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Abstract

Purpose—To determine whether a multivariate machine learning-based model using computer-

extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in 

breast cancer patients.

Methods—Institutional review board approval was obtained for this retrospective study of 288 

breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A 

comprehensive set of 529 radiomic features was extracted from each patient’s pretreatment MRI. 

The patients were divided into equal groups to form a training set and an independent test set. Two 

multivariate machine learning models (logistic regression and a support vector machine) based on 

imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with 

neoadjuvant chemotherapy (NACT), and (c) triple negative or human epidermal growth factor 

receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested 

using the independent test set, and the area under the receiver operating characteristics (ROC) 

curve (AUC) was calculated.

Results—Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in 

TN/HER+ patients who received NAT were significant (.707, 95%CI: 0.582–0.833, p < 0.002).

Conclusions—The multivariate models based on pre-treatment MRI features were able to 

predict pCR in TN/HER2+ patients.
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Introduction

Neoadjuvant therapy (NAT) allows for early treatment of breast cancer, aiming to reduce 

tumor burden and allow patients to undergo breast-conserving surgery rather than 

mastectomy 1–6. One trial reported up to 23% of patients with primary operable breast 

cancer can have breast conserving surgery instead of mastectomy if treated with neoadjuvant 

therapy 7. However, response rates to NAT vary among patients and have been shown to 

depend on subtype 8–16. In fact, up to 30% of patients may not respond to NAT17. These 

patients incur toxicities and costs of treatment but gain proportionally less benefit 7,8. 

Identifying a method to predict which breast cancer patients will achieve pCR and which 

will have residual invasive disease (RD) following NAT would allow for improved 

stratification of patients to more appropriate treatment regimens18.

Among other means of predicting response to NAT, such as using tumor stage and receptor 

status 19, features extracted from pre-treatment MRI have shown promise for this 

purpose8,18,20–28. Using MRI could provide a fast and noninvasive way to further stratify 

patients at no additional cost to patients who already require MRI as part of a standard 

preoperative workup for breast cancer. However, all prior studies evaluating this possibility 

analyzed relatively small cohorts (ranging from 11 patients 18 to 151 patients 25) and most 

did not use an independent dataset for validation. Furthermore, the methods used to 

determine response to NAT varied. While several studies18,21,24,26 used the response 

evaluation criteria in solid tumors (RECIST)29, others 20,22 used pathologic assessment. 

Additionally, the definition of complete response among these papers differed considerably.

Our study builds on past research by showing a promising association between pretreatment 

MRI characteristics and pCR in breast cancer, particularly in patients with TN/HER2+ 

tumors. Due to our larger data set, we were able to create an independent validation cohort 

for each subpopulation. With this independent validation set, we were able to validate the 

work of previous studies 20. Of particular interest, no prior studies have reported the 

prediction of pCR response in TN/HER2+ patients using an independent test set. The 

extensive set of 529 features allowed for comprehensive analysis of different aspects of 

MRIs including size, shape, enhancement, and texture of tumors and the surrounding tissue.

Materials and Methods

Patient Population

In this retrospective institutional review board-approved study, we analyzed data for 288 

patients treated with NAT. To arrive at this cohort, we reviewed 1,150 consecutive female 

invasive breast cancer patients without prior history of breast cancer, breast surgery 

(definitive or non-definitive), or breast cancer therapy, with available pre-treatment, 

preoperative bilateral MRI performed at Duke University Hospital between January 1, 2000 
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and March 23, 2014. Out of these patients, 374 were treated with NAT (including 

chemotherapy, endocrine, and anti-HER2neu therapies) according to medical histories and 

had sufficient data to establish pathologic response to NAT. To clearly distinguish between 

patients with pCR and those with residual invasive disease, patients with in situ carcinoma 

only following NAT were excluded (n = 15). Of the resulting 359 patients, 288 had all 

necessary MR sequences available and suitable for our image pre-processing steps. Details 

regarding patient exclusions can be found in Figure 1.

Pathology Data Collection

The pCR or pathological non-complete response (pNR) status of patients in our cohort was 

established using the following methods. First, pathology reports from the initial surgical 

intervention (mastectomy or lumpectomy) were reviewed and the tumor re-staging (ypTNM) 

information was collected. When a ypTNM stage was not reported, the complete pathology 

reports were reviewed. Then, the pCR/pNR status was identified according to the criteria in 

Table 1. Ultimately, pCR was defined as having no remaining invasive or in-situ disease in 

the breast or lymph nodes, and pNR was defined as any residual invasive disease in either 

breast or lymph nodes.

Additionally, patients whose treatment regimens included neoadjuvant chemotherapy 

(NACT), either alone or in addition to other neoadjuvant therapies (including endocrine or 

anti-HER2neu therapies), were identified from our cohort of 288 patients. The receptor 

status of these patients was determined from the clinical and immunohistochemical analysis 

of the tissue samples obtained from these patients.

Imaging Data & Annotation

For all patients, pretreatment dynamic contrast-enhanced MR (DCE-MR) images were 

available with the following sequences: (a) T1-weighted fat-saturated pre-contrast sequence, 

(b) multiple (2-6) T1-weighted fat-saturated post-contrast sequences that were acquired 

following intravenous administration of a contrast agent, and (c) T1-weighted non-fat-

saturated sequence. One of eight post-fellowship trained breast radiologists annotated each 

patient’s images by placing a three-dimensional box around tumors in the subtracted 

sequence (obtained by subtracting the pre-contrast from the first post-contrast sequence).

Image Processing and Feature Extraction

The tumor mask was obtained by applying the fuzzy C-means algorithm 30 inside the 

annotation box created by the radiologists for each patient. Based on the masks extracted 

and the available sequences, we extracted 529 radiomic features 31. These features include 

breast and fibroglandular tissue (FGT) volumetric features (5), tumor size and morphology 

(10), tumor enhancement (30), FGT enhancement (82), tumor enhancement texture (135), 

FGT enhancement texture (135), tumor enhancement variation (35), FGT enhancement 

variation (34), spatial variation of tumor heterogeneity (4), and combination of tumor and 

FGT enhancement (18). Any FGT related feature was extracted twice to include only one 

type of FGT mask at a time.
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Model development and statistical analysis

The entire cohort of patients was divided to form training and test sets of equal size. All 

machine learning models were generated using the training set only. This model generation 

included feature selection and training two different classifiers using the selected features as 

follows. Using the entire training set, a stepwise multilinear regression-based feature 

selection procedure was used to select features (stepwisefit function in Matlab 2016b, The 

Mathworks, Natick, MA) for predicting pCR. The selected features were used to train a 

multivariate logistic regression classifier (fitglm function in Matlab 2016b) and a support 

vector machine classifier (fitcsvm and fitSVMposterior functions in Matlab 2016b). The 

trained models were used to predict pCR in the test set. The performance of each of the 

trained models was evaluated through analysis of the area under the receiver operating 

characteristics (ROC) curve (AUC). The AUC and its confidence intervals were calculated 

using the proc package in R 32 using the Delong method 33. The output of the multivariate 

model was used as the covariate in a logistic regression model to determine the significance 

of its association with NAT. In addition to performing the feature selection and training 

classifiers for all patients in the training set, we repeated it for two additional subpopulations 

based on therapies received and receptor status in the training set: (a) patients who received 

NACT and (b) Triple negative or HER2+ (TN/HER2+) patients who received NAT. We have 

not analyzed TN/HER2+ patients with NACT as a separate cohort because this group was 

almost identical to the second group analyzed (only one TN/HER2+ patient received NAT 

that did not include chemotherapy). The classifiers trained on these two subpopulations in 

the training set were evaluated in the corresponding subpopulations in the test set. Because 

we had two models per subpopulation, the significance level considered was (0.05/(3*2) = 

0.0083) by Bonferroni correction. Additionally, the individual AUCs of the all the selected 

features (from the training set) were calculated in the test set to investigate specific 

prognostic features as an exploratory analysis.

Results

Characteristics of the Study Population

Characteristics of all patients are shown in Table 2. Of the 288 patients reviewed, 64 patients 

achieved pCR and 224 had a pNR. Among all three subgroups, there was very little 

difference in median age, age range, racial makeup, and menopausal status. Furthermore, 

there was little difference in receptor status and Nottingham grade when comparing patients 

who received NACT to all patients. The first two subgroups differed from our third subgroup 

(TN/HER2+ patients who received NAT) in size (269-288 patients in the first two 

subpopulations and 151 patients in the third), receptor status, and tumor grade (38% of 

tumors in the TN/HER2+ subpopulation with grade 2 and 58% with grade 3 compared to 

45-47% grade 2 and 46-48% grade 3 in the first two subpopulations), which is expected in 

these populations. Further detail regarding the characteristics of the study population 

relevant to each task are shown in Table 2. The distribution of pCR and pNR in different 

subsets of the study population and across the training and test sets is shown in Table 3.
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Performance of prognostic models

The accuracies of the trained multivariate models in terms of AUC are shown in Table 4. The 

multivariate models (both SVM and logistic regression) were prognostic of pCR in TN/

HER2+ patients that received neoadjuvant therapy (p < 0.002). The prognostic value of the 

model predicting pCR in the entire cohort was marginally significant (p = 0.01). Using the 

training set, a variable number of features were selected for the entire cohort and each of the 

subpopulations. In total, 12 unique features were selected for the three cohorts using the 

training set.

The results of our exploratory analysis using the 12 selected features are shown in Fig. 2. 

Two features were selected for TN/HER2+ patients who received NAT. Among these 

features, a tumor based feature (change_in_variance_of_uptake) was selected for the 

subpopulation of all patients who received NAT as well as the TN/HER2+ subpopulation. 

This feature quantifies the change in variance of tumor uptake by finding the minimum ratio 

of the variances of tumor voxels in two consecutive time points. For this feature, lower 

values predict a higher chance of achieving pCR. This tumor-based feature had the highest 

AUC among the 12 features selected in all subpopulations evaluated. An additional feature, 

extracted using FGT, was also selected and found to be significant in TN/HER2+ patients 

who received NAT. This feature, ‘SER_Partial_tissue_vol_cu_mm_T1’, is computed as a 

volumetric measure of FGT enhancement (extracted from T1 non-fat saturated sequences) 

using the signal enhancement ratio of FGT voxels. For this feature, higher values predicted a 

lower chance of achieving pCR. Of all the features evaluated, 6 were extracted from tumor 

alone, 5 were extracted from FGT alone, and one was extracted from both tumor and FGT.

Discussion

In this study, we analyzed 288 breast cancer patients and demonstrated that multivariate 

machine learning models based on MRI features are able to predict pathologic complete 

response to neoadjuvant therapy in breast cancer. We selected important features from an 

initial set of 529 features using training data and subsequently developed multivariate 

machine learning models. We evaluated the performance of these models in our independent 

test set, validating their prognostic value in TN/HER+ patients.

Our study used a set of 529 MR features extracted from the pre-treatment breast MRIs of 

patients in our cohort. We used feature selection 34 to identify a smaller number of features 

(< 8) for further analysis. Models using less features (n=2) performed better compared to 

models using a higher number of features (n=7). The exploratory analysis showed three 

features that were independently prognostic of pCR in the test set. For each of our 

subpopulations, features extracted from tumor and FGT were selected to be included in our 

models and were combined to form a comprehensive set of features. Although Fan et al. 

used a similar combination of tumor and background parenchymal features to perform 

analyses, our study used the clinically preferred pathologic assessment to determine 

response rather than the RECIST criteria based on imaging 21.

While several studies use radiomic MRI features to monitor response 15,18,35,36, our goal 

was to use MRI to predict tumor response . Published studies with this goal are limited by 
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small cohort sizes 18,20–22,24,25. Furthermore, most of these studies used RECIST to measure 

response 18,21,24,25, even though pCR is highly correlated with event-free survival and 

overall survival 1.

Studies using pathologic assessment to determine response have varying definitions of pCR 
20,22. In some of these studies patients with positive lymph nodes20,22, residual DCIS20,22, or 

even residual invasive carcinoma in the breast 22 are categorized as having pCR. In an 

attempt to differentiate between NAT patients in a clinically relevant manner, we defined 

pCR as having no residual invasive or in situ carcinoma in the breast or lymph nodes 1.

Our study is the first of this type to incorporate a broader definition of NAT. Our study 

included patients who received endocrine and anti-HER2neu therapy in the neoadjuvant 

setting, whether or not these patients received neoadjuvant chemotherapy (anthracycline, 

platinum, or taxane-based chemotherapy). However, in addition to the more inclusive 

analysis of all NAT patients (n=288), we separately analyzed the sub-cohort of patients who 

received NACT (n=269).

Due to our larger cohort, we were able to evaluate the specific group of TN/HER2+ patients 

who received NAT (only one patient in this cohort did not receive NACT, which is expected 
37–43) separately. Furthermore, we were able to validate our findings for this subpopulation 

using an independent test set, which past studies 20 were unable to do. We found significant 

association between our multivariate models and pCR in TN/HER2+ patients. These 

findings are important because TN/HER2+ patients achieve higher rates of pCR compared to 

HR+/HER2− cancers and have improved disease free and overall survival after a pCR 
28,38,44,45. While there is no current method to predict pCR on an individual basis for TN/

HER2+ patients, our study shows promise that pre-treatment MRI might serve this purpose.

Conclusion

While breast cancer patients who achieve pathologic complete response to neoadjuvant 

therapy have significant improvements in both event-free survival and overall survival, only 

10-50% of patients achieve this level of response to NAT 46. While patients not having a 

complete response may still derive benefit, their treatment is, by definition, sub-optimal. It is 

prudent to find effective means of predicting response to neoadjuvant therapy prior to 

initiating this treatment. Such a predictive tool would allow for early identification of non-

responders, allowing for more personalized medical care. Our study used machine learning 

models that combined MRI-based features for this purpose. We found this method 

successfully predicted pCR in TN/HER2+ patients who had NAT. Our findings highlight the 

potential use of pretreatment breast MRI as a means to stratify breast cancer patients to more 

appropriate treatment regimens, allowing for more personalized care and improved quality 

of life.
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Figure 1. 
Patient Population and Exclusions

AUC and CI of individual features selected for at least one of the four subgroups used for 

predicting pCR in the test set. The triangular marker indicates that a particular feature was 

selected in the training set for the subgroup. Bold indicates that a feature’s confidence 

interval does not include 0.5.
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Figure 2. 
AUC and CI of individual features selected for at least one of the four subgroups used for 

predicting pCR in the test set. The triangular marker indicates that a particular feature was 

selected in the training set for the subgroup. Bold indicates that a feature’s confidence 

interval does not include 0.5
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Table 1

Definitions used for pCR and pNR in this study

Pathologic Complete Response (pCR) Pathologic non-Complete Response 
(pNR)

ypTNM stage
ypT0, N0, M0/X (in cases where the ypTNM stage could not be 

confirmed as indicated by TX or NX, pathology reports were reviewed 
to determine response status)

ypT1 or higher or ypN1 or higher

Pathologic 
evaluation (ypTNM 
stage unavailable)

No remaining invasive or in situ disease in either breast or lymph nodes Any remaining invasive disease in breast 
or lymph nodes noted
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Table 2

Clinical and Pathological Characteristics of Study Population Grouped Taskwise

Details Patients having NAT Patients having NACT TN/HER2+ patients having NAT

Overall Train Test Overall Train Test Overall Train Test

N 288 144 144 269 135 134 151 76 75

Median Age (years) 49.8 47.5 48.6 46.5 49.3 45.1

Age Range (years) 24—76 25—76 24—73 24—76 25—76 24—73 24—73 25—72 24—73

Race

White 184 (64%) 89 (62%) 95 (66%) 169 (63%) 81 (60%) 88 (66%) 98 (65%) 49 (64%) 49 (65%)

Black 85 (30%) 49 (34%) 36 (25%) 83 (31%) 48 (36%) 35 (26%) 46 (30%) 25 (33%) 21 (28%)

Other 16 (6%) 5 (3%) 11 (8%) 15 (6%) 5 (4%) 10 (7%) 7 (5%) 2 (3%) 5 (7%)

NA 3 (1%) 1 (1%) 2 (1%) 2 (1%) 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

Menopausal Status

Pre 158 (55%) 77 (53%) 81 (56%) 155 (58%) 75 (56%) 80 (60%) 89 (59%) 44 (58%) 45 (60%)

Post 129 (45%) 67 (47%) 62 (43%) 113 (42%) 60 (44%) 53 (40%) 62 (41%) 32 (42%) 30 (40%)

NA 1 (0%) 0 (0%) 1 (1%) 1 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

ER Status

Positive 179 (62%) 88 (61%) 91 (63%) 160 (59%) 79 (59%) 81 (60%) 46 (30%) 22 (29%) 24 (32%)

Negative 109 (38%) 56 (39%) 53 (37%) 109 (41%) 56 (41%) 53 (40%) 105 (70%) 54 (71%) 51 (68%)

PR Status

Positive 146 (51%) 71 (49%) 75 (52%) 128 (48%) 62 (46%) 66 (49%) 36 (24%) 18 (24%) 18 (24%)

Negative 142 (49%) 73 (51%) 69 (48%) 141 (52%) 73 (54%) 68 (51%) 115 (76%) 58 (76%) 57 (76%)

HER2 Status

Positive 73 (25%) 34 (24%) 39 (27%) 72 (27%) 33 (24%) 39 (29%) 73 (48%) 34 (45%) 39 (52%)

Negative 215 (75%) 110 (76%) 105 (73%) 197 (73%) 102 (76%) 95 (71%) 78 (52%) 42 (55%) 36 (48%)

Nottingham Grade

1 19 (7%) 9 (6%) 10 (7%) 16 (6%) 9 (7%) 7 (5%) 3 (2%) 1 (1%) 2 (3%)

2 135 (47%) 74 (51%) 61 (42%) 121 (45%) 66 (49%) 55 (41%) 58 (38%) 33 (43%) 25 (33%)

3 132 (46%) 61 (42%) 71 (49%) 130 (48%) 60 (44%) 70 (52%) 88 (58%) 42 (55%) 46 (61%)

NA 2 (1%) 0 (0%) 2 (1%) 2 (1%) 0 (0%) 2 (1%) 2 (1%) 0 (0%) 2 (3%)

Field Strength

1.5T 133 (46%) 63 (44%) 70 (49%) 124 (46%) 60 (44%) 64 (48%) 67 (44%) 33 (43%) 34 (45%)

3T 155 (54%) 81 (56%) 74 (51%) 145 (54%) 75 (56%) 70 (52%) 84 (56%) 43 (57%) 41 (55%)

MRI Model

Avanto
1 67 (23%) 30 (21%) 37 (26%) 63 (23%) 28 (21%) 35 (26%) 39 (26%) 18 (24%) 21 (28%)

OptimaMR450w
2 25 (9%) 15 (10%) 10 (7%) 23 (9%) 15 (11%) 8 (6%) 10 (7%) 6 (8%) 4 (5%)

Signa Excite
2 1 (0%) 0 (0%) 1 (1%) 1 (0%) 0 (0%) 1 (1%) 1 (1%) 0 (0%) 1 (1%)

Signa HDx
2 91 (32%) 51 (35%) 40 (28%) 85 (32%) 49 (36%) 36 (27%) 42 (28%) 25 (33%) 17 (23%)
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Details Patients having NAT Patients having NACT TN/HER2+ patients having NAT

Overall Train Test Overall Train Test Overall Train Test

Signa HDxt
2 57 (20%) 23 (16%) 34 (24%) 54 (20%) 21 (16%) 33 (25%) 34 (23%) 17 (22%) 17 (23%)

Skyra
2 24 (8%) 12 (8%) 12 (8%) 24 (9%) 12 (9%) 12 (9%) 18 (12%) 8 (11%) 10 (13%)

Trio
1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

TrioTim
1 23 (8%) 13 (9%) 10 (7%) 19 (7%) 10 (7%) 9 (7%) 7 (5%) 2 (3%) 5 (7%)

Contrast

Gadavist
3 1 (0%) 1 (1%) 0 (0%) 1 0%) 1 (1%) 0 (0%) 1 (1%) 1 (1%) 0 (0%)

Magnevist
3 185 (64%) 92 (64%) 93 (65%) 175 (65%) 87 (64%) 88 (66%) 98 (65%) 51 (67%) 47 (63%)

Multihance
4 85 (30%) 46 (32%) 39 (27%) 79 (29%) 43 (32%) 36 (27%) 45 (30%) 22 (29%) 23 (31%)

Unknown 17 (6%) 5 (3%) 12 (8%) 14 (5%) 4 (3%) 10 (7%) 7 (5%) 2 (3%) 5 (7%)

1
Siemens, Munich, Germany;

2
GE Healthcare, Little Chalfont, UK;

3
Bayer Healthcare, Berlin, Germany;

4
Bracco, Milan, Italy; Age measured in years; NA = information was not available; Grade = Nottingham grade
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Table 3

Distribution of pCR and pNR in Different Subsets of the Study Population

All Patients with NAT All Patients with NACT TN/HER2+ Patients with NAT

Training Set
pCR 26 26 22

pNR 118 109 54

Test Set
pCR 38 38 28

pNR 106 96 47

Total 288 269 151
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Table 4

Performance of the Multivariate Models in the Test Set: areas under the ROC,95% confidence interval, and p-

value).

Neoadjuvant Therapy Neoadjuvant Chemotherapy Neoadjuvant Therapy 
in TN/HER2+

Number of features selected for 
multivariate modeling 2 7 4

Logistic regression-based classifier 0.658 (0.556—0.760, p = 
0.0106) 0.589 (0.484—0.694, p = 0.140) 0.707 (0.582—0.832, p < 

0.002)

Support vector machine 0.593 (0.482—0.703, p = 0.136) 0.593 (0.489—0.694, p = 0.127) 0.705 (0.581—0.829, p < 
0.002)
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