kumaraswamy, bivariate generalized Burr, and
bivariate inverse generalized exponential distributions, re-
spectively. Using the maximum instead of the minimum in
the MO scheme, Kundu and Gupta [6, 7] introduced the
bivariate generalized exponential and bivariate proportional
reversed hazard distributions, respectively. Moreover, Sar-
han et al. [8] presented bivariate generalized linear failure
rate distribution. Recently, Muhammed [9] introduced bi-
variate inverse Weibull (BIW) distribution.

Sometimes, the use of bivariate distributions may not be
sufficient and there exists a need for multivariate distributions.
For example, in air fighter jets, the natural lifetime since being
manufactured and the flying time since being put into service
are recorded. Studying the reliability of the air fighter jets using
only two variables may not be good enough. One should take
into consideration the lifetime of the engine, the wing, and the
fuselage. )is leads to the use of multivariate distribution. For
more details, see Li and Li [10]. )ere is no much work
performed in themultivariate case. Sarhan et al. [8] and Kundu
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and Gupta [11] derived the multivariate generalized linear
failure rate and multivariate inverse Weibull distributions,
respectively. To the best of our knowledge, there is no work
dealing with estimating the unknown parameters for multi-
variate Marshall–Olkin family.

Several authors tackled the estimation problem for bi-
variate MO distributions. For example, Kundu and Gupta
[6], Muhammed [9], Aly et al. [12], Eliwa and El-Morshedy
[13], El-Morshedy et al. [14], and Sarhan [4, 5, 15] estimated
the unknown parameters using maximum likelihood ap-
proach for different bivariate lifetime distributions. On the
other hand, Hanagal and Ahmadi [16], Kundu and Gupta
[17], and Lin et al. [11, 13–15, 18] applied Bayesian approach
for estimating certain bivariate lifetime distributions.

)e univariate inverted Kumaraswamy (IK) distribution
has several applications in different fields (see Abd Al-Fattah
et al. [19] and Abdul Hammed et al. [20]), for example, in
medical research, life testing problems, and stress-strength
analysis. Also, in reliability and biological studies, IK dis-
tribution may be used to model failure rates. Due to its
expected wide applicability, we are interested in deriving
bivariate inverted Kumaraswamy (BIK) distribution. BIK
could be applied in different fields like sports, engineering,
and medicine as will be explained using three different real
datasets. We expect better performance of BIK than other
bivariate distributions. No one has derived the distribution
before or found its mathematical properties.

)e main purpose of this paper is to introduce BIK as a
new Marshall–Olkin bivariate distribution in order to be
applied efficiently in several fields. As a generalization, the
multivariate inverted Kumaraswamy (MIK) distribution is
derived. To the best of our knowledge, there is no work
dealing with estimating the unknown parameters for mul-
tivariate Marshall–Olkin family. Here, estimation of MIK
parameters is found using both maximum likelihood and
Bayesian approaches. )is work could be applied to all
Marshall–Olkin multivariate distributions.

)e paper is organized as follows. In Section 2, the bi-
variate inverted Kumaraswamy distribution is derived, and
the cumulative distribution function and probability density
function are presented. Also, the marginals and conditional
distributions of the proposed model are obtained. Moreover,
the product moments and the moment generating function
are derived. In Section 3, the maximum likelihood esti-
mators of the model parameters, asymptotic Fisher infor-
mation matrix, and Bayesian estimators are obtained.
Multivariate inverted Kumaraswamy distribution and its
properties are illustrated in Section 4. )e maximum like-
lihood and Bayesian estimators of the parameters under
multivariate case are obtained in Section 5. Numerical
analysis using both simulation, and real datasets are pre-
sented in Section 6. Finally, the paper is concluded in Section
7.

2. Bivariate Inverted
Kumaraswamy Distribution

In this section, we will derive the bivariate inverted
Kumaraswamy distribution as a new member in the MO

family. Its properties such as the marginal and conditional
distributions, joint moment generating function, and
product moments are studied.

2.1. Derivation of the Bivariate Inverted Kumaraswamy
Distribution. )e probability density function (pdf) and the
cumulative distribution function (cdf) of the univariate
inverted Kumaraswamy distribution (IK), respectively, are
as follows (for more details, see [19]):

fIK(x, β, α) � α β (1 + x)− (α+1) 1 − (1 + x)− α( )β− 1, x> 0, α, β> 0,
(1)

FIK(x, β,α) � 1 − (1 + x)− α( )β, x> 0, α, β> 0. (2)

Assume that Ui, i � 1, 2, 3, are three random variables,
such that Ui follows IK (βi, α). Define X1 � max(U1, U2)
and X2 � max(U2, U3). Hence, the bivariate vector (X1, X2)
follows BIK with shape parameters βi, α, i � 1, 2, 3. )e
joint cdf of (X1, X2) has the following form:

FX1,X2
x1, x2( ) � P X1 ≤ x1, X2 ≤ x2( )

� P max U1, U2( )≤ x1, max U2, U3( )≤x2( ),
� P U1 ≤ x1, U2 ≤x2, U3 ≤min x1,x2( )( ),
� P U1 ≤ x1, U2 ≤x2, U3 ≤ z( ),
� FIK x1, β1, α( )FIK x2, β2, α( )FIK z, β3, α( ),

(3)

where z � min(x1, x2). )e joint cdf can also be written as
follows:

FX1 ,X2
x1, x2( ) �

FIK x1, β1 + β3, α( )FIK x2, β2, α( ), if x1 <x2,
FIK x1, β1, α( )FIK x2, β2 + β3, α( ), if x2 <x1,
FIK x, β1 + β2 + β3, α( ), if x1 � x2 � x,


(4)

where FIK is as illustrated in equation (2).

Proposition 1. +e joint pdf of (X1, X2) has the following
form:

fX1 ,X2
x1, x2( ) �

f1 x1, x2( ), if x1 <x2,
f2 x1, x2( ), if x2 <x1,
f3(x), if x1 � x2 � x,

 (5)

where

f1 x1, x2( ) � fIK x1, β1 + β3, α( )fIK x2, β2, α( ),
f2 x1, x2( ) � fIK x1, β1, α( )fIK x2, β2 + β3, α( ),

f3(x) �
β3

β1 + β2 + β3
fIK x, β1 + β2 + β3, α( ),

(6)

in which fIK is as illustrated in equation (1).

Proof. See Appendix A.1.
)e joint pdf of (X1, X2) can be expressed as amixture of

absolutely continuous part and singular part as follows. □
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Proposition 2. If (X1, X2) follows BIK (β1, β2, β3, α), then

FX1 ,X2
x1, x2( ) � β1 + β2

β1 + β2 + β3
Fa x1, x2( ) + β3

β1 + β2 + β3
Fs(z),

(7)

where

Fa x1, x2( ) � β1 + β2 + β3
β1 + β2

1 − 1 + x1( )− α( )β1 1 − 1 + x2( )− α( )β2 1 − (1 + z)− α( )β3
− β3
β1 + β2 + β3

1 − (1 + z)− α( )β1+β2+β3 ,
Fs(z) � 1 − (1 + z)− α( )β1+β2+β3 ,

(8)

where z � min x1, x2{ }, Fs(.) and Fa(., .) are the singular and
absolute parts, respectively.

Proof. See Appendix A.1. □

Corollary 1. +e joint pdf of (X1, X2) can be written as
follows:

fX1 ,X2
x1, x2( ) � β1 + β2

β1 + β2 + β3
fa x1, x2( ) + β3

β1 + β2 + β3
fs(z), (9)

where

fa x1, x2( ) � β1 + β2 + β3
β1 + β2

f1 x1, x2( ) if x1 <x2
f2 x1, x2( ) if x2 <x1

 ,

fs(z) � fIK z, β1 + β2 + β3( ).
(10)

)e absolutely continuous part of BIK can be uni-
modal depending on the values of β1, β2, β3, and α.
fa(x1, x2) is unimodal if β1 + β3 < β2 (under the case
x1 < x2) or β2 + β3 < β1 (under the case x1 > x2). )e re-
spective modes are

α β1 + β3( ) + 1

α + 1
[ ]1/α − 1,

αβ2 + 1

α + 1
[ ]1/α − 1

 ,
αβ1 + 1

α + 1
[ ]1/α − 1,

α β2 + β3( ) + 1

α + 1
[ ]1/α − 1

 .
(11)

2.2. Properties of Bivariate Inverted Kumaraswamy
Distribution. In this section, we illustrate different prop-
erties of BIK distribution. We provide marginal, conditional
distributions, joint moment generating function, and
product moments.

Proposition 3 (Marginal and conditional distributions). If
(X1, X2) follows BIK (β1, β2, β3, α), then

(a) X1 follows IK (β1 +β3,α) andX2 follows IK (β2+ β3,α).

(b) max {X1, X2} follows IK (β1 + β2 + β3, α).

(c) FX1|X2 ≤ x2(x1) �
(1 − (1 + x1)

− α)β1+β3(1 − (1 + x2)
− α)− β3 , if x1 ≤x2,

(1 − (1 + x1)
− α)β1 , if x2 <x1.

{
Proof. See Appendix A.1. □

Proposition 4 (Moment generating function). If (X1, X2)
follows BIK (β1, β2, β3, α), then the joint moment generating
function of X1 and X2 is given by M(t1, t2) � l1 + l2 + l3,
where
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l1 � β2 β1 + β3( )∑∞
i�0

ti2
i!
∑i
k2�0

i

k2

 (− 1)i− k2 ∑∞
j�0

ti1
j!
∑j
k1�0

j

k1

 (− 1)i− k1

·X B 1 − k2
α
, β2( )B 1 − k1

α
, β1 + β3( ) − α

α − k1
B 2 − k2 + k1

α
, β2( )X3F2 2 − k2 + k1

α
, 1 − k1

α
, 1 − β1 − β3; 2 −

k1
α
; 2 + β2 −

k2 + k1
α

; 1( ){ },

l2 � β1 β2 + β3( )∑∞
j�0
t
j
1

j!
∑j
k1�0

j

k1

 (− 1)j− k1 ∑∞
i�0

ti2
i!
∑i
k2�0

i

k2

 (− 1)i− k2

·X B 1 − k1
α
, β1( )B 1 − k2

α
, β2 + β3( ) − α

α − k2
B 2 − k1 + k2

α
, β1( )X3F2 2 − k1 + k2

α
, 1 − k2

α
, 1 − β2 − β3; 2 −

k2
α
; 2 + β1 −

k1 + k2
α

; 1( ){ },

l3 � β1∑∞
i�0

t1 + t2( )i
i!

∑i
k�0

i

k

 (− 1)i− kB 1 − k
α
, β1 + β2 + β3( ),

(12)

where pFq(b1, . . . ,bq;c1, . . . , cq;u) �∑∞k�0((b1)k, . . . ,(bp)k/(c1)k, . . . ,(cq)k)(uk/k!), (bi) � Γ(b+ i)/Γ(b), i� 1, . . . , p, (cj)
� Γ(c+ j)/Γ(c), j� 1, . . . , q, p and q are nonnegative integers,
and B (.,.) is beta function.

Proof. See Appendix A.1. □

Proposition 5 (Product moments). If (X1, X2) follows BIK
(β1, β2, β3, α), then the product moments of X1 and X2 are
given by E(Xs

1X
r
2) � J1 + J2 + J3, where

J1 �∑r
i�0
(− 1)r− i

r

i

 ∑s
j�0
(− 1)s− j

s

j

 β2 β1 + β3( ) B 1 − j
α
, β1 + β3( )B 1 − i

α
, β2( )[

− α

α − j B 2 − i + j
α
, β2( ) 3F2 2 − i + j

α
, 1 − j

α
, 1 − β1 − β3; 2 −

j

α
, 2 − i + j

α
+ β2; 1( )},

J2 �∑r
i�0
(− 1)r− i

r

i

 ∑s
j�0
(− 1)s− j

s

j

 β1 β2 + β3( )
· B 1 − i

α
, β2 + β3( )B 1 − j

α
, β1( )[ − α

α − i B 2 − i + j
α
, β1( )

· 3F2 2 − j + i
α
, 1 − i

α
, 1 − β2 − β3; 2 −

i

α
, 2 − j + i

α
+ β1; 1( )}, J3 � ∑r+s

k�0
(− 1)r+s− k

r + s

k

 β3B 1 − k
α
, β1 + β2 + β3( )B 1 − k

α
, β2 + β3( ).

(13)

Proof. See Appendix A.1. □

3. Estimation of Bivariate Inverted
Kumaraswamy Distribution

In this section, we estimate the unknown parameters using
both maximum likelihood and Bayesian approaches.

3.1. Using Maximum Likelihood Approach. In this section,
we derive the maximum likelihood (ML) estimators of the
unknown parameters of BIK distribution. Suppose
{(x11, x21), . . ., (x1n, x2n)} is a random sample of size n from
BIK (β1, β2, β3, α); then, the ML estimators of the unknown
parameters are obtained as follows.

)e log likelihood function of the sample of size n is
given by log L(θ) � ∑iϵI1logf1(x1i, x2i) +∑iϵI2logf2

(x1i, x2i) +∑iϵI3logf3(xi), where
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I1 � i; x1i < x2i{ },
I2 � i; x1i > x2i{ },
I3 � i; x1i � x2i � xi{ },
I � I1⋃I2⋃I3,
I1
∣∣∣∣ ∣∣∣∣ � n1,
I2
∣∣∣∣ ∣∣∣∣ � n2,
I3
∣∣∣∣ ∣∣∣∣ � n3,

n1 + n2 + n3 � n,

(14)

where |Ij| denotes the cardinality of the set Ij, for j � 1, 2, 3. )us,

log L θ( ) � 2n1 + 2n2 + n3( )log α + n1log β1 + β3( ) + n1log β2( ) + n2log β1( ) + n2log β2 + β3( ) + n3log β3( )
− (α + 1) ∑

iϵI1 ⋃ I2
log 1 + x1i( ) + ∑

iϵI1⋃ I2
log 1 + x2i( ) +∑

iϵI3
log 1 + xi( )


+ β1 + β3 − 1( ) ∑

i∈I1

log 1 − 1 + x1i( )− α( )

+ β2 − 1( ) ∑
i∈I1

log 1 − 1 + x2i( )− α( )
+ β1 − 1( ) ∑

i∈I2
log 1 − 1 + x1i( )− α( )

+ β2 + β3 − 1( ) ∑
i∈I2

log 1 − 1 + x2i( )− α( )

+ β1 + β2 + β3 − 1( ) ∑
i∈I3

log 1 − 1 + xi( )− α( ),

(15)

where θ � (α, β1, β2, β3).
)e first derivatives of the log likelihood with respect to

the unknown parameters and also the observed Fisher in-
formation matrix are obtained in Appendix A.2. )e ML
estimates θ̂ � (α̂, β̂1, β̂2, β̂3) of θ � (α, β1, β2, β3) are nu-
merically obtained in Section 6.

3.2. Using Bayesian Approach. Let (X1, X2) follow BIK (θ),
where θ � (α, β1, β2, β3) is the vector of unknown parame-
ters. )e posterior pdf of parameters can be obtained as
follows:

P θ
∣∣∣ X1, X2( )( )∝ L X1, X2( ); θ( )P θ( ), (16)

where P(θ) is the prior distribution.

Pena and Gupta [21] considered Bayesian estimation
of the parameters for Marshall–Olkin bivariate expo-
nential distribution (BVE), in series and parallel systems.
)ey obtained posterior mode using gamma Dirichlet
distribution as prior distribution. Angali et al. [22]
considered Bayesian estimation for BVE using gamma
prior.

Similar to [22], we considered a gamma prior distri-
bution with the following pdf:

P βi, ai, bi( )∝ βai − 1i exp − biβi( ),
P α, a4, b4( )∝ αa4− 1exp − b4α( ), (17)

where i � 1, 2, 3 and ai, bi, a4, b4 are the hyperparameters.
)e posterior pdf has the following form:
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P θ
∣∣∣ X1, X2( )( )∝∏n1

i�1
α2 β1 + β3( )β2 1 + x1i( )− (α+1) 1 + x2i( )− (α+1)

X 1 − 1 + x1i( )− α( )β1+β3− 1 1 − 1 + x2i( )− α( )β2− 1
∏n2
i�1

α2 β2 + β3( )β1 1 + x1i( )− (α+1) 1 + x2i( )− (α+1)
X 1 − 1 + x1i( )− α( )β1− 1 1 − 1 + x2i( )− α( )β2+β3− 1
∏n3
i�1

αβ3 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2+β3− 1

X ∏3
i�1

β
ai− 1
i exp − biβi( )αa4− 1exp − b4α( ).

(18)

It is observed that Bayesian estimators under square
error loss function cannot be obtained in explicit forms.
)erefore, we obtain the posterior mean using MCMC
technique which is illustrated in Section 6.

4. Multivariate Inverted
Kumaraswamy Distribution

In literature, there is no much work that dealt with mul-
tivariate MO distributions. Sarhan et al. [8] derived the
multivariate generalized linear failure rate distribution.
Kundu and Gupta [11] derived the multivariate inverse
Weibull distribution. Here, we will introduce a new mul-
tivariate MO distribution, which is the multivariate inverted
Kumaraswamy (MIK) distribution. It is a generalization of
the BIK considered in Section 2. We expect that MIK will be
of great importance for several applied fields. In the fol-
lowing two sections, the derivation of MIK is explained and
some of its properties are studied.

4.1. Derivation ofMIK. In this section, we will derive the cdf
and pdf of MIK.

Let U1, . . . , Um+1 be m + 1 independent random vari-
ables such that Ui ∼ IK(βi, α), for i � 1, . . . , m + 1. Define

Xj � max Uj, Um+1{ }, j � 1, . . . , m. )en,

X � (X1, . . . , Xm)T is an m-variate IK with parameters
(β1, . . . , βm+1, α), and it will be denoted by MIK
(m, β1, . . . , βm+1 , α). We have the following results regarding

MIK distribution.

Proposition 6. If X � (X1, . . . , Xm) ∼ MIK(m, β1, . . . ,
βm+1 , α), then the joint cdf of X for x1 > 0, . . . , xm > 0 is

FX x( ) �∏m+1
i�1
FIK xi, βi, α( ), (19)

where x � (x1, . . . , xm) and xm+1 � min x1, . . . , xm{ }.

Proof. We prove by generalizing the same method illus-
trated in Section 2.

Similar to the bivariate case, the MIK distribution can be
written as, for m> 1,

FX x( ) � k Fa x( ) +(1 − k)Fs x( ), (20)

where 0< k< 1 and Fa and Fs denote the absolute and
continuous parts, respectively. )e corresponding pdf can
also be written as

fX x( ) � kfa x( ) +(1 − k)fs x( ). (21)

)e absolutely continuous part of fa(x) can be obtained
from

zmFX x1, . . . , xm( )
zx1, . . . , zxm

, (22)

where x � (x1, . . . , xm)T belongs to the set where FX(x) is
absolutely continuous, if and only if xi′s are different. For
each x, where xi are different, there exists a permutation ρ �
i1, . . . , im{ } such that xi1 < , · · · , <xim.

Define fρ(x) � fIK(xi1, βi1 + βm+1,
α)fIK(xi2, βi2, α), . . . , fIK(xim, βim, α). )en, for
xi1 < , · · · , <xim, zmFX(x1, . . . , xm)/zx1, . . . , z
xm � kfa(x1, . . . , xm) � fρ(xi1, . . . , xim), where k can be
obtained as follows:

k �∑
ρ

Jρ, (23)

where

∫
Rm
fa x1, . . . , xm( )dx1, . . . , dxm �∑

ρ

∫∞
xim�0

· ∫xim
xim− 1�0

, . . . ,∫xi2
xi1�0

fρ x1, . . . , xm( )dxi1, . . . , dxim
�∑

ρ

Jρ.

(24)
Since
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∫xi2
xi1�0

fρ x1, . . . , xm( )dxi1 � FIK xi2; βi1 + βm+1, α( )∏m
j�2
fIK xij, βij, α( ),

∫xi3
xi2�0

∫xi2
xi1�0

fρ x1, . . . , xm( )dxi1dxi2 � βi2
βi1 + βi2 + βm+1

FIK xi3; βi1 + βi2 + βm+1, α( )∏m
j�3
fIK xij, βij, α( ),

⋮

Jρ �
βi2

βi1 + βi2 + βm+1
X

βi3
βi1 + βi2 + βi3 + βm+1

X, . . . , X
βim

βi1 + . . . + βim + βm+1
,

(25)

then

k �∑
ρ

βi2
βi1 + βi2 + βm+1

X
βi3

βi1 + βi2 + βi3 + βm+1
X, . . . , X

βim
βi1 + . . . + βim + βm+1

, (26)

and for all xi1 < , · · · , < xim, fa(x) � 1/kfρ(x).
Now, let Il � i1, . . . , il{ } ⊂ I � 1, . . . , m{ } such that

i1 < , · · · , < il. fX(x) can be written as

fX x( ) � kfa x( ) +∑m
l�2
∑
Il⊂I

klfIl x( ), (27)

where fIl is a pdf with respect to (m − l + 1) dimensional
Lebesgue measure on the hyperplane
AIl � x ∈ Rm: xi1 �, · · · ,� xil{ }. )e exact meaning of
fX(x) is as follows.

For any Borel measurable set B ∈ Rm,

p(x ∈ B) � k∫
B
fa x( ) +∑m

l�2
∑
Il ⊂ I

kIl∫
BIl

fIl x( ), (28)

where BIl�B∩AIl is the projection of set B onto (m − l + 1)
dimensional hyperplane AIl.

Now, we provide kIl and fIl(x). Note that if x ϵAIl, then
x has the following form:

x � x1 . . . , xi1− 1, x
∗, xi1+1, . . . , xi2− 1, x

∗, xi2+1, . . . , xil− 1, x
∗, xil+1, . . . , xm( ).

(29)
For a given x ∈ Rm, we define gIl from the (m − l + 1)

dimensional hyperplane AIl to R as follows:

gIl x( ) � fIK x∗, βm+1, α( )FIK x∗,∑
i∈Il

βi, α  ∏
iϵI− Il

fIk xi, βi, α( ),
(30)

if xi >x∗ for i ∈ I − Il and zero otherwise. Similar to k, we
can obtain kIl as follows:

kIl � ∫
AIl

gIl x( )dx∑
ρI− Il

∫∞
xjm− l�0

∫xjm− l
xjm− l− 1�0

∫xj2
xj1�0

· gIl x( )dx∗dxj1, . . . , dxjm− l
� ∑

ρI− Il

βm+1∑iϵIlβi + βm+1
∗

βj1∑iϵIlβi + βm+1 + βj1
∗

βjm− l∑iϵIβi + βm+1
,

fIl x( ) � 1

kIl
gIl x( ).

(31)
□

4.2. Properties of MIK. In this section, we will get the
marginal and conditional distributions of MIK.

Proposition 7. If X � (X1, . . . , Xm) ∼ MIK(m, β1, . . . ,
βm, βm+1, α), then

(a) X1 ∼ IK(α, β1 + βm+1), . . . , Xm ∼ IK(α, βm + βm+1).
(b) +e conditional distribution of (X1, . . . , Xs) given

Xs+1 ≤ xs+1, . . . , Xm ≤ xm{ } is
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P X1 ≤x1, . . . , Xs ≤ xs|Xs+1 ≤xs+1, . . . , Xm ≤xm( ) �
∏s
j�1
FIK xj, βj, α( ) if z � υ

∏s
j�1
FIK xj, βj, α( )FIK z, βm+1, α( )FIK υ, βm+1, α( ) if z< υ ,

 (32)

where z � min x1, . . . , xs{ }, υ � min xs+1, . . . , xm{ }.
(c) For 2≤ s≤m, (X1, . . . , Xs) ∼ MIK(s, β1, . . . ,

βs, βm+1, α).
(d) If T � max X1, . . . , Xm{ }, then

T ∼ IK(β1+, · · · ,+βm+1, α).

Proof. (a, c) B taking the limit for the joint cdf. (b, d) Could
be directly obtained from the definition of the multivariate
inverted Kumaraswamy distribution. □

5. Estimation of the Multivariate Inverted
Kumaraswamy Distribution

Although estimating the unknown parameters of a certain
multivariate MO distribution is very important, no one in
the literature was interested in it. )erefore, in this section,
we will consider the process of estimation for MIK pa-
rameters. )e proposed techniques could be applied for any
multivariate MO distribution. Here, we will apply both
maximum likelihood and Bayesian approaches.

5.1. Using Maximum Likelihood Approach. In this section,
for simplification, we consider the case when we have three
random variables X1, X2, and X3. Applying Proposition 6,
we have the following cdf:

FX x( ) �∏4
i�1
FIK xi, βi, α( ). (33)

)e cdf can be rewritten as

FX1 ,X2 ,X3
x1, x2, x3( ) �

F1 x1, x2, x3( ), if x1 <x2 <x3 or x1 < x3 < x2,
F2 x1, x2, x3( ), if x2 <x1 <x3 or x2 < x3 < x1,
F3 x1, x2, x3( ), if x3 <x1 <x2 or x3 < x2 < x1
F4 x, x3( ), if x1 � x2 � x<x3,
F5 x, x2( ), if x1 � x3 � x<x2,
F6 x, x2( ), if x2 � x3 � x<x1,
F7(x), if x1 � x2 � x3 � x,
F8 x, x3( ), if x1 � x2 � x>x3,
F9 x, x2( ), if x1 � x3 � x>x2,
F10 x, x1( ), if x2 � x3 � x>x1,


(34)

where

F1 x1, x2, x3( ) � FIK x1, β1 + β4, α( )FIK x2, β2, α( )FIK x3, β3, α( ),
F2 x1, x2, x3( ) � FIK x1, β1, α( )FIK x2, β2 + β4, α( )FIK x3, β3, α( ),
F3 x1, x2, x3( ) � FIK x1, β1, α( )FIK x2, β2, α( )FIK x3, β3 + β4, α( ),

F4 x, x3( ) � FIK x, β1 + β2 + β4, α( )FIK x3, β3, α( ),
F5 x, x2( ) � FIK x, β1 + β3 + β4, α( )FIK x2, β2, α( ),
F6 x, x2( ) � FIK x, β2 + β3 + β4, α( )FIK x1, β1, α( ),

F7(x) � FIK x, β1 + β2 + β3 + β4, α( ),
F8 x, x3( ) � FIK x, β1 + β2, α( )FIK x3, β3 + β4, α( ),
F9 x, x2( ) � FIK x, β1 + β3, α( )FIK x2, β2 + β4, α( ),
F10 x, x1( ) � FIK x, β2 + β3, α( )FIK x1, β1 + β4, α( ).

(35)
)e pdf can be obtained by taking the derivative, except

for f10 where we should take into consideration that the sum
of all probabilities equals one.

Now, suppose (x11, x21, x31), . . . , (x1n, x2n, x3n){ } is a
random sample of size n from MIK(α, β1, β2, β3, β4); the
problem is to find the ML estimators of the unknown pa-
rameters. Consider the following notation:

I1 � i; x1i < x2i < x3i{ },
I2 � i; x1i < x3i < x2i{ },
I3 � i; x2i < x1i < x3i{ },
I4 � i; x2i < x3i < x1i{ },
I5 � i; x3i < x1i < x2i{ },
I6 � i; x3i < x2i < x1i{ },
I7 � i; x1i � x2i � xi < x3i{ },
I8 � i; x1i � x3i � xi < x2i{ },
I9 � i; x2i � x3i � xi < x1i{ },
I10 � i; x1i � x2i � x3i � xi{ },
I11 � i; x1i � x2i � xi > x3i{ },
I12 � i; x1i � x3i � xi > x2i{ },
I13 � i; x2i � x3i � xi > x1i{ },
Ij

∣∣∣∣∣ ∣∣∣∣∣ � nj, j � 1, 2, . . . , 13, ∑13
j�1
nj � n,

(36)

where |Ij| denotes the cardinality of the set Ij, for
j � 1, 2, . . . , 13.

)e log likelihood function of the sample of size n is
given by
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log L θ( )( ) � ∑
i∈I1⋃ I2

log α3 β1 + β4( )β2β3 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1+β4− 1X 1 + x2i( )− (α+1){
· 1 − 1 + x2i( )− α( )β2 − 1 1 + x3i( )− (α+1)X 1 − 1 + x3i( )− α( )β3 − 1}
+ ∑
i∈I3⋃ I4

log α3 β2 + β4( )β1β3 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2+β4 − 1 1 + x3i( )− (α+1){
· X 1 − 1 + x3i( )− α( )β3 − 1}
+ ∑
i∈I5⋃ I6

log α3 β3 + β4( )β1β2 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2− 1 1 + x3i( )− (α+1){
·X 1 − 1 + x3i( )− α( )β3+β4− 1}
+∑
i∈I7

log α2 β1 + β2 + β4( )β3 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2+β4− 1X 1 + x3i( )− (α+1) 1 − 1 + x3i( )− α( )β3− 1{ }
+∑
i∈I8

log α2 β1 + β3 + β4( )β2 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β3+β4 − 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2 − 1{ }
+∑
i∈I9

log α2 β2 + β3 + β4( )β1 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β2+β3+β4− 1X 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1{ }
+ ∑
i∈I10

log αS 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2+β3+β4− 1{ }
+ ∑
i∈I11

log α2 β1 + β2( ) β3 + β4( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2 − 1X 1 + x3i( )− (α+1) 1 − 1 + x3i( )− α( )β3+β4− 1{ }
+ ∑
i∈I12

log α2 β1 + β3) β2 + β4(( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β3 − 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2+β4− 1{ }
+ ∑
i∈I13

log α2 β2 + β3) β1 + β4(( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β2+β3 − 1X 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1+β4− 1{ },
(37)

where θ � (α, β1, β2, β3, β4).

S � β1 + β2 + β3 + β4( ) − β3 β1 + β2( )
β1 + β2 + β4

− β2 β1 + β3( )
β1 + β3 + β4

− β1 β2 + β3( )
β3 + β2 + β4

− 3 β1 + β2 + β3( ).
(38)

It is seen that the ML estimates could not be obtained in
explicit forms, and hence we need to use numerical analysis
to obtain them.

5.2. Using Bayesian Approach. Let (X1, X2, X3) be three
random variables from MIK (θ), where θ � (α, β1, β2, β3, β4)

is the vector of unknown parameters. )e posterior pdf can
be obtained as follows:

P θ
∣∣∣ X1, X2, X3( )( )∝ L X1, X2, X3( ); θ( )P θ( ), (39)

where P(θ) is the prior distribution.
We considered a gamma prior distribution with the

following pdf:

P βi, ai, bi( )∝ βai − 1i exp − biβi( ),
P α, a4, b4( )∝ αa4− 1exp − b4α( ), (40)

where i � 1, 2, 3, 4 and ai, bi, a4, b4 are the hyperparameters.
)e posterior pdf has the following form:
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P θ
∣∣∣ X( )∝ ∏

i∈I1 ⋃ I2
α3 β1 + β4( )β2β3 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1+β4− 1

·X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2− 1 1 + x3i( )− (α+1)X 1 − 1 + x3i( )− α( )β3− 1
·X ∏

i∈I3 ⋃ I4
α3 β2 + β4( )β1β3 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1

·X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2+β4− 1 1 + x3i( )− (α+1)X 1 − 1 + x3i( )− α( )β3− 1
·X ∏

i∈I5 ⋃ I6
α3 β3 + β4( )β1β2 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1

·X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2− 1 1 + x3i( )− (α+1)X 1 − 1 + x3i( )− α( )β3+β4− 1
·X∏

i∈I7
α2 β1 + β2 + β4( )β3 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2+β4− 1X 1 + x3i( )− (α+1) 1 − 1 + x3i( )− α( )β3− 1

·X∏
i∈I8

α2 β1 + β3 + β4( )β2 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β3+β4− 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2− 1
·X∏

i∈I9
α2 β2 + β3 + β4( )β1 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β2+β3+β4− 1X 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1− 1

·X∏
i∈I10

αS 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2+β3+β4− 1X∏
i∈I11

α2 β1 + β2) β3 + β4(( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β2− 1
·X 1 + x3i( )− (α+1) 1 − 1 + x3i( )− α( )β3+β4− 1
·X∏

i∈I12
α2 β1 + β3) β2 + β4(( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β1+β3− 1X 1 + x2i( )− (α+1) 1 − 1 + x2i( )− α( )β2+β4− 1

·X∏
i∈I13

α2 β2 + β3) β1 + β4(( ) 1 + xi( )− (α+1) 1 − 1 + xi( )− α( )β2+β3− 1X 1 + x1i( )− (α+1) 1 − 1 + x1i( )− α( )β1+β4− 1

·X ∏4
i�1

β
ai − 1
i exp − biβi( )αa4− 1exp − b4α( ).

(41)

As in the bivariate case, Bayesian estimation will be
obtained numerically using MCMC which is illustrated in
the next section.

6. Numerical Analysis

In this section, both simulation and MCMC techniques are
carried out to investigate the performance of the derived BIK
and MIK distributions. )e estimation is performed using
both ML and Bayesian approaches. )ree real datasets are
analyzed in case of BIK and another one for the case of MIK.

6.1. For BIK Distribution. In this section, we perform a
simulation study to get the estimates of the unknown pa-
rameters of BIK distribution. Also, three real datasets are
analyzed.

6.1.1. A Simulation Study. Here, we present an algorithm to
generate BIK distribution (Algorithm 1). To perform a
simulation study, we first need to select initial values for the

parameters. Here, the following eight different populations
are considered:

(i) Case 1: α � 0.2, β1 � 0.2, β2 � 0.2, β3 � 0.2.

(ii) Case 2: α � 0.5, β1 � 0.5, β2 � 0.5, β3 � 0.5.

(iii) Case 3: α � 0.8, β1 � 0.8, β2 � 0.8, β3 � 0.8.

(iv) Case 4: α � 1.5, β1 � 1.2, β2 � 1.3, β3 � 2.5.

(v) Case 5: α � 2, β1 � 2, β2 � 2, β3 � 2.

(vi) Case 6: α � 2, β1 � 2.5, β2 � 3, β3 � 3.5.

(vii) Case 7: α � 2.5, β1 � 2.5, β2 � 3, β3 � 2.5.

(viii) Case 8: α � 3.5, β1 � 4, β2 � 3.5, β3 � 3.5.

)e parameters are selected to cover different shapes of
the distribution. It can be seen from Figure 1 that

(i) For cases 1 and 2, the surface plot of the absolutely
continuous part of the joint probability density
function is decreasing.

(ii) For cases 3 to 8, the surface plot of the absolutely
continuous part of the joint probability density
function is increasing till it reaches the mode; then, it
is decreasing.
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(1) Maximum Likelihood Approach. )e maximum likeli-
hood estimates of the model parameters are obtained by
maximizing the log likelihood function given by equation
(15). Monte Carlo simulation is performed using R package

with 1000 replications and three different sample sizes
n � 30, 50 , and 70 and eight different populations.

Absolute bias (ABias), mean square error (MSE), confi-
dence width (CW), and coverage probability (CP) are obtained

)e following algorithm is to generate (X1, X2) from BIK distribution.
Step 1: generate U1, U2, and U3 from uniform (0, 1).
Step 2: compute T1 � (1 − U

1/β1
1 )1/α, T2 � (1 − U

1/β2
2 )1/α, and T3 � (1 − U

1/β3
3 )1/α.

Step 3: define Z1 � 1/T1 − 1, Z2 � 1/T2 − 1, and Z3 � 1/T3 − 1.
Step 4: obtain X1 � max(Z1, Z3), X2 � max(Z2, Z3).

ALGORITHM 1: An Algorithm to Generate BIK Distribution.

f (x1, x2)

x1

x2

(a)
f (x1, x2)

x1

x2

(b)

f (x1
, x2

)

x1

x2

(c)

f (x1, x2)

x1

x2

(d)

f (x1, x2)

x1
x2

(e)

f (x1, x2)

x1
x2

(f)

f (x1, x2)

x1
x2

(g)

f (x1, x2)

x1
x2

(h)

Figure 1: Different shapes of the absolutely continuous part of BIKpdf. (a)α� 0.2, β1� 0.2, β2� 0.2, β3� 0.2; (b)α� 0.5, β1� 0.5, β2� 0.5, β3� 0.5; (c)
α� 0.8, β1� 0.8, β2� 0.8, β3� 0.8; (d) α� 2, β1� 2, β2� 2, β3� 2; (e) α� 1.5, β1� 1.2, β2�1.3, β3� 2.5; (f) α� 2,β1� 2.5,
β2 � 3, β3� 3.5; (g) α� 2.5, β1� 2.5, β2� 3, β3� 2.5; (h) α� 3.5, β1� 4, β2� 3.5, β3� 3.5.

Mathematical Problems in Engineering 11



Table 1: )e results of MLEs and Bayesian estimates.

MLE Bayesian

α β1 β2 β3 α β1 β2 β3

α � 0.2, β1 � 0.2, β2 � 0.2, β3 � 0.2

n� 30
ABias 0.020 0.015 0.015 0.010 0.016 0.012 0.008 0.012
MSE 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.003

CW (CL) 0.214 0.248 0.248 0.248 0.213 0.243 0.239 0.230
CP 0.950 0.938 0.957 0.948 0.943 0.932 0.949 0.951

n� 50
ABias 0.011 0.009 0.008 0.007 0.010 0.009 0.004 0.009
MSE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

CW (CL) 0.176 0.176 0.176 0.176 0.162 0.188 0.185 0.179
CP 0.954 0.940 0.938 0.951 0.956 0.943 0.949 0.942

n� 70
ABias 0.010 0.006 0.006 0.006 0.008 0.006 0.004 0.007
MSE 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001

CW (CL) 0.124 0.176 0.176 0.124 0.136 0.157 0.156 0.143
CP 0.952 0.957 0.946 0.951 0.958 0.945 0.949 0.948

α � 0.5, β1 � 0.5, β2 � 0.5, β3 � 0.5

n� 30
ABias 0.032 0.048 0.046 0.032 0.028 0.041 0.027 0.038
MSE 0.011 0.034 0.034 0.026 0.011 0.031 0.030 0.025

CW (CL) 0.392 0.702 0.702 0.620 0.394 0.664 0.659 0.587
CP 0.947 0.945 0.956 0.951 0.942 0.930 0.945 0.951

n� 50
ABias 0.018 0.028 0.026 0.022 0.020 0.027 0.026 0.025
MSE 0.006 0.018 0.018 0.014 0.006 0.017 0.018 0.014

CW (CL) 0.304 0.512 0.512 0.464 0.299 0.501 0.504 0.448
CP 0.948 0.944 0.945 0.957 0.954 0.949 0.946 0.937

n� 70
ABias 0.017 0.019 0.021 0.019 0.013 0.021 0.017 0.019
MSE 0.004 0.012 0.012 0.010 0.004 0.012 0.012 0.010

CW (CL) 0.248 0.430 0.430 0.392 0.250 0.417 0.418 0.375
CP 0.945 0.958 0.948 0.950 0.951 0.929 0.951 0.946

α � 0.8, β1 � 0.8, β2 � 0.8, β3 � 0.8

n� 30
ABias 0.045 0.088 0.086 0.066 0.037 0.072 0.073 0.060
MSE 0.022 0.101 0.099 0.076 0.022 0.090 0.091 0.068

CW (CL) 0.554 1.196 1.188 1.052 0.557 1.129 1.133 0.979
CP 0.941 0.951 0.954 0.946 0.940 0.939 0.950 0.951

n� 50
ABias 0.026 0.051 0.049 0.040 0.026 0.059 0.049 0.040
MSE 0.013 0.052 0.051 0.040 0.013 0.052 0.050 0.038

CW (CL) 0.430 0.868 0.868 0.764 0.425 0.854 0.850 0.744
CP 0.950 0.944 0.941 0.956 0.956 0.948 0.948 0.940

n� 70
ABias 0.024 0.036 0.039 0.035 0.019 0.037 0.030 0.030
MSE 0.009 0.034 0.036 0.028 0.009 0.034 0.033 0.026

CW (CL) 0.350 0.712 0.722 0.644 0.358 0.703 0.703 0.619
CP 0.944 0.956 0.949 0.949 0.958 0.940 0.952 0.946

α � 1.5, β1 � 1.2, β2 � 1.3, β3 � 2.5

n� 30
ABias 0.068 0.142 0.158 0.307 0.023 0.120 0.162 0.137
MSE 0.062 0.391 0.442 0.913 0.059 0.355 0.447 0.664

CW (CL) 0.936 2.388 2.532 3.548 0.924 2.207 2.417 3.063
CP 0.950 0.940 0.950 0.950 0.940 0.950 0.930 0.960

n� 50
ABias 0.046 0.099 0.111 0.191 0.018 0.076 0.103 0.091
MSE 0.035 0.203 0.231 0.444 0.034 0.189 0.219 0.369

CW (CL) 0.712 1.722 1.834 2.504 0.703 1.633 1.738 2.043
CP 0.960 0.950 0.950 0.960 0.960 0.920 0.950 0.970

n� 70
ABias 0.039 0.068 0.082 0.157 0.013 0.068 0.051 0.090
MSE 0.026 0.134 0.153 0.301 0.023 0.131 0.139 0.258

CW (CL) 0.608 1.408 1.498 1.627 0.586 1.364 1.416 1.941
CP 0.930 0.940 0.940 0.960 0.910 0.940 0.950 0.960
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and presented in Table 1. )e numerical steps and the cor-
responding equations are explained in detail in Appendix B.1.

(2) Bayesian Approach. Using Bayesian approach under
square error loss function, the Bayesian estimator is the
posterior mean. However, it is hard to obtain the posterior
mean theoretically as we have four parameters to estimate.
One can use Markov Chain Monte Carlo (MCMC) simu-
lation method to obtain it numerically.

)e MCMC method uses simulation techniques to ob-
tain a Markov sequence such that it has a limiting distri-
bution. In the Bayesian approach, the limiting distribution is
the posterior pdf as it includes all needed information about
the parameters θ.

Here, theMCMCmethod can be used to set up aMarkov
chain of parameters θ with distribution P(θ | (X1, X2)). )e
mean of the sequence can be considered as the posterior
mean.

Table 1: Continued.

MLE Bayesian

α β1 β2 β3 α β1 β2 β3

α � 2, β1 � 2, β2 � 2, β3 � 2

n� 30
ABias 0.094 0.296 0.295 0.237 0.060 0.264 0.247 0.147
MSE 0.099 0.890 0.892 0.680 0.094 0.811 0.790 0.519

CW (CL) 1.176 3.510 3.518 3.096 1.166 3.312 3.237 2.723
CP 0.943 0.949 0.950 0.952 0.949 0.931 0.948 0.952

n� 50
ABias 0.055 0.169 0.166 0.136 0.040 0.185 0.169 0.101
MSE 0.055 0.427 0.428 0.326 0.055 0.432 0.418 0.290

CW (CL) 1.176 3.510 3.518 3.096 0.898 2.443 2.388 2.050
CP 0.953 0.946 0.941 0.961 0.952 0.946 0.945 0.952

n� 70
ABias 0.051 0.123 0.119 0.051 0.031 0.129 0.101 0.063
MSE 0.040 0.281 0.285 0.226 0.038 0.277 0.263 0.195

CW (CL) 0.754 2.022 2.030 1.804 0.753 1.979 1.948 1.695
CP 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942

α � 2, β1 � 2.5, β2 � 3, β3 � 3.5

n� 30
ABias 0.086 0.383 0.493 0.507 0.037 0.268 0.426 0.178
MSE 0.089 1.832 2.583 2.476 0.219 1.497 2.411 0.908

CW (CL) 1.122 5.088 5.996 5.840 0.843 4.543 5.563 3.387
CP 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938

n� 50
ABias 0.053 0.226 0.279 0.297 0.019 0.197 0.304 0.095
MSE 0.051 0.870 1.194 1.132 0.049 0.815 1.197 0.865

CW (CL) 0.858 3.548 4.141 4.006 0.842 3.376 3.996 3.541
CP 0.950 0.940 0.940 0.970 0.930 0.910 0.930 0.950

n� 70
ABias 0.049 0.173 0.236 0.244 0.014 0.166 0.149 0.091
MSE 0.036 0.574 0.800 0.766 0.033 0.543 0.688 0.607

CW (CL) 0.712 2.894 3.382 3.294 0.697 2.770 3.116 2.997
CP 0.940 0.940 0.950 0.960 0.950 0.930 0.930 0.960

α � 2.5, β1 � 2.5, β2 � 3, β3 � 2.5

n� 30
ABias 0.111 0.390 0.489 0.326 0.067 0.374 0.418 0.168
MSE 0.140 1.535 2.191 1.234 0.134 1.435 1.938 0.891

CW (CL) 1.402 4.610 5.476 4.164 1.395 4.375 5.016 3.545
CP 0.943 0.950 0.954 0.947 0.946 0.903 0.915 0.955

n� 50
ABias 0.068 0.232 0.279 0.183 0.041 0.236 0.262 0.108
MSE 0.079 0.737 1.017 0.577 0.078 0.725 0.977 0.496

CW (CL) 1.066 3.240 3.798 2.892 1.074 3.167 3.657 2.697
CP 0.950 0.940 0.949 0.961 0.949 0.917 0.886 0.952

n� 70
ABias 0.060 0.164 0.214 0.160 0.028 0.166 0.166 0.069
MSE 0.057 0.479 0.669 0.399 0.037 0.472 0.622 0.333

CW (CL) 0.902 2.636 3.094 2.394 0.903 2.581 2.972 2.217
CP 0.948 0.950 0.950 0.943 0.966 0.887 0.883 0.950

α � 3.5, β1 � 4, β2 � 3.5, β3 � 3.5

n� 30
ABias 0.152 0.717 0.607 0.533 0.068 0.663 0.536 0.115
MSE 0.257 4.574 3.552 2.888 0.237 4.168 3.127 1.682

CW (CL) 1.896 7.898 6.994 6.322 1.873 7.403 6.356 4.974
CP 0.938 0.949 0.949 0.954 0.836 0.928 0.955 0.956

n� 50
ABias 0.091 0.414 0.352 0.289 0.053 0.438 0.357 0.133
MSE 0.143 2.075 1.637 1.277 0.141 2.080 1.606 1.038

CW (CL) 1.440 5.410 4.822 4.282 1.448 5.311 4.641 3.905
CP 0.952 0.947 0.934 0.966 0.761 0.919 0.932 0.963

n� 70
ABias 0.082 0.309 0.268 0.259 0.031 0.283 0.232 0.060
MSE 0.103 1.352 1.066 0.883 0.099 1.297 1.012 0.701

CW (CL) 1.214 4.394 3.908 3.542 1.222 4.275 3.773 3.240
CP 0.940 0.951 0.945 0.953 0.696 0.928 0.957 0.953
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To perform MCMC, we used both R and WinBugs
packages. Gamma prior is used with the same three sample
sizes and eight populations used in ML approach. )e R
package with 1000 replications is used, and for each repli-
cation, WinBugs is used with 1000 replications to generate
the sequence of Markov chain.

We used the Geweke test to examine the convergence of
the generated Markov chain sequence. Geweke statistic (zn)
converges to normal distribution for large sample sizes.
Hence, large absolute values of zn are considered as a re-
jection for convergence. Only those converged sequences are
used in the analysis. For more details about the Geweke test,
see [16].

ABias, MSE, confidence length (CL), and CP are ob-
tained and presented in Table 1. )e numerical steps and the
corresponding equations are explained in detail in Appendix
B.1.

From Table 1, it can be seen that under different
combinations of the parameters and for different sample
sizes, ABias and MSE are relatively small. )is indicates that
both Bayesian and ML approaches work efficiently in esti-
mating the parameters of BIK.

Comparing ML and Bayesian estimates, it is found
that Bayesian estimates have less than or equal mean
square error (MSE) than ML ones. )is is clear from
Figure 2.

Also, it can be seen that as the sample size (n) increases,
the ABias, MSE, CW, and CL decrease for both ML and
Bayesian as seen from Figure 3. Moreover, it can be seen that
for most cases, the CP is around 0.95.

6.1.2. Real Datasets. Here, we analyze three real datasets to
show the applicability of BIK in several fields like sports,
engineering, and medicine.

(1) Football Data. )e dataset has been obtained from
Meintanis [23]; he used the bivariate MO exponential
distribution (BE) to analyze the data. )e data are about
football (soccer) where at least one goal scored by the
home team and at least one goal scored directly from a
penalty kick, a foul kick, or any other direct kick (all of
them together will be called as kick goal) by any team have
been considered. Here, the variables are the time in
minutes of the first kick goal scored by any team (X1) and
the time of the first goal of any type scored by the home
team (X2).

)e bivariate dataset has the following structure:
X1 <X2, X1 �X2 , and X1 >X2. Since, X1 � X2 has a pos-
itive probability, we need a singular distribution to analyze
this dataset. Here, we analyze the data using BIK distribution
defined by equation (4). All the data points have been di-
vided by 100. )is is not going to make any difference in the
statistical inference.

First, before analyzing the data, we fit inverted
Kumaraswamy distribution to X1, X2 and max (X1, X2). To
guess the initial values for the parameters of BIK model, the
MLEs of the shape parameters (α, β) of the respective

inverted Kumaraswamy distribution for X1, X2 and max
(X1, X2) are obtained. To check the modelʼs fitness, we first
need to illustrate goodness-of-fit tests.

Goodness-of-fit (GOF) tests are hypothesis tests re-
garding the distribution of some random variable (X) in a
population. )e objective of applying GOF tests is to
measure how well the data agree with a given distribution as
its population. For example, if we want to examine if the
random variable (X) follows distribution F0(x), then the
null hypothesis is

H0: F(x) � F0(x). (42)

One approach for applying GOF tests is based on the
empirical distribution function (EDF) (Fn(x)) which is
defined as follows:

Fn(x) �
number of elements in the sample ≤x

total sample size (n) . (43)

)is approach is based on defining a statistic to measure
the discrepancy between Fn(x) and F0(x). )e most used
statistics are modified Cramér–von Mises statistic (W∗) and
Anderson–Darling statistic (A∗) which have the following
formulas:

W∗ � 1

12n
+∑n
i�1

F0 x(i)( ) − 2 i − 1

2n
[ ]2,

A∗ � − n − 2∑n
i�1

2i − 1

2n
ln F0 x(i)( )( )[

+ 1 − 2i − 1

2n
( )ln 1 − F0 x(i)( )( ) ,

(44)

where x(i) is the value of the i
th order statistics in the sample.

Large values of test statistics (or small corresponding p
value) lead to the rejection of the null hypothesis. For more
details about GOF tests, see DʼAgostnio and Stephens [24].

Here, we apply GOF tests in order to see whether the fit
based on univariate inverted Kumaraswamy distributions is
reasonable for this dataset. We computed the modified
Cramér–von Mises statistic (W∗) and Anderson–Darling
statistic (A∗). )e values of these statistics and the corre-
sponding p values (in brackets) for X1, X2, and max
(X1, X2) are illustrated in Table 2.

Based on the values of these statistics and the corresponding
p values, the inverted Kumaraswamy distribution cannot be
rejected for modeling the marginals and the maximum. In
Table 3, the ML estimates and the posterior mean using gamma
priors are obtained for the parameters of BIK. Also, credible
interval length and confidence width are illustrated.

Now, we try to compare the performance of BIK, bi-
variate exponential (BE), and bivariate inverted Weibull
(BIW) to fit this dataset. To select between models, several
information criteria (IC) were presented; the main idea
behind IC is to afford a balance between good fit and
complexity of the model as follows:

IC � − 2 log(L) + kp, (45)
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Figure 2: MSE of (a) α � 2, (b) β1 � 2, (c) β2 � 2, and (d) β3 � 2.
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Figure 3: (a) MSE and (b) ABias for α.

Mathematical Problems in Engineering 15



where k is the penalized term and p refers to number of
parameters in the model.

)e most commonly used IC in model selections are
Akaike information criteria (AIC), Bayesian information
criteria (BIC), the consistent Akaike information criteria
(CAIC), and Hannan–Quinn information criteria (HQIC).
Each IC has a different penalty term illustrated in the first
row of Table 4.

By analyzing equation (45), we can see that the first term
(− 2log(L)) tends to decrease when the model provides good
fit. But, the second term tends to increase as the number of
parameters in the model increases. )e model with the
lowest IC is the best (for more details about IC, see Vrieze
[25]).

)e log likelihood value, AIC, BIC, CAIC, and HQIC are
represented in Table 4. All of the criteria suggest that BIK
provides the best fit compared with BE and BIW models.
)is may show the importance of BIK.

(2) Motor Data. )e dataset has been obtained from [26].
)e data are about failure time in days for a parallel system
containing two motors. )e variables are time to failure for
the first motor (X1) and time to failure for the second motor
(X2). All data points have been divided by 1000. We applied
GOF tests on IK, IW, and E distributions. From Table 5,
based on the values of (W∗), (A∗), and the corresponding p
values, only IK distribution can be used for modeling the
marginals and the maximum. Hence, only BIK can be used
for modeling this dataset.

ML estimates and the posterior mean using gamma priors
are obtained for the parameters of BIK. Also, credible interval
length and confidence width are illustrated in Table 6.

(3) Diabetic Retinopathy Data.)e dataset has been obtained
from [27]. )e data are used by the National Eye Institute to
study the effect of laser treatment on the blindness in pa-
tients with diabetic retinopathy. At the beginning of clinical
trial, for each patient, one eye is randomly selected for laser
treatment. )e variables are time to failure for treated eye
(X1) and time to failure for untreated eye (X2). All data
points have been divided by 1000. We applied GOF on IK,
IW, and E distributions. From Table 7, it can be seen that
only IK distribution can be used for modeling the marginals

and the maximum. Hence, only BIK can be used for
modeling this dataset.

In Table 8, ML estimates and the posterior mean using
gamma priors are obtained for the parameters of BIK. Also,
credible interval length and confidence width are illustrated.

From these three datasets, we can conclude that the
derived BIK distribution will be of great importance.

6.2. For MIK Distribution. In this section, we present nu-
merical results of estimation using a simulation study and a
real dataset.

6.2.1. A Simulation Study. Here, we present an algorithm to
generate MIK distribution. Also, we illustrate the simulation
results for both ML and Bayesian approaches (Algorithm 2).

(1) Maximum Likelihood Approach. To obtain the maximum
likelihood estimates, a Monte Carlo simulation is performed

Table 2: Cramér–von Mises statistic (W∗) and Anderson–Darling
statistic (A∗) for IK.

X1 X2 max(X1, X2)
A∗ 0.966 (0.375) 0.549 (0.696) 1.395 (0.204)
W∗ 0.139 (0.426) 0.083 (0.679) 0.233 (0.212)

Table 3: )e estimates based on ML and Bayesian approaches.

Approach α β1 β2 β3

ML
MLE 5.258 1.763 0.560 1.411

Confidence interval width 2.824 2.026 0.886 1.374

Bayesian
Posterior mean 4.727 1.673 0.679 1.442

Credible interval length 2.168 1.286 0.491 1.061

Table 4: Information criteria.

Log (L) AIC BIC CAIC HQIC

k — 2 ln(n) ln(n + 1) ln(ln(n))
BIK − 23.53∗ 55.06 61.5 61.61 57.33
BE − 44.56∗∗ 95.12 99.95 100.03 96.82
BIW − 30.25∗∗∗ 68.5 74.94 75.05 70.77
∗Based on the estimates in Table 3. ∗∗Based on the estimates obtained by
Meintanis [23]. ∗∗∗Based on the estimates presented by Muhammed [9].

Table 5: (W∗) and (A∗) for IK, IW, and E.

Model X1 X2 max(X1, X2)

IK
A∗ 1.133 (0.294) 0.294 (0.942) 0.488 (0.756)
W∗ 0.204 (0.261) 0.036 (0.958) 0.081 (0.692)

IW
A∗ 1.491 (0.179) 0.874 (0.429) 7.165 (0.0003)
W∗ 0.267 (0.168) 0.119 (0.505) 1.509 (9.18× 10− 5)

E
A∗ 3.902 (0.009) 3.363 (0.014) 94.4 (3.3× 10− 5)
W∗ 0.778 (0.007) 0.672 (0.014) 5.964 (2.2× 10− 16)

Table 6: )e estimates based on ML and Bayesian approaches.

Approach α β1 β2 β3

ML
MLE 16.977 12.603 13.067 0.01

Confidence interval
width

10.508 19.59 20.046 18.730

Bayesian
Posterior mean 16.950 12.900 13.210 0.034
Credible interval

length
9.020 19.152 20.720 0.594

Table 7: (W∗) and (A∗) for IK, IW, and E.

Model X1 X2 max(X1, X2)

IK
A∗ 0.662 (0.591) 0.570 (0.676) 0.707 (0.551)
W∗ 0.092 (0.627) 0.099 (0.594) 0.090 (0.635)

IW
A∗ 2.538 (0.048) 73.841 (8.4× 10− 6) 166.45 (8.4× 10− 6)
W∗ 0.369 (0.087) 11.41 (2.2× 10− 16) 18.25 (2.2× 10− 16)

E
A∗ 3.886 (0.009) 214.7 (8.4× 10− 6) 271.7 (8.4× 10− 6)
W∗ 0.671 (0.015) 22.4 (2.2× 10− 16) 23.1 (2.2× 10− 16)
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Table 8: )e estimates based on ML and Bayesian approaches.

Approach α β1 β2 β3

ML
MLE 3.830 2.889 2.570 0.900

Confidence interval width 1.288 2.114 1.952 1.044

Bayesian
Posterior mean 3.586 2.739 2.3796 0.907

Credible interval length 0.930 1.326 1.133 0.700

)e following algorithm is to generate (X1, X2, X3) from MIK distribution.
Step 1: generate U1, U2, U3, and U4 from uniform (0, 1).
Step 2: compute T1 � (1 − U

1/β1
1 )1/α, T2 � (1 − U

1/β2
2 )1/α, T3 � (1 − U

1/β3
3 )1/α, and T4 � (1 − U

1/β4
4 )1/α.

Step 3: define Z1 � 1/T1 − 1, Z2 � 1/T2 − 1, Z3 � 1/T3 − 1, and Z4 � 1/T4 − 1.
Step 4: obtain X1 � max(Z1, Z4), X2 � max(Z2, Z4), and X3 � max(Z3, Z4).

ALGORITHM 2: An algorithm to generate MIK distribution.

Table 9: )e results of MLEs and Bayesian estimates for MIK.

MLE Bayesian

α β1 β2 β3 α β1 β2 β3

α � 0.9, β1 � 0.9, β2 � 0.9, β3 � 0.9

n� 30
ABias 0.046 0.063 0.050 0.061 0.045 0.037 0.020 0.032
MSE 0.020 0.045 0.042 0.045 0.019 0.040 0.037 0.039

CW (CL) 0.526 0.794 0.774 0.794 0.505 0.761 0.735 0.749
CP 0.953 0.973 0.954 0.949 0.939 0.925 0.948 0.933

n� 50
ABias 0.035 0.033 0.046 0.040 0.039 0.005 0.020 0.019
MSE 0.011 0.023 0.025 0.025 0.012 0.021 0.022 0.023

CW (CL) 0.392 0.582 0.594 0.594 0.391 0.567 0.573 0.578
CP 0.960 0.968 0.950 0.960 0.945 0.946 0.929 0.943

n� 70
ABias 0.020 0.026 0.021 0.032 0.029 0.001 0.005 0.006
MSE 0.007 0.017 0.015 0.017 0.008 0.015 0.015 0.015

CW (CL) 0.328 0.496 0.480 0.496 0.328 0.477 0.472 0.479
CP 0.945 0.951 0.958 0.964 0.930 0.931 0.933 0.950

α � 1.8, β1 � 0.8, β2 � 1.8, β3 � 0.8

n� 30
ABias 0.135 0.083 0.224 0.089 0.119 0.043 0.199 0.046
MSE 0.084 0.044 0.282 0.046 0.078 0.033 0.248 0.034

CW (CL) 1.008 0.754 1.888 0.764 0.977 0.685 1.756 0.687
CP 0.918 0.961 0.973 0.952 0.927 0.940 0.948 0.935

n� 50
ABias 0.111 0.067 0.155 0.062 0.085 0.015 0.167 0.022
MSE 0.051 0.025 0.148 0.025 0.044 0.018 0.148 0.018

CW (CL) 0.774 0.568 1.380 0.568 0.749 0.511 1.335 0.516
CP 0.939 0.962 0.950 0.958 0.935 0.956 0.925 0.938

n� 70
ABias 0.086 0.057 0.155 0.049 0.072 0.011 0.120 0.015
MSE 0.034 0.017 0.113 0.016 0.031 0.012 0.094 0.013

CW (CL) 0.644 0.464 1.170 0.464 0.628 0.432 1.019 0.433
CP 0.914 0.969 0.930 0.977 0.919 0.951 0.928 0.948

α � 1.8, β1 � 1.8, β2 � 1.8, β3 � 1.8

n� 30
ABias 0.112 0.210 0.173 0.219 0.090 0.195 0.169 0.167
MSE 0.064 0.262 0.236 0.269 0.060 0.245 0.229 0.224

CW (CL) 0.886 1.830 1.780 1.842 0.884 1.763 1.725 1.718
CP 0.921 0.962 0.972 0.962 0.917 0.942 0.953 0.934

n� 50
ABias 0.081 0.137 0.150 0.147 0.074 0.130 0.162 0.115
MSE 0.037 0.134 0.141 0.139 0.036 0.128 0.143 0.123

CW (CL) 0.678 1.330 1.346 1.340 0.677 1.299 1.324 1.288
CP 0.951 0.972 0.944 0.965 0.944 0.964 0.922 0.952

n� 70
ABias 0.059 0.113 0.116 0.122 0.054 0.097 0.128 0.091
MSE 0.024 0.092 0.093 0.095 0.024 0.086 0.095 0.084

CW (CL) 0.568 1.102 1.108 1.368 0.562 1.075 1.090 1.074
CP 0.932 0.952 0.949 0.959 0.941 0.941 0.928 0.946

Mathematical Problems in Engineering 17



Table 9: Continued.

MLE Bayesian

α β1 β2 β3 α β1 β2 β3

α � 2, β1 � 1.5, β2 � 2, β3 � 2

n� 30
ABias 0.119 0.159 0.208 0.273 0.084 0.130 0.189 0.196
MSE 0.076 0.179 0.310 0.367 0.066 0.143 0.280 0.286

CW (CL) 0.976 1.478 2.026 2.118 0.940 1.371 1.900 1.924
CP 0.923 0.964 0.979 0.964 0.923 0.945 0.952 0.945

n� 50
ABias 0.092 0.103 0.173 0.176 0.075 0.092 0.157 0.124
MSE 0.044 0.086 0.181 0.067 0.041 0.080 0.165 0.154

CW (CL) 0.744 1.074 1.524 1.524 0.726 1.036 1.444 1.435
CP 0.948 0.969 0.944 0.965 0.945 0.963 0.927 0.954

n� 70
ABias 0.065 0.086 0.122 0.135 0.045 0.062 0.104 0.097
MSE 0.029 0.055 0.115 0.119 0.027 0.053 0.105 0.104

CW (CL) 0.620 0.894 1.240 1.256 0.606 0.856 1.188 1.189
CP 0.927 0.950 0.957 0.967 0.933 0.945 0.950 0.950

α � 2.4, β1 � 2.4, β2 � 2.4, β3 � 2.4

n� 30
ABias 0.284 0.245 0.298 0.133 0.106 0.264 0.240 0.209
MSE 0.494 0.456 0.508 0.098 0.093 0.463 0.441 0.410

CW (CL) 2.520 2.466 2.538 1.108 1.110 2.424 2.366 2.340
CP 0.967 0.973 0.967 0.934 0.943 0.948 0.954 0.950

n� 50
ABias 0.184 0.204 0.198 0.095 0.070 0.156 0.200 0.132
MSE 0.251 0.254 0.260 0.056 0.052 0.232 0.257 0.219

CW (CL) 1.826 1.856 1.842 0.850 0.846 1.779 1.804 1.751
CP 0.975 0.952 0.964 0.952 0.955 0.966 0.925 0.955

n� 70
ABias 0.146 0.136 0.157 0.070 0.059 0.149 0.139 0.117
MSE 0.170 0.166 0.176 0.038 0.037 0.168 0.165 0.156

CW (CL) 1.514 1.508 1.524 0.712 0.713 1.491 1.481 1.469
CP 0.944 0.952 0.962 0.939 0.938 0.928 0.950 0.956

α � 2.5, β1 � 1.5, β2 � 1.5, β3 � 1.5

n� 30
ABias 0.168 0.168 0.151 0.175 0.146 0.151 0.141 0.138
MSE 0.135 0.173 0.163 0.177 0.124 0.155 0.149 0.149

CW (CL) 1.282 1.492 1.466 1.498 1.240 1.408 1.388 1.387
CP 0.931 0.961 0.979 0.963 0.919 0.943 0.955 0.950

n� 50
ABias 0.125 0.120 0.119 0.125 0.096 0.102 0.102 0.094
MSE 0.078 0.092 0.115 0.095 0.069 0.083 0.152 0.082

CW (CL) 0.976 1.094 1.102 1.102 0.947 1.047 1.043 1.044
CP 0.946 0.969 0.952 0.966 0.949 0.956 0.923 0.953

n� 70
ABias 0.092 0.100 0.094 0.094 0.086 0.092 0.105 0.062
MSE 0.051 0.064 0.062 0.062 0.050 0.060 0.063 0.054

CW (CL) 0.812 0.910 0.902 0.902 0.799 0.876 0.878 0.862
CP 0.913 0.942 0.950 0.971 0.927 0.949 0.921 0.966

α � 3, β1 � 3, β2 � 3, β3 � 3

n� 30
ABias 0.157 0.377 0.318 0.374 0.117 0.361 0.293 0.249
MSE 0.141 0.837 0.795 0.833 0.131 0.796 0.716 0.658

CW (CL) 1.336 3.268 3.180 3.264 1.328 3.150 3.025 2.975
CP 0.936 0.966 0.974 0.969 0.944 0.932 0.961 0.956

n� 50
ABias 0.121 0.242 0.283 0.258 0.096 0.214 0.281 0.174
MSE 0.083 0.420 0.456 0.434 0.079 0.397 0.451 0.367

CW (CL) 1.022 2.356 2.404 2.374 1.024 2.306 2.345 2.248
CP 0.941 0.975 0.951 0.963 0.939 0.962 0.929 0.958

n� 70
ABias 0.074 0.165 0.159 0.188 0.058 0.150 0.158 0.137
MSE 0.052 0.269 0.266 0.281 0.051 0.259 0.264 0.249

CW (CL) 0.850 1.928 1.924 1.944 0.855 1.893 1.892 1.876
CP 0.937 0.951 0.961 0.963 0.943 0.938 0.948 0.956
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Table 9: Continued.

MLE Bayesian

α β1 β2 β3 α β1 β2 β3

α � 3, β1 � 2.8,β2 � 2.8, β3 � 3.5

n� 30
ABias 0.154 0.339 0.283 0.455 0.103 0.284 0.243 0.257
MSE 0.139 0.700 0.633 1.221 0.126 0.621 0.582 0.896

CW (CL) 1.330 2.998 2.916 3.948 1.314 2.834 2.755 3.513
CP 0.937 0.964 0.977 0.970 0.864 0.938 0.847 0.914

n� 50
ABias 0.121 0.218 0.252 0.324 0.087 0.169 0.233 0.210
MSE 0.083 0.354 0.381 0.642 0.076 0.320 0.362 0.529

CW (CL) 1.022 2.168 2.208 2.872 1.018 2.098 2.136 2.697
CP 0.947 0.973 0.955 0.965 0.805 0.974 0.797 0.857

n� 70
ABias 0.081 0.156 0.148 0.238 0.053 0.121 0.133 0.137
MSE 0.054 0.230 0.227 0.414 0.050 0.211 0.217 0.344

CW (CL) 0.850 1.780 1.774 2.342 0.849 1.726 1.733 2.220
CP 0.933 0.951 0.965 0.963 0.800 0.947 0.706 0.839

α � 3, β1 � 3,β2 � 4, β3 � 3

n� 30
ABias 0.154 0.374 0.477 0.370 0.109 0.327 0.455 0.230
MSE 0.136 0.827 1.558 0.822 0.120 0.726 1.441 0.617

CW (CL) 1.312 3.250 4.520 3.244 1.284 3.048 4.307 2.914
CP 0.937 0.963 0.973 0.971 0.941 0.951 0.970 0.963

n� 50
ABias 0.116 0.232 0.406 0.256 0.091 0.206 0.388 0.171
MSE 0.079 0.409 0.915 0.430 0.073 0.380 0.851 0.354

CW (CL) 1.008 2.336 3.394 2.366 0.989 2.254 3.254 2.213
CP 0.942 0.973 0.960 0.965 0.942 0.953 0.965 0.952

n� 70
ABias 0.074 0.163 0.234 0.182 0.058 0.156 0.228 0.123
MSE 0.051 0.266 0.530 0.276 0.049 0.257 0.513 0.241

CW (CL) 0.840 1.916 2.702 1.932 0.834 1.869 2.636 1.847
CP 0.943 0.956 0.960 0.960 0.955 0.965 0.967 0.958

α � 3.5, β1 � 3.5,β2 � 3.5, β3 � 4

n� 30
ABias 0.171 0.450 0.378 0.536 0.100 0.402 0.389 0.238
MSE 0.176 1.190 1.074 1.666 0.157 1.095 1.071 1.149

CW (CL) 1.502 3.894 3.782 4.604 1.486 3.702 3.660 4.027
CP 0.939 0.963 0.975 0.969 0.949 0.952 0.931 0.937

n� 50
ABias 0.132 0.281 0.330 0.371 0.080 0.253 0.268 0.166
MSE 0.104 0.587 0.639 0.859 0.093 0.562 0.573 0.653

CW (CL) 1.156 2.794 2.854 3.328 1.146 2.739 2.715 3.059
CP 0.944 0.972 0.959 0.966 0.936 0.961 0.900 0.903

n� 70
ABias 0.085 0.197 0.185 0.261 0.055 0.145 0.194 0.159
MSE 0.068 0.381 0.372 0.545 0.065 0.351 0.378 0.465

CW (CL) 0.968 2.292 2.280 2.708 0.967 2.230 2.258 2.583
CP 0.940 0.952 0.963 0.970 0.950 0.959 0.871 0.864

α � 3.5, β1 � 3.5, β2 � 3.5, β3 � 3.5

n� 30
ABias 0.172 0.450 0.378 0.445 0.107 0.369 0.323 0.250
MSE 0.179 1.194 1.079 1.188 0.162 1.056 0.992 0.885

CW (CL) 1.514 3.902 3.792 3.900 1.503 3.689 3.593 3.488
CP 0.941 0.966 0.975 0.971 0.955 0.945 0.959 0.955

n� 50
ABias 0.133 0.284 0.331 0.308 0.100 0.263 0.308 0.199
MSE 0.106 0.592 0.643 0.617 0.099 0.573 0.610 0.516

CW (CL) 1.162 2.383 2.862 2.832 1.160 2.755 2.755 2.665
CP 0.946 0.971 0.959 0.965 0.946 0.964 0.929 0.949

n� 70
ABias 0.087 0.204 0.186 0.224 0.059 0.163 0.182 0.144
MSE 0.069 0.387 0.375 0.398 0.066 0.362 0.374 0.346

CW (CL) 0.968 2.302 2.286 2.312 0.978 2.252 2.259 2.220
CP 0.937 0.954 0.963 0.963 0.941 0.951 0.956 0.956

α � 4, β1 � 1.5, β2 � 2, β1 � 2.5

n� 30
ABias 0.234 0.152 0.199 0.330 0.177 0.143 0.185 0.236
MSE 0.351 0.162 0.302 0.590 0.272 0.155 0.284 0.474

CW (CL) 1.928 1.462 2.006 2.722 1.906 1.415 1.912 2.486
CP 0.932 0.963 0.974 0.971 0.950 0.941 0.945 0.954

n� 50
ABias 0.178 0.100 0.167 0.231 0.141 0.092 0.155 0.167
MSE 0.173 0.085 0.177 0.306 0.162 0.083 0.169 0.260

CW (CL) 1.472 1.074 1.514 1.972 1.468 1.059 1.468 1.871
CP 0.944 0.972 0.950 0.963 0.960 0.958 0.953 0.929

n� 70
ABias 0.136 0.082 0.120 0.193 0.121 0.073 0.137 0.126
MSE 0.117 0.059 0.113 0.209 0.116 0.057 0.120 0.177

CW (CL) 1.234 0.894 1.234 1.626 1.241 0.883 1.236 1.559
CP 0.929 0.950 0.962 0.971 0.943 0.939 0.946 0.935

Mathematical Problems in Engineering 19



using R package with 1000 replications and three different
sample sizes n � 30, 50, and 70. Different initial values of
the parameters are arbitrarily chosen, varying between small
and large values to cover different cases of the distribution.
)e parameter β4 is assumed known for simplicity. )e
following twelve populations are considered.

(i) α � 0.9, β1 � 0.9, β2 � 0.9, β3 � 0.9.

(ii) α � 1.8, β1 � 0.8, β2 � 1.8, β3 � 0.8.

(iii) α � 1.8, β1 � 1.8, β2 � 1.8, β3 � 1.8.

(iv) α � 2, β1 � 1.5, β2 � 2, β3 � 2.

(v) α � 2.4, β1 � 2.4, β2 � 2.4, β3 � 2.4.

(vi) α � 2.5, β1 � 1.5, β2 � 1.5, β3 � 1.5.

(vii) α � 3, β1 � 3, β2 � 3, β3 � 3.

(viii) α � 3, β1 � 2.8, β2 � 2.8, β3 � 3.5.

(ix) α � 3, β1 � 3, β2 � 4, β3 � 3.

(x) α � 3.5, β1 � 3.5, β2 � 3.5, β3 � 4.

(xi) α � 3.5, β1 � 3.5, β2 � 3.5, β3 � 3.5.

(xii) α � 4, β1 � 1.5, β2 � 2, β3 � 2.5.

To check the behavior of the estimates, ABias, MSE, CW,
and CP are computed in Table 9. )e algorithm is explained
in detail in Appendix B.2.

(2) Bayesian Approach. Similar to the bivariate case, MCMC
simulation is used to obtain the posterior mean numerically.
Absolute bias (ABias), mean square error (MSE), confidence
length (CL), and coverage probability (CP) are obtained and
presented in Table 9. )e algorithm is explained in detail in
Appendix B.2.

From Table 9, it can be seen that for different combi-
nations of the parameters and for different sample sizes,
ABias and MSE are relatively small. )is indicates that both
Bayesian and ML approaches work efficiently in estimating
the parameters of MIK.

Comparing ML and Bayesian estimates, it is found that
Bayesian estimates have less than or equal mean square error
(MSE) than ML ones as seen from Figure 4. Also, for the
majority of cases, Bayesian estimates have smaller ABias
than ML ones.

Also, it can be seen that as the sample size (n) increases,
the ABias, MSE, CW, and CL decrease for both ML and
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Figure 4: MSE of (a) α � 3.5, (b) β1 � 3.5, (c) β2 � 3.5, and (d) β3 � 3.5.

20 Mathematical Problems in Engineering



Bayesian as seen from Figure 5. Moreover, it can be seen that
for most cases, the CP is around 0.95.

6.2.2. A Real Dataset. Here, we analyze a real dataset to show
the applicability of MIK.)e dataset has been obtained from
Bland and Altman [28]. It represents a set of systolic blood
pressure measurement for 85 patients made by a semiau-
tomatic blood pressure monitor; three readings were made
for each patient. )e variables are as follows:

X1: first systolic blood pressure measurement.

X2: second systolic blood pressure measurement.

X3: third systolic blood pressure measurement.

All data points have been divided by 1000. )is is not
going to make any difference in the statistical inference. We
applied GOF tests in order to check if the fit based on IK, IW,
and E distributions is reasonable in this case. We computed
the modified Cramér–von Mises statistic (W∗) and
Anderson–Darling statistic (A∗). )e values of these sta-
tistics and the corresponding p values (in brackets) for X1,
X2, X3, and max(X1, X2, X3) are illustrated in Table 10.

Based on the values of these statistics and the corre-
sponding p values, only IK distribution can be used for
modeling the marginals and the maximum. Hence, only
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Figure 5: (a) MSE and (b) ABias for α.

Table 10: (W∗) and (A∗) for IK, IW, and E.

Model X1 X2 X3 max(X1, X2)

IK
A∗ 0.31 (0.93) 0.43 (0.82) 0.49 (0.76) 0.50 (0.75)
W∗ 0.04 (0.94) 0.07 (0.76) 0.08 (0.68) 0.08 (0.72)

IW
A∗ 13.60 (7× 10− 6) 14.48 (7× 10− 6) 15.80 (7× 10− 6) 14.20 (7× 10− 6)
W∗ 2.79 (2× 10− 7) 2.99 (5× 10− 8) 3.30 (9× 10− 9) 2.91 (7× 10− 8)

E
A∗ 23.95 (7× 10− 6) 24.18 (7× 10− 6) 24.75 (7× 10− 6) 24.29 (7× 10− 6)
W∗ 5.06 (2× 10− 16) 5.12 (2× 10− 16) 5.26 (2× 10− 16) 5.14 (2× 10− 16)

Table 11: )e estimates based on ML and Bayesian approaches.

Approach α β1 β2 β3

ML
MLE 46.949 264.199 245.852 245.519

Confidence interval width 8.126 269.684 256.424 263.866

Bayesian
Posterior mean 48.697 270.528 226.877 257.231

Credible interval length 4.270 69.215 61.110 64.305
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MIK can be used for modeling these data. In Table 11, the
ML estimates and the posterior mean using gamma priors
are obtained for the parameters of MIK (β4 is considered
known for simplicity). Also, credible interval length and
confidence width are illustrated.

7. Conclusion

In this paper, bivariate inverted Kumaraswamy (BIK) dis-
tribution is derived as a new member of bivariate Mar-
shall–Olkin family. Its properties are also studied.
Estimation is performed using both maximum likelihood
(ML) and Bayesian approaches. To see the applicability of
BIK distribution, three real datasets in different fields like
sports, engineering, and biology have been analyzed. It is
observed that the BIK model provides the best fit. Due to the
wide applicability and great performance of the BIKmodel, a
generalization to multivariate inverted Kumaraswamy
(MIK) distribution is performed. To the best of our
knowledge, estimation of multivariate Marshall–Olkin

family was not studied before. Here, estimation of MIK is
performed using both ML and Bayesian approaches. A very
convenient algorithm is proposed for both approaches. )is
algorithm could be applied for any multivariate Marshal-
l–Olkin distributions. Finally, a real dataset has been ana-
lyzed to illustrate the applicability of MIK distribution, and it
is observed that the MIK model provides good fit, while
multivariate inverse Weibull and multivariate exponential
distributions failed to fit this dataset.

Appendix

A

A.1. Proofs of Propositions 1 to 5

A.1.1. Proposition 1. )e first two cases X1<X2 and X1>X2

are easily obtained by taking δ2FX1,X2
(x1, x2)/δx1δx2. Now,

to get f3(x), we use the fact that

∫∞
0
∫x2
0
f1 x1, x2( )dx1dx2 + ∫∞

0
∫x1
0
f2 x1, x2( )dx2dx1 + ∫∞

0
f3(x) dx � 1. (A.1)

But ∫∞
0
∫x2
0
f1(x1, x2)dx1dx2 � β2/β1 + β2 + β3, and∫∞

0
∫x1
0
f2(x1, x2)dx2dx1 � β1/β1 + β2 + β3.

Hence, we have ∫∞
0
f3(x)dx � β3/β1 + β2 + β3.

)erefore,
f3(x) � β3/β1 + β2 + β3 fIK(x, β1 + β2 + β3, α).

A.1.2. Proposition 2. Let A be the following event:

A � U1 <U3{ }∩ U2 <U3{ }. (A.2)

)en, P(A) � β3/β1 + β2 + β3 and p(A
‘

) � β1 + β2/β1+
β2 + β3.

)erefore, FX1 ,X2
(x1,x2) �P(X1≤x1,X2≤x2 |A)P(A)+

P(X1≤x1,X2≤x2|A
‘

)P(A
‘

).
For z�min (x1, x2),P(X1 ≤x1, X2 ≤x2 |A) � [1 − (1+

z)− α]β1+β2+β3 and P(X1 ≤x1, X2 ≤ x2 |A
‘

) can be obtained by
subtraction.

It can be seen that [1 − (1 + z)− α]β1+β2+β3 is the singular
part as its second partial derivative is zero when x1 ≠x2.
)us, P(X1 ≤ x1, X2 ≤x2|A

‘

)P(A
‘

) is the absolutely contin-
uous part as its mixed partial derivative is a density function.

A.1.3. Proposition 3

(a) FX1 , X2
(x1, x2) � FIK(x1, β1, α)FIK(x2, β2, α)FIK (z,

β3, α)
where z � min(x1, x2).

lim
x2⟶ 0

FX1 , X2
x1, x2( ) � 1 − 1 + x1( )− α( )β1+β3 ,

lim
x1⟶ 0

FX1 , X2
x1, x2( ) � 1 − 1 + x2( )− α( )β2+β3 . (A.3)

(b) P(max X1, X2{ }≤x) � P(X1 ≤ x,X2 ≤ x) � P(U1 ≤
x, U2 ≤ x, U3 ≤ x) � (1 − (1 + x)− α)β1+β2+β3 .

(c) Conditional distribution ofX1 givenX2 ≤x2 is given
by

FX1|X2 ≤ x2 x1( ) �
FIK x1, β1 + β3, α( )FIK x2, β2, α( )

FIK x2, β2 + β3, α( ) if x1 ≤x2

FIK x1, β1, α( ) if x2 <x1


,

(A.4)
that is,

FX1|X2 ≤x2 x1( ) � 1 − 1 + x1( )− α( )β1+β3 1 − 1 + x2( )− α( )− β3 if x1 ≤x2

1 − 1 + x1( )− α( )β1 if x2 <x1.


(A.5)

A.1.4. Proposition 4. Starting with

M t1, t2( ) � E et1x1+t2x2( ) �B
allx1,x2

f x1, x2( )et1x1+t2x2dx1dx2,
(A.6)

substituting forf(x1, x2) by the corresponding formula, and
then using change of variable technique and the following
facts, the formula is derived.
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ex � ∑∞
n�0

xn

n!
, (p + q)n �∑n

i�0

n

i

 piqn− i, Bx(α, β) � xαα 2
F1(α, 1 − β; α + 1;x) and

· ∫1

0
uα− 1(1 − u)β− 12F1(c, d; h; u) � B(α, β)3F1(α, c, d; h, α + β; 1).

(A.7)

A.1.5. Proposition 5. Starting with

E xs1x
r
2( ) �B

allx1 ,x2

f x1, x2( )xs1xr2dx1dx2, r, s � 1, 2, 3, . . . ,

(A.8)

substituting for f(x1, x2) by corresponding formula, and
then applying change of variable technique and the fol-
lowing facts, the formula is derived.

(p + q)n �∑n
i�0

n

i

 piqn− i, Bx(α, β) � xαα 2
F2(α, 1 − β; α + 1; x)∫1

0
uα− 1(1 − u)β− 12F1(c, d; h; u)du � B(α, β)3F2(α, c, d; h, α + β; 1).

(A.9)

A.2. Maximum Likelihood Estimators for BIK

z log L

zβ1
� n1
β1 + β3

+ n2
β1
+ ∑
i∈I1 ∪ I2

log 1 − 1 + x1i( )− α( ) +∑
i∈I3

log 1 − 1 + xi( )− α( ) � 0,

z log L

zβ2
� n1
β2
+ n2
β2 + β3

+ ∑
i∈I1 ∪ I2

log 1 − 1 + x2i( )− α( ) +∑
i∈I3

log 1 − 1 + xi( )− α( ) � 0,

z log L

zβ3
� n1
β1 + β3

+ n2
β2 + β3

+ n1
β3
+∑
i∈I1

log 1 − 1 + x1i( )− α( ) +∑
i∈I2

log 1 − 1 + x2i( )− α( ) +∑
i∈I3

log 1 − 1 + xi( )− α( ) � 0,

z log L

zα
� 2n1 + 2n2 + n3

α
− ∑

i∈I1 ∪ I2
log 1 + x1i( ) + ∑

i∈I1 ∪ I2
log 1 + x2i( ) +∑

i∈I3
log 1 + xi( ) 

+ β1 + β3 − 1( ) ∑
i∈I1

1 + x1i( )− αlog 1 + x1i( )
1 − 1 + x1i( )− α + β2 − 1( ) ∑

i∈I1

1 + x2i( )− αlog 1 + x2i( )
1 − 1 + x2i( )− α

+ β1 − 1( ) ∑
i∈I2

1 + x1i( )− αlog 1 + x1i( )
1 − 1 + x1i( )− α + β2 + β3 − 1( ) ∑

i∈I2

1 + x2i( )− αlog 1 + x2i( )
1 − 1 + x2i( )− α

+ β1 + β2 + β3 − 1( ) ∑
i∈I3

1 + xi( )− αlog 1 + xi( )
1 − 1 + xi( )− α � 0.

(A.10)

)e MLEs θ̂ � (α̂, β̂1, β̂2, β̂3) of θ � (α, β1, β2, β3) are
obtained by solving the above nonlinear system of equations.
)e solutions are numerically obtained in Section 6.

)e asymptotic variance covariance matrix is given by

I α, β1, β2, β3( )∣∣∣∣α̂, β̂1 , β̂2 , β̂3 �
I11 0 I13 I14

0 I22 I23 I24

I13 I23 I33 I34

I14 I24 I34 I44


, (A.11)
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where

I11 �
− z2log L

zβ21

∣∣∣∣∣∣∣∣∣̂β1 ,̂β2 �
n1

β̂1 + β̂2( )2 +
n2

β̂
2

1

,

I13 �
− z2log L
zβ1zβ3

∣∣∣∣∣∣∣∣̂β1 ,̂β3 �
n1

β̂1 + β̂3( )2,

I14 �
− z2log L
zβ1zα

∣∣∣∣∣∣∣∣α̂ � − ∑i∈I1
1 + x1i( )− α̂log 1 + x1i( )

1 − 1 + x1i( )− α̂ − ∑
i∈I2

1 + x1i( )− α̂log 1 + x1i( )
1 − 1 + x1i( )− α̂ − ∑

i∈I3

1 + xi( )− α̂log 1 + xi( )
1 − 1 + xi( )− α̂ ,

I22 �
− z2log L

zβ22

∣∣∣∣∣∣∣∣∣̂β2 ,̂β3 �
n1

β̂
2

2

+ n2

β̂2 + β̂3( )2,
I23 �

− z2log L
zβ2zβ3

∣∣∣∣∣∣∣∣̂β2 ,̂β3 �
n2

β̂2 + β̂3( )2,

I24 �
− z2log L
zβ2zα

∣∣∣∣∣∣∣∣α̂ � − ∑i∈I1
1 + x2i( )− α̂log 1 + x2i( )

1 − 1 + x2i( )− α̂ − ∑
i∈I2

1 + x2i( )− α̂log 1 + x2i( )
1 − 1 + x2i( )− α̂ − ∑

i∈I3

1 + xi( )− α̂log 1 + xi( )
1 − 1 + xi( )− α̂ ,

I33 �
− z2log L

zβ23

∣∣∣∣∣∣∣∣∣̂β1 ,̂β2 ,̂β3 �
n3

β̂
2

3

+ n1

β̂1 + β̂3( )2 +
n2

β̂2 + β̂3( )2,

I34 �
− z2log L
zβ3zα

∣∣∣∣∣∣∣∣α̂ � − ∑i∈I1
1 + x1i( )− α̂log 1 + x1i( )

1 − 1 + x1i( )− α̂ − ∑
i∈I2

1 + x2i( )− α̂log 1 + x2i( )
1 − 1 + x2i( )− α̂ − ∑

i∈I3

1 + xi( )− α̂log 1 + xi( )
1 − 1 + xi( )− α̂ ,

I44 �
− z2log L

zα2

∣∣∣∣∣∣∣∣̂β1 ,̂β2 ,̂β3 ,̂α �∑
6

l�1
Hl,

(A.12)

where

H1 �
2n1 + 2n2 + n3

α̂2
,

H2 � β̂1 + β̂3 − 1( ) ∑
i∈I1

1 + x1i( )− α̂ log 1 + x1i( )[ ] 2
1 − 1 + x1i( )− α̂( )2 ,

H3 � β̂2 − 1( ) ∑
i∈I1

1 + x2i( )− α̂ log 1 + x2i( )[ ] 2
1 − 1 + x2i( )− α̂( )2 ,

H4 � β̂1 − 1( ) ∑
i∈I2

1 + x1i( )− α̂ log 1 + x1i( )[ ] 2
1 − 1 + x1i( )− α̂( )2 ,

H5 � β̂2 + β̂3 − 1( ) ∑
i∈I2

1 + x2i( )− α̂ log 1 + x2i( )[ ]2
1 − 1 + x2i( )− α̂( )2 ,

H6 � β̂1 + β̂2 + β̂3 − 1( ) ∑
i∈I3

1 + xi( )− α̂ log 1 + xi( )[ ] 2
1 − 1 + xi( )− α̂( )2 .

(A.13)

Using the asymptotic distribution of the MLEs, the
confidence intervals can be obtained as

θ̂ ± zc/2
������
v̂ar θ̂),(√

(A.14)

where θ̂ � (α̂, β̂1, β̂2, β̂3), v̂ar(θ̂ ) is the estimated variance,

and zc/2 is the upper c
th/2percentile of the standard normal

table.

B

B.1. Algorithms for BIK

B.1.1. Monte Carlo Simulation Algorithm for BIK. )e fol-
lowing algorithm is used to performMonte Carlo simulation
study using R package and get ML estimates for BIK
distribution.

Step 1: n independent samples (X1, X2) from BIK
distribution are generated as follows:

(a) Generate U1, U2, and U3 from uniform (0, 1).

(b) Compute T1 � (1 − U
1/β1
1 )1/α, T2 � (1 − U

1/β2
2 )1/α,

and T3 � (1 − U
1/β3
3 )1/α.

(c) Define Z1 � 1/T1 − 1, Z2 � 1/T2 − 1, and
Z3 � 1/T3 − 1.

(d) Obtain X1 � max(Z1, Z3), X2 � max(Z2, Z3).
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Step 2: the maximum likelihood estimates (MLEs) and
the corresponding variance (Var) are obtained and
stored.

Step 3: lower (L) and upper (U) bounds for 95%
confidence interval (CI) are calculated (i.e.,
L(U) � MLE − (+)1.96∗

����
Var

√
) and stored.

Step 4: the three previous steps are repeated 1000 times.

Step 5: for converged datasets (this is obtained from R
using optim function), the average of MLE, variance,
and CI is obtained as follows:

average of MLE (AMLE) � ∑number of converged datasets
i�1 MLEi

number of converged datasets
,

average of Var (AVar) � ∑number of converged data sets
i�1 Vari

number of converged datasets
,

average of CI (ACI) � ∑number of converged datasets
i�1 CIi

number of converged datasets
.

(B.1)

Step 6: absolute bias (ABias), mean square error (MSE),
and confidence width (CW) are obtained as follows:

ABias � |AMLE − intial value|,
MSE � AVar + Bias2,

CW � upper limit of ACI − lower limit of ACI.

(B.2)

Step 7: the coverage probability (CP) is obtained as
follows:

CP � number of times the intial value falls inside the converged samples’ CI

number of converged samples
. (B.3)

B.1.2. MCMC Simulation Algorithm for BIK. )e following
algorithm is used to perform Markov Chain Monte Carlo
(MCMC) simulation study using R and WinBugs packages
and get Bayesian estimates for BIK distribution.

Step 1: using R package: n independent samples
(X1, X2) from BIK distribution are generated using the
same procedure in Appendix B.1.1.

Step 2: the generated dataset is sent to WinBugs
package and gamma priors are defined.

Step 3: WinBugs is used with 1000 replications to
generate the sequence of Markov chain.

Step 4: WinBugs provides posterior mean (PM),
standard deviation (SD), and credible interval (CI).

Step 5: results are sent back to R package and stored.

Step 6: the five previous steps are repeated 1000 times.

Step 7: for converged datasets (i.e., Geweke test results
<1.96, it is obtained using coda function in R package),
the average of posterior mean (PM), variance (Var),
and credible interval (CI) is obtained as follows:

average of posteriormeans (APM) �
∑number of converged datasets

i�1 PMi

number of converged datasets
,

average of Var (AVar) �
∑number of converged datasets

i�1 SDi( )2
number of converged datasets

,

average of CI (ACI) �
∑number of converged datasets

i�1 CIi

number of converged datasets
.

(B.4)
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Step 8: absolute bias (ABias), mean square error (MSE),
and credible length (CL) are obtained as follows:

ABias � |APM − intial value|. (B.5)

MSE and CL are the same as in Appendix B.1.1.

Step 9: the coverage probability (CP) is the same as step
7 in Appendix B.1.1.

B.2. Algorithms for MIK

B.2.1. Monte Carlo Simulation Algorithm for MIK. )e
following algorithm is used to perform Monte Carlo sim-
ulation study using R package and get ML estimates for MIK
distribution.

Step 1: n independent samples (X1, X2, X3) fromMIK
distribution are generated as follows:

(a) Generate U1, U2, U3, and U4 from uniform (0, 1).

(b) Compute T1 � (1 − U
1/β1
1 )1/α, T2 � (1 − U

1/β2
2 )1/α,

T3 � (1 − U
1/β3
3 )1/α, and T4 � (1 − U

1/β4
4 )1/α.

(c) Define Z1 � 1/T1 − 1, Z2 � 1/T2 − 1, Z3 � 1/T3

− 1,and Z4 � 1/T4 − 1.
(d) Obtain X1 � max(Z1, Z4), X2 � max(Z2, Z4), and

X3 � max(Z3, Z4)
Steps 2 till 7 are the same as in Appendix B.1.1.

B.2.2. MCMC Simulation Algorithm for MIK. )e following
algorithm is used to perform Markov Chain Monte Carlo
(MCMC) simulation study using R and WinBugs packages
and get Bayesian estimates for MIK distribution.

Step 1: using R package: n independent samples
(X1, X2, X3) from MIK distribution are generated
using the same procedure in Appendix B.2.1.

Steps 2 till 9 are the same as in Appendix B.1.2.

Data Availability

)e datasets used in the example application are available at
[23, 26–28].
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