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Multivariate meta-analysis of heterogeneous studies using
only summary statistics: efficiency and robustness

Abstract

Meta-analysis has been widely used to synthesize evidence from multiple studies for common

hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating

heterogeneous studies, which arise often in applications due to different study designs, populations or

outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies,

and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion

of part of the studies can lead to a non-negligible loss of information. This paper introduces a meta-

analysis for heterogeneous studies by combining the confidence density functions derived from the

summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies

in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood

inference framework, this new approach is shown to have several desirable properties, including: i)

it is asymptotically as efficient as the maximum likelihood approach using individual participant data

(IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the

CD approach. Individual-level data are not required; and iii) it is robust against misspecification of

the working covariance structure of the parameter estimates. Besides its own theoretical significance,

the last property also substantially broadens the applicability of the CD approach. All the properties

of the CD approach are further confirmed by data simulated from a randomized clinical trials setting

as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for

combining summary statistics, subsuming many of the existing meta-analysis methods as special cases.

Key words: combining information, complex evidence synthesis, confidence distribution, efficiency,

generalized estimating equations, heterogeneous studies, indirect evidence, individual participant data,

multivariate meta-analysis.
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1 Introduction

Meta-analysis is one of the most commonly used approaches for combining findings from a series of inde-

pendent studies. It has been used extensively in many fields, such as medicine, epidemiology, education,

psychology, among others. The growing emphasis on evidence-based decision-making in those fields has

brought to the fore the need for developing meta-analysis for more complex settings. The goal of this

paper is to introduce a meta-analysis for the complex setting of heterogeneous studies, using the approach

of combining the confidence density functions derived from the summary statistics of individual studies.

This approach, referred to as the CD approach henceforth, unlike the traditional meta analysis, can in-

clude all the studies in the analysis and make use of both direct and indirect evidence. In addition, under

a general likelihood inference framework, we can show that: i) The CD approach is asymptotically as

efficient as the maximum likelihood approach using individual participant data (IPD) from all the studies;

ii) It suffices to use summary statistics to carry out the CD approach and individual-level IPD data are not

required; and iii) The CD approach is robust against misspecification of the working covariance structure

of the parameter estimates.

In many meta-analysis investigations, the studies under consideration are often heterogeneous. For

instance, Sutton and Higgins (2008) showed that the heterogeneity can arise from the differences in study

populations, designs or outcomes. This naturally leads to parameter heterogeneity among the studies, in

the sense that the estimable parameters are different from one study to another. At times, the parameter

of interest may not even be estimable in some of the studies. In such situations, since these studies do not

provide any direct information for inference for the parameter of interest, such as point estimates, they

are generally excluded from the conventional meta-analysis. However, this exclusion can lead to a non-

negligible or even substantial loss of information. To overcome this problem, we propose a meta-analysis

approach that can incorporate all the studies in an efficient manner.

We use a basic fixed-effects model to illustrate a broad range of heterogeneity settings. Consider a

meta-analysis of K independent clinical trials with the following fixed-effects linear model:

Yi j = αi +β1Xi j +β2Zi j +β3Zi jXi j + εi j, i = 1, . . . ,K, j = 1, . . . ,ni, (1)

where Yi j is the response for the j-th subject in the i-th study, Xi j the treatment status (1/0 for treat-

ment/control), Zi j the covariate of interest (e.g., drug dosage), and εi j the noise variable following N(0,σ2
i ).

Here, αi’s are the study-specific effects and βββ = (β1,β2,β3)
T is the common effect among all studies.
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This model is often used to examine, in addition to the treatment effect, the covariate effect as well as the

treatment-covariate interaction effect in randomized clinical trials, as shown in, for example, Simmonds

and Higgins (2007). Using this model, Simmonds and Higgins (2007) investigated the power of different

meta-analysis methods in detecting the interaction effect β3. They showed that the conventional meta-

analysis method of simply weighting the point estimates of β3 from each of the studies suffers loss of

power in testing, or equivalently, of efficiency in estimation. Although Lin and Zeng (2010) showed that

this loss of efficiency can be avoided if the point estimates of the vector parameter βββ are combined using

the inverse of the corresponding covariance matrix as the weight, both methods break down when hetero-

geneity is present among the studies, as illustrated in Examples 1-3 below. In each of these examples, at

least one of the parameters is not estimable in certain studies, due to the heterogeneity in populations, de-

signs, or/and outcomes. Consequently, some studies can not be utilized in conventional analysis, resulting

in a loss of efficiency. This point will be elaborated further both theoretically and numerically.

Example 1 (Heterogeneity in populations). The studies collected for meta-analysis may be from different

populations defined by distinct gender, race or disease status of study subjects. The population hetero-

geneity may affect the effect size and thus require the specification of study-specific effects in statistical

modeling, such as αi’s in Model (1). The study-specific effects are of interest when the study-specific

inference is part of the research goal. For example, in clinical trials, it is also crucial to evaluate the treat-

ment effect for certain subpopulations (see, e.g., Entsuah, Huang, and Thase, 2001; Shekelle et al., 2003;

Zarrouf et al., 2009). However, it is clear that the study-specific effect Study 1, namely α1, is not estimable

in the other studies. Hence, none of Study 2, · · · , Study K can be utilized in the conventional meta-analysis

for making inference on α1.

Example 2 (Heterogeneity in covariate designs). The covariate designs may be different from one study to

another since each study may have its own specific considerations and constraints. In particular, Simmonds

and Higgins (2007) pointed out a situation with missing covariate designs; that is, certain studies do not

have the design covariate that is of current research interest. For example, if Study 1 does not aim to

examine the effect of the covariate Z1 j (e.g., drug dosage), the Z1 j of all the subjects in Study 1 are

typically controlled at a fixed value (i.e., same dosage), say Z1 j ≡ z. Therefore, for Study 1, Model (1)

becomes

Y1 j = (α1 + zβ2)+(β1 + zβ3)X1 j + ε1 j, j = 1, . . . ,n1. (2)

Here the interaction effect β3 is not estimable, and thus Study 1 can not be utilized in the conventional
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meta-analysis for making inference on β3.

Example 3 (Heterogeneity in outcomes). Another challenging problem in meta-analysis arises in the

difficulty of synthesizing studies with different types of outcome report (Dominici and Parmigiani, 2000),

often due to different data report policies. Whitehead, Bailey, and Elbourne (1999) discussed an example

on reporting blood loss in women labor. In that example, even though the outcome of interest (namely,

blood loss) is continuous, some studies may choose to report only binary outcomes (e.g., “severe” or

“not severe”) indicating whether or not the underlying continuous outcome exceeds a prefixed threshold.

Under the working Model (1), suppose that Study 1 reports only the binary responses d1 j, where d1 j = 1 if

y1 j ≥ τ1 and d1 j = 0 otherwise, with the prefixed threshold τ1. It is easy to see that, for Study 1, Model (1)

now reduces to the following probit model:

Pr(d1 j = 1) = Φ

(
α1− τ1

σ1
+

β1

σ1
X1 j +

β2

σ1
Z1 j +

β3

σ1
Z1 jX1 j

)
, j = 1, . . . ,n1. (3)

Here again, the interaction effect β3 is not estimable (only β3/σ1 is estimable since σ1 is unknown), and

Study 1 can not be utilized in the conventional meta-analysis for making inference on β3.

Note that all the examples above involve multiple parameters, and the information for one parameter

may potentially impact the inference on the other parameters. In other words, the studies excluded from

the conventional meta-analysis may contain indirect evidence for the common parameters. Clearly, such

indirect evidence is useful and can be utilized if IPD data are available for all the relevant studies, since, in

this case, an effective inference can be made from multiplying individual-level likelihood functions from

all the studies. It is worth pointing out that although the IPD method is regarded as the “gold standard” for

combining information in the literature, its implementation can be difficult, costly, and often impractical

for various reasons, such as concerns over data confidentiality issues and reluctance of original researchers

to release the full data.

This last observation naturally raises the question: Can we retain full efficiency (achieved by using

IPD data) by using only summary statistics to perform meta-analysis of heterogeneous studies? This

question has been investigated in the literature of meta-analysis in various settings but all within the scope

of homogeneous studies, see, e.g., Olkin and Sampson (1998), Mathew and Nordstrom (1999), Simmonds

and Higgins (2007), and Lin and Zeng (2010), among others. In particular, Lin and Zeng (2010) showed

that asymptotically there is no loss of efficiency by analyzing only summary statistics in the framework of

likelihood inference for homogeneous studies. However, the question on relative efficiency of analyzing
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summary statistics versus IPD data in meta analysis for heterogeneous studies is more challenging and has

remained unresolved thus far.

This paper provides an affirmative answer to this question. Our estimator derived from summary

statistics is asymptotically as efficient as the IPD estimator and suffers no loss of efficiency, even when the

studies are heterogeneous. This theoretical conclusion covers the results established in Olkin and Sampson

(1998), Mathew and Nordstrom (1999), and Lin and Zeng (2010) as special cases. Those papers focused

on the situation where the parameter of interest is estimable across all the studies. Ours extends the results

to complex situations where the parameter of interest is not estimable in some studies due to the presence

of heterogeneous studies.

Our method is to combine confidence density functions from relevant studies. The concept of confi-

dence density and its cumulative counterpart, confidence distribution, has been developed extensively in

recent years; see Xie and Singh (2013) and the references therein for a comprehensive review. Roughly

speaking, the confidence distribution (density) is a sample-dependent distribution (density) function that

can be used to estimate and provide all aspects of statistical inference for a parameter of interest. A confi-

dence density function can carry a wealth of information (e.g., correlation) for multiple parameters, and is

particularly well suited for the problem setting of this paper. This useful feature is also seen in Tian et al.

(2010), where the confidence density is used to make joint inference about a set of constrained parameters

in survival analysis.

The idea of combining confidence density functions lends itself to an unifying approach for combining

summary statistics, which subsumes many existing meta-analysis methods. More specifically, in some spe-

cial cases of the setting considered in this paper, the estimators derived from our approach reduce exactly

to the ones from those existing methods. In particular, our approach covers the commonly used method

of weighting point estimates (Lin and Zeng, 2010) and the multivariate generalized least square method

(Becker and Wu, 2007), both of which perform linear combination of summary statistics. Our approach is

broader, allowing incorporating indirect evidence in the analysis, and adapts to more complicated problem

settings, by performing non-linear combination of summary statistics.

We also establish a robustness property of our approach. This property is of considerable importance,

because it broadens substantially the applicability of our approach. Specifically, it shows that the approach

applies to the situation when only estimates of the individual variances, rather than the full covariance

matrices, of the parameter estimates can be obtained from the studies. In other words, the approach is
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valid even if the covariance structure of parameter estimates is misspecified. As a matter of fact, our

estimator remains consistent and asymptotically normal. This asymptotic result in essence follows the

theory for generalized estimating equations described in Liang and Zeger (1986). We further show that

our approach can achieve considerable gain in efficiency for the overall inference by using suitably chosen

“working” correlation matrices.

The rest of this paper is organized as follows. In Section 2, we describe our approach and show that it is

asymptotically as efficient as the IPD approach under a general likelihood inference framework. In Section

3, we establish the robustness property of our approach and illustrate its applications to the situation where

only the marginal variance estimates are available. The theoretical results established in Section 2 and 3

are then numerically demonstrated in Section 4 using the data simulated from a setting of randomized

clinical trials. In Section 5, we apply our approach to analyzing a data set on aircraft landing performance

collected at some typical commercial airports by the Federal Aviation Administration. In fact, the project

of analyzing aircraft landing performance is the original motivation for us to investigate meta-analysis for

heterogenous studies and thus the research in this paper. Finally, we provide in Section 6 a discussion of

some practical implications of the methodological development in this paper. All proofs for theoretical

results are deferred to Appendix.

2 Methodology

2.1 The problem setting in its general likelihood inference framework

Consider K independent studies with ni participants in the i-th study, i = 1, · · · ,K. Assume that we are

interested in making inference for a p× 1 vector parameter θθθ = (θ1, . . . ,θp)
T , where θ1, . . . ,θp are un-

known fixed parameters associated with the K studies. We denote by {(Xi j,Yi j), j = 1, . . . ,ni} the full data

of the i-th study and assume that they are a random sample drawn from the density f ∗i (x,y;γγγ i), where the

pi×1 parameter vector γγγ i of the i-th study is linked to the parameter of interest θθθ through a known smooth

Rp→ Rpi mapping function MMMi with γγγ i = MMMi(θθθ). We write the density function fi(x,y;θθθ) = f ∗i (x,y;γγγ i)

and its likelihood function Li(θθθ) ≡ ∏
ni
j=1 fi(xi j,yi j;θθθ) = ∏

ni
j=1 fi(xi j,yi j;γγγ i) ≡ L∗i (γγγ i). In this paper, we

assume that L∗i (γγγ i) is identifiable with respect to the parameter γγγ i in the sense that it can not be written in

terms of a smaller subset of γγγ i. Also, for simplicity, we assume that the mapping function MMMi is three times

differentiable. Note that the function MMMi is often determined by study designs. For instance, in Model (1),
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if we let θθθ = (α1, . . . ,αK,βββ )
T and γγγ i = (αi,βββ )

T , then MMMi is the mapping from θθθ to γγγ i.

Consider likelihood inference. For the i-th study, we denote by γ̂γγ i the maximum likelihood es-

timate of γγγ i, namely γ̂γγ i = argmaxγγγ i
L∗i (γγγ i); and express the observed information matrix as Γi(γγγ i) =

−∂ 2 logL∗i (γγγ i)/∂γγγ i∂γγγT
i . Then, Σ̂i = Γ

−1
i (γ̂γγ i) is an estimate of the covariance matrix for γ̂γγ i. Unless

stated otherwise, we shall treat γ̂γγ i and Σ̂i as summary statistics of the i-th study throughout this paper.

In our development, we focus on an asymptotic setting that ni goes to infinity while K remains fixed.

Let n = ∑
K
i=1 ni and assume that ni/n→ ci ∈ (0,1) as n→ ∞. We also assume throughout the paper

the regularity conditions stated in Appendix B. Then, it follows that Γi(γγγ i)/ni → Ii in probability and

n−1/2
i {∂ logL∗i (γγγ i)/∂γγγ i}→MN(000, Ii) in distribution, as ni→ ∞. Here, “MN” stands for multivariate nor-

mal distribution, and Ii is the pi× pi Fisher information matrix.

The setup above allows us to investigate the relative efficiency of analyzing summary statistics versus

IPD data. It subsumes many commonly used parametric models, including, but not limited to, generalized

linear models for continuous and categorical data, survival models for censored data, and mixed models

for longitudinal data. The setup also allows us to assume different likelihood functions for the individual

studies, such as linear regression model for continuous data in one study and logistic regression model for

binary data in another study. Furthermore, the likelihood functions are not necessarily all from regression

models, as seen in the case of meta-analysis of diagnostic accuracy data where sensitivity and specificity

are of interest. Most important, since MMMi can be any complex function satisfying some mild smoothness

conditions, the framework here can be easily adapted to encompass a vast range of heterogeneous studies,

including those in Examples 1-3 illustrated in Introduction. To sum up, the key idea of the proposed

approach is to bridge the estimable parameters γγγ i’s in different studies by using their associated functions

MMMi’s to establish links to the common parameter θθθ . Obviously, our setup reduces to the special case

considered in Lin and Zeng (2010) if MMMi is the identity transformation and γγγ i ≡ θθθ for every i.

2.2 Combining confidence density functions

A confidence distribution is often viewed as a sample-dependent distribution function that can represent

confidence intervals of all levels for a parameter of interest, (see, e.g., Cox, 1958; Efron, 1993; and the

review in Xie and Singh (2013)). Cox (2013) stated that the CD approach provides “simple and inter-

pretable summaries of what can reasonably be learned from data (and an assumed model).” A confidence

distribution, if presented in a density function form, is referred to as a confidence density. More details
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can be found in Xie and Singh (2013) and the references therein. Under the general setup in Section 2.1,

the multivariate normal distribution MN(γ̂γγ i, Σ̂i) can serve as a confidence distribution for the parameter γγγ i,

as discussed in Singh et al. (2007). Accordingly, the density function of MN(γ̂γγ i, Σ̂i) is a confidence density

for the parameter γγγ i. Denote this density function by hi(γγγ i;SSSi), where SSSi represents the sample in the i-th

study. More specifically,

hi(γγγ i;SSSi) =
1

(2π)pi/2|Σ̂i|1/2
exp
{

1
2
(γγγ i− γ̂γγ i)

T
Σ̂
−1
i (γγγ i− γ̂γγ i)

}
, i = 1, . . . ,K. (4)

This sample-dependent density function contains rich information for frequentist inference. For instance,

it provides confidence regions of all confidence levels for γγγ i; moreover, it provides confidence intervals of

all confidence levels for any linear combination of the components of γγγ i. These points were elaborated in

Singh et al. (2007) and Xie and Singh (2013).

We propose to combine the confidence density functions hi(γγγ i;SSSi), i = 1, . . . ,K, the same way as we

combine likelihood functions for inference. Specifically, let

h(θθθ ;SSS1, . . . ,SSSK) =
K

∏
i=1

hi(γγγ i;SSSi) =
K

∏
i=1

hi(MMMi(θθθ);SSSi). (5)

For notational ease, we write h(θθθ) ≡ h(θθθ ;SSS1, . . . ,SSSK) and hi(MMMi(θθθ)) ≡ hi(MMMi(θθθ);SSSi), suppressing the

samples SSS1, . . . ,SSSK in all confidence density functions hereafter. We obtain a point estimator by maximiz-

ing the multiplied confidence density function h(θθθ), namely

θ̂θθCD = argmax
θθθ

h(θθθ). (6)

We establish the asymptotic properties of θ̂θθCD in Theorem 1 below, which immediately imply the key

result Theorem 2 claiming that the CD estimator and the IPD estimator are equally efficient asymptotically.

Theorem 1. Under the setting specified in Section 2.1 and the regularity conditions stated in Appendix B,

the CD estimator θ̂θθCD obtained from (6) satisfies the following: as n→ ∞,

(a) The estimator θ̂θθCD is consistent and asymptotically normally distributed:

n1/2(θ̂θθCD−θθθ)
d−→MN

000,

{
K

∑
i=1

ciJi(θθθ)
T IiJi(θθθ)

}−1
 , (7)

where Ji(θθθ) = ∂MMMi(θθθ)/∂θθθ
T is the Jacobian of the function MMMi with respect to θθθ .
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(b) The covariance matrix of n1/2(θ̂θθCD−θθθ) can be consistently estimated by nΣ̂CD, where

Σ̂CD =

{
− ∂ 2

∂θθθ∂θθθ
T logh(θ̂θθCD)

}−1

. (8)

When individual-level data are available, the IPD estimator (namely, the MLE in this case) can be

obtained by maximizing the multiplied likelihood function L(θθθ) = ∏
K
i=1 Li(θθθ), namely

θ̂θθ IPD = argmax
θθθ

L(θθθ). (9)

The IPD estimator θ̂θθ IPD is consistent and asymptotically normally distributed. In our framework, these

can be expressed explicitly as follows (see Appendix for more details):

n1/2(θ̂θθ IPD−θθθ)
d−→MN

000,

{
K

∑
i=1

ciJi(θθθ)
T IiJi(θθθ)

}−1
 . (10)

Moreover, the covariance matrix of n1/2(θ̂θθ IPD−θθθ) can be consistently estimated by nΣ̂IPD, where

Σ̂IPD =

{
− ∂ 2

∂θθθ∂θθθ
T logL(θ̂θθ IPD)

}−1

. (11)

The statements (7) and (10) show that the estimators θ̂θθCD and θ̂θθ IPD have the same limiting covariance

matrix. Hence, we have established the claim that analyzing summary statistics using our CD approach

incurs no loss of efficiency in comparison to analyzing individual-level data using the IPD approach.

Theorem 2. Under the assumptions of Theorem 1, the CD estimator θ̂θθCD is asymptotically as efficient as

the IPD estimator θ̂θθ IPD.

Conceptually, the fact that our approach achieves full efficiency can be attributed to the following two

features which are built in: First, our approach takes advantage of the reparameterization of the problem

setting. This reparameterization connects each study-specific parameter γγγ i to the common full parameter

θθθ using the transformation function MMMi. It essentially pools the information collected from all individual

studies including those in which only some lower-dimensional functions (e.g., linear combination or ratio)

of the full parameter are estimable (such as the cases in Example 2-3). Thus the reparameterization

provides a mechanism for incorporating indirect evidence in γγγ i, in order to improve the overall inference

for θθθ . Second, each individual confidence density function in (4) carries information on the correlation

between the estimates of component parameters. Such within-study correlation enables borrowing of
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strength across the studies for the synthesis of evidence. This point will be elaborated further in the

next subsection. It is important to note that this kind of borrowing of strength is possible only if at least

some individual studies share some common parameters. In this case, by multiplying the study-specific

confidence densities, the overall maximization in (6) “shrinks” the study-specific estimates towards the

parameters that are common to all the studies. Such shrinkage can also be viewed as another form of

borrowing of strength.

The confidence density function in (4) may be treated as an approximation of the likelihood function

L∗i (γγγ i), after being normalized by the constant
∫

L∗i (γγγ i)dγγγ i (which only depends on samples but not on

the parameters). In this sense, our approach by combining confidence density functions in (5) can be

viewed as an approximate likelihood approach, in which we construct and make inference based on some

approximate functions of the true likelihood function. However, the CD framework has been shown to

be very broad (Xie and Singh, 2013). In particular, the CD formulation can encompass a broad range of

functions, including p-value functions, bootstrap distribution functions, normalized likelihood functions

and even some Bayesian posteriors and priors. Thus, the applicability of the CD combining approach is

far greater than that of the likelihood approach.

The advantage of combining confidence density functions not only gains full efficiency without having

to resort to individual-level data, but it also gives rise to a unifying approach for combining summary

statistics. It covers many existing meta-analysis approaches as special cases. For example, when MMMi’s

are linear functions of θθθ , say, MMMi(θθθ) = BT
i θθθ , our approach yields the same estimator as the one from the

multivariate generalized least squares approach of Becker and Wu (2007). Here, Bi is pi× p deterministic

matrix, not depending on θθθ , i= 1, . . . ,K. In this particular case, our estimator θ̂θθCD in (6) has the following

explicit solution,

θ̂θθCD =

(
K

∑
i=1

BT
i Σ̂
−1
i Bi

)−1( K

∑
i=1

BT
i Σ̂
−1
i γ̂γγ i

)
. (12)

Furthermore, if MMMi is the identity transformation (i.e., Bi is the p× p identity matrix) for every i, (12)

reduces to θ̂θθCD =
(
∑

K
i=1 Σ̂

−1
i
)−1 (

∑
K
i=1 Σ̂

−1
i γ̂γγ i

)
which is exactly the same estimator derived from the usual

approach of weighting point estimates; see, e.g., Lin and Zeng (2010). Note that our approach is applicable

even when MMMi’s assume more complex functions, and incorporate a broader scope of indirect evidence to

achieve efficiency gain, as shown in the next subsection.
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2.3 Gain of efficiency from utilizing indirect evidence

In this section, we assess the relative efficiency of our approach versus the conventional approach and show

that the utilization of indirect evidence in our approach can gain asymptotic efficiency via correlation.

Without loss of generality, we consider a setting where γγγ i = (αi,βββ ), for i = 1, . . . ,K. Here, αi’s are the

study-specific parameters and βββ is the common vector parameter. This setting is used widely in parametric

and semiparametric models (see the examples in Simmonds and Higgins (2007) and Lin and Zeng (2010)).

It also covers Model (1) in Introduction. Therefore, the results in this section apply readily to Examples 1-

3.

In what follows we assume that the study-specific parameters αi’s are of interest, such as the case in

Example 1. Using the IPD estimator as the benchmark for comparisons, the corollary below shows that

the CD estimator α̂i,CD is asymptotically more efficient than the study-specific estimator α̂i.

Corollary 1. Consider the following three estimators for αi’s: α̂i,CD be the CD estimator, α̂i,IPD the IPD

estimator, and α̂i the study-specific estimator from Study i. Let “aVar” stand for asymptotic variance.

Then, we have, for each i, i = 1, . . . ,K,

aVar(α̂i,IPD) = aVar(α̂i,CD)≤ aVar(α̂i). (13)

Corollary 1 shows that there is efficiency gain in the CD approach estimator α̂i,CD over the study-

specific estimator α̂i. It implies that other studies (Study j, for all j 6= i) can contribute to the estimation of

the study-specific parameter αi. At first, this may seem counterintuitive considering that the j-th study does

not involve the parameter αi and it is completely independent of the i-th study. However, it is important to

realize that the i-th and j-th studies share a common parameter βββ , and that the information for αi and βββ

is often correlated within the i-th study. When the estimation of βββ is improved from combining multiple

studies, the estimation of αi in turn is also improved through this correlation. Thus, the common parameter

βββ serves as a catalyst that enables borrowing information from other studies for the estimation of the study-

specific parameter αi in Study i. This phenomenon of borrowing strength from indirect evidence is not

yet well appreciated in conventional meta-analysis, and the study-specific estimators α̂i’s are generally

reported as the final estimators. Corollary 1 also shows that the CD estimator α̂i,CD is asymptotically

as efficient as the IPD estimator α̂i,IPD, which clearly implies that the CD approach utilizes fully the

correlation information in the summary statistics for αi’s and βββ . Both simulation and real data analysis in

Sections 4 and 5 show that numerically α̂i,CD and α̂i,IPD are very close.
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Now, we consider the estimation of a common scalar parameter η = g(βββ ), where g is a scalar function

of the common parameter vector βββ . For instance, in Model (1), the interaction effect η = β3 is often

of primary interest. The conventional approach combines the study-specific estimators η̂i = g(β̂ββ i) using

wi = 1/âVar(η̂i) as the weights, provided that the estimate η̂i is available from the i-th study. More

precisely, the conventional estimator η̂cvt ≡ ∑wiη̂i/∑wi. The corollary below compares η̂cvt with our

estimator η̂CD(≡ g(β̂ββCD)), again using the IPD estimator η̂IPD(≡ g(β̂ββ IPD)) as the benchmark.

Corollary 2.

aVar(η̂IPD) = aVar(η̂CD)≤ aVar(η̂cvt). (14)

Corollary 2 shows the gain of efficiency of η̂CD over η̂cvt . The efficiency loss by using η̂cvt can occur

in the situation where η̂i’s are available from all the studies, as also reported in Simmonds and Higgins

(2007) and Lin and Zeng (2010). Obviously, the efficiency loss of the conventional approach can be

exacerbated when η̂i’s are not available from some of the studies, such as the cases in Examples 2 and

3. Once again, Corollary 2 shows that our proposed estimator η̂CD is asymptotically as efficient as the

IPD estimator η̂IPD, and implies that our approach utilizes fully the correlation information. The result in

Corollary 2 will also be demonstrated in the simulation and real data analyses.

3 Robustness against misspecification of covariance structure

In this section, we show that the CD approach is robust against misspecification of the covariance structure

of the parameter estimates. Specifically, the CD estimator of θθθ remains consistent and asymptotically

normally distributed with appropriately adjusted limiting covariance matrix. This robustness property

greatly enhances the applicability of the approach, even in the scenario that only the estimates of the

variances, rather than the full covariance matrices, of γ̂γγ i are reported.

Let Σi,W denote a “working” covariance matrix of γ̂γγ i in the i-th study, in the same sense of Liang and

Zeger (1986). In this section, we use (γ̂γγ i,Σi,W ) in place of (γ̂γγ i, Σ̂i) as summary statistics and then show that

the CD approach remains valid. Specifically, we denote by θ̂θθW the new estimator obtained from (6) after

replacing Σ̂i in (5) with Σi,W . The next theorem shows that θ̂θθW is consistent and asymptotically normally

distributed with a “sandwich” covariance matrix.

Theorem 3. Under the assumptions of Theorem 1 and the assumption that (niΣi,W )−1→ Ai in probabil-

ity as ni → ∞, where Ai is a positive definite matrix, the estimator θ̂θθW is consistent and asymptotically
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normally distributed:

n1/2(θ̂θθW −θθθ)
d−→MN(000,∆) , (15)

where

∆ =

{
K

∑
i=1

ciJi(θθθ)
T AiJi(θθθ)

}−1{ K

∑
i=1

ciJi(θθθ)
T AiI−1

i AiJi(θθθ)

}{
K

∑
i=1

ciJi(θθθ)
T AiJi(θθθ)

}−1

. (16)

The covariance of θ̂θθW given in Theorem 3 can be estimated by{
K

∑
i=1

Ji(θ̂θθW )T
Σ
−1
i,wJi(θ̂θθW )

}−1{ K

∑
i=1

Ji(θ̂θθW )T
Σ
−1
i,wĈov(γ̂γγ i)Σ

−1
i,wJi(θ̂θθW )

}{
K

∑
i=1

Ji(θ̂θθW )T
Σ
−1
i,wJi(θ̂θθW )

}−1

,

where Ĉov(γ̂γγ i) = {γ̂γγ i−MMMi(θ̂θθW )}{γ̂γγ i−MMMi(θ̂θθW )}T .

The proof of Theorem 3 is straightforward by noting that the estimating equation as in (21) in Appendix

A.1 now changes to
K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ
=

K

∑
i=1

Ji(θθθ)
T

Σ
−1
i,W (γ̂γγ i−MMMi(θθθ)) = 000. (17)

Since γ̂γγ i is an asymptotically unbiased estimator of MMMi(θθθ), the solution to the above estimating equation

holds consistency and asymptotic normality even if Σi,W is not the true covariance structure of γ̂γγ i. This

robustness in principle follows the asymptotic theory for generalized estimating equations (GEE); that is,

the solution to a GEE remains consistent and asymptotically normal even if the second moment (covariance

structure) of the response is misspecified, as long as the first moment (mean) of the response is specified

correctly (see, e.g., Liang and Zeger, 1986; Fahrmeir and Tutz, 2001, pp 119-129; Xie and Yang, 2003).

But, different from Liang and Zeger (1986) where K → ∞ and ni are fixed, the result in Theorem 3 is

established when ni→∞ and K is fixed, which is also a setting considered in Xie and Yang (2003). Similar

to what is observed in the GEE approach, although the specification of Σi,W does not alter the consistency,

it does affect the efficiency of the estimator θ̂θθW . Not surprisingly, θ̂θθW achieves higher efficiency when

Σi,W is closer to Σ̂i. If Σi,W = Σ̂i, then θ̂θθW = θ̂θθCD, and it is again asymptotically as efficient as the IPD

estimator θ̂θθ IPD.

The robustness of our approach has important ramifications. For instance, scientific or media pub-

lications typically report only the estimates of the variances, but not the full covariance matrix, for the

parameter estimates. Theorem 3 justifies the application of our approach in this situation, and moreover,

provides directions on how to choose suitable working correlation structure to achieve greater efficiency.

To elaborate this point, we let the working covariance matrix of γ̂γγ i be

Σi,W = V̂ 1/2
i Ri,W (φ)V̂ 1/2

i , (18)
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where V̂i = diag{Σ̂i} is a pi× pi diagonal matrix whose diagonal entries are the estimates of the variances

of each component of γ̂γγ i, and Ri,W (φ) is a working correlation matrix fully characterized by a (possibly

vector-valued) parameter φ . This specification of working covariance structures is similar to that proposed

for longitudinal data analysis in Liang and Zeger (1986). Theorem 3 guarantees that the estimator θ̂θθW

derived using Σi,W in (18) is consistent with any choice of Ri,W (φ̂), provided that φ̂ is a consistent estimator

of φ given θθθ . In practice, the working correlation matrix Ri,W (φ) in (18) should be specified weighing the

compromise between simplicity and loss of efficiency due to incorrect specification. For example, we can

set Ri,W (φ) = Ri,0, for any given correlation matrix Ri,0. The simplest choice of Ri,0 is the identity matrix

(i.e., simply using the working independence assumption), and in this case Σi,W = V̂i. We elaborate later

in our simulation analysis that the study designs, generally are reported, can provide useful guidelines for

choosing Ri,0.

We emphasize that the robustness property enables our approach to use all studies, with both direct

and indirect evidence, even if the correlation information is not reported with the summary statistics.

Remarkably, even naı̈vely using the working independence correlation structure, our approach still gains

efficiency via the incorporation of indirect evidence. To illustrate this point, we consider a toy example of

combining two studies: Study 1 reports summary statistics for γγγ1 = (α,β ), i.e., the point estimates α̂ and

β̂ and the corresponding variance estimates σ̂2
α and σ̂2

β
, but without correlation estimate. Study 2 reports

summary statistics for γ2 =α+β , i.e., the point estimate γ̂2 and the corresponding variance estimate σ̂2
γ2

. If

β is of primary interest, the conventional method simply uses β̂ from Study 1 for inference, ignoring Study

2 since it does not provide an estimate for β and thus plays the role of indirect evidence. Our proposed

method, under the working independence correlation structure, makes full use of both studies and yields

the combined estimate β̂CD =
{
(σ̂2

α + σ̂2
γ2
)β̂ + σ̂2

β
(γ̂2− α̂)

}
/(σ̂2

α + σ̂2
β
+ σ̂2

γ2
). This shows clearly that the

indirect evidence (Study 2) is integrated into our inference, unlike the case for conventional meta-analysis

which simply uses β̂ . In fact, even if α̂ and β̂ are indeed independent, Var(β̂CD) ≤ Var(β̂ ) still holds.

This toy example shows that in the absence of knowledge of correlation among the parameter estimates,

the CD approach is still capable of extracting useful information from studies of indirect evidence for

overall inference. Similar but more complex examples can be found in the analysis of the aircraft landing

data set in Section 5. Intuitively speaking, borrowing strength from indirect evidence is achieved by

reparameterization and shrinkage effect, as elaborated in Section 2.2.

Finally, we remark that, if Σi,W is not equivalent to Σ̂i asymptotically, the density function hi(γγγ i) in
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(4) with Σi,W replacing Σ̂i is no longer a confidence density for the parameter γγγ i asymptotically. This

observation does not invalidate our approach. To the contrary, the development in this section highlights

the great flexibility and broad applicability of our approach.

4 Simulation studies

We conduct simulation studies to numerically examine the theoretical results established in Sections 2 and

3. We mimic meta-analysis of randomized clinical trials, and simulate K = 3 independent studies using

Model (1) in Introduction. For the i-th study, the treatment indicator Xi j is 1 or 0 with 0.5 probability, the

covariate Zi j (e.g., drug dosage) has three levels of 1, 2 and 5, and each level is assigned to ni/3 subjects.

In this case, let Di denote the the i-th study’s design matrix formed by stacking the four regression terms

(1, Xi j, Zi j, Zi jXi j), then ni(D′iDi)
−1 converges to (after normalization)

1 −0.71 −0.84 0.60

1 0.60 −0.84

1 −0.71

1

 ,

which indicates moderate to mildly strong correlation between the regression parameter estimates. To

examine the impact of heterogenous studies, we modify the design of Study 1 to make it different from

the other two studies. Then, we analyze the three studies using the conventional meta-analysis method,

the IPD method and the CD method. The results are based on 1000 replicates when n1 = n2 = n3 = 150

and the parameters α1 =−1,α2 = 0,α3 = 1,β1 = 1,β2 = 2,β3 =−1, σ1 = 3,σ2 = 4 and σ3 = 3.

For the first part of the simulation study, Study 1 follows a missing covariate design as described in

Example 2. Specifically, the covariate Z1 j is set at a fixed level, say, Z1 j ≡ 1 for all j = 1, . . . ,n1. This

mimics the situation where a clinical trial is designed to examine solely the treatment effect by controlling

the variable Z1 j to eliminate the covariate effect. In this case, as shown in Example 1, the model for

Study 1 reduces to Model (2). The estimable parameter γγγ1 = (α1 +β1,β1 +β3)
T , and γγγ1 can be linked to

θθθ = (α1,α2,α3,β1,β2,β3)
T through a self-explanatory function MMM1. The setting clearly fits the general

likelihood inference setting in Section 2.1, and Study 1 can be included in the analysis using the CD

approach. The analysis results are presented in Table 1.

Table 1 shows that the CD approach enables the estimation of α1 which is not estimable in Study 1
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alone. For all the regression parameters, our estimators are nearly unbiased, and the estimated standard

errors are almost identical to the standard errors calculated from the estimates from 1000 replications. In

comparison with the IPD method, our method yields virtually identical results in terms of point estimation

and standard error estimation. This shows that the CD method and the IPD method have very similar

numerical performance even for moderate sample sizes. Table 1 also shows clearly that the conventional

method is deficient in the following two regards. First, it can not analyze Study 1 due to the design

heterogeneity, and thus fails to estimate the associated study-specific parameter α1. Second, its standard

errors of the estimates for the study-specific parameters α2 and α3 and the common parameter β1 are

considerably larger than those obtained from the CD or IPD method. This is a great loss of efficiency

resulting from the failure of fully utilizing Study 1 (as indirect evidence) and the correlation information.

For the second part of the simulation study, we set the responses in Study 1 to be dichotomized as

described in Example 3. Specifically, we create binary responses d1 j in such a way that d1 j = 1 if

the observation y1 j ≥ 4 and d1 j = 0 otherwise, for j = 1, . . . ,n1. Then, we discard all original con-

tinuous responses y1 j and only keep the binary responses d1 j for analysis. This mimics the situation

where a clinical center routinely reports “censored” outcomes instead of the original outcomes. In this

case, as shown in Example 3, the model for Study 1 reduces to Model (3). The estimable parame-

ter γγγ1 = ((α1− 4)/σ1,β1/σ1,β2/σ1,β3/σ1)
T , and γγγ1 can be linked to θθθ = (α1,α2,α3,β1,β2,β3,σ1)

T

through the function MMM1. Note that MMM1 is a non-linear function in this case. Again, this setting fits the

general likelihood inference setting in Section 2.1, and Study 1 can be included in the analysis using our

CD approach. The analysis results are presented in Table 2.

Table 2 shows that the CD approach yields estimates for all the regression parameters, including α1,

and their numerical values are quite close to those from the IPD method. The conventional method can

not utilize Study 1 due to the heterogeneity in outcome, and is thus unable to estimate the study-specific

parameter α1. Moreover, it suffers substantial loss of efficiency in estimating some parameters, such as

α2,α3 and β1. Detailed comparison among the three methods can be summarized in conclusions simi-

lar to those of the first simulation study. We also include in Table 2 the analysis results obtained from

dichotomizing the continuous responses in Study 2 and Study 3. As discussed in Dominici and Parmi-

giani (2000), when combined inference is desired in the mix of continuous and dichotomous responses,

a common practice is to dichotomize all continuous responses and then proceed as if all responses were

binary. However, Table 2 shows that this dichotomization method yields worse estimates than the CD or
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IPD method. It shows that dichotomization can lead to substantial loss of information in inference.

The last part of the simulation study concerns the setting where we have only the variances estimates,

but not the full covariance matrices estimates, of the estimates of parameters. For convenience, we use the

same setting as the first part of the simulation study but assuming the availability of only V̂i = diag{Σ̂i}

instead of Σ̂i. To implement our approach, we consider three approaches for specifying working correlation

matrices, with a varying degree of implementation complexity: 1) the independence method, i.e., using

identity matrices as the working correlation matrices; 2) the design-driven method, i.e., using our “best

guess” to set working correlation matrices based on the knowledge of the study designs; 3) the data-

driven method, i.e., using correlation matrices estimated from the observed data. More concretely, the

design-driven approach is implemented as follows. For Study 1 with Model (2), we set two n1×1 vectors

1110 = (1, . . . ,1)T and xxx1,0 = (0,1, . . . ,0,1)T . Then we let the off-diagonal entries of the 2× 2 working

correlation matrix R1,0 be r12 = r21 = 〈111⊥0 ,xxx⊥1,0〉/(‖111
⊥
0 ‖‖xxx⊥1,0‖). Here, 〈·, ·〉 denotes the inner product, ‖ · ‖

denotes the Euclidean norm, and 111⊥0 = 1110−P(1110|L (xxx1,0)) is the residual after projecting 1110 to the linear

space L (xxx1,0) spanned by xxx1,0. Note that R1,0 is the true correlation matrix for γ̂γγ1 if (1110,xxx1,0) is the actual

design matrix for Model (2). For Study 2 and Study 3 with Model (1), the working correlation matrices

R2,0 and R3,0 can be specified in a similar way. It is worth noting that this specification approach is based

on the prefixed design of randomized clinical trials, not on the data observed after the experiment. Thus,

Ri,0’s are considered as fixed. The data-driven approach is implemented only when there are multiple

studies that have the same correlation structure. For such an approach, we generate 10 independent copies

for each of Study 1, 2 and 3, which yields K = 3×10 = 30 studies in total. Although it is rarely the case in

practice to have 10 independent studies with the same correlation structure, we present the result here for

two purposes: 1) to provide an understanding of how much efficiency our approach can retain assuming

such covariance estimation were possible; and 2) to provide a numerical comparison with the other two

cases. The analysis results for all three approaches are presented in Table 3.

Table 3 shows the bias, standard error (SE) and efficiency for θ̂θθW obtained using working correlation

matrices based on the independence approach (K = 3), design-driven approach (K = 3) and data-driven

approach (K = 3×10), respectively. Note that all approaches yield estimates for all the regression param-

eters, including α1 that is not estimable in Study 1. Moreover, θ̂θθW is unbiased regardless of the approach

used. This numerically confirms the theoretical finding in Section 3 that the specification of working cor-

relation matrices does not alter the consistency of the CD estimator. Note that, the SEs reported in the
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data-driven approach are much smaller, due to the 10 folder increase of sample sizes in this particular sim-

ulation setting. A meaningful measure for effectiveness is the relative efficiency of θ̂θθW relative to the IPD

estimator θ̂θθ IPD. Obviously, the independence method can lead to noticeable loss of efficiency in estimating

certain parameters, such as α2,α3 and β3, because the working zero correlation prevents the full use of the

information in Study 1. On the other hand, both the design-driven and data-driven approaches are highly

efficient. In particular, the design-driven approach essentially suffers no efficiency loss. This implies that,

for the self-designed studies, such as randomized clinical trials, the working correlation matrices derived

from the design-driven approach are remarkably efficient, and thus the design-driven approach should be

recommended.

5 Real data example: aircraft landing data

The Federal Aviation Administration (FAA) is the oversight agency responsible for regulating air traffic

and safety. The rapid growth in air traffic density has led the FAA to initiate many new research efforts

in aviation safety. In particular, the trend of increasing runway incidents has prompted FAA to expand

its research on aircraft landing performance and possibly set new advisory directive on aircraft landing

operations. It is reported (see, e.g., Van Es (2005)) that the most frequently reported aircraft landing

incidents are runway overruns, meaning that landing aircraft are unable to stop before the end of the

runway. It is also concluded in Van Es (2005) that there is a significant increase in overrun risk when an

aircraft has long landing distance. The landing distance here refers to the distance from the beginning

of the runway to the aircraft touchdown point. Hence, it is of vital importance to examine how landing

distance is affected by aircraft air-borne performance.

Our project, though with a broader objective, has a specific task to model and analyze the impact of

aircraft air-borne performance measures on landing distance on a standard runway for all passenger flights.

From the observed sample flights, summary statistics are reported by studies according to aircraft make-

and-model. For simplicity, we illustrate the application of our CD approach to this project using only two

studies. The first is of n1 = 6565 flights carried out by Airbus 321, and the second of n2 = 15809 flights by

Boeing 737. The observation of each flight is supposed to contain various air-borne performance measures

and landing distance.

Intuitively, one would want to model landing distance based on air-borne performance measures for
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each individual study to obtain, presumably, the best model for each aircraft model-and-make. However,

the purpose of our project is to provide the FAA a model that is broad enough to encompass all passenger

flights, so that the FAA can, in accordance with policy issuances, issue a single advisory directive with

general landing performance guidelines for all flights. This is the reason why we need to combine studies

from different aircraft. More discussion on whether or when heterogeneous studies should be combined is

given in Section 6.

To combine the studies from Airbus 321 and Boeing 737, we consider the following linear model:

Yi j = αi +β1X1i j + · · ·+β5X5i j +β6X6i j +β7X5i jX6i j + εi j, i = 1,2, j = 1, . . . ,ni. (19)

Here Yi j is the logarithm of landing distance for the j-th observation in the i-th data set (i = 1 for Airbus

and i = 2 for Boeing), X1i j, . . . ,X6i j are different air-borne performance measures (e.g., height, air-speed,

flaps, ...etc.) when the aircraft passes the runway threshold, and εi j the noise variable with εi j ∼ N(0,σ2
i ).

The six air-borne performance measures included in Model (19) are selected using statistical variable

selection procedures and also independently confirmed by subject matter experts.

For our project, we were initially given only the summary statistics from the two studies for Airbus

321 and Boeing 737, as presented in Part 1 of Table 4. Generally, individual flight data are not released

due to confidentiality pertaining to airlines, aircraft manufacturers or any specific flights, among other

concerns. Only after we had reported the findings from our meta-analysis based on the summary statistics,

our request for individual flight data was granted. Even then, these individual data were permitted for the

sole purpose of comparing the findings from summary statistics and IPD method. Our success in obtaining

such individual-level data should be viewed more of an exception rather than the norm in practice when

involving proprietary studies. This again highlights the usefulness of our CD approach in retaining the

efficiency without requiring individual data.

Part 1 of Landing Data Analysis – Reflecting the difference in aircraft design, the measure “flaps”

(the regressor X6) for the Airbus data is set at a constant level by design, namely X61 j ≡ 24 for all j’s in

Model (19). Thus, this study has a missing covariate design, with the estimable parameter γγγ1 = (α1 +

24β6,β1,β2,β3,β4,β5 +24β7)
T . The situation is similar to that of Example 2 in Introduction.

Under the setting above, Part 1 of Table 4 shows the individual analysis results for all the regression

coefficients in Model (19). Clearly, Airbus Study by itself does not provide estimates for the study-specific

parameter α1 and the common slope parameters β5,β6 and β7, due to the missing covariate design. There-

fore, the conventional method can not utilize Airbus Study to improve the inference for those parameters,
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as seen in Part 1 of Table 5. On the other hand, the column labeled “CD” in Part 1 of Table 5 shows the

analysis results obtained from our CD method, given the point estimates of the estimable parameters and

corresponding covariance estimates. Clearly, our CD method provides estimates for all the parameters,

including those that are not estimable in Airbus Study. Moreover, in comparison with the IPD method,

our method yields almost identical point estimates and standard error estimates. This confirms once again

that our CD method and the IPD method behave similarly in large sample settings. Note that the column

labeled “Robust” in Table 5 are the analysis results obtained from our CD method using only variances

estimates. Here we use the independence approach to generate working correlation matrices. Even with

this simple approach, Table 5 shows that our CD method is still able to utilize both studies and provide

meaningful estimates for all the parameters. We note that for the common parameters β1, . . . ,β4, although

our robust method uses working independence assumption, there are negligible differences between the

results from our CD method and the IPD method. The underlying reason is that the corresponding regres-

sors X1, . . . ,X4 are only mildly correlated to others. But for α1,α2,β5, . . . ,β7, the differences are more

noticeable because these regressors have stronger correlation with others.

Part 2 of Landing Data Analysis – As an illustrative example, we also dichotomize the response vari-

able in the Boeing data set to mimic a possible scenario that only binary evaluation outcome of the landing

distance is reported. In other words, instead of the actual landing distance, the landing distance is only

coded as long landing-distance (indicating that the landing distance is longer than a prefixed safety stan-

dard) or not. Specifically, we define binary responses d2 j by letting d2 j = 1 if y2 j ≥ τ and d2 j = 0 oth-

erwise, where τ is a standard threshold used in aviation analysis to assess the achievable performance

of most flights. One example is the 90% quantile of all acceptable landing distances from commer-

cial flights. The observation of d2 j = 1 indicates long landing distance of a flight and is indicative of

higher risk. Assume that only the binary responses d2 j’s are available in Boeing Study (in place of

Y2 j’s). This setting is similar to Example 3 in Introduction. The estimable parameter in this case is

γγγ2 = ((α2− τ2)/σ2,β1/σ2, . . . ,β7/σ2)
T . The analysis results under this particular setting are reported in

Part 2 of Table 4 and Table 5.

For individual studies, Part 2 of Table 4 shows that most of the slope parameters in Model (19) are not

estimable, due to the fact that the Airbus Study has missing covariate design and the Boeing Study has

dichotomous responses. In this situation, the conventional meta-analysis method is not able to combine

any information at all, as seen in Part 2 of Table 5. On the other hand, Part 2 of Table 5 shows that our
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CD method still provides estimates for all the intercept and slope parameters in Model (19), including

those that are not estimable in either study. For comparison purpose, we also provide the IPD estimates in

Table 5. Clearly, both the point estimates and the corresponding standard error estimates from our method

are very close to those obtained from the IPD method. Moveover, given only variances estimates, our

method is robust enough to still be able to combine the two studies and provide inference for all the pa-

rameters. Table 5 shows that the results obtained using working independence correlation matrices remain

quite close to the IPD estimates. This observation shows further that, even in the absence of correlation

information, our CD approach still benefits from incorporating indirect evidence in the analysis in gaining

efficiency in inference. This is a clear improvement over the conventional method which discards indirect

evidence.

It is worth noting that the data analysis in this section shows that when the “information” in each study

(e.g., measured by niJi(θθθ)
T IiJi(θθθ)) is large, our CD estimates are quite close to the IPD estimates. When

such “information” is reduced, as seen in Part 2 of our analysis, the difference in numerical results based

on IPD and summary statistics may become more appreciable.

6 Discussions

This paper proposes a general multivariate meta-analysis approach through combining confidence density

functions. Although this proposed CD approach only requires summary statistics from relevant studies, it

is shown to be asymptotically as efficient as the IPD approach which requires individual-level data from

all studies. The CD approach is shown to be applicable to a broad range of heterogeneous studies. It

also enables us to incorporate indirect evidence in the analysis and borrow strength (c.f. the discussion

in Section 2.3) to achieve gains in efficiency in the overall inference. Furthermore, the CD approach

is shown to have a robustness property which ensures that the approach remains valid even when the

covariance estimates of the parameter estimates are misspecified. This robustness property substantially

broadens the applicability of the CD approach. All those desirable properties of the CD approach are also

confirmed in the stimulation studies and real data analysis in this paper.

The development in this paper has far-reaching practical implications on the issue of analyzing indi-

vidual level IPD data versus summary statistics in meta-analysis. It is well known that analyzing IPD

data from the original studies has many benefits. For example, by analyzing individual-level data, one can
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achieve efficient inference, provided that the model is specified correctly. Moreover, by accessing the orig-

inal data, one can enhance comparability among the studies with respect to inclusion/exclusion criteria,

creation of subgroups, and adjustments of covariates, as discussed in Lin and Zeng (2010). Despite these

obvious advantages, the majority of meta-analysis is not performed using the IPD approach, as observed

in Sutton and Higgins (2008). One practical limitation in carrying out an IPD analysis is that, in most

occasions, individual-level data from all the studies are not available. In fact, there are ongoing debates on

whether the benefit of using the IPD method can outweigh the tremendous cost of retrieving IPD from all

relevant studies (Sutton and Higgins, 2008). The development in this paper clearly shows that there is no

need to retrieve IPD, because the aforementioned benefit of the IPD approach can all be retained simply by

using the CD approach to analyze summary statistics. First of all, the CD approach of analyzing summary

statistics has no asymptotic efficiency loss compared to the IPD approach, under the general likelihood in-

ference framework considered in this paper. Note that this framework covers most of the commonly used

fixed-effects models. Second, the CD approach adapts to a broad scope of heterogeneous studies, which

implies that, given only summary statistics, we can still incorporate indirect evidence in the analysis. As

a result, our meta-analysis can improve inference for subpopulations, adjustment for important covariates,

and joint analysis of mixed outcomes. These useful properties are clearly demonstrated in our simulation

and real data analysis.

There has been much work in meta-analysis on examining the relative efficiency of using summary

statistics versus IPD. For some special settings, Olkin and Sampson (1998) and Mathew and Nordstrom

(1999) showed that there is no efficiency loss by analyzing summary statistics. Lin and Zeng (2010)

reached the same conclusion under a more general likelihood inference setting but the focus there is only

on the parameter that is estimable across all studies. The development in our paper is more general. It does

not require that the parameter θθθ be estimable in all studies. This is yet another reason why our analysis

can include a broad class of heterogenous studies. Also, the approach of combining summary statistics

investigated in Lin and Zeng (2010) is essentially a linear weighting of point estimators. Our approach

is fundamentally different, as it is to combine confidence density functions. It can process efficiently the

summary statistics for γγγ i = MMMi(θθθ) (cf. Section 2) for any complex function MMMi satisfying mild smoothness

conditions, including the special case of MMMi being the identity transformation of θθθ for all studies which is

exactly the setting considered in Section 2.1 of Lin and Zeng (2010).

This paper shows that the idea of combining confidence density functions not only yields a unified
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treatment for combining summary statistics, but it also provides a new alternative to performing complex

evidence synthesis by allowing the mapping functions MMMi’s to be any complex functions satisfying some

mild smoothness conditions. Here, the phrase complex evidence synthesis refers to combining information

from the models that “incorporate evidence on multiple parameters and/or that specifically model data

from different study designs” (Sutton and Higgins, 2008). In recent years, complex evidence synthesis

has received increasing attention, and one important development in this area has been on mixed treat-

ment comparisons (also referred to as indirect treatment comparisons) in randomized clinical trials (see,

e.g., Jansen et al., 2011; Hoaglin et al., 2011). Most of the approaches developed for complex evidence

synthesis so far are within the Bayesian framework (see, e.g., Ades and Sutton, 2006). The proposed CD

approach shares a similar spirit with the Bayesian approaches, in the sense that the CD approach also

combines density functions but it achieves the same goal under the frequentist framework. On the other

hand, unlike Bayesian procedures, our CD approach does not require specification of priors and/or Markov

chain Monte Carlo procedures.

Although the confidence distributions used in this paper are all in the form of multivariate normal

distributions, which suffice for the investigation in the asymptotic setting, the framework of combining

confidence distributions can be much more general. For example, one may consider using multivariate t

distributions (to account for small sample properties) or other general forms of confidence distributions.

The research on confidence distributions is part of the recent emerging developments on distributional

inference. In general, the goal of distributional inference is to define a sample-dependent distribution

on the parameter space that can provide meaningful answers to questions related to statistical inference.

Beside confidence distributions, the developments also include generalized fiducial inference (e.g., Han-

nig, 2009; Hannig and Lee, 2009; Hannig, 2013), belief function and inferential models (e.g., Dempster,

2008; Martin et al., 2010; Martin and Liu, 2013) and objective Bayes methods (e.g., Berger, 2006; Berger

and Sun, 2009). All these developments help shed light on the common perspective of the Bayesian and

frequentist ideals.

Our CD approach has been demonstrated so far for fixed-effects where study-specific effects, repre-

senting between-study variation, are assumed fixed but unknown. One natural extension is to assume that

study-specific effects are realizations of a random variable and to apply random-effects models to draw

inference. Such a random effects meta-analysis (e.g., by hierarchical modeling) can potentially enable

another layer of “borrowing strength” through between-study correlation. The CD approach also applies
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to random-effects models as long as the between-study covariance Ω can be estimated. In this case, we

replace the within-study covariance estimate Σ̂i by the total covariance estimate Σ̂i + Ω̂ and then follow

the same procedure to make inference.

We should point out that the term “heterogeneity” considered in this paper should not be confused

with the same term often used in the literature on random-effects meta-analysis. In the latter, heterogeneity

means that the effect of interest is different across studies due to heterogeneous populations, and the goal is

to assess, test or model such heterogeneity, mostly in univariate cases. Our paper investigates heterogeneity

with respect to a wide scope of models, covering cases of heterogeneous study designs, outcome types,

and more generally, complex evidences.

It is important that the desire for combining evidence from a cohort of studies be justified by the

assumption that at least part of the studies share a common effect, say β (although β is not required to

be estimable in each study). Thus, an important step in meta-analysis is to assess the assumption that

βi = β for all i. Such an assessment may use subject matter knowledge and statistical techniques. From

the perspective of observational studies in epidemiology and/or randomized clinical trials, respectively,

Stroup et al. (2000) and Berlin et al. (2013) suggested that subject matter knowledge should be taken as

the first consideration in evaluating the “similarity” of the studies and determining which study should not

be combined with others. Such knowledge includes population characteristics, experiment duration and

other crucial information associated with the specific research goals. On the other hand, some statistical

techniques have been developed for assessing the assumption that βi = β for all i when βi is estimable (see

Sutton and Higgins, 2008 pp. 628). But further research is needed when some of βi’s are not estimable.

Finally, we use our aircraft landing study project as an illustrative example to provide a few brief

comments on the question of “to combine of not to combine” when facing heterogeneous studies.

We stress that the focus of this paper is on developing an efficient approach for combining hetero-

geneous studies after the combination is already deemed suitable and needed. It is difficult to formulate

precise rules on how to decide whether a given set of heterogeneous studies should be combined. But

the decision can be made more meaningful by carefully examining the technical assessments in each case

and weighing them against the needs/suitability justified by domain experts. For instance, among other

considerations, the decision of combining the studies in our aircraft landing project can be justified by the

need of a common model for all aircraft to enable the FAA to issue a single advisory directive (AC) on

aircraft landing safety for all commercial passenger flights, regardless of aircraft types, makes or models.
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More specifically, the FAA, in its capacity as a regulatory and oversight agency for aviation safety, is re-

quired to issue a single AC that provides general guidelines for safe landing operations on airport runways

for all commercial passenger jets (referred to as FAR Part 121). (More details about this and other FAA

regulations can be found in http://www.faa.gov/regulations policies/.) The combination of studies from

Airbus and Boeing illustrated in Section 5 can be used to support such regulatory efforts.

When facing heterogeneous studies in meta-analysis, before undertaking the task of combining the

studies, it is also important to evaluate the nature and degree of heterogeneity among those studies. This

evaluation has crucial impact on the downstream analysis. For instance, one should avoid combining

studies whose degree of heterogeneity is so great as to render useless the analysis outcome or incoherent

its interpretation. A case in point would be NOT to include helicopter landing performance in our aircraft

landing studies. Even though helicopters are aircraft, just like the planes Airbus 321 and Boeing 737,

and their landing performance on landing pads (or helipads) is subject to a similar requirement of landing

within certain preset boundary, just like that of the landing performance of the Airbus 321 and Boeing

737 on airport runways, the vertical landing of helicopters constitutes too great a degree of heterogeneity

for a meaningful combined analysis. On the other hand, the two types of aircraft Airbus 321 and Boeing

737 share sufficiently many similar features, such as weight, function, designs, and flight purpose (i.e.,

scheduled commercial air transportation). In fact, the FAA AC requires that they operate within the same

safe guidelines.

APPENDIX A: PROOFS

A.1 Proofs for the results in Section 2.2

This Appendix contains technical details for the theoretical results in Section 2.2. First, we prove the

asymptotic property (10) for the IPD estimator. Second, we prove below Lemma 1 which implies the

asymptotic equivalence between the IPD estimator and our CD estimator. The asymptotic properties of

our CD estimator in Theorem 1 then follow.

Assume that the regularity conditions specified in Appendix B hold for the density function f ∗i (x,y;γγγ i)≡

fi(x,y;θθθ) in each study and that θθθ is identifiable in the multiplied density function ∏
K
i=1 fi(xi,yi;θθθ). Then,

the IPD estimator θ̂θθ IPD is consistent. To proceed to prove (10) for θ̂θθ IPD, we apply the Taylor expansion
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and obtain
∂

∂θθθ
logL(θ̂θθ IPD) =

∂

∂θθθ
logL(θθθ)+

∂ 2

∂θθθ∂θθθ
T logL(θθθ)(θ̂θθ IPD−θθθ)+Op(1). (20)

Notice that ∂ logL(θ̂θθ IPD)/∂θθθ = 0, and it is easy to verify that

∂

∂θθθ
logL(θθθ) =

K

∑
i=1

Ji(θθθ)
T ∂

∂γγγ i
logL∗i (γγγ i)

and
∂ 2

∂θθθ∂θθθ
T logL(θθθ) =

K

∑
i=1

Ji(θθθ)
T
{

∂ 2

∂γγγ i∂γγγT
i

logL∗i (γγγ i)

}
Ji(θθθ) =−

K

∑
i=1

Ji(θθθ)
T

Γi(γγγ i)Ji(θθθ).

Plug the above results into Equation (20), and after some algebraic manipulations, we derive

√
n(θ̂θθ IPD−θθθ) =

[
K

∑
i=1

Ji(θθθ)
T
{

Γi(γγγ i)

ni
· ni

n

}
Ji(θθθ)

]−1[ K

∑
i=1

Ji(θθθ)
T
{

n
− 1

2
i

∂

∂γγγ i
logL∗i (γγγ i)

}(ni

n

) 1
2

]
+op(1).

Under the conditions specified in Section 2.1, we can conclude the asymptotic normality (10) for θ̂θθ IPD.

Lemma 1. The gradient of the log-confidence density function loghi(γγγ i)≡ loghi(MMMi(θθθ)), with respect to

θθθ , is asymptotically equivalent to the score function sssi(θθθ) = ∂ logLi(θθθ)/∂θθθ . More precisely,

∂ loghi(MMMi(θθθ))

∂θθθ
= Ji(θθθ)

T
Σ̂
−1
i (γ̂γγ i−MMMi(θθθ)) = sssi(θθθ)+Op(1), i = 1, . . . ,K. (21)

Here, the pi× p matrix Ji(θθθ) = ∂MMMi(θθθ))/∂θθθ .

Proof. It is straightforward to obtain the first equation in (21) by differentiation. We only need to show the

second equation in (21). Since sssi(θθθ) = ∂ logLi(θθθ)/∂θθθ = Ji(θθθ)
T{∂ logL∗i (γγγ i)/∂γγγ i}, we have the Taylor

series expansion of ∂ logL∗i (γγγ i)/∂γγγ i around the consistent estimate γ̂γγ i as follows

∂

∂γγγ i
logL∗i (γγγ i) =

∂

∂γγγ i
logL∗i (γ̂γγ i)+

∂ 2

∂γγγ i∂γγγT
i

logL∗i (γ̂γγ i)(γγγ i− γ̂γγ i)+Op(1) = Σ̂
−1
i (γ̂γγ i−MMMi(θθθ))+Op(1).

The second equation in (21) immediately follows. This completes the proof of Lemma 1.

In light of Equation (21), our estimator θ̂θθCD has the same asymptotic properties as the IPD estimator

θ̂θθ IPD. The statements in Theorem 1 are therefore implied by the established results.
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A.2 Proofs for the results in Section 2.3

Without loss of generality, we assume K = 2. In this case, θθθ = (α1,α2,βββ
T
l×1)

T , and

J1(θθθ) = J1 =

1 0 000T
l×1

0 0 111T
l×1

 , J2(θθθ) = J2 =

0 1 000T
l×1

0 0 111T
l×1

 .

From (7), the asymptotic covariance matrix of θ̂θθCD is

aVar(θ̂θθCD) =
(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
.

Denote the inverses of the (l +1)× (l +1) matrices c1I1 and c2I2 by

(c1I1)
−1 =

a1 bbbT
1

bbb1 D1

 , (c2I2)
−1 =

a2 bbbT
2

bbb2 D2

 ,

where D1 and D2 are l× l matrices. Under this setup, we prove Corollary 1 and Corollary 2 as follows.

First, we show aVar(α̂i,CD)≤ aVar(α̂i) as in Corollary 1 for i = 1. It is easy to see that aVar(α̂i) = a1,

and

aVar(α̂1,CD) =
{(

c1JT
1 I1J1 + c2JT

2 I2J2
)−1
}
[1,1]

,

where M[1,1] stands for the submatrix of M crossed by row 1 and column 1. Thus, it suffices to show that{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]
≤ a1. (22)

By Lemma 2 in Appendix A.4,{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]

= (a1−bbbT
1 D−1

1 bbb1)+bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1.

Using the results in Lemma 3 in Appendix A.4, we obtain

bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1 ≤ bbbT

1 D−1
1 D1D−1

1 bbb1 = bbbT
1 D−1

1 bbb1,

which leads to the establishment of (22). This completes the proof of Corollary 1.

Next, we show aVar(η̂CD) ≤ aVar(η̂cvt) as in Corollary 2 for η = g(βββ ). For simplicity, we assume

η = g(βββ ) = λλλ
T

βββ , where λλλ is a l-dimensional vector. By Lemma 2 in Appendix A.4,{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[3:(l+2),3:(l+2)]

= (D−1
1 +D−1

2 )−1.

Thus, aVar(η̂CD)= λλλ
T (D−1

1 +D−1
2 )−1λλλ . On the other hand, aVar(η̂cvt)=

{
(λλλ T D1λλλ )−1 +(λλλ T D2λλλ )−1

}−1
.

It follows from Lemma 3 in Appendix A.4 that aVar(η̂CD) ≤ aVar(η̂cvt). This completes the proof of

Corollary 2.
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A.3 Proof for the result in Section 3

We provide a sketch of the proof for Theorem 3 and refer readers to Xie and Yang (2003) for technical

details for a formal treatment.

Assuming the regularity conditions as stated in Appendix B, the consistency of θ̂θθW is a direct result of

the observation that E
{

∑
K
i=1 ∂ loghi(MMMi(θθθ))/∂θθθ

}
/n→ 0 as n→ ∞. To show the asymptotic normality

of θ̂θθW , we notice that

K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ
∼MN

(
000,

{
K

∑
i=1

Ji(θθθ)
T

Σ
−1
i,wCov(γ̂γγ i)Σ

−1
i,wJi(θθθ)

})
,

based on (17). On the other hand, using Taylor expansion, we obtain

K

∑
i=1

∂ loghi(MMMi(θ̂θθ w))

∂θθθ
=

K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ
+

K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ∂θθθ
T (θ̂θθ w−θθθ)+Op(1).

Therefore,

(θ̂θθ w−θθθ) =

{
K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ∂θθθ
T

}−1{
−

K

∑
i=1

∂ loghi(MMMi(θθθ))

∂θθθ

}
+Op(1/n),

which leads to the establishment of (15).

A.4 Some useful matrix results

Lemma 2. Under the setup in Appendix A.2, we have the following results:{(
c1JT

1 I1J1 + c2JT
2 I2J2

)−1
}
[1,1]

= (a1−bbbT
1 D−1

1 bbb1)+bbbT
1 D−1

1 (D−1
1 +D−1

2 )−1D−1
1 bbb1,{(

c1JT
1 I1J1 + c2JT

2 I2J2
)−1
}
[3:(l+2),3:(l+2)]

= (D−1
1 +D−1

2 )−1.

Proof. Using the blockwise matrix inversion formula, we have

c1JT
1 I1J1 =


k1 0 −k1bbbT

1 D−1
1

0 0 000T

−k1D−1
1 bbb1 000 D−1

1 + k1D−1
1 bbb1bbbT

1 D−1
1

 ,

and similarly,

c2JT
2 I2J2 =


0 0 000T

0 k2 −k2bbbT
2 D−1

2

000 −k2D−1
2 bbb2 D−1

2 + k2D−1
2 bbb2bbbT

2 D−1
2

 ,
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where k1 = 1/(a1−bbbT
1 D−1

1 bbb1) and k2 = 1/(a2−bbbT
2 D−1

2 bbb2). Therefore,

c1JT
1 I1J1 + c2JT

2 I2J2 =


k1 0 −k1bbbT

1 D−1
1

0 k2 −k2bbbT
2 D−1

2

−k1D−1
1 bbb1 −k2D−1

2 bbb2 D−1
1 + k1D−1

1 bbb1bbbT
1 D−1

1 +D−1
2 + k2D−1

2 bbb2bbbT
2

 .

Applying blockwise inversion formula to the upper-left block and the lower-right block of this matrix leads

to the two desired equations.

Lemma 3. Suppose W1 and W2 are q×q positive definite matrices. Then, for any q-dimensional vector vvv,(
vvvTW−1

1 vvv
)−1

+
(
vvvTW−1

2 vvv
)−1 ≤

{
vvvT (W1 +W2)

−1vvv
}−1

. (23)

This implies that vvvT (W1 +W2)
−1vvv≤ vvvTW−1

1 vvv.

Proof. Since W1 > 0 and W2 > 0, we can find a nonsingular matrix P such that W1 = Pdiag{r1, . . . ,rq}PT

and W2 = Pdiag{u1, . . . ,uq}PT , where ri > 0 and ui > 0 for all i = 1, . . . ,q. By redefining vvv as P−1vvv,

it suffices to prove the lemma when W1 = diag{r1, . . . ,rq} and W2 = diag{u1, . . . ,uq}. Denoting vvv =

(v1, . . . ,vq)
T , the inequality (23) becomes(

q

∑
i=1

v2
i

ri

)−1

+

(
q

∑
i=1

v2
i

ui

)−1

≤

(
q

∑
i=1

v2
i

ri +ui

)−1

.

After rearrangement, the above inequality can be equivalently written as

q

∑
i=1

v2
i

ri

q

∑
j=1

v2
j

u j
≥

q

∑
i=1

v2
i

ri +ui

q

∑
j=1

v2
j(r j +u j)

r ju j
.

Thus, it suffices to show that, for any i and j,

v2
i

ri

v2
j

u j
+

v2
j

r j

v2
i

ui
≥ v2

i
ri +ui

v2
j(r j +u j)

r ju j
+

v2
j

r j +u j

v2
i (ri +ui)

riui
.

With some algebraic simplification, we can show that the above inequality is equivalent to r2
i u2

j + r2
j u

2
i ≥

2rir juiu j, which holds from the Cauchy-Schwartz inequality.

APPENDIX B: REGULARITY CONDITIONS

Here we state the regularity conditions used throughout the paper. For each study, we assume that the

density function f ∗i (x,y;γγγ i) satisfies the following conditions. For notational convenience, we suppress
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the study index i in f ∗i (x,y;γγγ i) and write f ∗(x,y;γγγ) instead.

(a) The density function f ∗(γγγ) is identifiable, i.e., f ∗(γγγ1)≡ f ∗(γγγ2)⇒ γ1 = γ2.

(b) The density function f ∗(γγγ) has a common support, i.e., the set S = {(x,y) | f ∗(x,y;γγγ)> 0} is indepen-

dent of γγγ .

(c) The parameter space Γ contains an open set ΓO of which the true parameter value γγγ0 is an interior

point, and f ∗(γγγ) admits all third derivatives for all γγγ ∈ ΓO.

(d) The first and second derivatives of the logarithm of f ∗ satisfy the equations Eγγγ

{
∂ log f ∗(X ,Y ;γγγ)/∂γ j

}
=

0 and Eγγγ

{
∂ log f ∗(X ,Y ;γγγ)/∂γ j×∂ log f ∗(X ,Y ;γγγ)/∂γk

}
=Eγγγ

{
−∂ 2 log f ∗(X ,Y ;γγγ)/∂γ jγk

}
for j,k= 1, . . . , p.

(e) The information matrix I(γγγ) is positive definite for all γγγ ∈ ΓO, where the ( jk)-th element of I(γγγ) is

defined by I jk(γγγ) = cov
{

∂ log f ∗(X ,Y ;γγγ)/∂γ j,∂ log f ∗(X ,Y ;γγγ)/∂γk
}

.

(f) There exists functions G jkl such that | ∂ 3 log f ∗(x,y;γγγ)/∂γ jγkγl |≤ G jkl(x,y) for all γγγ ∈ ΓO where

Eγγγ0
{

G jkl(X ,Y )
}
< ∞ for all j,k, l.
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Table 1: Meta-analysis in the presence of a study with missing covariate design (# of replicates = 1000)

Conventional Method IPD Method Proposed CD Method

Parameters Mean SE SEE Mean SE SEE Mean SE SEE

α1 NA NA NA -1.00 0.37 0.37 -1.00 0.37 0.37

α2 0.01 0.86 0.86 0.01 0.51 0.51 0.01 0.51 0.51

α3 1.01 0.64 0.65 1.01 0.46 0.46 1.01 0.46 0.47

β1 0.98 0.73 0.73 0.99 0.51 0.50 0.99 0.51 0.50

β2 2.00 0.17 0.16 2.00 0.16 0.15 2.00 0.16 0.15

β3 -1.00 0.23 0.23 -1.00 0.20 0.20 -1.00 0.20 0.20

Mean: mean of parameter estimates; SE: standard error of parameter estimates; SEE: mean of standard

error estimates.

Table 2: Meta-analysis in the presence of a study with dichotomized responses (# of replicates = 1000)

Conventional Method IPD Method Proposed CD Method Dichotomization

Parameters Mean SE SEE Mean SE SEE Mean SE SEE Mean SE SEE

α1 NA NA NA -0.96 0.63 0.60 -0.99 0.63 0.62 -1.13 0.73 0.72

α2 -0.04 0.82 0.86 0.02 0.53 0.55 0.02 0.53 0.55 -0.11 0.76 0.76

α3 1.05 0.64 0.65 1.02 0.50 0.50 1.02 0.50 0.51 0.91 0.67 0.67

β1 0.99 0.72 0.73 1.00 0.63 0.64 0.98 0.63 0.65 1.05 0.84 0.84

β2 1.99 0.17 0.16 2.00 0.16 0.16 1.99 0.16 0.16 2.08 0.31 0.28

β3 -0.99 0.24 0.23 -1.00 0.21 0.21 -0.99 0.21 0.21 -1.05 0.36 0.33

Mean–mean of parameter estimates; SE–standard error of parameter estimates; SEE– mean of standard

error estimates.
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Table 3: Robust meta-analysis with a variety of working correlation matrices (# of replicates = 1000)

Independence Design Driven Data Driven

Parameters Bias SE RE Bias SE RE Bias SE RE

α1 0.00 0.38 0.97 0.00 0.36 1.00 0.00 0.12 0.97

α2 -0.01 0.84 0.57 0.00 0.51 1.00 0.00 0.18 0.89

α3 -0.02 0.66 0.72 -0.02 0.47 0.98 0.00 0.16 0.94

β1 0.02 0.52 1.00 0.01 0.52 1.00 -0.01 0.16 0.98

β2 0.01 0.16 0.94 0.00 0.15 1.00 0.00 0.05 0.95

β3 -0.01 0.26 0.77 -0.01 0.20 1.00 0.00 0.06 0.95

Bias–mean of parameter estimates minus the true value of the parameter; SE–standard error of parameter

estimates; RE –relative efficiency to the IPD estimator.

Table 4: Summary statistics for regression coefficients from individual studies of the landing data

Part 1: continuous outcomes Part 2: dichotomized Boeing outcomes

Parameters Airbus 321 Boeing 737 Airbus 321 Boeing 737

α1 (Airbus) NA NA NA NA

α2 (Boeing) NA 3.40 (0.24) NA NA

β1 (x1) -0.65 (1.02) -2.87 (0.89) -0.65 (1.02) NA

β2 (x2) 7.83 (0.13) 8.70 (0.10) 7.83 (0.13) NA

β3 (x3) 2.27 (0.10) 2.21 (0.06) 2.27 (0.10) NA

β4 (x4) -0.50 (0.75) -1.51 (0.42) -0.50 (0.75) NA

β5 (x5) NA 2.35 (0.36) NA NA

β6 (x6) NA 4.08 (0.76) NA NA

β7 (x5 : x6) NA -4.69 (1.13) NA NA

Within the parentheses is the estimated standard error of the corresponding parameter estimate.
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