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Abstract

Fumonisins (FBs) and zearalenone (ZEN) are mycotoxins which occur naturally in grains

and cereals, especially maize, causing negative effects on animals and humans. Along with

the need for constant monitoring, there is a growing demand for rapid, non-destructive meth-

ods. Among these, Near Infrared Spectroscopy (NIR) has made great headway for being an

easy-to-use technology. NIR was applied in the present research to quantify the contamina-

tion level of total FBs, i.e., fumonisin B1+fumonisin B2 (FB1+FB2), and ZEN in Brazilian

maize. From a total of six hundred and seventy-six samples, 236 were analyzed for FBs and

440 for ZEN. Three regression models were defined: one with 18 principal components

(PCs) for FB1, one with 10 PCs for FB2, and one with 7 PCs for ZEN. Partial least square

regression algorithm with full cross-validation was applied as internal validation. External

validation was performed with 200 unknown samples (100 for FBs and 100 for ZEN). Corre-

lation coefficient (R), determination coefficient (R2), root mean square error of prediction

(RMSEP), standard error of prediction (SEP) and residual prediction deviation (RPD) for

FBs and ZEN were, respectively: 0.809 and 0.991; 0.899 and 0.984; 659 and 69.4; 682 and

69.8; and 3.33 and 2.71. No significant difference was observed between predicted values

using NIR and reference values obtained by Liquid Chromatography Coupled to Tandem

Mass Spectrometry (LC-MS/MS), thus indicating the suitability of NIR to rapidly analyze a

large numbers of maize samples for FBs and ZEN contamination. The external validation

confirmed a fair potential of the model in predicting FB1+FB2 and ZEN concentration. This is

the first study providing scientific knowledge on the determination of FBs and ZEN in Brazil-

ian maize samples using NIR, which is confirmed as a reliable alternative methodology for

the analysis of such toxins.
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Introduction

Mycotoxins are toxic secondary metabolites produced by some filamentous fungi that grow

naturally in many commodities around the world [1,2]. In Brazil, contamination of substrates

by mycotoxigenic fungi is rather common, since climatic conditions favor their development

and the production of mycotoxins. These substances are chiefly produced by three fungal gen-

era: Aspergillus, Penicillium and Fusarium [3]. Of these, the genus Fusarium is of great impor-

tance for it encompasses the main producers of fumonisins (FBs), F. verticillioides and F.

proliferatum [4,5] and zearalenone (ZEN), F. culmorum, F. graminearum and F. crookwellense
[6–9]. These mycotoxins can have harmful effects on human and animal health [10–12].

FBs are natural contaminants of numerous cereals, especially maize, and occur globally at

concentrations that generally induce subclinical poisoning in several species [13–17]. There

are more than two dozen known FBs [18]; however, fumonisin B1 (FB1), fumonisin B2 (FB2)

and fumonisin B3 (FB3) stand out for their toxic effects on humans and animals [14]. FB1 is the

most toxic and abundant of them all [19], representing about 70% of the total concentration in

naturally contaminated food and raw materials, followed by FB2 and FB3 [20].

The detrimental impact of FBs in animals has been well described, and horses and pigs

are the most susceptible species. In horses, FBs cause hemorrhagic-liquefactive brain lesions

(equine leukoencephalomalacia) [21], while pigs are affected with pulmonary edema [22]. In

humans, exposure to these toxins has been investigated in the context of neural tube defects

and growth deficiency in children [12,23]. FB1 is described as a potent carcinogen in labora-

tory and production animals [24], and several epidemiological studies have associated it

with the development of esophageal cancer in humans [4,25,26]. As a result, the Interna-
tional Agency for Research on Cancer (IARC) has considered FB1 as “possibly carcinogenic

to humans” (group 2B) [27].

ZEN is a non-steroidal fungal estrogenic metabolite [28]. It occurs naturally in cereals such

as wheat, barley, rice, oats and particularly in maize with a worldwide distribution [28–30].

Pigs are the domestic species with the greatest susceptibility to this toxin [31]. When ingested

via diet, ZEN triggers several reproductive disorders in such animals [32], with the main clini-

cal sign being known as hyperestrogenism syndrome [33,34]. In humans, however, studies

assessing the possible effects of ZEN are scarce, but the occurrence of precocious puberty has

been reported in children [35,36].

Maize has a high nutritional value and productive potential [37,38]. Brazil is one of its lead-

ing growers, third only to the United States and China [39]. This ingredient is very versatile in

use; its largest share is destined to animal nutrition, especially poultry and swine, but it is also

widely employed in the preparation of culinary dishes, being an important energy source for

lower income populations [40].

Maize crops are greatly affected by fungi, especially the Fusarium species. Numerous studies

have reported 90–100% prevalence of FBs in Brazilian raw maize [19–23]. For ZEN, positivity

varies from one region to another, depending on climatic and grain storage conditions [41–

43]. The National Health Surveillance Agency (ANVISA) established the legislation regarding

the maximum tolerated limits (MTL) for mycotoxins in foods through Resolution No. 7 of

February 18, 2011; the MTL for FBs and ZEN in maize grain for further processing is 5,000

and 400 μg.kg-1, respectively [44]. In addition to individual mycotoxin contamination, many

studies have demonstrated the possible synergistic effects of the co-occurrence of FBs and

ZEN [45–47].

Monitoring the presence of these mycotoxins is crucial in view of their relevance. The

classical methods of mycotoxins determination involve solvent toxin extraction processes

and detection by chromatographic methods [48]. These techniques are very accurate, but
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time-consuming and costly, thus hampering analyses of large samples and real-time decision

making [49,50]. In search of fast techniques for the quantification of constituents in food

samples, optical methods such as Near Infrared Spectroscopy (NIR) have made great head-

way [51].

This methodology is based on indirect measurements, since the generated spectral data are

quite complex. The chemical composition of foods used in the manufacturing industry are

altered when fungal infection and consequent contamination by mycotoxins occur. NIR has

the potential to analyze these differences in specific ranges and build predictive models either

through qualitative or quantitative methods [52–54]. Thus, it is necessary to use techniques

that require calibrations with mathematical models and multivariate statistical tools in order

to extract the analytical information from the corresponding spectra [55].

There is also a focus on the application of NIR as a classification method to discriminate

fungal species, that is, to differentiate between toxigenic and non-toxigenic isolates [56,57].

NIR was evaluated as an indirect method that uses fungal counts as indirect markers to assess

the risk of FBs contamination in maize samples; the obtained data was correlated with the lim-

its established by the European legislation (4,000 μg.kg-1) [58]. Moreover, the study analyzed

the content of ergosterol and FB1. The percentage of samples well classified in calibration and

validation were 96 and 84%, respectively. Thus, the authors demonstrated the potential of NIR

as a rapid method for screening maize samples according to their risk of FBs contamination

[58].

One of the first suggested methodologies using NIR for fungal or mycotoxin determination

used the quantification of ergosterol as a measure of living fungal biomass [59], and often asso-

ciated it with the content of mycotoxins and fungal units. NIR is also applied to identify myco-

toxins using chemometric methods of predictive quantification or classification in many raw

materials: deoxynivalenol in single wheat kernels [60]; aflatoxins (AFs) in single whole maize

kernels [61]; FBs in single maize kernels [62]; FB1 in maize [63]; aflatoxin B1 (AFB1), ochra-

toxin A and total AFs in spices as red paprika [64]; AFB1 in maize and barley [65]; and AFB1 in

red chili powder [66]. However, there is a paucity of information regarding the quantitative

determination of ZEN in naturally contaminated maize.

Brazil has vast production as well as consumption of maize by both humans and animals, a

cereal that is often contaminated by FBs and ZEN. In spite of that, no investigation has dealt

with the analysis of such mycotoxins in Brazilian maize through NIR thus far. So, this study

aims to fill such lack of scientific data by using NIR to quantitatively predict the concentration

of total FBs, FB1+FB2, and ZEN in naturally contaminated Brazilian maize samples, and to

assess the prediction potential in unknown samples.

Materials and methods

Maize samples

Six hundred and seventy-six maize samples were received, selected and analyzed at the Labora-

tory of Mycotoxicological Analyses (LAMIC) between 2018 and 2019. The samples were sent

from different states of Brazil, thus originating from diverse climates and soils and making the

data as representative of the whole country as possible. As the material assessed herein was

part of LAMIC’s routine analysis, no specific permission was required; furthermore, it was

treated anonymously. The samples proceeded to milling, weighing, extraction and analyses.

Grinding of each sample was standardized and performed in a Retsch ZM200 ultra-centrifugal

mill with a particle size of approximately 1 mm in diameter. Then, a fraction was sent to the

toxin extraction process and later to chromatographic analyses of mycotoxins by Liquid Chro-

matography Coupled to Tandem Mass Spectrometry (LC-MS/MS). Another fraction was used
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for optical data collection, with the purpose of building the spectra library. This spectral set

represented all the concentration variation normally found at the field level. Of the total num-

ber of samples, 236 were analyzed for FBs and 440 for ZEN. Two hundred unknown samples

were used for external validation (one hundred for FBs and one hundred for ZEN); these ele-

ments were not included in the calibration database. The samples of the validation set were

selected to represent the concentration range of the calibration set.

Total fumonisins (FB1+FB2) measurements

A 3-g sample was added to 15 ml of acetonitrile:water solution (1:1, v/v) and vortexed for 20

min in a MA563 instrument (Marconi, Piracicaba, Brazil). The extract was then diluted in ace-

tonitrile:water:formic acid solution (5:4:1, v/v/v), and 10 μl were injected into a 1200 Series

Infinity HPLC (Agilent) coupled to an API mass spectrometer 5000 (Applied Biosystems)

equipped with an ESI source in positive mode. Chromatographic separation was done at 40 ˚C

using an Eclipse XDB-C8 column (4.6´150 mm, 5 μm particle diameter) (Agilent). The mobile

phase gradient was composed of solutions of water:formic acid (95:5, v/v) (solution A) and

acetonitrile:formic acid (95:5, v/v) (solution B) [67]. The limit of determination (LOD) and the

limit of quantification (LOQ) for the assessed toxins were (in μg.kg-1), respectively: FB1, 10

and 125; and FB2, 20 and 125.

Zearalenone (ZEN) measurements

A method proposed by Berthiller et al. [68] was adapted to carry out ZEN analyses. A sample

containing 3 g was added to 24 ml of a methanol:water solution (7:3, v/v) and vortexed for 20

min using a MA563 instrument (Marconi). The extract was then diluted in a methanol:water:

ammonium acetate 1 M solution (90:9:1, v/v/v), and 10 μl was injected into a 1200 Series Infin-

ity HPLC (Agilent) coupled to a 4000 QTRAP mass spectrometer (Applied Biosystems),

equipped with an ESI source in positive mode. Chromatographic separation was performed at

40 ˚C with a Zorbax SB-C18 column (4.6´150 mm, 5 μm particle diameter) (Agilent). The

mobile phase gradient consisted of solutions of methanol:water:ammonium acetate (90:9:1, v/

v/v) (solution A) and water:ammonium acetate (90:10, v/v) (solution B).

Near infrared spectroscopy

Spectra acquisition was performed by a Foss NIRS™ DS2500 equipment with silicon (400–1100

nm), lead sulfide (1100–2500 nm) detector and wavelength range from 400 to 2500 nm, 0.5 nm

spectral resolution and 32 spectrum scans. The measurement mode data were acquired in reflec-

tance and then converted to absorbance (- logR) at the time of modeling. The large sample cups
was the type of cell used for reading solid samples. Reading time of each spectrum was approxi-

mately 1 min. The spectrophotometer was connected to a computer that stored the spectra data

collected using the ISISCAN nova program. The spectra file was converted into a JCAMP file,

which was used for multivariate data analyses. The final spectral data were exported in order to

be evaluated with FB1, FB2 and ZEN data and to perform chemometric analyses with Unscram-

bler v.9.7 software (CAMO, Norway).

Statistical analyses

The calibration set was arranged in a matrix with 236 (FBs) and 440 (ZEN) rows and 4200

(variable independent) + 1 columns (variable dependent), combining spectral and chemical

data for each sample. The absorbance value for each wavenumber was reported in the first

4200 columns, while the analytical concentration (μg.kg-1) of FB1, FB2 and ZEN was reported
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in the last column. Because spectral data is quite complex, this technique requires the use of

several chemometric algorithms [69]. These tools aim at finding quantitative relationships

between two sets of measured data [49].

The spectral information used in the model covered the full spectral range as it was not clear

at that point in time in which specific wavelengths FBs would be present [62,63,70]. Several pre-

treatments were tested in the spectral data, with the best accuracy in the model being chosen.

Partial least squares (PLS) was used [71], considering that absorbance values of contiguous

wavelength were collinear variables. This method is based on correlating two data matrices, one

containing the new measurements, X (independent variables), and another with the values of

the property of interest measured by the reference method, Y (dependent variables). This tech-

nique creates new variables to decrease data dimensionality called principal components (PCs)

[72]. In order to verify whether the model was robust in predicting new samples, cross-valida-

tion was used. In this case, a sample is taken from the calibration set and the model is created

with the rest of the model samples. Thus, the model parameters do not change significantly

when new samples are added to the calibration set and can be applied to complex mixtures [69].

Statgraphics Centurium XV (Manugistics Inc., Rockville, MD, USA) was used for compari-

sons between LC-MS/MS and NIR. Normality of the residues was verified by the Shapiro-Wilk

test. The Student’s t (parametric variables) and the Mann-Whitney (non-parametric variables)

tests were applied to compare the methods. The significance threshold was set at 0.05.

Evaluated parameters

Model performance was assessed by correlation coefficient (R), determination coefficient (R2)

(the higher the R2, the better the model), root mean square error of calibration (RMSEC) and

validation (RMSEP), standard error of calibration (SEC) and standard error of prediction

(SEP), which is based on the residuals. This is the difference between the predicted values and

the actual values of the n samples of the calibration set. Residues represent the information

contained in the n reference sample data that is not explained by the model. Complete valida-

tion of the model involves the study of the validation set. The samples in this set are used to

test the predictive quality of the model by calculating R, R2 and SEP; the last performance met-

ric to be reported is the residual prediction deviation (RPD), which represents the model’s abil-

ity to predict unknown samples, considering the variability of the set. In addition, the variables

(wavelengths) that contributed to describe the most important differences between the sam-

ples, based on the PCs, were investigated.

Results

Samples and spectral information

This study analyzed 676 maize samples, being 236 for FBs and 440 for ZEN. The spectral

range includes the visible region (400–100 nm) and the near infrared region (1100–2500

nm). The models were built separately for the each of the mycotoxins assessed. The sum of

FB1 levels varied from 125 to 24,200 μg.kg-1; mean value and standard deviation (SD) were

5,643 μg.kg-1 and 5,666, respectively. The sum of FB2 levels varied from 125 to 9,210 μg.kg-1;

mean value and SD were 2,263 μg.kg-1 and 2,279, respectively. ZEN database ranged from 20

to 884 μg.kg-1; mean value and SD were 103 μg.kg-1 and 151, respectively.

Raw data processing

The regression method used in the model was PLS, using cross-validation in the three models

developed (FB1, FB2 and ZEN). Several individual and combination mathematical treatments
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have been investigated, such as smoothing, normalization (mean, maximum and range), base-

line offset, multiplicative Scatter Correction (MSC), derivatives, standard normal variate

(SNV) and detrending (DT); the chosen model was the one that provided the best accuracy.

Fig 1 shows the higher positive loads and the wavelengths which explain the data variance,

being represented by PC 1 and PC 2. These first two PCs carry the greatest information about

the model. The higher the loading in a given wavelength, the more important this variable is.

For example, for FBs, the wavelength range 1900–2498 nm is the most important for having

the higher loading. For PC 2, the most important ranges are from 400 to 500 nm and some spe-

cifics bands (2100, 2200 and 2450 nm). Regarding ZEN, variables between 400–500 and 2100–

2400 nm present the higher loads; for PC 2, ranges varying between 400–500 and 1200–1900

nm demonstrate to be the most important.

Several mathematical treatments were evaluated in order to remove irrelevant spectral

information and enhance accuracy in FBs and ZEN calibrations. For FBs, the spectral pre-pro-

cessing in which the best accuracy was obtained was the Savitski-Golay algorithm (9-point

window, 2nd degree polynomial and 2nd derivative). The PLS analysis chosen was the model

with 18 PCs for FB1 and 10 PCs for FB2. Fig 2 shows a representation of the explained calibra-

tion variance; 100% of the data variation is explained with 18 and 10 PCs in calibration and 73

and 71% in validation, respectively.

For ZEN, the best calibration model was obtained by using smoothing Savitski-Golay algo-

rithm. The PLS analysis chosen was the model with 7 PCs. Fig 3 shows a representation of the

Fig 1. Graph showing important variables. Representation of the most important variables based on the first

principal components (PCs), PC 1 and PC 2, for fumonisins and zearalenone in maize samples.

https://doi.org/10.1371/journal.pone.0244957.g001

Fig 2. Explained variance of fumonisin B1 (FB1) and fumonisin B2 (FB2): Plot of explained calibration and

validation variance versus number of Principal Components (PCs) for FB1 and FB2.

https://doi.org/10.1371/journal.pone.0244957.g002
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explained calibration variance; 93% of the data variation is explained with 7 PCs in calibration

and 91% in validation.

R, R2, RMSEC, SEC, RMSECV and RPD (the ratio of SD and SECV) were, respectively: for

FB1, 0.993, 0.987, 588, 586, 2,793 and 2.028; and for FB2, 0.992, 0.984, 258, 258, 1,137 and

2.004. The ability of the calibration and validation model was assessed by comparing the refer-

ence results (LC-MS/MS) with the values predicted by NIR (S1 and S2 Figs).

For ZEN the parameters R, R2, RMSEC, SEC, RMSECV and RPD (the ratio of SD and

SECV) were, respectively: 0.926, 0.962, 41.07, 41.11, 44.64 and 3.382. The ability of the calibra-

tion and validation model was assessed by comparing the reference results (LC-MS/MS) with

the values predicted by NIR (S3 Fig).

Validation using unknown samples

In order to assess the accuracy of the model, 200 unknown samples were predicted (100 for

FBs and 100 for ZEN). The selection process for unknown samples followed the same proce-

dure as that developed in the calibration model. After reading the spectra, the samples were

predicted. The external validation results were expressed as total FBs (FB1+FB2). FBs levels var-

ied from 250 to 12,700 μg.kg-1; mean value and SD were 2,690 μg.kg-1 and 2,275, respectively.

R, R2, RMSEP, SEP and RPD were 0.809, 0.899, 659, 682 and 3.33, respectively. The prediction

results were compared with the results of the reference levels (LC-MS/MS) and analyzed statis-

tically using Student’s t test (p = 0.32), indicating a good predictive ability. The results found

in the prediction were reported in Fig 4.

ZEN levels varied from 20.0 to 834.8 μg.kg-1; mean value and SD were 123.5 μg.kg-1 and

189.1, respectively. R, R2, RMSEP, SEP and RPD were 0.991, 0.984, 69.7, 69.8 and 2.71, respec-

tively. The prediction results were compared with the results of the reference levels (LC-MS/

MS) and statistically analyzed using Mann-Whitney test (p = 0.18), demonstrating that there is

no statistical difference between the methodologies. Results found in the prediction were

reported in Fig 5.

Discussion

Interpretation of spectra related to fungal compounds and mycotoxins is rather complex, since

they occur at low concentrations in the cereals. Moreover, the great variability of chemical

compounds present may lead to band overlapping [63], which makes direct determination dif-

ficult. When attacked by fungi, maize grains lose important nutrients such as proteins, fats and

Fig 3. Explained variance of zearalenone: Plot of explained calibration and validation variance versus number of

Principal Components (PCs) for zearalenone.

https://doi.org/10.1371/journal.pone.0244957.g003
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vitamins, thus causing spectral alterations. These changes can be detected by NIR through

mathematical treatments that amplify the information. In this way, all wavelengths were used

for the development of calibrations in the present study, since it is not clear which ones have

the capacity of mycotoxicological diagnosis [63,70]. Nonetheless, investigation of the most

important variables indicates that the most relevant ranges for FBs are within 400–600 and

1900–2500 nm. For ZEN, the wavelength ranges of 400–500, 1200–1900 and 2100–2400 nm

are the most important. Similar findings have been noted when exploring the discriminant

analysis for FBs in maize [58].

In the calibration database, 100 samples presented FBs levels above 5,000 μg.kg-1, whereas

the remaining 136 elements did not exceed this threshold. For ZEN, 27 samples were above

the standards of the Brazilian legislation (400 μg.kg-1). The database used to construct the pre-

dictive model was quite representative and adequate, since it covered a wide range of FBs and

ZEN concentrations. It is essential to build a database inserting samples based on different

regions, since the levels and frequency of contamination may vary depending on the climatic

conditions of each region [73]. Furthermore, fungal development and consequent mycotoxin

production may occur despite the implementation of good production practices [74]. Global

levels of FBs in unprocessed cereals, including maize, range from 39% in Europe to 95% in

America [75]. For ZEN, the incidence reported in contaminated food-crops worldwide has a

Fig 4. External validation of fumonisins: Correlation between Near Infrared Spectroscopy (NIR) and Liquid

Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) in ground maize.

https://doi.org/10.1371/journal.pone.0244957.g004

Fig 5. External validation of zearalenone: Correlation between Near Infrared Spectroscopy (NIR) and Liquid

Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) in ground maize.

https://doi.org/10.1371/journal.pone.0244957.g005
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large variation; the average contamination is 30–40%, ranging from 15% in Asia to 59% in

Africa [73, 75].

During calibration development, some samples were automatically excluded as they were

considered outliers by the development software [76]. Exclusion of such data is important

because their inclusion can negatively affect the model and prediction errors may occur. At

the end of this process, the model was reduced to 203 samples for FB1 and 202 samples for

FB2, i.e., 33 and 32 samples were excluded, respectively. When building ZEN model, no sample

was excluded from the calibration.

As shown in S1 and S2 Figs, the model allowed separation of almost all samples with FBs

content< 5,000 μg.kg-1 from those containing > 5,000 μg.kg-1, although seven samples were

incorrectly estimated and thus considered false negatives. No sample was considered a false

positive. In the calibration results for ZEN, considering the legal limit of 400 μg.kg-1, two sam-

ples were considered false negatives and one was a false positive.

A number of PCs of FBs similar to that found in this study was selected as the best calibra-

tion model in an investigation on FBs in ground maize using Fourier Transform Near Infrared

Spectroscopy (FT-NIR) (PCs = 18) [70]. In another assessment carried out in maize samples,

the authors found the best model using 17 PCs [77]; the chosen model had an acceptable accu-

racy in relation to the content of FBs as well as a good predictive capacity in the evaluation of

unknown samples.

Selecting the ideal number of PCs is paramount for the quality of a model [78]; using a

smaller number may provide unsatisfactory results as not all available data is used. On the

other hand, if a large number of latent variables is included, it may evidence a deterioration of

the analysis by incorporating overfitting [79]. In the current study, a higher PC value is due to

the data structure, i.e., because there is a large number of variables, the matrix becomes com-

plex and cannot be explained by a small number of components [76].

The RPD of 3.33 found in the external validation indicated a good predictive ability. Cali-

bration models with RPD>2 and R2>0.80 are considered satisfactory [80]. Additionally,

focusing on values around 5,000 μg.kg-1, five elements were misclassified according to the legal

level, 2% being classified as false positives and 3% as false negatives. In an assessment con-

ducted with FBs on maize, the authors observed three incorrectly predicted samples, consider-

ing the 4,000 μg.kg-1 guidance level of the European legislation [70]. So, the developed model

ensures a good screening ability.

Another work examined the use of NIR in the analysis of fungal infection (F. verticillioides),
ergosterol and FB1 in maize samples [63]; it was concluded that NIR can be applied for moni-

toring post-harvest fungal contamination as well as for distinguishing contaminated lots.

ZEN RPD and R2 values of 2.71 and 0.98, respectively, indicate that satisfactory results of

prediction of ZEN with unknown samples. Furthermore, no false positive or false negative

results were observed. The use of NIR to predict ZEN has been investigated in other ingredi-

ents. In Southern Brazil, wheat kernel and milled wheat samples naturally infected by Fusar-
ium graminearum were analyzed by infrared spectroscopy, and the R2 values of 0.86 and 0.87

as well as the SECV levels of 254.29 and 231.85 μg.kg-1 found for such products, respectively,

using Multivariate Partial Least Squares (MPLS) regression represented an acceptable predic-

tion of ZEN content by NIR [81].

Conclusions

This is the first study providing scientific knowledge on the determination of FBs and ZEN in

Brazilian maize samples using the NIR technology. Maize is a global commodity, being rou-

tinely used to produce feed and food. This paper reveals the potential of NIR as a fast and easy
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methodology for predicting FBs and ZEN in this truly important cereal compared to conven-

tional techniques. Good correlation between measured and predicted values proved the reli-

ability and accuracy of the model for future samples. Nevertheless, as there may be variations

in FBs and ZEN levels between different climates and regions, calibrations must be constantly

updated. While traditional methods are generally expensive, complex and require several

working days to be finalized, NIR is an inexpensive, environmentally friendly, and fast proce-

dure that only needs a few minutes for spectra collection and FBs and ZEN content prediction.

This tool also allows the analysis of a larger number of samples and thus the prior control of

cereal batches with contamination above the limit of the local legislation.

Supporting information

S1 Fig. Fumonisin B1 (FB1): Predictive partial least squares model with 18 Principal Com-

ponents (PCs)–linear regression plot of measured and estimated concentrations (μg.kg-1).

(TIF)

S2 Fig. Fumonisin B2 (FB2): Predictive partial least squares model with ten Principal Com-

ponents (PCs)–linear regression plot of measured and estimated concentrations (μg.kg-1).

(TIF)

S3 Fig. Zearalenone (ZEN): Predictive partial least squares model with seven Principal

Components (PCs)–linear regression plot of measured and estimated concentrations

(μg.kg-1).

(TIF)
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em milho e alimentos a base de milho. QuÃ\-mica Nov [Internet]. 2006; 29:293–9. Available from: http://

www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422006000200021&nrm=iso

49. Porep JU, Kammerer DR, Carle R. On-line application of near infrared (NIR) spectroscopy in food pro-

duction. Trends Food Sci Technol [Internet]. 2015; 46(2, Part A):211–30. Available from: http://www.

sciencedirect.com/science/article/pii/S0924224415002174

50. Givens I, Boever J, Deaville E. The principles, practices and some future applications of near infrared

spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr Res Rev. 1997

Feb 1; 10:83–114. https://doi.org/10.1079/NRR19970006 PMID: 19094259

51. Bevilacqua M, Bucci R, Materazzi S, Marini F. Application of near infrared (NIR) spectroscopy coupled

to chemometrics for dried egg-pasta characterization and egg content quantification. Food Chem [Inter-

net]. 2013; 140(4):726–34. Available from: http://www.sciencedirect.com/science/article/pii/

S0308814612017451 https://doi.org/10.1016/j.foodchem.2012.11.018 PMID: 23692759

52. Shi H, Yu P. Exploring the potential of applying infrared vibrational (micro)spectroscopy in ergot alka-

loids determination: Techniques, current status, and challenges. Appl Spectrosc Rev. 2018 May 28;

53:395–419.

53. McMullin D, Mizaikoff B, Krska R. Advancements in IR spectroscopic approaches for the determination

of fungal derived contaminations in food crops. Anal Bioanal Chem. 2015 Jan; 407(3):653–60. https://

doi.org/10.1007/s00216-014-8145-5 PMID: 25258282

54. Kos G, Sieger M, McMullin D, Zahradnik C, Sulyok M, Oner T, et al. A novel chemometric classification

for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Addit Contam

Part A Chem Anal Control Expo Risk Assess. 2016 Oct; 33(10):1596–607. https://doi.org/10.1080/

19440049.2016.1217567 PMID: 27684544

55. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectros-

copy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal [Internet]. 2007; 44

(3):683–700. Available from: http://www.sciencedirect.com/science/article/pii/S0731708507001884

https://doi.org/10.1016/j.jpba.2007.03.023 PMID: 17482417

56. Garon D, El Kaddoumi A, Carayon A, Amiel C. FT-IR spectroscopy for rapid differentiation of Aspergil-

lus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates

collected from agricultural environments. Mycopathologia. 2010 Aug; 170(2):131–42. https://doi.org/10.

1007/s11046-010-9304-7 PMID: 20349276

57. Levasseur-Garcia C, Pinson-Gadais L, Kleiber D, Surel O. Near Infrared Spectroscopy used as a sup-

port to the diagnostic of Fusarium species. Rev Med Vet (Toulouse). 2010 Oct 1; 161:438–44.

58. Levasseur-Garcia C, Bailly S, Kleiber D, Bailly J-D. Assessing Risk of Fumonisin Contamination in

Maize Using Near-Infrared Spectroscopy. Pan L, editor. J Chem [Internet]. 2015; 2015:485864. Avail-

able from: https://doi.org/10.1155/2015/485864

59. Kim S, Park J, Chun JH, Lee SM. Determination of ergosterol used as a fungal marker of red pepper

(Capsicum annuum L.) powders by near-infrared spectroscopy. Food Sci Biotechnol. 2003 Jun 1;

12:257–61.

60. Dowell F, Ram MS, Seitz LM. Predicting Scab, Vomitoxin, and Ergosterol in Single Wheat Kernels

Using Near-Infrared Spectroscopy. Cereal Chem. 1999 Jul 1; 76.

61. Pearson T. C., Wicklow D. T., Maghirang E. B., Xie FED F. DETECTING AFLATOXIN IN SINGLE

CORN KERNELS BY TRANSMITTANCE AND REFLECTANCE SPECTROSCOPY. Am Soc Agric

Eng. 2001; 44(5):1247–54.

62. Dowell F, Pearson TC, Maghirang E, Xie F, Wicklow D. Reflectance and Transmittance Spectroscopy

Applied to Detecting Fumonisin in Single Corn Kernels Infected with Fusarium verticillioides. Cereal

Chem. 2002 Mar 1; 79.

63. Berardo N, Pisacane V, Battilani P, Scandolara A, Pietri A, Marocco A. Rapid Detection of Kernel Rots

and Mycotoxins in Maize by Near-Infrared Reflectance Spectroscopy. J Agric Food Chem [Internet].

2005 Oct 1; 53(21):8128–34. Available from: https://doi.org/10.1021/jf0512297 PMID: 16218654

PLOS ONE Predicting fumonisins and zearalenone via a multivariate method

PLOS ONE | https://doi.org/10.1371/journal.pone.0244957 January 7, 2021 13 / 14

https://doi.org/10.1016/j.theriogenology.2014.01.027
http://www.ncbi.nlm.nih.gov/pubmed/24576714
https://doi.org/10.1046/j.1365-2672.2000.00972.x
http://www.ncbi.nlm.nih.gov/pubmed/10747219
http://www.sciencedirect.com/science/article/pii/S0041010112007143
https://doi.org/10.1016/j.toxicon.2012.08.001
https://doi.org/10.1016/j.toxicon.2012.08.001
http://www.ncbi.nlm.nih.gov/pubmed/22921581
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422006000200021&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422006000200021&nrm=iso
http://www.sciencedirect.com/science/article/pii/S0924224415002174
http://www.sciencedirect.com/science/article/pii/S0924224415002174
https://doi.org/10.1079/NRR19970006
http://www.ncbi.nlm.nih.gov/pubmed/19094259
http://www.sciencedirect.com/science/article/pii/S0308814612017451
http://www.sciencedirect.com/science/article/pii/S0308814612017451
https://doi.org/10.1016/j.foodchem.2012.11.018
http://www.ncbi.nlm.nih.gov/pubmed/23692759
https://doi.org/10.1007/s00216-014-8145-5
https://doi.org/10.1007/s00216-014-8145-5
http://www.ncbi.nlm.nih.gov/pubmed/25258282
https://doi.org/10.1080/19440049.2016.1217567
https://doi.org/10.1080/19440049.2016.1217567
http://www.ncbi.nlm.nih.gov/pubmed/27684544
http://www.sciencedirect.com/science/article/pii/S0731708507001884
https://doi.org/10.1016/j.jpba.2007.03.023
http://www.ncbi.nlm.nih.gov/pubmed/17482417
https://doi.org/10.1007/s11046-010-9304-7
https://doi.org/10.1007/s11046-010-9304-7
http://www.ncbi.nlm.nih.gov/pubmed/20349276
https://doi.org/10.1155/2015/485864
https://doi.org/10.1021/jf0512297
http://www.ncbi.nlm.nih.gov/pubmed/16218654
https://doi.org/10.1371/journal.pone.0244957


64. Hernandez-Hierro JM, Garcia-Villanova RJ, Martı́n I. Potential of near infrared spectroscopy for the

analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Anal

Chim Acta. 2008 Sep 1; 622:189–94. https://doi.org/10.1016/j.aca.2008.05.049 PMID: 18602552

65. Fernández-Ibañez V, Soldado A, Martı́nez-Fernández A, de la Roza-Delgado B. Application of near

infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assess-

ment. Food Chem [Internet]. 2009; 113(2):629–34. Available from: http://www.sciencedirect.com/

science/article/pii/S0308814608008716

66. Tripathi S, Mishra HN. A rapid FT-NIR method for estimation of aflatoxin B1 in red chili powder. Food

Control [Internet]. 2009; 20(9):840–6. Available from: http://www.sciencedirect.com/science/article/pii/

S0956713508003149

67. Dall’Asta C, Galaverna G, Aureli G, Dossena A, Marchelli R. A LC/MS/MS method for the simultaneous

quantification of free and masked fumonisins in maize and maize-based products. World Mycotoxin J

[Internet]. 2008 Aug 1; 1(3):237–46. Available from: https://doi.org/10.3920/WMJ2008.x040

68. Berthiller F, Schuhmacher R, Buttinger G, Krska R. Rapid simultaneous determination of major type A-

and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tan-

dem mass spectrometry. J Chromatogr A [Internet]. 2005; 1062(2):209–16. Available from: http://www.

sciencedirect.com/science/article/pii/S0021967304020205 https://doi.org/10.1016/j.chroma.2004.11.

011 PMID: 15679158

69. Beebe KR, Kowalski BR. An Introduction to Multivariate Calibration and Analysis. Anal Chem [Internet].

1987 Sep 1; 59(17):1007A–1017A. Available from: https://doi.org/10.1021/ac00144a725

70. Gaspardo B, Zotto S, Torelli E, Sirio C, Firrao G, Della Riccia G, et al. A rapid method for detection of

fumonisins B-1 and B-2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy

implemented with integrating sphere. Food Chem. 2012 Dec 1; 135:1608–12. https://doi.org/10.1016/j.

foodchem.2012.06.078 PMID: 22953900

71. Herold B., Kawano S., Sumpf B., Tillmann P., & Walsh KB. VIS/NIR spectroscopy. In: Optical monitor-

ing of fresh and processed agricultural crops. In Zude M. Boca Raton: CRC; 2009. p. 141–249.

72. Albrecht R, Joffre R, Gros R, Le Petit J, Terrom G, Périssol C. Efficiency of near-infrared reflectance

spectroscopy to assess and predict the stage of transformation of organic matter in the composting pro-

cess. Bioresour Technol [Internet]. 2008; 99(2):448–55. Available from: http://www.sciencedirect.com/

science/article/pii/S0960852407000077 https://doi.org/10.1016/j.biortech.2006.12.019 PMID:

17317158
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