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MULTIVARIATE MATRIX REFINABLE FUNCTIONS
WITH ARBITRARY MATRIX DILATION

QINGTANG JIANG

Abstract. Characterizations of the stability and orthonormality of a multi-
variate matrix refinable function Φ with arbitrary matrix dilation M are pro-
vided in terms of the eigenvalue and 1-eigenvector properties of the restricted
transition operator. Under mild conditions, it is shown that the approximation
order of Φ is equivalent to the order of the vanishing moment conditions of
the matrix refinement mask {Pα}. The restricted transition operator associ-
ated with the matrix refinement mask {Pα} is represented by a finite matrix
(AMi−j )i,j , with Aj = |det(M)|−1

∑
κ Pκ−j ⊗Pκ and Pκ−j ⊗Pκ being the

Kronecker product of matrices Pκ−j and Pκ. The spectral properties of the
transition operator are studied. The Sobolev regularity estimate of a matrix
refinable function Φ is given in terms of the spectral radius of the restricted
transition operator to an invariant subspace. This estimate is analyzed in an
example.

1. Introduction

Let {Pα} be a finitely supported r × r matrix sequence. The vectors Φ, r-
dimensional column functions on Rd, considered in this paper are solutions to func-
tional equations of the type

Φ =
∑

α∈Zd

PαΦ(M · −α),(1.1)

where M is a d × d integer matrix with m = |det(M)| ≥ 2 and all eigenvalues of
modulus > 1. Define

P(ω) :=
1
m

∑
α∈Zd

Pαexp(−iαω).

Then P is an r × r matrix with trigonometric polynomial entries. In the Fourier
domain, functional equations (1.1) can be written as

Φ̂(ω) = P(tM−1ω)Φ̂(tM−1ω).(1.2)

Throughout this paper, tA and A∗ denote the transpose and the Hermitian adjoint
of a matrix A respectively.
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Equations of type (1.1) or (1.2) are called matrix (vector) refinement equa-
tions; the matrix M is called the dilation matrix; P ({Pα}) is called the (ma-
trix) refinement mask and any solution Φ of (1.1) is called an (M,P) matrix
refinable function (or an (M,P) refinable vector).

For M = 2Ir, r ≥ 1, where Ir is the r × r identity matrix, the characterizations
of the stability and orthonormality of a matrix refinable function Φ were provided
in terms of the mask in [26]; the regularity estimates of Φ were studied in [26],
[19], and in [3], [24] for the case d = 1; the existence of the distribution solution
of (1.1) and the characterization of the weak stability of solutions of (1.1) were
discussed in [21]. In the construction of multivariate wavelets, the dilation matrix
M is involved. For r = 1, the characterizations of the stability and orthonormality
of Φ, a refinable function with matrix dilation, were proved in terms of the mask in
[22]; the optimal Sobolev regularity estimate of Φ was obtained in [15]. Our goal
in this paper is to provide characterizations of the stability, orthonormality and
the approximation order of an (M,P) refinable vector Φ in terms of the mask, and
give the regularity estimate of Φ in terms of the spectral radius of the restricted
transition operator.

Before going further, we introduce some notations used in this paper. Let Z+

denote the set of all nonnegative integers, and let Zd
+ denote the set of all d-tuples

of nonnegative integers. We shall adopt the multi-index notations

ωβ := ωβ1
1 · · ·ωβd

d , β! := β1! · · ·βd!, |β| := β1 + · · ·+ βd

for ω = t(ω1, · · · , ωd) ∈ Rd, β = t(β1, · · · , βd) ∈ Zd
+. If α, β ∈ Zd satisfy β−α ∈ Zd

+,
we shall write α ≤ β and denote(

β
α

)
:=

β!
α!(β − α)!

.

For β = t(β1, · · · , βd) ∈ Zd
+, denote

Dβ :=
∂β1

∂xβ1
1

· · · ∂
βd

∂xβd

d

,

where ∂j = ∂
∂xj

is the partial derivative operator with respect to the jth coordinate,
1 ≤ j ≤ d. Except in some special cases, for ω, ζ ∈ Rd we use ζω (not tζω) to denote
their scalar product.

For a finitely supported complex sequence c on Zd, its support is defined by
supp c := {β ∈ Zd : c(β) 6= 0}, and for a finitely supported r× r matrix sequence C
on Zd, its support is defined by suppC :=

⋃
supp cij , where cij is the (i, j)-entry of

C. Throughout this paper, we assume that the matrix refinement mask P satisfies
supp{Pα} ⊂ [0, N ]d for some positive integer N .

Let ‖x‖ denote the Euclidean norm in Rd, and let dist(x, y) := ‖x − y‖ be the
distance between two points x, y ∈ Rd. For two subsets S1, S2 of Rd, denote

dist(S1, S2) := inf{dist(x, y) : x ∈ S1, y ∈ S2}.

For any subset S of Rd, denote [S] := S ∩ Zd; and if S is a finite set of Zd, let |S|
denote the number of elements in S.

For j = 1, · · · , r, let ej := (δj(k))r
k=1 denote the standard unit vectors in Rr. In

this paper, for an r × 1 vector-valued function or sequence f = t(f1, · · · , fr), when
we say that f is in a space on Rd or Zd, we mean that every component fi of f is in
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this space. In particular, f = t(f1, · · · , fr) ∈ L2(Rd) (or c = (c1, · · · , cr) ∈ l2(Zd))
means that fi ∈ L2(Rd) (or ci ∈ l2(Zd)), i = 1, · · · , r, and we will use the norms

‖f‖2 = (
r∑

i=1

‖fi‖2L2(Rd))
1
2 , ‖c‖2 = (

r∑
i=1

‖ci‖2l2(Zd))
1
2 .

For a matrix A (or an operator A defined on a finite dimensional linear space),
we say A satisfies Condition E if ρ(A) ≤ 1, 1 is the unique eigenvalue on the unit
circle and 1 is simple (the spectral radius of A is denoted by ρ(A)).

Let M be a fixed dilation matrix with m = |det(M)|. Then the coset spaces
Zd/(MZd) and Zd/(tMZd) consist of m elements. Let γk + MZd, 1 ≤ k ≤ m − 1,
and ηj + tMZd, j = 0, · · · ,m − 1, be the m distinct elements of Zd/(MZd) and
Zd/(tMZd) respectively, with γ0 = 0, η0 = 0. Let C0(Td) denote the space of all
r × r matrix functions with trigonometric polynomial entries. For a given matrix
refinement mask P, the transition operator T associated with P is defined on
C0(Td) by

TC(ω) :=
m−1∑
j=0

P(tM−1(ω + 2πηj))C(tM−1(ω + 2πηj))P∗(tM−1(ω + 2πηj)).

(1.3)

Assume that the support of the mask {Pα} is in [0, N ]d, and denote

Ω := {
∞∑

j=0

M−(j+1)xj : xj ∈ [−N,N ]d, ∀j ∈ Z+}.(1.4)

Let H denote the subspace of C0(Td) defined by

H := {H(ω) ∈ C0(Td) : H(ω) =
∑

α

Hαe
−iαω, supp{Hα} ⊂ [Ω]}.(1.5)

Recall that a vector-valued function Ψ = t(ψ1, · · · , ψr) is called stable (orthogo-
nal) if the integer translates of ψ1, · · · , ψr form a Riesz basis (an orthonormal basis)
of their closed linear span in L2(R). It has been shown that an (M,P) refinable
vector Φ is stable if and only if for all ω ∈ Td, GΦ(ω) ≥ cIr for some positive
constant c, and that Φ is orthogonal if and only if GΦ(ω) = Ir, ω ∈ Td; see e.g. [6],
[10], [16] and [23]. Here GΦ(ω) is the Gram matrix of Φ, defined by

GΦ(ω) :=
∑

α∈Zd

Φ̂(ω + 2πα)Φ̂∗(ω + 2πα).(1.6)

In the first part of Section 2, we will show that if the refinement equation (1.1) has
a compactly supported solution Φ such that GΦ(ω) <∞ and det(GΦ(0)) 6= 0, then
P(0) satisfies Condition E. Then we will provide a characterization of the existence
of L2-solutions of (1.1) under the assumption that P(0) satisfies Condition E. In
the last part of Section 2, we will show that the (M,P) refinable vector Φ is stable if
and only if the restriction T|H of the transition operator T to H satisfies Condition
E and the corresponding 1-eigenvector of T|H is positive (or negative) definite on
Td, and show that the (M,P) refinable vector Φ is orthogonal if and only if T|H
satisfies Condition E and P is a Conjugate Quadrature Filter (CQF), i.e.

m−1∑
j=0

P(tM−1(ω + 2πηj))P∗(tM−1(ω + 2πηj)) = Ir, ω ∈ Td.(1.7)
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The accuracy order of the (M,P) refinable vector Φ = t(φ1, · · · , φr) was con-
sidered in [11], [25] and [17] for the case d = 1 and M = (2), in [7] for M = 2Ir

and in [1] for the multivariate case with arbitrary dilation matrix. In Section 3,
we will show that, under mild conditions, Φ provides approximation of order k,
k ∈ Z+\{0}, if and only if the matrix refinement mask P satisfies the vanishing
moment conditions of order k. We will also determine explicitly the coefficients
for the polynomial reproducing under the assumption that the integer shifts of Φ
(φl(· − κ), κ ∈ Zd, l = 1, · · · , r) are linearly independent.

Since the spectra (eigenvalues) of a matrix can be computed directly, it is useful
in practice to transfer equivalently the restricted operator T|H to be a finite matrix,
and therefore transfer the spectral problems of T|H into those of a matrix. We will
show in Section 4 that the restricted transition operator T|H is equivalent to the
matrix (AMi−j)i,j∈[Ω], where Aj is the r2 × r2 matrix given by

Aj =
1

|det(M)|
∑

κ∈[0,N ]d

Pκ−j ⊗Pκ,

and Pκ−j ⊗ Pκ is the Kronecker product of Pκ−j and Pκ. We will also consider
the spectral property of T in Section 4.

In the last part of this paper, Section 5, we will consider the regularity of the
(M,P) refinable vector Φ. An invariant subspace H0 of H under T is found, and
it is shown that Φ is in the Sobolev space W s0−ε(Rd) for any ε > 0, where s0 :=
− log ρ(T|H0 )/(2 logλmax), ρ(T|H0) is the spectral radius of the restriction T|H0 of
T to H0 and λmax is the spectral radius of the dilation matrix M . This estimate is
analyzed in an example.

2. Stability and orthonormality

In this section, we will provide characterizations of the stability and orthonor-
mality of the refinable vector Φ. We first prove some lemmas.

Lemma 2.1. Let γk +MZd, 1 ≤ k ≤ m− 1, and ηj + tMZd, j = 0, · · · ,m− 1, be
the m distinct elements of the coset spaces Zd/(MZd) and Zd/(tMZd) respectively,
with γ0 = 0, η0 = 0. Then

m−1∑
k=0

ei2πtηjM−1γk = mδ(j), 0 ≤ j ≤ m− 1;(2.1)

m−1∑
j=0

ei2πtηjM−1γk = mδ(k), 0 ≤ k ≤ m− 1.(2.2)

Proof. Let G be the finite abelian group consisting of γk + MZd, 1 ≤ k ≤ m − 1.
For any j, 0 ≤ j ≤ m − 1, define on G the functions χj(g) := ei2πtηjM−1g, g ∈ G.
Then χj(g), j = 0, · · · ,m− 1, form the group Ĝ, the character group of G. By the
orthonormality relation of characters (see [4]), we have

m−1∑
k=0

χj(g)χj′(g) = mδj(j′), 0 ≤ j, j′ ≤ m− 1.(2.3)

Let j′ = 0; then (2.3) leads to (2.1). Since the transpose of tM is M , (2.2) follows
from (2.1).
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Let Ω denote the domain defined by (1.4) and denote

Ω+ := {
∞∑

j=0

M−(j+1)xj : xj ∈ [0, N ]d, ∀j ∈ Z+}.

The proof of the following lemma can be carried out by modifying that of Lemma
3.1 in [15] for the case r = 1.

Lemma 2.2. Assume that supp{Pα} ⊂ [0, N ]d and Φ is a compactly supported
(M,P) matrix refinable function. Let T be the transition operator defined by (1.3)
and H the space defined by (1.5). Then

(i) supp Φ ⊂ Ω+,
(ii) H is invariant under T,
(iii) for any C(ω) ∈ C0(Td), there exists some n ∈ Z+ such that TnC ∈ H,
(iv) the eigenvectors of T corresponding to nonzero eigenvalues belong to H.

Proof. (i) can be obtained similarly to Lemma 3.1 in [15]. Here we verify (ii), (iii)
and (iv).

For any H =
∑

`∈Zd H`e
−i`ω ∈ C0(Td), one has

P(ω)H(ω)P∗(ω) = m−2
∑
`∈Zd

∑
κ∈[0,N ]d

∑
n∈Zd

PκH`
tPκ−ne

−iω(n+`).

Thus

TH(ω) = m−2
m−1∑
j=0

∑
`∈Zd

∑
n∈Zd

∑
κ∈[0,N ]d

PκH`
tPκ−ne

−i(tM−1(ω+2πηj))(n+`).

For any n ∈ Zd, ` ∈ Zd, write n + ` = Mτ + γk for some τ ∈ Zd and k ∈ Z+, 0 ≤
k ≤ m− 1. By Lemma 2.1,

TH(ω) = m−1
∑
τ∈Zd

∑
`∈Zd

∑
κ∈[0,N ]d

PκH`
tPκ−(Mτ−`)

 e−iωτ .(2.4)

If H ∈ H, then H =
∑

`∈[Ω]H`e
−i`ω and

TH(ω) = m−1
∑
τ∈Zd

∑
`∈[Ω]

∑
κ∈[0,N ]d

PκH`
tPκ−(Mτ−`)e

−iωτ .

If TH(ω) 6= 0, then Mτ − ` ∈ [−N,N ]d for some ` ∈ [Ω], i.e. Mτ ∈ [−N,N ]d + Ω.
Thus τ ∈M−1[−N,N ]d +M−1Ω = Ω, and we have

TH(ω) = m−1
∑

τ∈[Ω]

 ∑
`∈[Ω]

∑
κ∈[0,N ]d

PκH`
tPκ−(Mτ−`)

 e−iωτ .(2.5)

Hence H is invariant under T.
For C ∈ C0(Td) and j ∈ Z+, denote TjC =:

∑
τ∈Zd C(j)(τ)e−iωτ . By (2.4),

supp{C(1)(τ)} ⊂M−1[−N,N ]d +M−1 suppC.

Thus

supp{C(j)(τ)} ⊂M−1[−N,N ]d +M−1supp{C(j−1)(τ)} ⊂ · · ·
⊂M−1[−N,N ]d + · · ·+M−j [−N,N ]d +M−j suppC ⊂ Ω +M−j suppC.
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Since dist(Ω,Zd\[Ω]) > 0 and limj→∞M−j = 0, there exists n ∈ Z+ such that

dist({0},M−n suppC) < dist(Ω,Zd\[Ω]).

Thus supp{C(n)(τ)} ∈ [Ω] and TnC ∈ H.
Finally, if C ∈ C0(Td) is an eigenvector of T with corresponding eigenvalue

λ0 6= 0, then by (iii), C = λ−1
0 TC = · · · = λ−n

0 TnC ∈ H.

Lemma 2.3. Let Φ be a compactly supported (M,P) matrix refinable function and
GΦ be its Gram matrix defined by (1.6). If GΦ(ω) <∞ for all ω ∈ Td, then

TGΦ = GΦ,(2.6)

and if Φ ∈ L2(Rd), then GΦ ∈ H.

Proof. By (1.2) and the definitions of T, GΦ, we have

TGΦ(ω) =
m−1∑
j=0

∑
`∈Zd

P(tM−1(ω + 2πηj))Φ̂(tM−1(ω + 2πηj) + 2π`)

· Φ̂∗(tM−1(ω + 2πηj) + 2π`)P∗(tM−1(ω + 2πηj))

=
m−1∑
j=0

∑
`∈Zd

Φ̂(ω + 2πηj + 2πtM`)Φ̂∗(ω + 2πηj + 2πtM`)

=
∑

`′∈Zd

Φ̂(ω + 2π`′)Φ̂∗(ω + 2π`′) = GΦ(ω).

By Lemma 2.2 and the Poisson summation formula, GΦ ∈ H if Φ ∈ L2(Rd).

In (2.6), the transition operator T is defined by (1.3) on the function space
consisting of r × r matrix functions with every entry a 2π-periodic function.

We will show that if there is a compactly supported solution Φ of (1.1) satisfying
GΦ(ω) < ∞ and detGΦ(0) 6= 0, then P(0) satisfies Condition E. For this, we first
have

Proposition 2.4. Let Φ be a compactly supported matrix refinable function of (1.1)
and let l be a left (row) eigenvector of an eigenvalue λ0 of P(0) with |λ0| ≥ 1. If
GΦ(ω) <∞, for ω ∈ Td, then

lΦ̂(2πβ) = 0, β ∈ Zd\{0}.(2.7)

Proof. By (2.6),

lGΦ(0)l∗ = lTGΦ(0)l∗

= |λ0|2lGΦ(0)l∗ +
m−1∑
j=1

lP(2πtM−1ηj)GΦ(2πtM−1ηj)P∗(2πtM−1ηj)l∗

≥ lGΦ(0)l∗ +
m−1∑
j=1

lP(2πtM−1ηj)GΦ(2πtM−1ηj)P∗(2πtM−1ηj)l∗.

Thus
m−1∑
j=1

lP(2πtM−1ηj)GΦ(2πtM−1ηj)P∗(2πtM−1ηj)l∗ = 0.
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By (1.2), we have

m−1∑
j=1

∑
α∈Zd

|lΦ̂(2πηj + 2πtMα)|2

=
m−1∑
j=1

∑
α∈Zd

lP(2πtM−1ηj)Φ̂(2πtM−1ηj + 2πα)

· Φ̂(2πtM−1ηj + 2πα)P(2πtM−1ηj)l∗

=
m−1∑
j=1

lP(2πtM−1ηj)GΦ(2πtM−1ηj)P∗(2πtM−1ηj)l∗ = 0.

Therefore,

lΦ̂(2πηj + 2πtMα) = 0, 1 ≤ j ≤ m− 1, α ∈ Zd.

For any β ∈ Zd\{0}, there exist j ∈ Z+, 1 ≤ j ≤ m− 1, n ∈ Z+, α ∈ Zd such that
β = (tM)n(ηj + tMα). Thus

lΦ̂(2πβ) = lP(2πtM−1β) · · ·P(2πtM−nβ)Φ̂(2πtM−nβ)

= lP(0)nΦ̂(2πηj + 2πtMα) = λn
0 lΦ̂(2πηj + 2πtMα) = 0.

This shows (2.7).

We note that if λ0 is an eigenvalue of P(0) with |λ0| ≥ 1 and λ0 6= 1, then for
any left λ0-eigenvector l of P(0), lΦ̂(2πβ) = 0 for all β ∈ Zd.

By Proposition 2.4, the following proposition can be obtained as in [21]. Its
proof is presented here for the sake of completeness.

Proposition 2.5. Let Φ be a compactly supported (M,P) refinable vector with
GΦ(ω) <∞. If det(GΦ(0)) 6= 0, then P(0) satisfies Condition E.

Proof. Let λ0 be an eigenvalue of P(0) with |λ0| ≥ 1, and l be a corresponding left
(row) eigenvector. If λ0 6= 1, by Proposition 2.4, lGΦ(0)l∗ = lΦ̂(0)Φ̂∗(0)l∗ = 0. On
the other hand, since Φ 6= 0, the spectral radius of P(0) ≥ 1. These two facts imply
that if det(GΦ(0)) 6= 0, then 1 is the only eigenvalue of P(0) on the unit circle with
Φ̂(0) being a corresponding right eigenvector, and all other eigenvalues are in the
unit circle. If 1 is not simple, since Φ̂(0) is a right 1-eigenvector of P(0), then one
can find a left (row) 1-eigenvector l of P(0) such that lΦ̂(0) = 0, which again leads
to lGΦ(0)l∗ = 0. Therefore, 1 has to be a simple eigenvalue of P(0), and hence
P(0) satisfies Condition E.

Proposition 2.6. Assume that (1.1) has a compactly supported solution Φ with
GΦ(ω) < ∞. If det(GΦ(2πtM−1ηj)) 6= 0, j = 0, · · ·m − 1, then P(0) satisfies
Condition E and satisfies the vanishing moment conditions of order at least one,
i.e.

lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m− 1,(2.8)

where l is the left 1-eigenvector of P(0).
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Proof. By Proposition 2.5, P(0) satisfies Condition E; and by (2.6),

lGΦ(0)l∗ = lTGΦ(0)l∗

= lGΦ(0)l∗ +
m−1∑
j=1

lP(2πtM−1ηj)GΦ(2πtM−1ηj)P∗(2πtM−1ηj)l∗.

Hence,

lP(2πtM−1ηj)GΦ(2πtM−1ηj)(lP(2πtM−1ηj))∗ = 0, 1 ≤ j ≤ m− 1.

Since GΦ(2πtM−1ηj) > 0, we have lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m− 1.

By Proposition 2.6, we have the following corollary.

Corollary 2.7. If (1.1) has a compactly supported solution Φ which is stable, then
P(0) satisfies Condition E and P satisfies the vanishing moment conditions of order
one (2.8).

Here we note that the vanishing moment condition (2.8) is equivalent to

l
∑

α∈Zd

PMα+γk
= 1, 1 ≤ k ≤ m− 1.(2.9)

In fact if (2.9) holds, then for any j ∈ Z+, 0 ≤ j ≤ m− 1, by (2.1)

lP(2πtM−1ηj) =
1
m

l
∑

α∈Zd

Pαe
−i2πtηjM−1α

=
1
m

m−1∑
k=0

l
∑
β∈Zd

PMβ+γk
e−i2πtηjM−1(Mβ+γk)

=
1
m

m−1∑
k=0

(l
∑
β∈Zd

PMβ+γk
)e−i2πtηjM−1γk

=
1
m

m−1∑
k=0

e−i2πtηjM−1γk = δ(j).

Conversely, if (2.8) holds, then for any k ∈ Z+, 0 ≤ k ≤ m− 1, by (2.2)

1 =
m−1∑
j=0

lP(2πtM−1ηj)ei2πtηjM−1γk

=
1
m

m−1∑
j=0

l
∑
β∈Zd

m−1∑
s=0

PMβ+γse
−i2πtηjM−1γsei2πtηjM−1γk

=
1
m

∑
β∈Zd

l
m−1∑
s=0

PMβ+γs

m−1∑
j=0

e−i2πtηjM−1(γs−γk)

=
1
m

∑
β∈Zd

l
m−1∑
s=0

PMβ+γsmδk(s) = l
∑
β∈Zd

PMβ+γk
,

and therefore (2.9) holds.
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Corollary 2.8. If (1.1) has a compactly supported solution Φ which is stable, then
P(0) satisfies Condition E and P satisfies

l
∑

α∈Zd

PMα+γk
= 1, 1 ≤ k ≤ m− 1.

where l is the left 1-eigenvector of P(0).

In the following we will assume that P(0) satisfies Condition E and let r be the
unit right (column) 1-eigenvector of P(0). Let l be the left (row) 1-eigenvector of
P(0) with lr = 1. Let U be an r × r inverse matrix such that the first column of
U is r and U−1P(0)U is the Jordan canonical form of P(0) with its (1, 1)-entry 1.
Then te1U

−1 is a left (row) 1-eigenvector of P(0) with te1U
−1r = te1U

−1Ue1 = 1.
Thus te1U

−1 = l.
Denote

Πn(ω) := χ[−π,π]d(
tM−nω)

n∏
j=1

P(tM−jω), Π(ω) :=
∞∏

j=1

P(tM−jω).

Then, if P(0) satisfies Condition E, Πn converges to Π pointwise with

Π(ω)U = (Φ̂(ω),0, · · · ,0),(2.10)

where

Φ̂(ω) :=
∞∏

j=1

P(tM−jω)r,(2.11)

and any other compactly supported solution Ψ of (1.1) with Ψ̂(0) 6= 0 is given by
(2.11). About the convergence of the infinite product

∏∞
j=1 P(tM−jω), see [3], [23]

for M = 2Ir, and [20] for general dilation matrices M .
By (2.10), we have, for any r × r matrix A,

Π(ω)AΠ(ω)∗ = Π(ω)UU−1A(U−1)∗U∗Π∗(ω)

= Φ̂(ω)eT
1 U

−1A(U−1)∗e1Φ̂∗(ω) = (lAl∗)Φ̂(ω)Φ̂(ω)∗.

We will provide in the next proposition a characterization of the existence of L2-
solutions of (1.1) under the assumption that P(0) satisfies Condition E. For this,
we have the following lemma.

Lemma 2.9. For any H1(ω), H2(ω) ∈ C0(Td), and any positive integer n,

∫
Td

H1(ω)(TnH2)(ω)dω =
∫

Rd

H1(ω)Πn(ω)H2(tM−nω)Π∗
n(ω)dω.(2.12)
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Proof. The proof of (2.12) can be carried out by induction. In fact for n = 1,∫
Td

H1(ω)TH2(ω)dω = m

∫
Rd

H1(tMω)
m−1∑
j=0

P(ω + 2πtM−1ηj)

·H2(ω + 2πtM−1ηj)P∗(ω + 2πtM−1ηj)χTd(tMω)dω

= m

∫
Rd

H1(tMω)P(ω)H2(ω)P∗(ω)
m−1∑
j=0

χTd(tMω − 2πηj)dω

= m

∫
Td

H1(tMω)P(ω)H2(ω)P∗(ω)
∑

β∈Zd

m−1∑
j=0

χTd(tMω − 2πtMβ − 2πηj)dω

= m

∫
Td

H1(tMω)P(ω)H2(ω)P∗(ω)dω

=
∫

Rd

H1(ω)P(tM−1ω)H2(tM−1ω)P∗(tM−1ω)χTd(tM−1ω)dω

=
∫

Rd

H1(ω)Π1(ω)H2(tM−1ω)Π∗
1(ω)dω.

For n ∈ Z+\{0}, assume that (2.12) holds for any positive integers smaller than n;
then∫

Td

H1(ω)(TnH2)(ω)dω =
∫

Rd

H1(ω)Πn−1(ω)(TH2)(tM1−nω)Π∗
n−1(ω)dω

= mn

∫
Rd

H1(tMnω)Πn−1(tMnω)(TH2)(tMω)Π∗
n−1(

tMnω)dω

= mn

∫
Rd

H1(tMnω)Πn−1(tMnω)
m−1∑
j=0

P(ω + 2πtM−1ηj)H2(ω + 2πtM−1ηj)

·P∗(ω + 2πtM−1ηj)Π∗
n−1(

tMnω)χTd(tMω)dω

= mn
∑

β∈Zd

∫
Td

H1(tMnω)P(tMn−1ω) · · ·P(tMω)P(ω)H2(ω)

·P∗(ω) · · ·P∗(tMn−1ω)
m−1∑
j=0

χTd(tMω − 2πtMβ − 2πηj)dω

= mn

∫
Td

H1(tMnω)P(tMn−1ω) · · ·P(ω)H2(ω)(P(tMn−1ω) · · ·P(ω))∗dω

=
∫

Rd

H1(ω)Πn(ω)H2(tM−nω)Π∗
n(ω)dω.

Thus the proof by induction is completed.

Proposition 2.10. Suppose that P(0) satisfies Condition E. Then Φ defined by
(2.11) is in L2(Rd) if and only if there exists a positive semidefinite H ∈ H such
that TH = H and lH(0)l∗ > 0.

Proof. Suppose Φ ∈ L2(Rd). Then the matrix H(ω) := GΦ(ω) ∈ H, and H(ω) ≥ 0,
TH = H . By Proposition 2.4, lH(0)l∗ = lΦ̂(0)Φ̂∗(0)l∗ = |lr|2 = 1.
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Conversely, since the matrix Πn(ω)H(tM−nω)Π∗
n(ω) converges pointwise to the

matrix

Π(ω)H(0)Π(ω)∗ = (lH(0)l∗)Φ̂(ω)Φ̂(ω)∗,

we have

(lH(0)l∗)
∫

Rd

|Φ̂(ω)|2dω =
r∑

i=1

∫
Rd

lim inf
n→∞

teiΠn(ω)H(tM−nω)Πn(ω)∗eidω

≤
r∑

i=1

lim inf
n→∞

∫
Rd

teiΠn(ω)H(tM−nω)Πn(ω)∗eidω <∞.

The last inequality follows from the fact that∫
Rd

Πn(ω)H(tM−nω)Π∗
n(ω)dω =

∫
Td

(TnH)(ω)dω =
∫

Td

H(ω)dω.

About the existence of L2-solutions of (1.1) for M = 2Ir, a similar result was
obtained in [21]. For the special case r = 1 and d = 1, this result was given in [28].

We will use the fact that if (1.1) has a compactly supported solution which is
stable, then for any H1, H2 ∈ H,

lim
n→∞

∫
Rd

Πn(ω)H1(tM−nω)Πn(ω)∗H2(ω)dω =
∫

Rd

Π(ω)H1(0)Π(ω)∗H2(ω)dω.

(2.13)

Equation (2.13) can be obtained as in [21] for the case M = 2Ir, and we omit the
details here.

The next theorem provides a characterization of the stability of the compactly
supported (M,P) refinable vector Φ.

Theorem 2.11. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matrix P(0) satisfies Condition E,
(ii) for the left (row) 1-eigenvector l of P(0), lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m−1,
(iii) the restriction transition operator T to H satisfies Condition E, and the

corresponding 1-eigenvector is positive (or negative) definite on Td.

Proof. “⇐” Let H0 ∈ H be the positive definite 1-eigenvector of T. By Proposition
2.10, the solution Φ given by (2.11) is in L2(Rd). Let H(ω) = GΦ(ω); then H(ω) ∈
H and TH = H . Since the restriction T|H of T to H satisfies Condition E, H = cH0

for some positive constant c. Thus GΦ(ω) = cH0(ω) > 0, and hence Φ is stable.
“⇒” Let Φ be a compactly supported solution which is stable; then Φ̂(0) = cr

for some nonzero constant c. (i), (ii) follow from Proposition 2.6. To complete
the proof of Theorem 2.11, it is enough to show that the restricted operator T|H
satisfies Condition E, since GΦ is a positive definite 1-eigenvector of T|H.

Let λ0 be an eigenvalue of T|H and H be a corresponding eigenvector. Since

λn
0

∫
Td

H(ω)H(ω)∗dω =
∫

Td

TnH(ω)H(ω)∗dω

=
∫

Rd

Πn(ω)H(tM−nω)Πn(ω)∗H(ω)∗dω,
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the limit limn→∞ λn
0 exists. Thus |λ0| ≤ 1, and 1 is the only eigenvalue of T|H on

the unit circle.
For an eigenvector H of eigenvalue 1 of T|H, denote c0 = lH(0)l∗. Then∫

Td

(H − c0GΦ)(H − c0GΦ)∗dω

=
∫

Rd

Πn(ω)(H(tM−nω)− c0GΦ(tM−nω))Πn(ω)∗(H(ω)− c0GΦ(ω))∗dω

→
∫

Rd

Π(ω)(H(0)− c0GΦ(0))Π(ω)∗(H(ω)− c0GΦ(ω))∗dω

= l(H(0)− c0GΦ(0))l∗
∫

Rd

Φ̂(ω)Φ̂∗(ω)(H(ω)− c0GΦ(ω))∗dω = 0.

Thus H(ω) = c0GΦ(ω). This implies that the geometric multiplicity of the eigen-
value 1 of T|H is 1.

Finally we show that 1 is nondegenerate. Otherwise, there exists H ∈ H such
that TH = GΦ +H . Let H1 = H − c1GΦ, where c1 = lH(0)l∗. Then∫

Td

TnH1(ω)GΦ(ω)∗dω =
∫

Rd

Πn(ω)H1(tM−nω)Πn(ω)∗GΦ(ω)∗dω

→
∫

Rd

Π(ω)(H(0)− c1GΦ(0))Π(ω)∗GΦ(ω)∗dω = 0.

On the other hand,

TnH1 = TnH − c1GΦ = nGΦ +H − c1GΦ;

thus ‖
∫

Td TnH1(ω)GΦ(ω)∗dω‖ → ∞ as n→∞. This leads to a contradiction

The next theorem provides a characterization of the orthonormality of the com-
pactly supported (M,P) refinable vector Φ.

Theorem 2.12. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:

(i) the mask P is a CQF,
(ii) the matrix P(0) satisfies Condition E,
(iii) for the left (row) 1-eigenvector l of P(0), lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m−1,
(iv) the restriction of the transition operator T to H satisfies Condition E.

Proof. “⇐” Since P is a CQF, TIr = Ir. Therefore by Proposition 2.10, the
compactly supported solution Φ given by (2.11) is in L2(Rd). By (iv), GΦ = cIr

for some positive constant c, and hence (1.1) has a compactly supported solution
which is orthogonal.

“⇒” (ii), (iii) and (iv) follow from the orthonormality of Φ and Theorem 2.11.
By the orthonormality of Φ, GΦ(ω) = Ir. Thus TIr = Ir, i.e.

m−1∑
j=0

P(tM−1(ω + 2πηj))P∗(tM−1(ω + 2πηj)) = Ir,

and hence P is a CQF.
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3. Approximation order

In this section we will consider the approximation order of the matrix refinable
function Φ. Throughout this section, we will assume the eigenvalues of the dilation
matrix M are nondegenerate.

Let tM be the transpose of M and λj , j = 1, · · · , r, be the eigenvalues of M .
By our assumptions, | λi |> 1 and every λi is nondegenerate. Thus, there exist d
linearly independent vectors v1, · · · ,vd such that tMvj = λjvj , j = 1, . . . , d. Let

V := (v1,v2, . . . ,vd)(3.1)

be the d× d matrix with column vectors v1, . . . ,vd. Then
tMV = (λ1v1, · · · , λdvd) = V Λ ,

where Λ := diag(λ1, . . . , λd). Denote

λ := t(λ1, · · · , λd).

Then for any x ∈ Rd, β ∈ Zd
+,

(Λx)β = λβxβ .

For 1 ≤ j ≤ d, let Dvj denote the derivative operator in the direction vj , i.e.

Dvj := (∂1, · · · , ∂d)vj .

Then

Dvjf(tMω) = λj(Dvjf)(tMω).

For β = t(β1, · · · , β) ∈ Zd
+, denote

Dβ
V := Dβ1

v1 · · ·Dβd

vd .

Then we have

Dβ
V f(tMω) = λβ(Dβ

V f)(tMω), β ∈ Zd
+.(3.2)

For a compactly supported vector-valued function Ψ = t(ψ1, · · · , ψr), we denote
by S(Ψ) the linear space of all functions of the form

∑r
i=1

∑
`∈Zd ci(`)ψi(· − `),

where {ci(`)}`∈Zd are arbitrary sequences on Zd.
We say Ψ has accuracy of order k if all polynomials of total degree smaller than

k are contained in S(Ψ), i.e. for any β ∈ Zd
+, |β| < k, there exist yβ,i(`) such that

xβ =
r∑

i=1

∑
`∈Zd

yβ,i(`)ψi(x+ `).

For Ψ ∈ L2(Rd) and h > 0, let

Sh(Ψ) := {f(
·
h

) : f ∈ S(Ψ) ∩ L2(Rd)}

be the h-dilation of S(Ψ) ∩ L2(Rd). For k > 0, we say Ψ (or S(Ψ)) provides L2-
approximation of order k if for every sufficiently smooth function f ∈ L2(Rd) and
any h > 0

dist(f, Sh(Ψ)) = O(hk),

where dist here is the L2-distance between a function and a subset of L2(Rd).
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An r×1 vector-valued function Ψ is said to satisfy the Strang-Fix conditions
of order k if there is a finitely supported 1× r vector-valued sequence {q`}`∈Zd such
that f :=

∑
`∈Zd q`Ψ(· − `) satisfies

Dβ f̂(2π`) = δ(β)δ(`), for ` ∈ Zd, β ∈ Zd
+, |β| < k.(3.3)

About the relations among the orders of accuracy, L2-approximation and Strang-
Fix conditions of Ψ, see [13] and the references therein. The next theorem was
obtained by Jia (see [13], [14]).

Theorem 3.1. (Jia). Let Ψ = t(ψ1, · · · , ψr) ∈ L2(Rd) be a compactly supported
vector-valued function. Assume that the sequences (ψ̂j(2πβ))β∈Zd , j = 1, · · · , r, are
linearly independent. Then the following statements are equivalent:

(a) Ψ provides L2-approximation of order k;
(b) Ψ has accuracy of order k;
(c) Ψ satisfies the Strang-Fix conditions of order k.

For a compactly supported (M,P) refinable vector Φ, we will find the L2-
approximation order of Φ in terms of the mask P. For a given mask P, if there
exist a positive integer k and 1 × r complex vectors lβ0 , |β| < k, with l00 6= 0, such
that ∑

0≤α≤β

(
β
α

)
(iλ)α−β lα0D

β−α
V P(2πtM−1ηj) = δ(j)λ−β lβ0 , 0 ≤ j ≤ m− 1,(3.4)

we say that the refinement mask P satisfies the vanishing moment conditions
of order k.

We show in the next theorem that if P satisfies the vanishing moment conditions
of order k and Φ ∈ L2(Rd) is a compactly supported (M,P) refinable vector with
l00Φ̂(0) 6= 0, then Φ satisfies the Strang-Fix conditions of order k.

Theorem 3.2. If P satisfies the vanishing moment conditions of order k, i.e. there
exist 1 × r complex vectors lβ0 , |β| < k, with l00 6= 0 such that (3.4) holds, then any
compactly supported (P,M) refinable vector Φ ∈ L2(R) with l00Φ̂(0) 6= 0 satisfies
the Strang-Fix conditions of order k.

Proof. Let f be the vector-valued function in L2(Rd) defined by

f̂(ω) := b(ω)Φ̂(ω)(3.5)

where b(ω) is the vector-valued function given by b(ω) =
∑

|`|<k b`e
i`ω with

(−i)|β|Dβ
V b(0) =

∑
|`|<k

(tV `)βb` = lβ0 , |β| < k.(3.6)

We will show that f satisfies the Strang-Fix conditions of order k.
Since (∂1, · · · , ∂d) = (Dv1 , · · · , Dvd)V −1, it is enough to show that

Dβ
V f̂(2π`) = cδ(β)δ(`), for ` ∈ Zd and β ∈ Zd

+ , |β| < k,(3.7)

where c is a nonzero constant.
One can check that (3.4) is equivalent to

Dβ
V

(
b(ω)P(tM−1ω)

)
|ω=2πηj = δ(j)λ−βDβ

V b(0), 0 ≤ j ≤ m− 1, β ∈ Zd
+, |β| < k.
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For any ` ∈ Zd, there exists j, 0 ≤ j ≤ m− 1, such that ` ∈ ηj + tMZd. By (3.2),
one has

Dβ
V f̂(2π`) = Dβ

V (b(ω)P(tM−1ω)Φ̂(tM−1ω))|ω=2π`

=
∑

0≤α≤β

(
β
α

)
Dα

V (b(ω)P(tM−1ω))|ω=2π`D
β−α
V (Φ̂(tM−1ω))|ω=2π`

=
∑

0≤α≤β

(
β
α

)
Dα

V (b(ω)P(tM−1ω))|ω=2πηjλ
α−βDβ−α

V Φ̂(2πtM−1`)

=
∑

0≤α≤β

(
β
α

)
λ−αDα

V b(0)δ(j)λα−βDβ−α
V Φ̂(2πtM−1`)

= δ(j)λ−β
∑

0≤α≤β

(
β
α

)
Dα

V b(2π
tM−1`)Dβ−α

V Φ̂(2πtM−1`)

= δ(j)λ−βDβ
V f̂(2πtM−1`);

the next to last equality is because if j = 0, then Dα
V b(2π

tM−1`) = Dα
V b(0) by

2π-periodicity of b(ω), and if j 6= 0, both sides are zero. So we have

Dβ
V f̂(2π`) = δ(j)λ−βDβ

V f̂(2πtM−1`), ` ∈ ηj + tMZd.(3.8)

If ` 6= 0, by repeating this procedure, we have Dβ
V f̂(2π`) = 0. And if ` = 0, β 6= 0,

then by (3.8), Dβ
V f̂(0) = λ−βDβ

V f̂(0). Thus Dβ
V f̂(0) = 0 since λ−β 6= 1. Finally, if

` = 0, β = 0, then

f̂(0) = b(0)Φ̂(0) = l00Φ̂(0) 6= 0.

Therefore we have (3.7) with c = l00Φ̂(0), and proved Theorem 3.2.

Remark 3.3. We note that l00 in (3.4) is a left 1-eigenvector of P(0). Thus if P(0)
satisfies Condition E, then the solution Φ ∈ L2(Rd) of (1.1) with l00Φ̂(0) 6= 0 is
given by (2.11), and Φ given by (2.11) satisfies l00Φ̂(0) 6= 0.

Remark 3.4. Note that for a compactly supported vector-valued function Ψ ∈
L2(R2), the condition that (ψ̂j(2πβ))β∈Zd , j = 1, · · · , r, are linearly independent
in Theorem 3.1 (Jia) is equivalent to det(GΦ(0)) 6= 0. Theorem 4.2 in [7] says that
under the mild condition det(GΦ(0)) 6= 0, Φ providing L2-approximation of order
k implies that the finitely supported 1 × r vector-valued sequence {q`}`∈Zd with
f :=

∑
`∈Zd q`Φ(· − `) satisfying (3.3) is unique.

The above two remarks lead to the following proposition about the uniqueness
of the vectors lβ0 satisfying (3.4).

Proposition 3.5. Assume that P satisfies the vanishing moment conditions of or-
der k with vectors lβ0 , β ∈ Zd

+, |β| < k, l00 6= 0 satisfying (3.4). If (1.1) has a
compactly supported solution Φ ∈ L2(Rd) satisfying det(GΦ(0)) 6= 0, then, up to a
constant, the vectors lβ0 , β ∈ Zd

+, |β| < k, are unique.

Proof. Assume that lβ0 , β ∈ Zd
+, |β| < k, l00 6= 0 are vectors satisfying (3.4). Since

det(GΦ(0)) 6= 0, P(0) satisfies Condition E with Φ̂(0) being a right 1-eigenvector of
P(0). Hence l00Φ̂(0) 6= 0. Let f be the function defined by (3.5) with {b`} defined by
(3.6). As shown in the proof of Theorem 3.2, f satisfies (3.3). Since det(GΦ(0)) 6= 0,
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by Theorem 4.2 in [7], the sequence {b`} is unique (up to a constant). Hence the
vectors lβ0 are also unique.

The next theorem will show that, under mild conditions, P satisfying the vanish-
ing moment conditions of order k is also necessary for Φ to provide L2-approxima-
tion of order k.

Theorem 3.6. Assume that Φ ∈ L2(Rd) is a compactly supported (M,P) refin-
able vector and det(GΦ(2πtM−1ηj)) 6= 0, j = 0, · · · ,m − 1. Then the following
conditions are equivalent:

(i) Φ provides approximation of order k;
(ii) Φ has accuracy of order k;
(iii) Φ satisfies the Strang-Fix conditions of order k;
(iv) the matrix refinement mask P satisfies the vanishing moment conditions of

order k.

Proof. The equivalence of (i), (ii) and (iii) is proved in Theorem 3.1 (Jia). Since
det(GΦ(0)) 6= 0, by Proposition 2.5, P(0) satisfies Condition E. Thus by Remark
3.3 and Theorem 3.2, we know that (iv)⇒ (iii), and we need only to show that
(iii)⇒ (iv).

Let {q`} be the finitely supported 1 × r vector-valued sequence such that f =∑
`∈Zd q`Φ(· − `) satisfies (3.7) with c = 1. Let q̂(ω) denote the Fourier series of

{q`}; then f̂(ω) = q̂(ω)Φ̂(ω). We will prove by induction that

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=2πηj = δ(j)λ−βDβ

V q̂(0), 0 ≤ j ≤ m− 1, β ∈ Zd
+, |β| < k,

(3.9)

which is equivalent to (3.4) with lβ0 = (−i)|β|Dβ
V q̂(0).

First we have f̂(0) = q̂(0)Φ̂(0) 6= 0; thus l00 = q̂(0) 6= 0. Since f̂(2πκ) = δ(κ), κ ∈
Zd,

q̂(0)P(2πtM−1κ)Φ̂(2πtM−1κ) = δ(κ).

Hence for any j ∈ Z+, 0 ≤ j ≤ m− 1, and ` ∈ Zd,

q̂(0)P(2πtM−1ηj)Φ̂(2π` + 2πtM−1ηj) = δ(`)δ(j).(3.10)

Multiplying both sides of (3.10) by Φ̂∗(2π`+2πtM−1ηj) and summing over ` ∈ Zd,

q̂(0)P(2πtM−1ηj)GΦ(2πtM−1ηj) = δ(j)Φ̂∗(0).

If j 6= 0, then by the invertibility of GΦ(2πtM−1ηj), we have q̂(0)P(2πtM−1ηj) = 0,
and if j = 0, then we have

q̂(0)P(0) = Φ̂∗(0)GΦ(0)−1.

On the other hand, since f̂(2πκ) = δ(κ), κ ∈ Zd, we have q̂(0)Φ̂(2πκ) = δ(κ). This
again leads to q̂(0)GΦ(0) = Φ̂∗(0), i.e. q̂(0) = Φ̂∗(0)GΦ(0)−1. Therefore we have
q̂(0)P(0) = q̂(0), and (3.9) is true for β = 0.

For β ∈ Zd
+\{0}, |β| < k, assume that (3.9) is true any α < β, α ∈ Zd

+. We want
to prove that (3.9) holds for β.

Since Dβ
V f̂(2πκ) = 0, for all κ ∈ Zd∑

0≤α≤β

(
β
α

)
Dα

V

(
q̂(ω)P(tM−1ω)

)
|ω=2πκD

β−α
V (Φ̂(tM−1ω))|ω=2πκ = 0,
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and hence for any j ∈ Z+, 0 ≤ j ≤ m− 1, and ` ∈ Zd∑
0≤α≤β

(
β
α

)
Dα

V

(
q̂(ω)P(tM−1ω)

)
|ω=2πηjD

β−α
V (Φ̂(tM−1ω))|ω=2πtM`+2πηj

= 0.

By (3.9) for α < β,

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=2πηj Φ̂(2π`+ 2πtM−1ηj)

= −
∑

0≤α<β

(
β
α

)
λ−αδ(j)Dα

V q̂(0)λα−βDβ−α
V Φ̂(2π`+ 2πtM−1ηj).

If j 6= 0, then as above we have

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=2πηjGΦ(2πtM−1ηj) = 0

and therefore Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=2πηj = 0. If j = 0, then

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=0Φ̂(2π`) + λ−β

∑
0≤α<β

(
β
α

)
Dα

V q̂(0)Dβ−α
V Φ̂(2π`) = 0.

Since f̂(ω) = q̂(ω)Φ̂(ω) and Dβ
V f̂(2π`) = 0, ` ∈ Zd,∑

0≤α≤β

(
β
α

)
Dα

V q̂(0)Dβ−α
V Φ̂(2π`) = 0.

Thus

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=0Φ̂(2π`) = λ−βDβ

V q̂(0)Φ̂(2π`).

This leads to

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=0GΦ(0) = λ−βDβ

V q̂(0)GΦ(0)

and therefore

Dβ
V

(
q̂(ω)P(tM−1ω)

)
|ω=0 = λ−βDβ

V q̂(0).

It follows that (3.9) holds for β, so that the proof by induction is completed.

Denote by Φ̃(x) the bi-infinite column from the integer shifts of Φ:

Φ̃(x) := t
(
· · · , tΦ(x+ `), · · ·

)
`∈Zd ,

and by L the bi-infinite matrix

L := (PMα−β)α,β∈Zd .

Then the refinement equation (1.1) can be written as

LΦ̃(Mx) = Φ̃(x).

The characterization of the accuracy order of Φ in terms of the eigenvalues and
eigenvector structures of the infinite matrix L were studied in [11], [25] and [17]
for the case d = 1. In [1], a similar characterization of the accuracy order of Φ
was obtained based on the ergodic theorem for the multivariate case with arbitrary
matrix dilationsM (no restriction on the diagonalization onM), and the coefficients
yβ,i(κ) for the polynomial reproducing xβ =

∑r
i=1

∑
κ∈Zd yβ,i(κ)φi(x + κ) were

determined explicitly. In the rest of this section, under the assumption that the
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integer shifts (φi(x − `), 1 ≤ i ≤ r, ` ∈ Zd) of Φ are linearly independent, we will
determine explicitly the coefficients yβ

` for the polynomial reproducing∑
`∈Zd

yβ
` Φ(x+ `) = (tV x)β , x ∈ Rd, |β| < k,(3.11)

where V is the matrix defined by (3.1).

Theorem 3.7. Assume that Φ ∈ L2(Rd) is a compactly supported (M,P) refinable
vector and the integer shifts of Φ are linearly independent. If Φ has accuracy of
order k with yβ

` , ` ∈ Zd, β ∈ Zd
+, |β| < k, being the 1× r complex vectors such that

(3.11) holds, then yβ
` satisfy

(i) yβ
` =

∑
0≤α≤β

(
β
α

)
(−tV `)β−αyα

0 ,
(ii) yβL = λ−βyβ, where yβ := (· · · ,yβ

` , · · · )`∈Zd,
(iii) the vectors yβ

0 , β ∈ Zd
+, |β| < k, satisfy the vanishing moment conditions

(3.4).

Proof. Let yβ
` , ` ∈ Zd, β ∈ Zd

+, |β| < k, be the complex vectors such that (3.11)
holds. For any τ ∈ Zd,∑

`∈Zd

yβ
`+τΦ(x+ `) =

∑
`∈Zd

yβ
` Φ(x− τ + `) = (tV (x− τ))β

=
∑

0≤α≤β

(
β
α

)
(−tV τ)β−α(tV x)α

=
∑

0≤α≤β

(
β
α

)
(−tV τ)β−α

∑
`∈Zd

yα
` Φ(x+ `)

=
∑
`∈Zd

∑
0≤α≤β

(
β
α

)
(−tV τ)β−αyα

` Φ(x + `).

By the linear independence of the integer shifts of Φ,

yβ
`+τ =

∑
0≤α≤β

(
β
α

)
(−tV τ)β−αyα

` .(3.12)

Let ` = 0; then (3.12) leads to (i).
For β ∈ Zd

+, |β| < k, we have by (3.11)

(tV x)β = yβΦ̃(x) = yβLΦ̃(Mx)

and

(tV x)β = λ−β(ΛtV x)β = λ−β(tVMx)β = λ−βyβΦ̃(Mx).

By the linear independence of the integer shifts of Φ again,

yβL = λ−βyβ , for β ∈ Zd
+, |β| < k.(3.13)

Finally, we verify (iii). Note that (3.13) can be written equivalently as∑
`∈Zd

yβ
` PM`−`′ = λ−βyβ

`′ , for any `′ ∈ Zd, β ∈ Zd
+, |β| < k,
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and, in particular, for any j, 0 ≤ j ≤ m− 1,

λ−βyβ
−γj

=
∑
`∈Zd

yβ
` PM`+γj =

∑
`∈Zd

∑
0≤α≤β

(
β
α

)
(−tV `)β−αyα

0 PM`+γj .(3.14)

For any κ ∈ Zd
+, |κ| < k, multiplying both side of (3.14) by

λβ−κ(−tV γj)κ−β

(
κ
β

)
and summing over β ≤ κ, one has by (3.12) and ΛtV = tVM ,

λ−κyκ
0 = λ−κ

∑
0≤β≤κ

(
κ
β

)
(−tV γj)κ−βyβ

−γj

=
∑
`∈Zd

∑
0≤β≤κ

∑
0≤α≤β

(
κ
β

)(
β
α

)
λβ−κ(−tV γj)κ−β(−tV `)β−αyα

0 PM`+γj

=
∑
`∈Zd

∑
0≤α≤κ

∑
α≤β≤κ

(
κ
α

) (
κ− α
β − α

)
λα−κ(−tV γj)κ−β(−tVM`)β−αyα

0 PM`+γj

=
∑
`∈Zd

∑
0≤α≤κ

(
κ
α

)
λα−κ

·
∑

0≤τ≤κ−α

(
κ− α
τ

)
(−tV γj)κ−α−τ (−tVM`)τyα

0 PM`+γj

=
∑
`∈Zd

∑
0≤α≤κ

(
κ
α

)
λα−κ(−tV (M`+ γj))κ−αyα

0 PM`+γj .

Thus for any κ ∈ Zd
+, |κ| < k,

∑
0≤α≤κ

(
κ
α

)
(−λ)α−κyα

0

∑
`∈Zd

(tV (M`+ γj))κ−αPM`+γj = λ−κyκ
0 .(3.15)

For any s ∈ Z+, 0 ≤ s ≤ m− 1, multiplying both side of (3.15) by e−2πtηsM−1γj

and summing over j = 0, · · · ,m− 1, one has by Lemma 2.1,

∑
0≤α≤κ

(
κ
α

)
(−λ)α−κyα

0

m−1∑
j=0

∑
`∈Zd

(tV (M`+ γj))κ−αPM`+γje
−2πtηsM−1γj

= λ−κyκ
0

m−1∑
j=0

e−2πtηsM−1γj = mλ−κyκ
0 δ(s).

Thus

1
m

∑
0≤α≤κ

(
κ
α

)
(−λ)α−κyα

0

∑
`′∈Zd

(tV `′)κ−αP`′e
−2πtηsM−1`′ = λ−κyκ

0 δ(s).
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On the other hand, one has∑
0≤α≤κ

(
κ
α

)
(iλ)α−κyα

0D
κ−α
V P(2πtM−1ηs)

=
1
m

∑
0≤α≤κ

(
κ
α

)
(iλ)α−κyα

0

∑
`∈Zd

(−itV `)κ−αP`e
−itηsM−1`

=
1
m

∑
0≤α≤κ

(
κ
α

)
(−λ)α−κyα

0

∑
`∈Zd

(tV `)κ−αP`e
−itηsM−1`.

Therefore for any s ∈ Z+, 0 ≤ s ≤ m− 1, κ ∈ Zd
+, |κ| < k,∑

0≤α≤κ

(
κ
α

)
(iλ)α−κyα

0D
κ−α
V P(2πtM−1ηs) = δ(s)λ−κyκ

0 ,

and the proof of (iii) is completed.

Remark 3.8. By Proposition 3.5, yβ
0 , β ∈ Zd

+, |β| < k, are the unique vectors
satisfying (3.4). Thus the unique coefficients yβ

` for the reproducing polynomial
are given by (i) of Theorem 3.7, and they satisfy (ii) of Theorem 3.7.

4. The restricted transition operator

Assume that P is a matrix refinement mask with supp{Pα} ⊂ [0, N ]d for some
positive integer N , and Φ is a compactly supported (M,P) refinable vector. It was
shown in Section 2 that to decide whether Φ is stable (orthogonal) or not, we need
only to check the properties of the spectra (eigenvalues) and the 1-eigenvector of the
restriction T|H of the transition operator T to H, where H is the finite dimensional
space defined by (1.5) and T is the transition operator defined by (1.3). It is useful
in practice to transfer equivalently the restricted operator T|H to a finite matrix,
since eigenvalues and eigenvectors of a finite matrix can be computed directly. In
this section, we give the representing matrix T of T|H, and then study the spectral
properties of T.

For H(ω) =
∑

`∈[Ω]H`e
−i`ω ∈ H, by (2.5), under the basis {e−i`ω}`∈[Ω] of H, T

transfers the sequence {H`}`∈[Ω] into another sequence:

{m−1
∑
`∈[Ω]

∑
κ∈[0,N ]d

PκH`
tPκ−(Mτ−`)}τ∈[Ω].

Now let us look at the matrices of the form PκH`
tPτ . Let Q = (Q(1), · · · , Q(r))

be an r × r matrix with Q(j) the jth column, and define an r2 × 1 vector vec(Q)
by

vec(Q) := t(tQ(1), · · · , tQ(r)).

Then we have the following lemma.

Lemma 4.1. Let P,Q,H be r × r matrices, then

vec(PHtQ) = (Q ⊗ P )vec(H),(4.1)

where Q⊗ P = (qijP )1≤i,j≤r, the Kronecker product of matrices Q and P .
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Proof. Let P (i), H(i) denote the ith column of P and H , respectively, and let qij
be the (i, j)-entry of Q. Then the jth column of PHtQ is

PH (qji)
r
i=1 =

r∑
i=1

qjiPH(i) = (qj1P, · · · , qjrP )t(tH(1), · · · , tH(r)).

Thus

vec(PHtQ) = t(t(PH(q1i)r
i=1), · · · , t(PH(qri)r

i=1))

= (qjiP )1≤j≤r,1≤i≤r
t
(
tH(1), · · · , tH(r)

)
= (Q⊗ P )vec(H).

About formula (4.1) for more general matrices, one can refer to [12], and in
particular, one has that, for any 1× r vectors v,u and r × r matrix Q,

(v ⊗ u)vec(Q) = uQtv,(4.2)

where v ⊗ u denotes the Kronecker product of v,u.
For j ∈ Zd, define r2 × r2 matrices

Aj := m−1
∑

`∈[0,N ]d

P`−j ⊗P`,

and define an (r2|[Ω]|)× (r2|[Ω]|) matrix

T := (AMi−j)i,j∈[Ω] .(4.3)

For f =
∑

j∈[Ω] fje
−iωj ∈ H, let vec(f) be the (r2|[Ω]|)× 1 vector defined by

vec(f) := t(· · · , t(vec(fj)), · · · )j∈[Ω].

Then from (2.5) and (4.1), for any τ ∈ [Ω],

vec((TH)τ ) = m−1
∑
`∈[Ω]

∑
κ∈[0,N ]d

vec(PκH`
tPκ−(Mτ−`))

= m−1
∑
`∈[Ω]

∑
κ∈[0,N ]d

(Pκ−(Mτ−`) ⊗Pκ)vec(H`)

=
∑
`∈[Ω]

AMτ−`vec(H`) = (T vec(H))(τ).

Hence we have

Theorem 4.2. The restriction of the transition operator T to H is equivalent to
the matrix T defined by (4.3) under the basis {e−iω`}`∈[Ω] of H, and for H ∈ H

vec(TH) = T vec(H).(4.4)

Lemma 2.2, Theorem 2.11, Theorem 2.12 and Theorem 4.2 lead to the following
two corollaries.

Corollary 4.3. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matrix P(0) satisfies Condition E,
(ii) for the left (row) 1-eigenvector l of P(0), lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m−1,
(iii) the finite matrix T satisfies Condition E and the corresponding right 1-

eigenvector v is such that H0(ω) is positive (or negative) definite on Td, where
H0(ω) is the unique matrix function in H satisfying vec(H0) = v.
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Corollary 4.4. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:

(i) the mask P is a CQF,
(ii) the matrix P(0) satisfies Condition E,
(iii) for the left (row) 1-eigenvector l of P(0), lP(2πtM−1ηj) = 0, 1 ≤ j ≤ m−1,
(iv) the finite matrix T satisfies Condition E.

By (4.4), v is an eigenvector of T if and only if the matrix-valued function H(ω)
in H with vec(H) = v is an eigenvector of T, and furthermore v, H(ω) correspond
to the same eigenvalue. Therefore to study the spectral properties of T, we need
only to consider those of the matrix T . In the rest of this section, we will discuss the
spectral properties of T . In the following, we will assume that the eigenvalues of the
dilation matrix M are nondegenerate, and let λj , 1 ≤ j ≤ d, be the eigenvalues of
M . Let V denote the matrix defined by (3.1). We also assume that P satisfies the
vanishing moment condition of order k for some positive integer k, i.e. P satisfies
(3.4) for some vectors lβ0 , β ∈ Zd

+, |β| < k, with l00 6= 0.
Let k0 ∈ Z+, k0 ≤ k, be the largest integer such that there exist 1 × r complex

vectors lβ0 , β ∈ Zd
+, k ≤ |β| ≤ k + k0 − 1, satisfying∑

0≤α≤β

(
β
α

)
(iλ)α−βlα0D

β−α
V P(0) = λ−βlβ0 .(4.5)

If all the numbers λ−β , k ≤ |β| ≤ k + k0 − 1, are not eigenvalues of P(0) for some
k0 ∈ Z+, then the vectors lβ0 , β ∈ Zd

+, k ≤ |β| ≤ k+k0−1, can be chosen iteratively
by

lβ0
(
λ−βIr −P(0)

)
=

∑
0≤α<β

(
β
α

)
(iλ)α−β lα0 (Dβ−α

V P)(0).

For the case r = 1, since P(0) = 1, k0 = k.
Let B(ω) =

∑
`∈Zd

+,|`|<k+k0
B`e

i`ω be the vector trigonometric polynomial satis-
fying

Dβ
V B(0) = i|β|lβ0 , β ∈ Zd

+, |β| < k + k0.(4.6)

The coefficients Bκ, 1× r vectors, can be gotten by the following equations:∑
|`|<k+k0

(tV `)βB` = lβ0 , β ∈ Zd
+, |β| < k + k0.

By (3.2), for any j ∈ Z+, 0 ≤ j ≤ m− 1,

Dβ
V

(
B(tMω)P(ω)

)
|ω=2πtM−1ηj

=
∑

0≤α≤β

(
β
α

)
λα

(
(Dα

V B)(tMω)Dβ−α
V P(ω)

)
|ω=2πtM−1ηj

=
∑

0≤α≤β

(
β
α

)
λα(Dα

VB)(0)Dβ−α
V P(ω)|ω=2πtM−1ηj

=
∑

0≤α≤β

(
β
α

)
(iλ)αlα0D

β−α
V P(2πtM−1ηj).
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Thus the vanishing moment conditions (3.4) and (4.5) can be written equivalently
in the forms

Dβ
V

(
B(tMω)P(ω)

)
|ω=2πtM−1ηj

= δ(j)Dβ
V B(0),

β ∈ Zd
+, |β| < k, 0 ≤ j < m,

(4.7)

and

Dβ
V

(
B(tMω)P(ω)

)
|ω=0 = Dβ

VB(0), β ∈ Zd
+, k ≤ |β| < k + k0.(4.8)

Let lβ0 , β ∈ Zd
+, |β| < k + k0, be the row vectors satisfying (3.4) and (4.5). For

κ ∈ Zd, define row vectors lβκ by

lβκ :=
∑

0≤α≤β

(
β
α

)
(−tV κ)β−αlα0 , for β ∈ Zd

+, |β| < k + k0,(4.9)

and then define 1× (r2|[Ω]|) vectors Lβ
Ω by

Lβ
Ω := (· · · , lβ(κ), · · · )κ∈[Ω](4.10)

with

lβ(κ) :=
∑

0≤α≤β

(−1)α

(
β
α

)
l
α

−κ ⊗ lβ−α
0 , κ ∈ Zd.

Lemma 4.5. For any β ∈ Zd
+, |β| < k+k0, let Lβ

Ω be the vectors defined by (4.10).
Then for any H ∈ H

Lβ
Ωvec(H) = (−i)|β|Dβ

V (B(ω)H(ω)B∗(ω)) |ω=0.

Proof. By (4.2), for any β ∈ Zd
+, |β| < k + k0, and any H ∈ H

Lβ
Ωvec(H) =

∑
κ

lβ(κ)vec(Hκ) =
∑

κ

∑
0≤α≤β

(−1)α

(
β
α

)
lβ−α
0 H(κ)(lα−κ)∗

=
∑

κ

∑
0≤α≤β

(−1)α

(
β
α

)
lβ−α
0 H(κ)

∑
0≤γ≤α

(tV κ)γ

(
α
γ

)
(lα−γ

0 )∗

=
∑

κ

∑
0≤α≤β

∑
0≤γ≤α

(−1)α

(
β
α

)

· (tV κ)γ

(
α
γ

)
(−i)|β−α|Dβ−α

V B(0)H(κ)i|α−γ|Dα−γ
V B∗(0)

= (−i)|β|
∑

0≤α≤β

∑
0≤γ≤α

(
β
α

)(
α
γ

)
Dβ−α

V B(0)
∑

κ

(−itV κ)γH(κ)Dα−γ
V B∗(0)

= (−i)|β|
∑

0≤α≤β

∑
0≤γ≤α

(
β
α

)(
α
γ

)
Dβ−α

V B(0)Dγ
VH(0)Dα−γ

V B∗(0)

= (−i)|β|Dβ
V (B(ω)H(ω)B∗(ω)) |ω=0.

For β ∈ Zd
+, |β| < k + k0, denote

Eβ := {β′ : λβ′ = λβ , β′ ∈ Zd
+, |β′| < k + k0}.
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Theorem 4.6. For any β ∈ Zd
+, |β| < k + k0, let Lβ

Ω be the vectors defined by
(4.10). Then

Lβ
ΩT = λ−βLβ

Ω.(4.11)

If there exists a β′ ∈ Eβ such that Lβ′
Ω 6= 0, then λ−β is an eigenvalue of T with a

corresponding left eigenvector Lβ′
Ω .

Proof. We need only to show that for any H ∈ H,

Lβ
ΩT vec(H) = λ−βLβ

Ωvec(H).

In fact, by (4.4) and Lemma 4.5,

(iλ)βLβ
ΩT vec(H) = (iλ)βLβ

Ωvec(TH)

= Dβ
V

(
B(tMω)(TH)(tMω)B∗(tMω)

)
|ω=0

=
m−1∑
j=0

Dβ
V (B(tMω)P(2πω + 2πtM−1ηj)

·H(2πω + 2πtM−1ηj)P(2πω + 2πtM−1ηj)∗B∗(tMω))|ω=0

=
m−1∑
j=0

∑
0≤α≤β

∑
0≤γ≤α

(
β
α

) (
α
γ

)
Dα

V

(
B(tMω)P(ω)

)
|ω=2πtM−1ηj

·Dγ
VH(ω)|ω=2πtM−1ηj

Dβ−α−γ
V

(
B(tMω)P(ω)

)∗ |ω=2πtM−1ηj
.

Since for any β, α, γ ∈ Zd
+ with |β| < k+ k0 and γ ≤ α ≤ β, we have the inequality

min(|α|, |β − α− γ|) < k, it follows, from (4.7) and (4.8), that

(iλ)βLβ
ΩT vec(H) =

∑
0≤α≤β

∑
0≤γ≤α

(
β
α

) (
α
γ

)
Dα

V (B(tMω)P(ω))|ω=0

·Dγ
V H(ω)|ω=0D

β−α−γ
V

(
B(tMω)P(ω)

)∗ |ω=0

=
∑

0≤α≤β

∑
0≤γ≤α

(
β
α

) (
α
γ

)
Dα

VB(0)Dγ
V H(0)Dβ−α−γ

V B∗(0)

= Dβ
V (B(ω)H(ω)B∗(ω)) |ω=0 = i|β|Lβ

Ωvec(H).

Therefore Lβ
ΩT vec(H) = λ−βLβ

Ωvec(H). The second statement of Theorem 4.2
follows from (4.11), and the proof of Theorem 4.6 is completed.

Since L0
Ω = (l00, · · · , l00) 6= 0, 1 is an eigenvalue of T. In the case r = 1, d =

1, M = (2), then Ω = [−N,N ] and k0 = k. For any n ∈ Z+, n ≤ 2k − 1,
the vector ((−N)n, · · · , (−1)n, 0n, 1n, · · · , Nn) (with 0n := δ(n)) is the generalized
left eigenvector of the eigenvalue 2−n of T , and hence 2−n, 0 ≤ n ≤ 2k − 1, are
eigenvalues of T (see [5]). Theorem 4.6 says that for β ∈ Zd

+, |β| < k + k0, if
there exits β′ ∈ Eβ such that Lβ′

Ω 6= 0, then λ−β is an eigenvalue of T. If the
refinement equation (1.1) has a compactly supported solution Φ with Φ ∈ W s(Rd)
for some s ≥ 0, then one can show similarly as in [19] that Lβ

Ω 6= 0 for β ∈
Zd

+, |β| ≤ min(k + k0 − 1, 2s), and hence λ−β are eigenvalues of T. In this paper,
for s ≥ 0, we say a vector-valued function f = t(f1, · · · , fr) is in the Sobolev space
W s(Rd) if every component fj of f satisfies (1 + |ω|2) s

2 f̂j(ω) ∈ L2(Rd), 1 ≤ j ≤ r.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MATRIX REFINABLE FUNCTIONS 2431

The vectors Lβ
Ω play an important role in estimating the Sobolev regularity of the

refinable vector Φ, which will be done in the next section.

5. Sobolev regularity estimates

Assume that P ({Pα}) is a matrix refinement mask satisfying (3.4) and (4.5) for
some positive integers k, k0 with k0 ≤ k, and Φ is a compactly supported (M,P)
refinable vector. Suppose supp{Pα} ⊂ [0, N ]d, and let H be the space defined by
(1.5). In this section, we will estimate the Sobolev regularity of Φ in terms of
the spectral radius of the restriction of the transition operator T to an invariant
subspace H0 of H.

For j ∈ Z+, 1 ≤ j ≤ r, and α ∈ Zd
+, |α| < k, let jlαΩ, jr

α
Ω be the 1 × (r2|[Ω]|)

vectors defined by

jlαΩ := (· · · , jlα(κ), · · · )κ∈[Ω], jrα
Ω := (· · · , jrα(κ), · · · )κ∈[Ω](5.1)

with

jlα(κ) := tej ⊗ lακ , jrα(κ) := l
α

−κ ⊗ tej , κ ∈ Zd.

Lemma 5.1. For j, 1 ≤ j ≤ r, and α ∈ Zd
+, |α| ≤ k − 1, let jlαΩ , jrα

Ω be the row
vectors defined by (5.1). Then for any H ∈ H,

jlαΩvec(H) = iαDα
V (B(ω)H(ω)ej) |ω=0,

jrα
Ωvec(H) = (−i)αDα

V

(
tejH(ω)B∗(ω)

)
|ω=0.

Proof. For any H ∈ H with H(ω) =
∑

κ∈[Ω]Hκe
−iκω,

Dα
V (B(ω)H(ω)ej) |ω=0 =

∑
0≤γ≤α

(
α
γ

)
Dγ

V B(0)Dα−γ
V H(0)ej

= iα
∑

κ

∑
0≤γ≤α

(
α
γ

)
(−tV κ)α−γ lγ0Hκej = iα

∑
κ

lακHκej

= iα
∑

κ

(tej ⊗ lακ)vec(Hκ) = iαjlαΩvec(H).

The proof of the second formula is similar, and it is omitted here.

Let H0 be the subspace of H defined by

H0 := {H ∈ H : Lβ
Ωvec(H) = 0, jlαΩvec(H) = 0 and(5.2)

jrα
Ωvec(H) = 0, ∀β, α ∈ Zd

+, |β| < k + k0, |α| < k, 1 ≤ j ≤ r}.

Proposition 5.2. The subspace H0 of H defined by (5.2) is invariant under T.

Proof. By Theorem 4.6, for any H ∈ H0 and β ∈ Zd
+, |β| < k + k0,

Lβ
Ωvec(TH) = Lβ

ΩT vec(H) = λ−βLβ
Ωvec(H) = 0.

By Lemma 5.1, for any α ∈ Zd
+, |α| < k, the equalities jlαΩvec(H) = 0 and

jrα
Ωvec(H) = 0 for all j, 1 ≤ j ≤ r, are equivalent to Dα

V (B(ω)H(ω)) |ω=0 = 0
and Dα

V (H(ω)B∗(ω)) |ω=0 = 0, respectively. One can check by (4.7) and (4.8)
that Dα

V (B(ω)TH(ω)) |ω=0 = 0 (Dα
V (TH(ω)B∗(ω)) |ω=0 = 0 resp.) for all α ∈

Zd
+, |α| < k, if Dα

V (B(ω)H(ω)) |ω=0 = 0 (Dα
V (H(ω)B∗(ω)) |ω=0 = 0 resp.) for

α ∈ Zd
+, |α| < k. Thus H0 is invariant under T.
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Let T|H0 denote the restriction of T to H0. We will want to find the Sobolev
regularity estimate of Φ in terms of the the spectral radius ρ(T|H0 ) of T|H0 , and
therefore we need to find the maximum of the moduli of the eigenvalues of T|H0 .
Since the product of the left and right eigenvectors of a simple eigenvalue of a
matrix is not zero, Theorem 4.6 leads to the following corollary,

Corollary 5.3. If λ−β with β ∈ Zd
+, |β| < k + k0, is a simple eigenvalue of T and

there exists β′ ∈ Eβ such that Lβ′
Ω 6= 0, then λ−β is not an eigenvalue of T|H0 .

The next proposition provides a way to find the eigenvalues of T|H0 . Let LΩ be

the r2|[Ω]| by
(
d+ k + k0 − 1

d

)
matrix defined by

LΩ := (· · · , t(Lβ
Ω), · · · )β∈Zd

+,|β|≤k+k0−1,

and for j, 1 ≤ j ≤ r, let Lj and Rj be the r2|[Ω]| by
(
d+ k − 1

d

)
matrices

defined by

Lj := (· · · , t(jlαΩ), · · · )α∈Zd
+,|α|≤k−1, Rj := (· · · , t(jrα

Ω), · · · )α∈Zd
+,|α|≤k−1.

Then define the r2|[Ω]| by
(
d+ k + k0 − 1

d

)
+ 2r

(
d+ k − 1

d

)
matrix MΩ by

MΩ := (LΩ, L1, · · · , Lr, R1, · · · , Rr).

Proposition 5.4. Assume that λ0 is a nonzero eigenvalue of T,. Then λ0 is an
eigenvalue of T|H0 if and only if rank(tMΩ(u1, · · · ,ul)) < l, where u1, · · · ,ul con-
stitute a basis of the λ0-eigenspace of T .

Proof. Note that λ0 is a nonzero eigenvalue of T|H0 if and only if λ0 is a nonzero
eigenvalue of T with a corresponding right eigenvector u satisfying

tMΩu = 0.(5.3)

By the fact that for any matrices M1,M2 (with the product M1M2 meaningful),
rank(M1M2) ≤ min(rankM1, rankM2), we know that if rank(tMΩ(u1, · · · ,ul)) ≥ l,
then rank(tMΩ(u1, · · · ,ul)) = l, and therefore any linear combinations of u1, · · · ,ul

does not satisfies (5.3). Thus λ0 is not an eigenvalue of T|H0 .
If rank(tMΩ(u1, · · · ,ul)) = l0 < l, we assume without loss of generality that the

rank of tMΩ( u1, · · · ,ul0) is l0. Thus tMΩuj , j = 1, · · · , l0, are linearly indepen-
dent, while tMΩuj , j = 1, · · · , l0 + 1, are linearly dependent. Hence we can find
constants c1, · · · , cl0 such that

v := c1u1 + · · ·+ cl0ul0 + ul0+1

satisfies (5.3), i.e. λ0 is an eigenvalue of T|H0 with H0 ∈ H given by vec(H0) = v,
with v being a corresponding eigenvector.

Proposition 5.4 provides an easy way to find eigenvalues of T|H0 , and its proof
shows how to find the corresponding eigenvector. By Proposition 5.4, we have the
following corollary.

Corollary 5.5. The spectral radius ρ(T|H0) of T|H0 is the maximum of the moduli
of all eigenvalues λ0 of T satisfying rank(tMΩ(u1, · · · ,ul)) < l, where u1, · · · ,ul

are a basis of the λ0-eigenspace of T .
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For the next proposition, we need to consider the transition operators on other
spaces. Denote N := max(N, k + k0) and

Ω1 := {
∞∑

j=0

M−(j+1)xj : xj ∈ [−N ,N ]d, ∀j ∈ Z+}.

Let HΩ1 denote the space of all r × r matrices with each entry a trigonometric
polynomial whose Fourier coefficients are supported in [Ω1], and let TΩ1 denote
the operator T restricted to HΩ1 . Then TΩ1 is a linear operator on HΩ1 leaving
HΩ1 and H invariant, and the representing matrix of TΩ1 is

TΩ1 := (A2i−j)i,j∈[Ω1].

Let H0
Ω1

be the subspace of HΩ1 defined as follows: H ∈ H0
Ω1

if and only if
Lβ

Ω1
vec(H) = 0, jlαΩ1

vec(H) = 0 and jrα
Ω1

vec(H) = 0 for all β, α ∈ Zd
+, |β| <

k+ k0, |α| < k, 1 ≤ j ≤ r. In this case Lβ
Ω1

, jlαΩ1
and jrα

Ω1
are 1× (r2|[Ω1]|) vectors

defined by (4.9) and (5.1), respectively, with Ω1 instead of Ω. It can be shown
similarly that H0

Ω1
is invariant under TΩ1 , and we let T|H0

Ω1
denote the restriction

of TΩ1 (T) to H0
Ω1

. Let H0 ∈ HΩ1 be defined by

H0(ω) =
d∑

j=1

(1− cos(ωj))k+k0Ir, ω = t(ω1, · · · , ωd) ∈ Rd.(5.4)

Then H0(ω) ∈ H0
Ω1

, and thus H0
Ω1

is nontrivial. By Lemma 2.2, the eigenvectors of
TΩ1 corresponding to nonzero eigenvalues are in H. Therefore TΩ1 (T|H0

Ω1
resp.)

and the restriction T|H of T to H (T|H0 resp.) have the same nonzero eigenvalues.
Hence ρ(T|H0) = ρ(T|H0

Ω1
), where ρ(T|H0 ) and ρ(T|H0

Ω1
) denote the spectral radii

of T|H0 and T|H0
Ω1

, respectively.
The following proposition is obtained by modifying the proof of Proposition 4.4

in [26] or Proposition 3.3 in [19].
Choose a vector norm on the space H0

Ω1
and define the operator (matrix) norm

‖T|H0
Ω1
‖ with respect to this vector norm. Then

lim
n→∞ ‖(T|H0

Ω1
)n‖1/n = ρ(T|H0

Ω1
) = ρ(T|H0).

Proposition 5.6. Assume that P satisfies conditions (3.4) and (4.5), and ρ(T|H0)
is the spectral radius of T|H0 . Then for any ε > 0, for the corresponding (M,P)
matrix refinable function Φ, there exists a constant c independent of n such that∫

Dn

∣∣∣Φ̂(w)
∣∣∣2 dw ≤ c (ρ(T|H0 ) + ε)n

,

where Dn := tMnTd\(tMn−1Td), n ∈ Z+.

Proof. Let H0(ω) ∈ H0
Ω1

be defined by (5.4). Since tM−1Td is a neighborhood of
the origin, there exists a positive integer q such that 1

q Td ⊂ tM−1Td. Note that

for ω ∈ Dn, Φ̂(ω) = Πn(ω)Φ̂(tM−nω), and for ω ∈ Td\(1
q Td), H0(ω) ≥ c0Ir with

c0 = d(1− cos(π
q ))k+k0 > 0. Thus by the continuity of Φ̂(ω) on Td, we have for any
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positive integer n,∫
Dn

Φ̂(ω)Φ̂∗(ω)dω =
∫

Dn

Πn(ω)Φ̂(tM−nω)Φ̂∗(tM−nω)Π∗
n(ω)dω

≤ c

∫
Dn

Πn(ω)Π∗
n(ω)dω ≤ c

∫
tMnTd\( 1

q
tMnTd)

Πn(ω)Π∗
n(ω)dω

≤ c

∫
tMnTd\( 1

q
tMnTd)

Πn(ω)H0(tM−nω)Π∗
n(ω)dω

≤ c

∫
Rd

Πn(ω)H0(tM−nω)Π∗
n(ω)dω = c

∫
Td

(Tn
Ω1
H0)(ω)dω,

where the last equality follows from Lemma 2.9. Since the Hilbert-Schmidt norm
‖Q‖2 =

√
Tr(QQ∗) is an equivalent norm for finite matrices, by applying the trace

operation, we obtain∫
Dn

|Φ̂(ω)|2dω =
∫

Dn

Tr
(
Φ̂(ω)Φ̂∗(ω)

)
dω ≤ cε

(
ρ(T|H0

Ω1
) + ε

)n

= cε (ρ(T|H0) + ε)n

with cε independent of n.

Proposition 5.6 together with the usual Littlewood-Paley technique leads to the
following Sobolev estimate of the refinable vector Φ.

Theorem 5.7. Assume that P satisfies (3.4) and (4.5). Then the (M,P) matrix
refinable function Φ is in W s(Rd) for any s < s0 := − log ρ(T|H0)/(2 log λmax),
where ρ(T|H0) is the spectral radius of T|H0 and λmax := max{|λ1|, · · · , |λd|}.

Proof. For the dilation matrix M , there exists some n0 ∈ Z+ such that Td ⊂
(tM)n0+1Td. For s < s0, let ε > 0 be a constant satisfying

s < − log(ε+ ρ(T|H0))/(2 log λmax).

Since ∫
Dn

|Φ̂(w)|2dω ≤ c(ε+ ρ(T|H0))n,

for some constant c independent of n, and Φ̂ is continuous on Td, it follows that∫
Rd

(1 + |ω|2)s|Φ̂(ω)|2dω

≤
∫

Td

(1 + |ω|2)s|Φ̂(ω)|2dω +
∞∑

n=1

∫
tMn0+nTd\tMn−1Td

(1 + |ω|2)s|Φ̂(ω)|2dω

=
∫

Td

(1 + |ω|2)s|Φ̂(ω)|2dω +
∞∑

n=1

n0∑
j=0

∫
Dn+j

(1 + |ω|2)s|Φ̂(ω)|2dω

≤ c+ c
∞∑

n=1

n0∑
j=0

(λmax)2(n+j)s (ε+ ρ(T|H0))n <∞.

Therefore Φ ∈W s(Rd).

Let Cγ(Rd) denote the space defined as the following way: if γ = n + γ′ with
n ∈ Z+ and 0 ≤ γ′ < 1, then f ∈ Cγ(Rd) if and only if f ∈ C(n)(Rd) and f (n) is
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uniformly Hölder continuous with exponent γ′, i.e.

|Dβf(x+ y)−Dβf(x)| ≤ c|y|γ
′
, for any β ∈ Zd

+, |β| = n,

for some constant c independent of x, y ∈ Rd. With the well-known inclusion

W s(Rd) ⊂ Cγ(Rd), for s > γ +
d

2
,

Theorem 5.7 leads to the following corollary.

Corollary 5.8. Suppose P satisfies conditions (3.4) and (4.5). Then the (M,P)
matrix refinable function Φ ∈ Cγ(Rd) for any γ < − d

2 − log ρ(T|H0)/(2 log λmax),
where ρ(T|H0) is the spectral radius of T|H0 and λmax := max{|λ1|, · · · , |λd|}.

Assume that the refinement mask {Pα} is a finitely supported real r× r matrix
sequence and P satisfies the vanishing moment conditions of order k (3.4) and (4.5)
for some k0 with real vectors lβ0 , |β| < k + k0. Let Hr denote the space of all r × r
matrices with each entry a trigonometric polynomial whose Fourier coefficients are
real and supported in [Ω]. Then Hr is invariant under T. Define the subspace Hsym

of Hr by

Hsym := {H ∈ Hr : H∗ = H, Lβ
Ωvec(H) = 0 and

jlαΩvec(H) = 0, ∀β, α ∈ Zd
+, |β| < k + k0, |α| < k, 1 ≤ j ≤ r}.

Then Hsym is a linear space over the field R and is invariant under T. Let T|Hsym

denote the restriction of T to Hsym. Then, as above, we can obtain the Sobolev
regularity estimate of the compactly supported (M,P) refinable vector Φ in terms
of the spectral radius of T|Hsym .

Theorem 5.9. Assume that the refinement mask {Pα} is a finitely supported real
r×r matrix sequence and P satisfies (3.4) and (4.5) with real vectors lβ0 , |β| < k+k0.
Then the (M,P) matrix refinable function Φ is in W s(Rd) for any s < s0 :=
− log ρ(T|Hsym)/(2 log λmax), where ρ(T|Hsym) is the spectral radius of T|Hsym and
λmax := max{|λ1|, · · · , |λd|}.

In [19], the Sobolev regularity estimates of the B-splines defined by knots 0, 0, 1, 1
and 0, 1, 1, 2, the GHM-orthogonal scaling functions in [8] and two refinable vectors
from [2] are analyzed. To finish this paper, we analyze an example from [9] about
refinable bivariate splines.

Example 5.10. Let φ1 denote the “pyramid function” with support on the square
with vertices (2, 1), (1, 2), (0, 1) and (1, 0) which is continuous, satisfies φ1(1, 1) = 1
and is linear on each of the four triangles formed by the boundary and the two
diagonals of its support. Let φ2 be the “pyramid function” with support on [1, 2]2,
i.e.

φ2(x1, x2) = φ1(x1 + x2 − 1, x1 − x2).

Let Φ := t(φ1, φ2). Then Φ satisfies the matrix refinement equations (1.1) with
M = 2I2 and the matrix refinement mask given by (refer to [9])

P(ω) :=
1
8

(
z1 + z2 + 2z1z2 + z2

1z2 + z1z
2
2 (1 + z1)(1 + z2)

2(z1z2)2 z1z2(1 + z1)(1 + z2)

)
,
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where z1 = e−iω1 , z2 = e−iω2 . In this case ηj = γj , j = 0, · · · , 3, and they are the
vertices of [0, 1]2, and 1, 1

4 are eigenvalues of P(0), N = 2, Ω = [−2, 2]2. One has

P(0) =
1
8

(
6 4
2 4

)
, P(πηj) =

1
8

(
−2 0
2 0

)
, j = 1, 2, 3.

Thus l(00)0 = t(1, 1) is the unique (up to a nonzero constant) vector satisfying (3.4)
for β = (00), and we have

D(10)P(0) = D(10)P(0) =
−i
8

(
6 2
4 6

)
,

D(10)P(π, 0) = D(01)P(0, π) =
−i
8

(
−2 −2
4 2

)
,

D(10)P(0, π) = D(01)P(π, 0) = D(10)P(π, π) = D(01)P(π, π) =
−i
8

(
−2 0
4 0

)
.

One can obtain that l(10)0 = l(01)0 = t(1, 3
2 ) satisfy (3.4) for β = (10) and β = (01),

respectively, and there are no such vectors lβ0 that satisfy (3.4) for all β ∈ Z2
+

with |β| = 2. Though 1
4 is an eigenvalue of P(0), there are vectors l(20)0 = l(02)0 =

t(1, 2), l(11)0 = t(1, 9
4 ) and l(30)0 = l(03)0 = t(1, 9

4 ), l(21)0 = l(12)0 = t(1, 3) satisfying (4.5)
for β = (20), (02), (30), (03), (21) and (12), respectively. To check the stability of
Φ, we need to compute the eigenvalues of the 100× 100 matrix

T[−2,2]2 = (A2i−j)i,j∈[−2,2]2 .

We find for β ∈ Zd
+, |β| ≤ 3, that Lβ

[−2,2]2 6= 0. Thus by Theorem 4.2, 1, 1
2 ,

1
4 and

1
8 are eigenvalues of T . In fact the eigenvalues of T are 1, 1

2 (2), 1
4 (5), 1

8 (12), 1
16 (24)

and 0(56). Here for an eigenvalue λ0, the notation λ0(l) means that the algebraic
multiplicity of λ0 is l. Thus T[−2,2]2 and the transition operator T restricted to
H[−2,2]2, denoted by T[−2,2]2 , satisfy Condition E. We find that the 1-eigenvector
of T[−2,2]2 is

H(ω) =
(

8 + eiω1 + eiω2 + e−iω1 + e−iω2 1 + eiω1 + eiω2 + ei(ω1+ω2)

1 + e−iω1 + e−iω2 + e−i(ω1+ω2) 4

)
.

Checking directly, H(ω) > 0 for all ω ∈ T2; hence Φ is stable. By Theorem 3.6,
S(Φ) provides approximation of order 2.

To estimate the regularity by our method, we need only to find the maximum
of the moduli of the eigenvalues of T[−2,2]2 |H0 , the restriction of T[−2,2]2 to the
invariant subspace H0 of H[−2,2]2 defined by (5.2). By Corollary 5.3 and Proposition
5.4, we find that 1, 1

2 and 1
4 are not eigenvalues of T[−2,2]2 |H0 , and 1

8 is an eigenvalue
of T[−2,2]2 |H0 with a corresponding eigenvector H0(ω) =

∑
`∈[−1,1]2 H`e

−i`ω given
by

H−1−1 = tH11 =
(

1 4
0 0

)
, H−10 = tH10 =

(
−6 6
0 0

)
,

H0−1 = tH01 =
(

0 6
0 −6

)
, H00 =

(
−10 4
4 −8

)
,

and H−11 = tH1−1 = 0. Thus ρ(T[−2,2]2 |H0) = 1
8 , and it follows from Theorem 5.7

or Theorem 5.9 that Φ ∈W 3
2−ε(R2) for any ε > 0. On the other hand, the Fourier
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transform of Φ is (see [9])

φ̂1(ω1, ω2) = 4e−i(ω1+ω2)
ω1 sinω2 − ω2 sinω1

ω1ω2(ω2
1 − ω2

2)
,

φ̂2(ω1, ω2) =
1
2
e−

3
2 i(ω1+ω2)φ̂1(

ω1 + ω2

2
,
ω1 − ω2

2
).

Thus Φ ∈ W s(R2) if and only if s < 3
2 , and our estimate on the Sobolev regularity

of Φ is optimal.
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