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MULTIVARIATE MATRIX REFINABLE FUNCTIONS
WITH ARBITRARY MATRIX DILATION

QINGTANG JIANG

ABSTRACT. Characterizations of the stability and orthonormality of a multi-
variate matrix refinable function ® with arbitrary matrix dilation M are pro-
vided in terms of the eigenvalue and 1-eigenvector properties of the restricted
transition operator. Under mild conditions, it is shown that the approximation
order of ® is equivalent to the order of the vanishing moment conditions of
the matrix refinement mask {P«}. The restricted transition operator associ-
ated with the matrix refinement mask {P.} is represented by a finite matrix
(Anti—j)i,j, with A; = [det(M)|71 Y, Pr—; ® P« and P, ; ® Py being the
Kronecker product of matrices P,,—; and P,. The spectral properties of the
transition operator are studied. The Sobolev regularity estimate of a matrix
refinable function @ is given in terms of the spectral radius of the restricted
transition operator to an invariant subspace. This estimate is analyzed in an
example.

1. INTRODUCTION

Let {P,} be a finitely supported r x r matrix sequence. The vectors ®, r-
dimensional column functions on R?, considered in this paper are solutions to func-
tional equations of the type

(1.1) o= P,O(M-—a)
aeZd

where M is a d x d integer matrix with m = |det(M)| > 2 and all eigenvalues of
modulus > 1. Define

1 .
P(w):= p- Z P.exp(—iaw).
a€Zd
Then P is an r x r matrix with trigonometric polynomial entries. In the Fourier
domain, functional equations (1.1) can be written as

(1.2) d(w) =P\ M 'w)d("Mw).

Throughout this paper, *A and A* denote the transpose and the Hermitian adjoint
of a matrix A respectively.
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2408 QINGTANG JIANG

Equations of type (1.1) or (1.2) are called matrix (vector) refinement equa-
tions; the matrix M is called the dilation matrix; P ({P,}) is called the (ma-
trix) refinement mask and any solution ® of (1.1) is called an (M, P) matrix
refinable function (or an (M, P) refinable vector).

For M = 21, r > 1, where I, is the r x r identity matrix, the characterizations
of the stability and orthonormality of a matrix refinable function ® were provided
in terms of the mask in [26]; the regularity estimates of ® were studied in [26],
[19], and in [3], [24] for the case d = 1; the existence of the distribution solution
of (1.1) and the characterization of the weak stability of solutions of (1.1) were
discussed in [21]. In the construction of multivariate wavelets, the dilation matrix
M is involved. For r = 1, the characterizations of the stability and orthonormality
of ®, a refinable function with matrix dilation, were proved in terms of the mask in
[22]; the optimal Sobolev regularity estimate of ® was obtained in [15]. Our goal
in this paper is to provide characterizations of the stability, orthonormality and
the approximation order of an (M, P) refinable vector ® in terms of the mask, and
give the regularity estimate of ® in terms of the spectral radius of the restricted
transition operator.

Before going further, we introduce some notations used in this paper. Let Z,
denote the set of all nonnegative integers, and let Zi denote the set of all d-tuples
of nonnegative integers. We shall adopt the multi-index notations

W= Wt Wt =Bl Bal, 1Bl =B+ Ba

forw ="(wy, - ,wq) ERYLB="1(B1, -+ ,Bq) € ZL. If o, B € Z% satisty B—a € Z4,
we shall write o < 3 and denote

(o) = am—ay

For B =B, -+ ,0B4) € Zi, denote
851 6ﬁd

DP =2 _—

Oz 81:5“’
where 0; = % is the partial derivative operator with respect to the jth coordinate,
1 < j < d. Except in some special cases, for w, ¢ € R? we use (w (not *Cw) to denote
their scalar product.

For a finitely supported complex sequence ¢ on Z%, its support is defined by
supp ¢ := {8 € Z% : ¢(B) # 0}, and for a finitely supported r x r matrix sequence C
on Z%, its support is defined by supp C := |Jsupp ¢;;, where ¢;; is the (i, j)-entry of
C. Throughout this paper, we assume that the matrix refinement mask P satisfies
supp{P,} C [0, N]? for some positive integer N.

Let ||z|| denote the Euclidean norm in R%, and let dist(x,y) := ||z — y|| be the
distance between two points z,y € R%. For two subsets S1, Sy of R?, denote

dist(S1,.S2) := inf{dist(z,y) : € S1,y € Sa}.

For any subset S of R?, denote [S] := S N Z%; and if S is a finite set of Z<, let | S|
denote the number of elements in S.

For j=1,---,r, let ¢; := (6;(k))};_, denote the standard unit vectors in R". In
this paper, for an r x 1 vector-valued function or sequence f = *(fy, -, f.), when
we say that f is in a space on R? or Z?, we mean that every component f; of f is in
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MATRIX REFINABLE FUNCTIONS 2409

this space. In particular, f = t(f1,---, fr) € L*(R?) (or ¢ = (c1,- -+ ,¢.) € 12(Z%))
means that f; € L%(R?) (or ¢; € I?(Z%)), i =1,--- ,r, and we will use the norms

- 1 - 1
1z = QI filGaa)?s  Nellz = Q- lleillfaza) .
i=1 1=1

For a matrix A (or an operator A defined on a finite dimensional linear space),
we say A satisfies Condition E if p(A) <1, 1 is the unique eigenvalue on the unit
circle and 1 is simple (the spectral radius of A is denoted by p(A4)).

Let M be a fixed dilation matrix with m = |det(M)|. Then the coset spaces
72/ (MZ%) and Z2/(* MZ?) consist of m elements. Let vx + MZ41 <k <m — 1,
and n; +tMZ%j = 0,--- ,m — 1, be the m distinct elements of Z%/(MZ%) and
74 /(* MZ?) respectively, with 79 = 0,70 = 0. Let Co(T¢) denote the space of all
r x r matrix functions with trigonometric polynomial entries. For a given matrix
refinement mask P, the transition operator T associated with P is defined on

Co(T?) by
(1.3)
TC(w) = Y P("M ™ (w + 2m;))C("M ™ (w + 2mn;))P* (' M~} (w + 2m;)).
§=0

Assume that the support of the mask {P,} is in [0, N]?, and denote

(1.4) Q:={> M Uz 2; €[-N,N|*,Vj € Z,}.
=0
Let H denote the subspace of Cy(T9) defined by

(1.5) H := {H(w) € Co(T%) : H(w) = Z H,e " supp{H,} C [Q]}.

Recall that a vector-valued function ¥ = (41, -+ ,4,.) is called stable (orthogo-
nal) if the integer translates of 11, - - - , 1, form a Riesz basis (an orthonormal basis)
of their closed linear span in L?(R). It has been shown that an (M, P) refinable
vector ® is stable if and only if for all w € T?, Gg(w) > I, for some positive
constant ¢, and that ® is orthogonal if and only if Gg(w) = I,,w € TY see e.g. [6],
[10], [16] and [23]. Here Gg(w) is the Gram matrix of ®, defined by

(1.6) Go(w) := Z P (w + 2m) D* (w + 27a).
a€Zd
In the first part of Section 2, we will show that if the refinement equation (1.1) has

a compactly supported solution ® such that Gg(w) < oo and det(G(0)) # 0, then
P(0) satisfies Condition E. Then we will provide a characterization of the existence
of L2-solutions of (1.1) under the assumption that P(0) satisfies Condition E. In
the last part of Section 2, we will show that the (M, P) refinable vector ® is stable if
and only if the restriction Ty of the transition operator T to H satisfies Condition
E and the corresponding 1-eigenvector of T|y is positive (or negative) definite on
T9, and show that the (M,P) refinable vector ® is orthogonal if and only if T|g
satisfies Condition E and P is a Conjugate Quadrature Filter (CQF), i.e.

m—1
(1.7) P(M Y (w +2m) )P ("M (w+2m;)) =1, weT%

§=0
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The accuracy order of the (M, P) refinable vector ® = (¢, -, ¢,) was con-
sidered in [11], [25] and [17] for the case d = 1 and M = (2), in [7] for M = 21,
and in [1] for the multivariate case with arbitrary dilation matrix. In Section 3,
we will show that, under mild conditions, ® provides approximation of order k,
k € Z,\{0}, if and only if the matrix refinement mask P satisfies the vanishing
moment conditions of order k. We will also determine explicitly the coefficients
for the polynomial reproducing under the assumption that the integer shifts of ®
(¢1(- — k), k € Z4 1 =1,--- ,r) are linearly independent.

Since the spectra (c1gcnvalues) of a matrix can be computed directly, it is useful
in practice to transfer equivalently the restricted operator Ty to be a finite matrix,
and therefore transfer the spectral problems of T|y into those of a matrix. We will
show in Section 4 that the restricted transition operator T|y is equivalent to the
matrix (Anri—j)i je[o), where Aj; is the r2 x r2 matrix given by

A' P/-c ® Pm
’ |d€t NE;V]UZ -

and P,_; ® P, is the Kronecker product of P,_; and P,. We will also consider
the spectral property of T in Section 4.

In the last part of this paper, Section 5, we will consider the regularity of the
(M, P) refinable vector ®. An invariant subspace H® of H under T is found, and
it is shown that @ is in the Sobolev space W ~¢(R?) for any e > 0, where sq :=
—log p(T|mo)/(210g Amax), p(T|uo) is the spectral radius of the restriction T|go of
T to H? and Apnax is the spectral radius of the dilation matrix M. This estimate is
analyzed in an example.

2. STABILITY AND ORTHONORMALITY

In this section, we will provide characterizations of the stability and orthonor-
mality of the refinable vector ®. We first prove some lemmas.

Lemma 2.1. Let v, + MZ%,1 <k <m—1, andr]j—ktMZd,j:O,---,m—l, be

the m distinct elements of the coset spaces Z¢ /(MZ%) and 74 /(! MZ?) respectively,
with vo = 0,9 = 0. Then

m—1

(2.1) ST e M T —na(), 0<j<m—1;
k=0
m—1

(2.2) 2T M = s(k), 0<k<m-—1.
=0

Proof. Let G be the finite abelian group consisting of v, + MZ4, 1 < k < m — 1.
For any j,0 < j < m — 1, define on G the functions x;(g) := €27 1M "9 g € G.
Then x;(9),j =0,---,m —1, form the group C:’, the character group of G. By the
orthonormality relation of characters (see [4]), we have

(2.3) Xi(9)xj(9) =md;(j"), 0<jj <m—1L

S

=0
Let j/ = 0; then (2.3) leads to (2.1). Since the transpose of *M is M, (2.2) follows
from (2.1). |
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Let Q denote the domain defined by (1.4) and denote

O ={>_ MUz . z;€[0, N4 VjeZ}.
§=0
The proof of the following lemma can be carried out by modifying that of Lemma
3.1 in [15] for the case r = 1.

Lemma 2.2. Assume that supp{P,} C [0, N]¢ and ® is a compactly supported
(M, P) matriz refinable function. Let T be the transition operator defined by (1.3)
and H the space defined by (1.5). Then

(i) supp @ C €,

(i) H is invariant under T,

(iii) for any C(w) € Co(T?), there exists some n € Z, such that T"C € H,

(iv) the eigenvectors of T corresponding to nonzero eigenvalues belong to H.

Proof. (i) can be obtained similarly to Lemma 3.1 in [15]. Here we verify (ii), (iii)
and (iv).
For any H =", ;0 Hee ' € Cy(T?), one has

PHWP (@) =m? Y 3 3 PP, e,

e ke[0,N]4 neZd
Thus

3

TH(w)=m"2 > ¥ P H,'P, e ("M (wt2mn;)(nto)
LeZd neZ ke[O,N]4

I\
=]

J

For any n € Z¢ ¢ € Z%, write n 4+ ¢ = Mt + ~, for some 7 € Z% and k € Z,,0 <
k <m — 1. By Lemma 2.1,

(2.4) THw)=m > [ > > PH'P._(arep) | 7.

T€Zd \LeZ? ke[0,N]4
If H € H, then H = ZEG[Q] Hye " and
TH@) =m™ >, 3, >, PeHi'Pequrpe ™.
TEZL Le[Q] KE[O,N]4

If TH(w) # 0, then M7 — £ € [-N, N]? for some ¢ € [Q)], i.e. M7 € [-N, N]¢ + Q.
Thus 7 € M~ [-N, N4+ M~1Q = Q, and we have

(2.5) THw) =m" > [ Y > P.H'P (prp | e

re[Q] \Le[Q] welo,N]d

Hence H is invariant under T.
For C € Cy(T%) and j € Z, denote TIC =: 3 __,. OV (1)e~™7. By (2.4),

supp{CV ()} ¢ M~1[-N, N]¢ + M~ suppC.
Thus
supp{CW (1)} ¢ M~ [—N, N]* + M~ 'supp{CU~—D(r)} C ---
CMY-N,Nl¢4 .-+ M™I[~N,N*+ M~ suppC € Q + M7 supp C.
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Since dist($2, Z2\[©2]) > 0 and lim; .o, M ~9 = 0, there exists n € Zy such that
dist({0}, M~ supp C) < dist(2, Z4\[Q)]).

Thus supp{C (1)} € [] and T"C € H.
Finally, if C € Cy(T?) is an eigenvector of T with corresponding eigenvalue
Ao # 0, then by (iii), C = \j'TC = --- = \;"T"C € H. O

Lemma 2.3. Let ® be a compactly supported (M, P) matriz refinable function and
Gg be its Gram matriz defined by (1.6). If Go(w) < 0o for all w € T, then

(2.6) TGe = Go,
and if ® € L?(R?), then G € H.
Proof. By (1.2) and the definitions of T, G, we have

m—1
TGy (w) = Z Z P('M~(w + 27777j))21\>(tM_1(w + 27n;) + 27)
J=0 tezd

(M (w4 21n;) + 2mO)P* ("M~ H(w + 270;))

—

= (w + 2mn; + 27t M) (w + 27n; + 27 M{)
J=0 tezd

= (w + 270)P* (w + 27l = G (w).
vezd

3

~

By Lemma 2.2 and the Poisson summation formula, G € H if ® € L2(R9). O

In (2.6), the transition operator T is defined by (1.3) on the function space
consisting of r x r matrix functions with every entry a 2m-periodic function.

We will show that if there is a compactly supported solution ® of (1.1) satisfying
Go(w) < 0o and det Gg(0) # 0, then P(0) satisfies Condition E. For this, we first
have

Proposition 2.4. Let ® be a compactly supported matriz refinable function of (1.1)
and let 1 be a left (row) eigenvector of an eigenvalue \g of P(0) with |No| > 1. If
Ga(w) < 00, for w € T?, then

(2.7) 10(278) =0, B e Z\{0}.
Proof. By (2.6),
1G4 (0)1* = ITGg(0)1*

m—1
= |Ao|21G o (0)1* + Z IP(27 M ;)G (20" M~ 10, )P* (27" M ~1n;)1*
j=1
m—1
> 1Go(0)1* + Z 1P(27' M 1)) Go (2" M~ )P* (27" M ~1ip)1%.
j=1
Thus
m—1
1P (27" M ') Go (2m M~ 10 ) P* (21" M ~1n;)1* = 0.
j=1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MATRIX REFINABLE FUNCTIONS 2413

By (1.2), we have

-1

3

|1<f>(27mj + 2t Ma)|?
¢

i

I
3

»—Am

Z P(2r'M~ nj)a\)(27rtM_1nj + 27a)
ezl

20" M~y + 2ma)P (20" M~ )1*

|
ﬁ> AM

-1
=Y 1P2r'M ™ 'n)Gs(2r M~ n))P* (27" M~ 1n;)I* = 0.
1

3

J
Therefore,
1(/15(271'7]]' + 27TtMoz) =0, 1<j<m-1,a€ 78,

For any 3 € Z%\{0}, there exist j € Z,,1 < j<m—1,n € Z,,a € Z% such that
B=("M)"(nj+"'Ma). Thus

10(273) = IP(27'M~'3) - - - P2 M~ "3)® (27" M~ 3)
=1P(0)" (27‘(77] + 21t Ma) = /\01(1)(271'7]] +27'Ma) = 0.

This shows (2.7). O

We note that if Ay is an eigenvalue of P(0) with [Ao| > 1 and Ag # 1, then for
any left \g-eigenvector 1 of P(0), 1&(273) = 0 for all 3 € Z-.

By Proposition 2.4, the following proposition can be obtained as in [21]. Its
proof is presented here for the sake of completeness.

Proposition 2.5. Let ® be a compactly supported (M,P) refinable vector with
Go(w) < 00. If det(Ge(0)) # 0, then P(0) satisfies Condition E.

Proof. Let Ay be an eigenvalue of P(0) with |\g| > 1, and 1 be a corresponding left
(row) eigenvector. If Ag # 1, by Proposition 2.4, 1G4 (0)1* = 18(0)®*(0)I* = 0. On
the other hand, since ® # 0, the spectral radius of P(0) > 1. These two facts imply
that if det(Gg(0)) # 0, then 1 is the only eigenvalue of P(0) on the unit circle with
5(0) being a corresponding right eigenvector, and all other eigenvalues are in the
unit circle. If 1 is not simple, since 5(0) is a right 1-eigenvector of P(0), then one
can find a left (row) 1-eigenvector 1 of P(0) such that 1<T>(0) = 0, which again leads
to 1Gg(0)I* = 0. Therefore, 1 has to be a simple eigenvalue of P(0), and hence
P(0) satisfies Condition E. O

Proposition 2.6. Assume that (1.1) has a compactly supported solution ® with
Go(w) < oo. If det(Ge(2mtM~'n;)) # 0, j = 0,---m — 1, then P(0) satisfies
Condition E and satisfies the vanishing moment conditions of order at least one,
i.e.

(2.8) IP2r'M~1p)) =0, 1<j<m-—1,

where 1 is the left 1-eigenvector of P(0).
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Proof. By Proposition 2.5, P(0) satisfies Condition E; and by (2.6),
1G3(0)1" = ITG4(0)1*

m—1
= 1G4 (0)I* + Z IP(27 M ~1n;)Go (2" M~ )P* (2" M ~1n;)1*.

j=1
Hence,
P27 M~ 'n))Ge (2 M~ 1n)) AP (27" M ~1n;))* =0, 1<j<m-—1.
Since Go (27 M ~1n;) > 0, we have IP(27'M ~1n;) =0, 1 < j <m — 1. O
By Proposition 2.6, we have the following corollary.

Corollary 2.7. If (1.1) has a compactly supported solution ® which is stable, then
P(0) satisfies Condition E and P satisfies the vanishing moment conditions of order

one (2.8).
Here we note that the vanishing moment condition (2.8) is equivalent to
(2.9) 1Y Pragy, =1, 1<k<m-1
a€Zd

In fact if (2.9) holds, then for any j € Z4, 0 < j <m —1, by (2.1)

— 1 —i2ntn; M~ la
1P (27t M 17”):%1 > PiemimM

a€Zd
1 m—1
_ - 1 E Prpiy e—iQﬂtanfl(Mﬁch)
k
m
k=0 peczd
1 m—1
—i2rtn; Mt
= — > (1) Pugyq)e 2r il
k=0 pezd
1 m—1
ot ar—1 .
_ E 6—127r niM™ vk _ 5(3)
k=0

Conversely, if (2.8) holds, then for any k € Z,, 0 < k <m — 1, by (2.2)

m—1
1= 1P@atMlyy)e?m M e
Jj=0
1 m—1 m—1
= — 1 Z Z Prgiqy e—i277t77jM71756i277t77jM71Vk
m =0 pezd s=0
1 m—1 m—1
_ 4+ IZ Pirsen Z o827 M~ (s —k)
M peza =0 =0
1 m—1
= E 1 PMB+’Ysm5k(S) =1 Z PM5+’YM
ezt s=0 Bezd

B
and therefore (2.9) holds.
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Corollary 2.8. If (1.1) has a compactly supported solution ® which is stable, then
P(0) satisfies Condition E and P satisfies

1Y Puogy, =1, 1<k<m-—1.

aczd
where 1 is the left 1-eigenvector of P(0).

In the following we will assume that P(0) satisfies Condition E and let r be the
unit right (column) 1-eigenvector of P(0). Let 1 be the left (row) 1-eigenvector of
P(0) with Ir = 1. Let U be an r X r inverse matrix such that the first column of
Uisr and U'P(0)U is the Jordan canonical form of P(0) with its (1, 1)-entry 1.
Then ‘e U1 is a left (row) 1-eigenvector of P(0) with ‘e;U~'r = te;U"Ue; = 1.

Thus e U~ =1
Denote

I, (W) = X[ ] ﬁ tM—Iw), ﬁ PMIw).

Then, if P(0) satisfies Condition E, II,, converges to II pointwise with
(210) H(W)U: ((/I;(w)703 70)a

where
(2.11) H M w)r

and any other compactly supported solution ¥ of (1.1) with W(0) # 0 is given by
(2.11). About the convergence of the infinite product [[Z, P('M~Iw), see [3], [23]
for M = 2I,., and [20] for general dilation matrices M.

By (2.10), we have, for any r X r matrix A,

I(w)All(w)* = (W) UU AU UIT* (w)
= d(w)eT U TAU ) e,0* (w) = (1IA1")B(w) B (w)*.

We will provide in the next proposition a characterization of the existence of L2-
solutions of (1.1) under the assumption that P(0) satisfies Condition E. For this,
we have the following lemma.

Lemma 2.9. For any Hi(w), Ha(w) € Co(T?), and any positive integer n,

(2.12) y Hy(w)(T"Hy)(w)dw = » Hy (), (W) Hy ("M~ ") (w)dw.
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Proof. The proof of (2.12) can be carried out by induction. In fact for n =1,

m—1
Hi(w)THy(w)dw = m H1 Z P(w + 27t M~ 1;)
Td =
cHo(w+ 27" M~ nj)P*(w + 27TtM i) xre (" Mw)dw
m—1
=m [ Hi("Mw)P(w)Ha(w)P*(w) > xpe("Mw — 27, )dw
R4 ;
7=0
m—1
=m | Hi(*Mw)P(w)Hz(w)P*(w) Z xre("Mw — 21" M3 — 27n;)dw
B Bezd j=0
=m [ Hi(*Mw)P(w)Hs(w)P*(w)dw
Td
= | H(w)PCM'W)Hy (M 0)P* (M~ w)xra ("M~ w)dw
Rd
= [ Hy(w)y(w)He ("M~ )T} (w)dw.
Rd

For n € Z4+\{0}, assume that (2.12) holds for any positive integers smaller than n;

then
, Hy(w)(T"Hs)(w)dw = | Hy ()T, 1 (w)(THo) ("M ")ITF _ (w)dw
T R
=m" [ Hi(*M"w)IL,_1(*M"w)(THs)(* Mw)IT _;(*M"w)dw
Rd
m—1
=m" [ H(*M"w), Z P(w+ 27 M~ ;) Ho(w + 27 M~ 1)

d
R Jj=

0
PH(w A+ 2rt M) (P M w) xpa (P Mw)dw

/H1 M"W)P(IM" ') - P(*Mw)P(w)Ha(w)

Bezd
m—1
Prw) P (M w ZXW "Mw — 27 M3 — 2mn;)dw

7=0

=m" | H(M"W)P(M"'w) - P Hy(w)(PCM" ') - P(w))*dw

Td
= Hy (W)L, (w)Ho ("M ~"w)ITE (w) dw.
Rd
Thus the proof by induction is completed. O

Proposition 2.10. Suppose that P(0) satisfies Condition E. Then ® defined by
(2.11) is in L?(R%) if and only if there exists a positive semidefinite H € H such
that TH = H and 1H(0)1* > 0.

Proof. Suppose ® € L?(R?). Then the matrix H(w) := Gg(w) € H, and H(w) > 0,
TH = H. By Proposition 2.4, LH(0)I* = 13(0)3* (0)I* = [Ir|? = 1.
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Conversely, since the matrix IL,, (w)H (* M ~"w)II* (w) converges pointwise to the

matrix
T(w)H(0)TI(w)* = (LH (0)1")®(w)®(w)",
we have
* szw:T iminf te; 11, (w)H (* M ~"w)IL, (w)*e;dw
aHOE) [P =3 [ it e ) H (ML ) e

< Zhnnl,gf g e, I1, (W) H ("M~ "w)Il, (w)*e;dw < oc.
i=1

The last inequality follows from the fact that

/ I, (W) H ("M ") (w)dw = / (T"H)(w)dw = H(w)dw.
Rd Td Td

|

About the existence of L2-solutions of (1.1) for M = 2I,, a similar result was
obtained in [21]. For the special case r = 1 and d = 1, this result was given in [28§].

We will use the fact that if (1.1) has a compactly supported solution which is
stable, then for any Hy, Hy € H,

(2.13)
lim [ T (w) Hy (M=), ()" Ha(w)dw = / T1(w) Hy (0)T1(w)* H () dov.

n—oo Rd Rd
Equation (2.13) can be obtained as in [21] for the case M = 2I,, and we omit the
details here.

The next theorem provides a characterization of the stability of the compactly
supported (M, P) refinable vector ®.

Theorem 2.11. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matriz P(0) satisfies Condition E,

(ii) for the left (row) 1-eigenvector 1 of P(0), IP(2n*M~1n;) =0,1 < j <m-—1,

(i11) the restriction transition operator T to H satisfies Condition E, and the
corresponding 1-eigenvector is positive (or negative) definite on T,

Proof. “<” Let Hy € H be the positive definite 1-eigenvector of T. By Proposition
2.10, the solution ® given by (2.11) is in L?(R%). Let H(w) = G¢(w); then H(w) €
H and TH = H. Since the restriction T|g of T to H satisfies Condition E, H = ¢Hy
for some positive constant ¢. Thus Gg(w) = cHp(w) > 0, and hence @ is stable.

“=7” Let ® be a compactly supported solution which is stable; then EI;(O) =cr
for some nonzero constant c. (i), (ii) follow from Proposition 2.6. To complete
the proof of Theorem 2.11, it is enough to show that the restricted operator Ty
satisfies Condition E, since G is a positive definite 1-eigenvector of T|y.

Let A\p be an eigenvalue of T|yg and H be a corresponding eigenvector. Since

Ay » H(w)H(w)*dw = » T"H(w)H (w)*dw

= /Rd L, (w)H ("M~ "), (w)* H (w)*dw,
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the limit lim,,— . Ay exists. Thus [Ao| < 1, and 1 is the only eigenvalue of Ty on
the unit circle.
For an eigenvector H of eigenvalue 1 of T|g, denote ¢o = 1H(0)1*. Then

/Ed(H —coGo)(H — coGo)"dw
_ /R T (@) (M) = oG (M)l (@)* (H(w) = coGa () do
— /Rd IM(w)(H(0) — ¢oGa(0)I(w)*(H(w) — coGo (w))*dw

=1(H(0) — coGg (0))1* / ) B (w)®* (w)(H (w) — coGo(w))*dw = 0.
R

Thus H(w) = ¢9Ge(w). This implies that the geometric multiplicity of the eigen-

value 1 of Ty is 1.

Finally we show that 1 is nondegenerate. Otherwise, there exists H € H such
that TH = Gg + H. Let Hy = H — ¢1Gg, where ¢; = 1H(0)1*. Then

T H) ()G (@) dw = / L, (w) Hy (M=), () G (1) doo

Td R

— y IM(w)(H(0) — c1Go(0)I(w)*Go(w)*dw = 0.

On the other hand,
T'Hy =T"H — c1Gp = nGo + H — c1Go;

thus || [, T"Hi(w)Ge(w)*dw|| — 0o as n — oo. This leads to a contradiction O

The next theorem provides a characterization of the orthonormality of the com-
pactly supported (M, P) refinable vector ®.

Theorem 2.12. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:
(i) the mask P is a CQF,
(ii) the matriz P(0) satisfies Condition E,
(iii) for the left (row) 1-eigenvector 1 of P(0), IP(27'M ~1n;) = 0,1 < j <m-—1,
(iv) the restriction of the transition operator T to H satisfies Condition E.

Proof. “<” Since P is a CQF, TI, = I,. Therefore by Proposition 2.10, the
compactly supported solution ® given by (2.11) is in L2(R?). By (iv), Ge = cI,
for some positive constant ¢, and hence (1.1) has a compactly supported solution
which is orthogonal.

“=” (i), (iii) and (iv) follow from the orthonormality of ® and Theorem 2.11.
By the orthonormality of ®, Gg(w) =1,. Thus TL. =1,, i.e.

=

P("M =Y (w+ 2mn;) )P ("M~ (w + 2mn)) = L,
j=0

and hence P is a CQF. O
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3. APPROXIMATION ORDER

In this section we will consider the approximation order of the matrix refinable
function ®. Throughout this section, we will assume the eigenvalues of the dilation
matrix M are nondegenerate.

Let ‘M be the transpose of M and )\j, j = 1,---,7, be the eigenvalues of M.
By our assumptions, | A; |[> 1 and every ); is nondegenerate. Thus, there exist d

linearly independent vectors v, - -, v?% such that tMvJ = /\jvj7 g=1,...,d. Let
(3.1) V= (vhv3 ..., v)
be the d x d matrix with column vectors v!,... ,v%. Then

EMV = (\vh - davd) = VA,
where A := diag(A1, ..., Aqg). Denote
A=t Aa)-
Then for any z € R?, 3 € Z‘i,
(Az)? = NPzP.
For 1 < j <d, let Dy; denote the derivative operator in the direction v7, i.e.
Dyj = (01, ,0q)V".
Then
Dy; f("Mw) = X;(Dy; f)("Mw).
For B ="*(f1,---,0) € Zi, denote
Dy :=DJ ... Dl
Then we have
(3.2) Dy f('Mw) = N (DY f)("Mw), € Z§.

For a compactly supported vector-valued function ¥ = *(¢y,-- - ,,), we denote
by S(¥) the linear space of all functions of the form Y77 | >, /4 ci(O)i(- — £),
where {c;(£)}yczq are arbitrary sequences on Z<.

We say ¥ has accuracy of order k if all polynomials of total degree smaller than
k are contained in S(V), i.e. for any 3 € Z4, |B| < k, there exist yg,;(¢) such that

=3 sz +0).
i=1 ¢eze
For ¥ € L?(R9) and h > 0, let
(W) = {f(): [ € S(w)nL2EY)

be the h-dilation of S(¥) N L2(RY). For k > 0, we say ¥ (or S(¥)) provides L2-
approximation of order k if for every sufficiently smooth function f € L?(R?) and
any h >0

dist(f, Sp(1)) = O(h*),

where dist here is the L2-distance between a function and a subset of L?(R?).
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An r x 1 vector-valued function ¥ is said to satisfy the Strang-Fix conditions
of order k if there is a finitely supported 1 x r vector-valued sequence {q}¢cza such
that f:= 3,4 V(- — £) satisfies

(3.3) DPf(2rl) = 8(B)6(L), for €2, e, |8 < k.

About the relations among the orders of accuracy, L?-approximation and Strang-
Fix conditions of ¥, see [13] and the references therein. The next theorem was
obtained by Jia (see [13], [14]).

Theorem 3.1. (Jia). Let ¥ = (¢, - ,1b,) € L*(R?) be a compactly supported
vector-valued function. Assume that the sequences (@Zj (278))pega, j =1, ,r, are
linearly independent. Then the following statements are equivalent:

(a) ¥ provides Lo-approzimation of order k;

(b) U has accuracy of order k;

(c) U satisfies the Strang-Fix conditions of order k.

For a compactly supported (M,P) refinable vector ®, we will find the L2-
approximation order of ® in terms of the mask P. For a given mask P, if there

exist a positive integer k and 1 x r complex vectors lg .18 < k, with 13 # 0, such
that

(34) > ( g ) (NP DY PR M ;) = 6()ATPLY, 0<j<m—1,
0<a<p

we say that the refinement mask P satisfies the vanishing moment conditions
of order k.

We show in the next theorem that if P satisfies the vanishing moment conditions
of order k and ® € L?(R?) is a compactly supported (M, P) refinable vector with
18(5(0) # 0, then ® satisfies the Strang-Fix conditions of order k.

Theorem 3.2. If P satisfies the vanishing moment conditions of order k, i.e. there
exist 1 X r complex vectors lg, 18] < k, with 13 # 0 such that (3.4) holds, then any

compactly supported (P, M) refinable vector ® € L*(R) with 18&\)(0) # 0 satisfies
the Strang-Fix conditions of order k.

Proof. Let f be the vector-valued function in L?(R?) defined by
(3.5) Fw) == b(w)®(w)
where b(w) is the vector-valued function given by b(w) = 3=, -, bee'™ with
(3.6) (=)"DYb(0) = Y (VO b =17, |8 <k
<k

We will show that f satisfies the Strang-Fix conditions of order k.
Since (91, ,04) = (Dy1,--+, Dya)V ™1, it is enough to show that

(3.7) DY f(2rt) = ¢8(8)5(¢), for € Z% and B e ZL | |8 <k,

where ¢ is a nonzero constant.
One can check that (3.4) is equivalent to

DY (b(W)P(EM 7 w)) Jom2mn, = 6(G)ANPDED0), 0<j<m—1,6€2Z%, |8 <k
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For any ¢ € Z%, there exists j,0 < j < m — 1, such that ¢ € n; + 'MZ%. By (3.2),
one has

Dy f(2rt) = DY (b(w)P(* M~ w) ("M ~w))|u—2re

= 3 ((0) PP o) maee DY @M )z
0<a<p

= s a tar—1 a—BnB—aZ o tyr—1

= > (Q)Dv(b(w)P(M w))|wm2mn, AP DY@ (20 M)
0<a<p

Il
(]
A~
R

)A—a Eb(0)6 ()N P DY @(2r ML)

=3 > ( g >D{‘}b(27rtM_1£)D‘ﬁ,_a<T>(27rtM_1£)
0<a<p
= §(j)A "Dy f(2m" M1 e);
the next to last equality is because if j = 0, then D3b(2n'M ~1¢) = Dgb(0) by
2m-periodicity of b(w), and if j # 0, both sides are zero. So we have
(3.8) DY f2rl) = ()N P DL fFert M), €€ n;+ M7

If ¢ # 0, by repeating this procedure, we have D‘B/f(%rﬂ) =0. Andif£=0, 8 #0,
then by (3.8), DY f(0) = A=# DY £(0). Thus DY, f(0) = 0 since A= # 1. Finally, if
£=0, =0, then

F(0) = b(0)@(0) = 15(0) # 0.
Therefore we have (3.7) with ¢ = 18(5(0), and proved Theorem 3.2. O

Remark 3.3. We note that 13 in (3.4) is a left 1-eigenvector of P(0). Thus if P(0)
satisfies Condition E, then the solution ® € L?(R%) of (1.1) with 13®(0) # 0 is
given by (2.11), and ® given by (2.11) satisfies 139 (0) # 0.

Remark 3.4. Note that for a compactly supported vector-valued function ¥ €
L?(R?), the condition that (@ (278))geza, j = 1,--- ,r, are linearly independent
in Theorem 3.1 (Jia) is equivalent to det(G4(0)) # 0. Theorem 4.2 in [7] says that
under the mild condition det(Gg(0)) # 0, ® providing L2-approximation of order
k implies that the finitely supported 1 x r vector-valued sequence {qs}¢cza with
[ =2 pepa @e®(- — £) satisfying (3.3) is unique.

The above two remarks lead to the following proposition about the uniqueness
of the vectors lg satisfying (3.4).

Proposition 3.5. Assume that P satisfies the vanishing moment conditions of or-
der k with wvectors lg,ﬂ € 74,18 < k, 1§ # 0 satisfying (3.4). If (1.1) has a
compactly supported solution ® € L?(R?) satisfying det(G5(0)) # 0, then, up to a
constant, the vectors lg, B € Z,|8] <k, are unique.

Proof. Assume that lg,ﬁ € Z1,|8] < k, 13 # 0 are vectors satisfying (3.4). Since
det(G(0)) # 0, P(0) satisfies Condition E with ®(0) being a right 1-eigenvector of
P(0). Hence 186(0) # 0. Let f be the function defined by (3.5) with {b,} defined by
(3.6). As shown in the proof of Theorem 3.2, f satisfies (3.3). Since det(G¢(0)) # 0,
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by Theorem 4.2 in [7], the sequence {by} is unique (up to a constant). Hence the
vectors lg are also unique. |

The next theorem will show that, under mild conditions, P satisfying the vanish-
ing moment conditions of order k is also necessary for ® to provide L2-approxima-
tion of order k.

Theorem 3.6. Assume that ® € L*(R?) is a compactly supported (M,P) refin-
able vector and det(Ge(2m'M~'n;)) # 0, j = 0,--- ,m — 1. Then the following
conditions are equivalent:

(i) ® provides approxzimation of order k;

(ii) ® has accuracy of order k;

(iii) ® satisfies the Strang-Fix conditions of order k;

(iv) the matriz refinement mask P satisfies the vanishing moment conditions of
order k.

Proof. The equivalence of (i), (ii) and (iii) is proved in Theorem 3.1 (Jia). Since
det(G5(0)) # 0, by Proposition 2.5, P(0) satisfies Condition E. Thus by Remark
3.3 and Theorem 3.2, we know that (iv)= (iii), and we need only to show that
(iil)= (iv).

Let {q¢} be the finitely supported 1 x r vector-valued sequence such that f =
> reza @e®(- — L) satisfies (3.7) with ¢ = 1. Let ¢(w) denote the Fourier series of

{q¢}; then f(w) = §(w)®(w). We will prove by induction that
(3.9)
Dy (§(@)P("M ™)) lu=zmy, = 6()ADyq(0), 0<j<m—16€Z, [ <k,
which is equivalent to (3.4) with lg = (—i)'B‘Dqu(O).

First we have f(0) = g(0)®(0) # 0; thus 13 = g(0) # 0. Since f(27k) = 6(k), k €
YA

FO)PRr' M k)D (27 M~ 1k) = 6(k).
Hence for any j € Z,,0<j <m —1, and ¢ € Z¢,
(3.10) GO)P 2 M~ 10,27l 4 27" M~ 1;) = 6(0)8(5).
Multiplying both sides of (3.10) by ®*(2r¢+ 27 M ~'1,) and summing over ¢ € Z<,
Q0P (2 M~ ly;)Ga (21 M~1y) = 6(7)87(0).
If j # 0, then by the invertibility of G (27 M ~1n;), we have g(0)P(2x' M ~1n;) = 0,
and if j = 0, then we have
20)P(0) = &7 (0)Ga(0) ",

On the other hand, since f(27m) = 0(k), k € Z¢, we have qA(O)ff(Qmi) = 0(k). This
again leads to g(0)G¢(0) = ®*(0), i.e. g(0) = ®*(0)G(0)~t. Therefore we have
q(0)P(0) = ¢(0), and (3.9) is true for 8 = 0.

For 3 € Z4\{0},|8] < k, assume that (3.9) is true any o < 8, € Z%. We want
to prove that (3.9) holds for 5.

Since Def(27m) =0, for all x € Z4

5 () D6 @A) lomaneDE " @M ) amns =,
0<a<p
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and hence for any j € Z,,0<j<m —1, and ¢ € Z¢
> ((5) D% @IPOMT) oty DY @O ) omarisiesan, .
0<a<p
By (3.9) for o < 3,
DY (G(@)P("M ™)) |omzmy, ®(2mL + 20 M 1)
=Y < g ) A=6() DEGOINP DI D (270 4 27t M~ p;).
0<a<ps
If j # 0, then as above we have
D} (q(w)P(*M™w)) [omzmy, Go (21 M 11;) = 0

and therefore Dy, (G(w)P(*M~'w)) |uzamy, = 0. If j = 0, then

DY @)P(M ) Ladieet) + 47 3 () Dpato)pfdent) —o

0<a<pf

Since f(w) = §(w)®(w) and DY f(270) = 0, € € 7,
> ( g >DVqA(O)D€_“<T>(27r£) =0.

0<a<p

Thus
DY (G)P(EM ™)) |umo®(270) = AP DL.G(0)B(270).
This leads to
DY (qw)P(*M™w)) |u=0Ga(0) = A" DJg(0)G(0)

and therefore

DY (q)P(*M W) |umo = A°DY4(0).
It follows that (3.9) holds for 3, so that the proof by induction is completed. O

Denote by ®(x) the bi-infinite column from the integer shifts of ®:
(’i(aj) = t ( ,t(I)(x+€>,)
and by L the bi-infinite matrix

Lezd >

L= (PMO‘_ﬁ)aﬁeZd .
Then the refinement equation (1.1) can be written as
LO(Mz) = ®(z).

The characterization of the accuracy order of ® in terms of the eigenvalues and
eigenvector structures of the infinite matrix L were studied in [11], [25] and [17]
for the case d = 1. In [1], a similar characterization of the accuracy order of @
was obtained based on the ergodic theorem for the multivariate case with arbitrary
matrix dilations M (no restriction on the diagonalization on M), and the coefficients
ys,i(k) for the polynomial reproducing o = Y7 | > ;1 ys.i(Kk)di(x + k) were
determined explicitly. In the rest of this section, under the assumption that the
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integer shifts (¢;(x — ¢),1 < i < r,l € Z%) of ® are linearly independent, we will
determine explicitly the coefficients yf for the polynomial reproducing

(3.11) S yle@+0)=(Va)’, zeR’ |8 <k,
Leza

where V' is the matrix defined by (3.1).

Theorem 3.7. Assume that ® € L?(R?) is a compactly supported (M, P) refinable
vector and the integer shifts of ® are linearly independent. If ® has accuracy of
order k with yeﬁ, te7 B e Zi, |B] < k, being the 1 X r complex vectors such that
(3.11) holds, then yf satisfy

(i) yi = 2 0<a<s O)(~tveyi—oyg,

(ZZ) yﬁL — )\_ﬁyﬁ’ where yB = ( .. ’yf7 . )ZGZd7

(i11) the vectors yg,ﬁ € 24, |B] < k, satisfy the vanishing moment conditions
(3.4).
Proof. Let yy, ¢ € Z,8 € Z4,|8] < k, be the complex vectors such that (3.11)
holds. For any 7 € Z4,

S Va0 =Y yio@—T+0)=(V(@—7)
LeZd ez

- ¥ (g )(—fw)ﬁ-a(tvm)a
S ( ’ ) (VP S yed(e+0)

0<a<p Lezd

DYDY ( ’ ) (—1V7)P =y 2Pz + 1),

LeZ4 0<a<p
By the linear independence of the integer shifts of @,
(3.12) ny = Z < g ) (=tVr)P-ays
0<a<p

Let £ = 0; then (3.12) leads to (i).
For 3 € Z4,|B| < k, we have by (3.11)

('Va)? = y?®(z) = y’ LO(Mz)
and
(V) = A P(A'V2)? = X PV M)’ = APy D (Ma).
By the linear independence of the integer shifts of ® again,
(3.13) yPL=X"PyP for peZl,|8] <k.
Finally, we verify (iii). Note that (3.13) can be written equivalently as

Z nyMg_g/ = /\_ﬁyf,7 for any ¢/ € Z¢,5 € Z‘j_, 18] < k,
LezZd
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and, in particular, for any 7,0 < j <m — 1,

314) A =N yiPue, =Y Y ( g ) (="VOP P~ YEP rety, -

Lezd ez 0<a<p

For any € Z4, || < k, multiplying both side of (3.14) by

v ()

and summing over 3 < k, one has by (3.12) and A'V =1V M,

— K, R —K K K=
i =a 3 (),

0<B<K

“Y 2 T (5) () e s,

tezd 0<B<r 0<a<f

“Y X F (5 (58 ) A i,

Lezd 0<a<k a<f<k

-y > (h)e

€74 0<a<k
k—a R—Qa—T T Q
> ( - )(—tV”Yj) (VMO Y P a1t
0<r<k—a
Kk a—k K—a o
= 2 (5 )N s P,
€74 0<a<k

Thus for any x € Z4, |k| < k,

K Ol K Ol — — KR
(3.15) > (a) 0 (V(ML+ 7)) "Poregs, = A"y

0<a<k Lezd

For any s € Z4, 0 < s < m — 1, multiplying both side of (3.15) by e=27 =M "7
and summing over j = 0,--- ,m — 1, one has by Lemma 2.1,

m—1
2 ( o )(—A)“—ﬂya S (VML 7)) Py, e 2T

0<a<k 7=0 ¢ezd
m—1
= ATRYE Y e M T = ATy (s).
7=0
Thus
1 K a—K o K—a —2nt —ly —K K
m < a ) (=¥ (‘) moPpe 2T M = AT yES(s).

L ezl
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On the other hand, one has

> < . )(z‘/\)a—“ygD;—aP(zwa—lns)

0<a<lk
— 1 K S\ \O— R Q -t K—a —itn M~
-— ( N ) (N> "y§ (—="VO*"Pye
0<a<k Lezd
_ 1 R a—K_ .« t K—a —itnsM71€
—= X (h) e S evorere .
0<a<k Lez4

Therefore for any s € Z,,0<s<m— 1,k € Zi, |k| < K,

Z < Z ) (N "ys Dy P (2r M ng) = 8(s)A "y,
0<a<lk

and the proof of (iii) is completed. O

Remark 3.8. By Proposition 3.5, yg, ClS Z‘_f_, || < k, are the unique vectors

satisfying (3.4). Thus the unique coefficients y? for the reproducing polynomial
are given by (i) of Theorem 3.7, and they satisfy (ii) of Theorem 3.7.

4. THE RESTRICTED TRANSITION OPERATOR

Assume that P is a matrix refinement mask with supp{P,} C [0, N]? for some
positive integer N, and ® is a compactly supported (M, P) refinable vector. It was
shown in Section 2 that to decide whether ® is stable (orthogonal) or not, we need
only to check the properties of the spectra (eigenvalues) and the 1-eigenvector of the
restriction Ty of the transition operator T to H, where H is the finite dimensional
space defined by (1.5) and T is the transition operator defined by (1.3). It is useful
in practice to transfer equivalently the restricted operator Ty to a finite matrix,
since eigenvalues and eigenvectors of a finite matrix can be computed directly. In
this section, we give the representing matrix 7 of T|g, and then study the spectral
properties of T.

For H(w) = > s Hye™" € H, by (2.5), under the basis {e 7"} /c(q) of H, T
transfers the sequence {Hy}/c[q) into another sequence:

{m—1z Z P.H'P_ (vir—0)}refq)-
Le[Q] ke[0,N]4

Now let us look at the matrices of the form P, H,'P,. Let Q = (Q(1),---,Q(r))
be an r x r matrix with Q(j) the jth column, and define an 72 x 1 vector vec(Q)
by

vee(Q) ="("Q(1), - ,"Q(r)).
Then we have the following lemma.
Lemma 4.1. Let P,Q, H be r X r matrices, then
(4.1) vec(PH'Q) = (Q ® P)vec(H),
where Q ® P = (g;;P)1<i,j<r, the Kronecker product of matrices Q and P.
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Proof. Let P(i), H(i) denote the ¢th column of P and H, respectively, and let g;;
be the (i, 7)-entry of Q. Then the jth column of PH!Q is

PH Q]z Zq]ZPH ]IP : 7quP)t(tH(1)7"' 7tH(T))'

Thus
VeC(PHtQ) = t(t(PH(QM)f:l)v T 7t(PH(qm);‘r:1))
= (jSp)1<g<r 1<i<r ! (tH(l)v T atH(T)) = (@ ® P)vec(H).

=)=t

|

About formula (4.1) for more general matrices, one can refer to [12], and in
particular, one has that, for any 1 x r vectors v,u and r X r matrix @,

(4.2) (v ®@ u)vec(Q) = uQ'v,
where v ® u denotes the Kronecker product of v, u.
For j € Z%, define 2 x r? matrices

g =m Z PZ j ® PEa
£e[0,N]4
and define an (r2|[Q]]) x (r2|[]]) matrix
(4.3) T .= (AMi_j)i7je[Q] .
For f =37 ciq fie™™ € H, let vec(f) be the (r?|[Q]]) x 1 vector defined by

vec(f) = "(--- " (vec(f;)), - )jeral-
Then from (2.5) and (4.1), for any 7 € [€Y],
vec((TH),) =m™* Z Z vec(PoHy'P_ (vir—0))

Le[Q] ke[0,N]¢

m~! Z Z —(Mr—t) @ Py)vec(Hy)

Le[Q] ke[0,N]¢
= Z Apir—evec(Hy) = (Tvec(H))(T).
Le(Q]
Hence we have

Theorem 4.2. The restriction of the transition operator T to H is equivalent to
the matriz T defined by (4.3) under the basis {e~**},ciq) of H, and for H € H

(4.4) vece(TH) = Tvec(H).

Lemma 2.2, Theorem 2.11, Theorem 2.12 and Theorem 4.2 lead to the following
two corollaries.

Corollary 4.3. The refinement equation (1.1) has a compactly supported solution
which is stable if and only if the following conditions hold:

(i) the matriz P(0) satisfies Condition E,

(ii) for the left (row) 1-eigenvector 1 of P(0), IP(2n*M~1n;) =0, 1 < j <m-—1,

(iii) the finite matriz T satisfies Condition E and the corresponding right 1-
eigenvector v is such that Ho(w) is positive (or negative) definite on T¢, where
Hy(w) is the unique matriz function in H satisfying vec(Hp) = v.
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Corollary 4.4. The refinement equation (1.1) has a compactly supported solution
which is orthogonal if and only if the following conditions hold:
(i) the mask P is a CQF,
(ii) the matriz P(0) satisfies Condition E,
(iii) for the left (row) 1-eigenvectorl of P(0), IP(2r'M~1n;) = 0,1 < j < m—1,
(iv) the finite matriz T satisfies Condition E.

By (4.4), v is an eigenvector of 7 if and only if the matrix-valued function H (w)
in H with vec(H) = v is an eigenvector of T, and furthermore v, H(w) correspond
to the same eigenvalue. Therefore to study the spectral properties of T, we need
only to consider those of the matrix 7. In the rest of this section, we will discuss the
spectral properties of 7. In the following, we will assume that the eigenvalues of the
dilation matrix M are nondegenerate, and let A;, 1 < j < d, be the eigenvalues of
M. Let V denote the matrix defined by (3.1). We also assume that P satisfies the
vanishing moment condition of order k for some positive integer k, i.e. P satisfies
(3.4) for some vectors 17, 3 € Z4, |B] < k, with 13 # 0.

Let ko € Z4, ko < k, be the largest integer such that there exist 1 x r complex
vectors 1§, 8 e Zi,k <|B| < k+ ko — 1, satisfying

(4.5) > < g ) (iINPIe DY P(0) = A1,
0<a<p

If all the numbers A\=#,k < 3| < k + ko — 1, are not eigenvalues of P(0) for some
ko € Z4, then the vectors 1§, [CRS Zi, k < |B| < k+ko—1, can be chosen iteratively
by

15 ()\—BIT - P(0) = Z ( g ) (i,\)a—mg(pg—ap)(o).

0<a<f

For the case r = 1, since P(0) = 1 ko = k.

Let B(w) = > sz joj<hsr, Bee'™ be the vector trigonometric polynomial satis-
fying
(4.6) DY B(0) =iy, Bezl,|B| <k+ k.

The coefficients By, 1 X r vectors, can be gotten by the following equations:

S (veyPBi =15, BeZi,|Bl <k+ k.
|£|<k+ko

By (3.2), forany j € Z1,0 < j <m—1,
Dﬂ( (‘M )P(w)|w omt M1y,

_ < g A )(*Mw) DY aP(w)) [
0<a<lps

0<a<p <
0<a<lps <

SRR

SR

(iIN)*1g DI “P(2rt M~ y;).

) («
)Aa (O)DF P )| smini 1y,
)
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Thus the vanishing moment conditions (3.4) and (4.5) can be written equivalently
in the forms

DY (B(*Mw)P(w)) |umznis-1n, = 6(7)Dy B(0),

(4.7)
BeZl,|B <k0<j<m,
and
(4.8) DY (B((Mw)P(w)) |wmo = DgB(0), B €Z k< |8 <k + ko.

Let 12, 3 € Z4,|B| < k + ko, be the row vectors satisfying (3.4) and (4.5). For
Kk € Z%, define row vectors 12 by

(4.9) = > ( g ) (-'Vk)Pely,  for B e Z4, |8 < k + ko,
0<a<p
and then define 1 x (2|[Q]|) vectors L{, by

(4.10) L = (o (), netoy
with

Pr)= > (-1)6“( g >i°ﬁn®1§‘a, ke 72,

0<a<p

Lemma 4.5. For any 8 € Zi, 18] < k+ko, let Lg be the vectors defined by (4.10).
Then for any H € H

LE vec(H) = (i) "1 D{. (B@)H (@) B* () lo—o.
Proof. By (4.2), for any 3 € Z<4,|B| < k + ko, and any H € H

L2 vec(H) = ZIB( k)vec(H, Z Z < ) 197"H (k) (1%,.)*

® 0<a<p
-2 ¥ v (a ) g 3 v () 6

- Y S e ()

K 0<a<B0<y<a

v (9) Dy BO (D B0
DY )( )Dﬁ “B(0) S (—i'Vs) H (k) DS B*(0)

0<a<p0<~y<La < K

>
i)l Z Z g)( )D5 “B(0)Dy,H(0)Dy, "B*(0)

0<a<p0<~y<La

= (=)D}, (B(w)H(w) B* () |u=o-

For 8 € Z‘i, |8] < k + ko, denote
Eg:= {8 N =)\, 3 ezL,|8 < k+ ko).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2430 QINGTANG JIANG
Theorem 4.6. For any 8 € Z4,|3| < k + ko, let Lg be the vectors defined by
(4.10). Then
(4.11) LOT = A7PLY.
If there exists a 3’ € Eg such that Lg £ 0, then \™P is an eigenvalue of T with a
corresponding left eigenvector Lg.
Proof. We need only to show that for any H € H,
LY Tvec(H) = A PLY vec(H).

In fact, by (4.4) and Lemma 4.5,

(iN)PLE Tvec(H) = (i\)PLvec(TH)

= Dy, (B(*Mw)(TH)("Mw)B*(* Mw)) |u=o

3

DY (B(*Mw)P (27w + 20t M ~11;)

<
Il
o

“H(2mw + 27 M~ )P (21w + 27° M ) * B* (M w)) lw=o

m—1

Z > Z( )( )DV(BGMw)P(wm_%tM1,7j

j=0 0<a<B0<y<a
DY H (w)|w:2ﬂtM*1leB/_a_7 (B(tMW)P(W))* |w=2ntrr-1n, -

Since for any 3, «,y € Z4 with |B| < k+ ko and v < a < 3, we have the inequality
min(|al, |8 — a —7|) < k, it follows, from (4.7) and (4.8), that

v = 3 5 (1)(2) DpEOMP@)n

0<a<Lpo<y<La

- DY H(w)|weo DY (B Mw)P(W)) " |uzo

=y Z< )( )DQB(O)Dgﬂ(O)D(i““WB*(O)

0<a<p0<y<La
= DY (B(w)H (w)B*(w)) lu=o = i'°'L2 vec(H).

Therefore LéTvec(H ) = )\_BLgvec(H ). The second statement of Theorem 4.2

follows from (4.11), and the proof of Theorem 4.6 is completed. |
Since LY, = (13,---,13) # 0, 1 is an eigenvalue of T. In the case r = 1,d =
1, M = (2), then Q = [-N,N] and kg = k. For any n € Z;, n < 2k — 1,

the vector ((—N)™,---,(=1)", 0™, 1", --- | N™) (with 0" := §(n)) is the generalized
left eigenvector of the eigenvalue 27" of 7, and hence 27,0 < n < 2k — 1, are
eigenvalues of T (see [5]). Theorem 4.6 says that for 3 € Z%,|8| < k + ko, if
there exits 3’ € Ej3 such that Lg # 0, then \™? is an eigenvalue of T. If the
refinement equation (1.1) has a compactly supported solution ® with ® € W*(R%)
for some s > 0, then one can show similarly as in [19] that Lé # 0 for § €
Z‘j_, |8] < min(k + ko — 1,2s), and hence A7 are eigenvalues of T. In this paper,
for s > 0, we say a vector-valued function f = t(fy,--- 5 fr) is in the Sobolev space
W#(R?) if every component f; of f satisfies (1 + |w|?)2 f;(w) € L*(RY), 1 < j <.
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The vectors Lg play an important role in estimating the Sobolev regularity of the
refinable vector ®, which will be done in the next section.

5. SOBOLEV REGULARITY ESTIMATES

Assume that P ({P,}) is a matrix refinement mask satisfying (3.4) and (4.5) for
some positive integers k, ko with kg < k, and ® is a compactly supported (M, P)
refinable vector. Suppose supp{P,} C [0, N]¢, and let H be the space defined by
(1.5). In this section, we will estimate the Sobolev regularity of ® in terms of
the spectral radius of the restriction of the transition operator T to an invariant
subspace H° of H.

For j € Z4,1 < j <r, and a € Z%,|a| < k, let ;1,18 be the 1 x (r?[[Q]))
vectors defined by
(5.1) o = (o g1%(R), - nepay e = (T (K), - refe)
with

A%k) =te; @12, r%(k) =10, ®te;, ezl
Lemma 5.1. For j, 1 <j <7, and o € Z%,|a| <k —1, let ;1§ , ;x& be the row
vectors defined by (5.1). Then for any H € H,
lqvec(H) =i Dy, (B(w)H(w)e;) [w=0,
jravec(H) = (—i)* Dy ("ejH(w)B* (w)) |w=0-

Proof. For any H € H with H(w) = ZKG[Q] H,e~ e,

Dp (BHWe) o= 3 () DUBODY ),

0<y=«
.o « a— e [}
=1 Z Z < o ) (—"VK)* JHe; =i ZlﬁHﬁej
K 0<y<a K

=“ Z(tej ® 1 )vec(H,) = i%;1¢vec(H).

The proof of the second formula is similar, and it is omitted here. O
Let HO be the subspace of H defined by
(5.2) H:= {H e H: Llvec(H) =0, j13vec(H) = 0 and
jravec(H) = 0,V8,a0 € Z%, |B| < k + ko, |a| < k,1 < j <r}.
Proposition 5.2. The subspace H° of H defined by (5.2) is invariant under T.
Proof. By Theorem 4.6, for any H € H and 8 € Z%,|8| < k + ko,
LY vec(TH) = L Tvec(H) = A™PLY vec(H) = 0.

By Lemma 5.1, for any a € Z%,|a| < k, the equalities ;1gvec(H) = 0 and
jravec(H) = 0 for all j,1 < j < r, are equivalent to DY (B(w)H w)) |w=0 = 0
and D$ (H(w)B*(w)) lw=0 = 0, respectively. One can check by (4.7) and (4.8)
that DS (B(w)TH(w)) |w=0 = 0 (D{ (TH(w)B*(w)) |w=0 = 0 resp.) for all a €
Z4,|a| < k, if DG (B(w)H(w))|w=0 = 0 (D¢ (H(w)B*(w)) |u=o = 0 resp.) for
a € Z4,|al < k. Thus H° is invariant under T. O
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Let T|go denote the restriction of T to H®. We will want to find the Sobolev
regularity estimate of ® in terms of the the spectral radius p(T|go) of T|go, and
therefore we need to find the maximum of the moduli of the eigenvalues of T|go.
Since the product of the left and right eigenvectors of a simple eigenvalue of a
matrix is not zero, Theorem 4.6 leads to the following corollary,

Corollary 5.3. If \™% with 3 € Z‘i, |8] < k+ ko, is a simple eigenvalue of T and
there exists 3 € Eg such that Lg #0, then A\™° is not an eigenvalue of T|go.

The next proposition provides a way to find the eigenvalues of T|go. Let Lo be

the r2|[Q]| by < d+k tlko -1 > matrix defined by

Lo = (- 7t(Lg)a'")BeZi,\ﬁlgk—s-ko—D

and for j, 1 < j < r, let L; and R; be the r?|[Q2]| by ( d+§_1 ) matrices
defined by

Lj:=(-- ,t(jlg), : ")aezi,\a|§k—1a Rj:= (- 7t(jr3)a : ")aezi,\a|§k—1-
Then define the 72([Q]| by < d+ k—zko -1 ) +2r < d+ I:l -1 > matrix Mq by

MQ = (‘CﬂaLla"' 7LT7R17"' 7RT)'

Proposition 5.4. Assume that Ay is a nonzero eigenvalue of T,. Then Ao is an
eigenvalue of Tlgo if and only if rank(! Mo (uy,--- ,w;)) <1, where uy,--- ,u; con-
stitute a basis of the Ag-eigenspace of T .

Proof. Note that g is a nonzero eigenvalue of T|go if and only if Ay is a nonzero
eigenvalue of 7 with a corresponding right eigenvector u satisfying
(53) tMQu =0.

By the fact that for any matrices M, Ma (with the product M;Ms meaningful),
rank(M; Ms) < min(rankM;, rankMs), we know that if rank(*Mq(uy, -+ ,w;)) >,

then rank(*Mq(uy, - -+ , 1)) = [, and therefore any linear combinations of uy, - -+ ,u,
does not satisfies (5.3). Thus )¢ is not an eigenvalue of T|ypo.

If rank(* Mq(uy, - -+ ,u;)) = lp < [, we assume without loss of generality that the
rank of "Mq( uy, -+ ,uy,) is lp. Thus ‘Mqu;,j = 1,---,lo, are linearly indepen-
dent, while tMQuj,j =1,---,lp + 1, are linearly dependent. Hence we can find
constants ¢y, -+ , ¢, such that

vi=cuyp + -t eug, + U4

satisfies (5.3), i.e. Ag is an eigenvalue of T|go with Hy € H given by vec(Hy) = v,
with v being a corresponding eigenvector. O

Proposition 5.4 provides an easy way to find eigenvalues of T|go, and its proof
shows how to find the corresponding eigenvector. By Proposition 5.4, we have the
following corollary.

Corollary 5.5. The spectral radius p(T|go) of T|go is the maximum of the moduli
of all eigenvalues \g of T satisfying rank(! Mq(uy,--- ,w;)) < I, where uy, -+ ,
are a basis of the \g-eigenspace of T .
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For the next proposition, we need to consider the transition operators on other
spaces. Denote N := max(N, k + ko) and

Q= {ZM_(j+1)xj Dxy € [—N7/\/]d7vj €Ly}
j=0

Let Hq, denote the space of all r x r matrices with each entry a trigonometric
polynomial whose Fourier coefficients are supported in [(;], and let T, denote
the operator T restricted to Hgq,. Then Tq, is a linear operator on Hg, leaving
Hg, and H invariant, and the representing matrix of Tgq, is

Ta, = (A2i—j)ije[o)-

Let H?zl be the subspace of Hq, defined as follows: H & H?zl if and only if
Lglvec(H) = 0,;18 vec(H) = 0 and ;ry vec(H) = 0 for all B, € Z4,[8| <
k+ ko, |a] < k,1 <j <r. In this case Lgl, ;18 and jrg are 1 x (r?|[]]) vectors
defined by (4.9) and (5.1), respectively, with Q; instead of Q. It can be shown
similarly that H?h is invariant under Tq,, and we let T|H% denote the restriction

1

of To, (T) to HY, . Let Hy € Hq, be defined by
d

(5.4) = (1 —cos(w;))* ™1, w="(w1, - ,wa) €R™.
j=1

Then Hy(w) € HY, , and thus HY, is nontrivial. By Lemma 2.2, the eigenvectors of
Tq, corresponding to nonzero eigenvalues are in H. Therefore Tgq, (T|H% resp.)
1

and the restriction T|g of T to H (T|go resp.) have the same nonzero eigenvalues.
Hence p(T|go) = p(T|H%1), where p(T|go) and p(T|H%1) denote the spectral radii
of T|go and Ty K respectively.

The following proposition is obtained by modifying the proof of Proposition 4.4
in [26] or Proposition 3.3 in [19].

Choose a vector norm on the space H?h and define the operator (matrix) norm
||T|H?21 || with respect to this vector norm. Then

i [(Tgg )17 = p(Tig, ) = p(To).

Proposition 5.6. Assume that P satisfies conditions (3.4) and (4.5), and p(T|go)
is the spectral radius of T|go. Then for any € > 0, for the corresponding (M,P)
matriz refinable function ®, there exists a constant ¢ independent of n such that

/Dn ()| dw < e (p(Tfao) + )"

where Dy, := ‘M TN\ (M™%, n € Z,.

Proof. Let Ho(w) € HY), be defined by (5.4). Since ‘M ~'T% is a neighborhood of
the origin, there exists a positive integer ¢ such that ;T¢ C *M~'T¢. Note that
for w € D, ®(w) = IL,(w)(*M "w), and for w € Td\(%'ﬂ‘d), Ho(w) > ¢ol, with
co=d(1— cos(%))k‘HCO > 0. Thus by the continuity of &D(w) on T, we have for any
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positive integer n,

/ B (w)3* (w )dw—/D T, (w)B (M) B (M) T () do

w)dw < c/ IL, (w)IT} (w)dw
Mn‘]l‘d\(ltMan)

IN

¢ / T, (w) Ho (! M~ "w)IT" (w)dw
tMn'ﬂ*d\(%tMn'ﬂ*d)

< C/]Rd IL,, (w) Ho(* M ~"w)IT (w)dw = C/Td(Tngo)(w)dw,

where the last equality follows from Lemma 2.9. Since the Hilbert-Schmidt norm
Q2 = v/Tr(QQ*) is an equivalent norm for finite matrices, by applying the trace
operation, we obtain

| @R = [ ()5 @) do < oo (Tl ) +) " = (p(Tlan) +)"

n

with ¢, independent of n. a

Proposition 5.6 together with the usual Littlewood-Paley technique leads to the
following Sobolev estimate of the refinable vector ®.

Theorem 5.7. Assume that P satisfies (3.4) and (4.5). Then the (M,P) matriz
refinable function ® is in W*(R?) for any s < so := —log p(T|go)/(210g Amax),
where p(T|go) is the spectral radius of T|go and Amax := maz{|M\], -, |Xa|}-

Proof. For the dilation matrix M, there exists some ng € Z, such that T¢ C
(*M)mo 1T, For s < sg, let € > 0 be a constant satisfying

—log(e + p(T|ro))/ (2108 Anax)-
Since

/ 1B(w)Pdw < (e + p(Tlso))",

n

for some constant ¢ independent of n, and ® is continuous on T4, it follows that

/R (1+ W) [B(w) Pdw
/ (14 [w]2)*|B(w 2dw+z/ (1 + [w]2)*]B (w)|2duw

t Mo +an\t Mn—1Td

co Mo

/(1+|w| )51 (w |dw+ZZ/ (1+ |w[2)*|B(w)[2dw

n=1j=0 Dot

oo no

< C+CZZ 2 (e 4 p(To )™ < o0

n=1 j=0

Therefore ® € W*(R%). O

Let C7(R?) denote the space defined as the following way: if v = n + ' with
n€Zy and 0 <+ < 1, then f € C?(R?) if and only if f € C™(R%) and f™ is
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uniformly Holder continuous with exponent v/, i.e.
! d
D f(z+y) = D°f(a)| < cly[”, forany § € Z%, |5 =n,

for some constant ¢ independent of =,y € R%. With the well-known inclusion
d
We(RY) c CV(RY), for s >+ 2
Theorem 5.7 leads to the following corollary.

Corollary 5.8. Suppose P satisfies conditions (3.4) and (4.5). Then the (M,P)
matriz refinable function ® € CV(R?) for any v < —% — log p(T|po)/(210g Amax),
where p(Tgo) is the spectral radius of Tlgo and Amax := maz{|A1], - ,|Aal|}-

Assume that the refinement mask {P,} is a finitely supported real r x r matrix
sequence and P satisfies the vanishing moment conditions of order k (3.4) and (4.5)
for some ko with real vectors 1§ 18] < k + ko. Let H, denote the space of all r x r
matrices with each entry a trigonometric polynomial whose Fourier coefficients are
real and supported in [©2]. Then H, is invariant under T. Define the subspace Hgym
of H, by

Haym == {H €H,: H*=H, Lvec(H)=0and
Javec(H) = 0,Y3,a € ZL, |B] < k + ko, || <k, 1 < j <7}
Then Mgy, is a linear space over the field R and is invariant under T. Let Ty,
denote the restriction of T to Hgym. Then, as above, we can obtain the Sobolev

regularity estimate of the compactly supported (M, P) refinable vector ® in terms
of the spectral radius of T|y,,,, .

Theorem 5.9. Assume that the refinement mask {Pyo} is a finitely supported real
rXr matriz sequence and P satisfies (3.4) and (4.5) with real vectors lg, 18] < k+ko.
Then the (M,P) matriz refinable function ® is in W*(RY) for any s < so =
—log p(T|m.,.. )/ (210g Amax), where p(T|m,,,,) is the spectral radius of T|u,,,, and
Amax = maz{|A1], -, ||}

In [19], the Sobolev regularity estimates of the B-splines defined by knots 0,0, 1,1
and 0,1, 1,2, the GHM-orthogonal scaling functions in [8] and two refinable vectors
from [2] are analyzed. To finish this paper, we analyze an example from [9] about
refinable bivariate splines.

Example 5.10. Let ¢; denote the “pyramid function” with support on the square
with vertices (2,1), (1,2), (0,1) and (1,0) which is continuous, satisfies ¢1(1,1) =1
and is linear on each of the four triangles formed by the boundary and the two
diagonals of its support. Let ¢o be the “pyramid function” with support on [1,2]?,
ie.

¢2(x1,x2) = p1(x1 + 22 — 1,21 — 22).

Let ® := (¢1,¢2). Then & satisfies the matrix refinement equations (1.1) with
M = 2I, and the matrix refinement mask given by (refer to [9])

Pl) = ; (z1 + 20 + 22129 + 2229 + 2122 (14 21)(1 + 22) ) ’

R 2(2’122)2 2122(1+21)(1+22)
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where 21 = e ™1, 2, = e™2. In this case n; = 5,7 = 0,---,3, and they are the
vertices of [0,1]%, and 1, 1 are eigenvalues of P(0), N =2, Q = [-2,2]?. One has

1/6 4 1 /-2 0 .
P02 (5 D), ren=t(E0) sones

Thus l((JOO) =*(1,1) is the unique (up to a nonzero constant) vector satisfying (3.4)
for 8 = (00), and we have

DUOP(0) = DLIP() = % (Z 2) ,

DUOP(r,0) = DOVP(0, 1) = % (_42 _22> ,

D1OP(0, ) = DOVP(x,0) = DOP(x, 1) = DOVP(r, 7) = %Z <_42 8) .
One can obtain that l((Jw) = 1((301) = (1, 3) satisfy (3.4) for 8 = (10) and 8 = (01),
respectively, and there are no such vectors 15 that satisfy (3.4) for all § € Z2%

with [8] = 2. Though } is an eigenvalue of P(0), there are vectors 1820) = 1((302) =

1(1,2),15" = (1, 2) and 17 = 15" = 1(1, )17 = 1" = 1(1, 3) satisfying (4.5)
for § = (20), (02), (30), (03), (21) and (12), respectively. To check the stability of
®, we need to compute the eigenvalues of the 100 x 100 matrix

T 222 = (A2i—j)i je[-2,2)2-

We find for 8 € Z‘_f_, |8] < 3, that L[ﬁ_2 o2 # 0. Thus by Theorem 4.2, 1, %,i and
% are eigenvalues of 7. In fact the eigenvalues of 7 are 1, 3(2), 1(5), §(12), 15 (24)
and 0(56). Here for an eigenvalue )\g, the notation A\o(l) means that the algebraic
multiplicity of Ag is I. Thus 7[_3 92> and the transition operator T restricted to
H{_3,9)2, denoted by T[_3 o2, satisfy Condition E. We find that the 1-eigenvector

of T[_2)2]2 is
Hw)= (5T €W ez f eIl peTiva ] et 4 giwz 4 gilwitws)

- 1 + e—iwl + e—iwg + e—i(wl-'rUJz) 4 .
Checking directly, H(w) > 0 for all w € T?; hence ® is stable. By Theorem 3.6,
S(®P) provides approximation of order 2.

To estimate the regularity by our method, we need only to find the maximum
of the moduli of the eigenvalues of T[_3 2|0, the restriction of T[_3 2 to the
invariant subspace H° of H_5 o2 defined by (5.2). By Corollary 5.3 and Proposition
5.4, we find that 1, % and 1 are not eigenvalues of T[—2,92|p0, and % is an eigenvalue

4 .
of T[_g 9)2|mo With a corresponding eigenvector How) = Eée[_m]g Hye ™ given

by
1 4 —6 6
H_y 1="Hy= (0 0) , H_19="Hjo = ( 0 0) ;

0 6 —10 4
H0_1 = tH()l = (O _6) 5 HOO == ( 4 _8) )

and H_1; ="Hi_1 = 0. Thus p(T[_222|m) = %, and it follows from Theorem 5.7
or Theorem 5.9 that ® € W2 ~¢(R2) for any € > 0. On the other hand, the Fourier
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transform of ® is (see [9])

51 (wi,ws) = de—i(witwe) L Sz = W2 S
)

wiwa(w? —w3)

o~

P2 (wi,ws) = %6_%i(”1+w2)$1(w1 T

2 7 2

).

Thus ® € W*(R?) if and only if s < %, and our estimate on the Sobolev regularity

of

® is optimal.
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