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Abstract

Actuarial risk classification is usually performed at a guarantee and policyholder level: For
each policyholder, the claim frequencies corresponding to each guarantee are modelled in isola-
tion, without accounting for the correlation between the different guarantees and the different
policyholders from the same household. However, sometimes, a common event will trigger both
guarantees at the same time. Moreover, the claim frequencies for policyholders from the same
household appear to be correlated. This paper aims to supplement the standard actuarial ap-
proach by combining two guarantees and the policyholders from the household, which allows to
refine the prediction on the claim frequencies and account for the common shocks on multiple
guarantees. Some possible cross-selling opportunities can also be identified.

1 Introduction and motivation

In motor insurance, ratemaking is usually achieved in two steps. First, the actuaries proceed to
the a priori risk classification: Using the characteristics known by the insurer at the time of the
subscription of the policy, the actuary partitions the policyholders in order to obtain homogeneous
risk classes. Policyholders belonging to the same risk class are then given the same claim fre-
quency estimate. This is routinely done with the help of Generalized Linear Models (GLMs) and
Generalized Additive Models (GAMs). These models can be extended with the introduction of
random effects. Indeed, some important risk factors are not observed nor known by the insurer
at the inception of the contract. This has as consequence that the risk classes obtained by the a
priori ratemaking remain heterogeneous. The a posteriori ratemaking aims at adjusting the a priori
estimates by using the past claims information, which reveal through time these unobserved, but
influential, risk factors. See Denuit et al. (2007) for a comprehensive account of these techniques
in nonlife insurance.
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Multiple guarantees can be underwritten by the policyholders in motor insurance. The most
common guarantees in the EU are the Third-Party Liability (TPL) insurance and Material Damage
(MD) insurance. The former is compulsory and covers a third-party’s loss caused by the insured
car. The latter is an optional guarantee that covers the cost of repairing or replacing the insured’s
own vehicle. The policyholder will typically trigger this guarantee when he is liable for the claim,
or couldn’t identify the liable person. Generally, the guarantees are sold in packages, and the MD
guarantee is part of the ‘comprehensive’ package.

A priori ratemaking is usually done at a guarantee level, meaning that each guarantee is con-
sidered in isolation and independently. However, this is questionnable, as there may be claims
that trigger multiple guarantees at the same time. For instance Bermúdez (2009) used a bivariate
Poisson to estimate the claim frequencies in TPL and a pool of the other guarantees. The bivariate
Poisson was used to estimate the common shocks without having to specify which claims triggered
both count variables. Bermúdez & Karlis (2012) extended the bivariate model in Bermúdez (2009),
by incorporating a finite mixture in the Poisson regression model. The inclusion of 2-finite random
effects allows to capture the overdispersion and the excess of zeros. Also, Bermúdez & Karlis (2011)
used a multivariate Poisson regression, as well as zero-inflated Poisson regression, in a Bayesian
framework to estimate claim frequencies for three different guarantees. Shi & Valdez (2014) intro-
duced a multivariate Negative Binomial regression model, where each pair of variables has its own
covariance structure. This model is then compared to a multivariate model using copulas, joining
marginal Negative Binomials. Frees et al. (2016) modelled marginally the frequency and severity
of several guarantees and then first using copula modelled the dependence between frequency and
severity. In a second step the dependence over multiple guarantees was also modelled using a copula.
Frees et al. (2013) followed a similar approach in a health insurance context by using multivariate
two-part regression models to model five different types of expenditures. The frequency is modelled
using a binary outcome, indicating if some amount has been paid. The amounts are coupled using
a Gaussian copula. These models do not use explicitly the information regarding common shocks,
i.e. claims that trigger multiple guarantees at the same time. Nevertheless, since insurers know for
each claim which guarantees were triggered, it may be of interest to directly estimate the common
shocks frequencies from the data.

A posteriori ratemaking is also generally done at a guarantee level using mixed models. Each
policyholder and each guarantee is considered independently. The independence between policy-
holders from the same household is nevertheless deniable, see for instance Pechon et al. (2018)
and Shi et al. (2016). Moreover, the independence between the random effects related to different
guarantees for a given policyholder can also be relaxed. Pinquet (1998) proposed a Bonus-Malus
System for different types of claims, by using data related to claims at fault and not at fault with
respect to a third party. Englund et al. (2008) introduced a multivariate latent risk approach by
correlating random effects over multiple guarantees related to the same policyholder. Englund et al.
(2009) used the model on a dataset related to a Danish insurer to illustrate the improvement in
prediction and Thuring (2012) showed that this multivariate credibility model can also be used to
find cross-selling opportunities. On aggregated loss, Frees & Wang (2006) used elliptical copulas
to model the dependencies between the severities, while the dependence with respect to the count
variables (frequencies) was introduced by means of latent correlated factors.

Our approach can be summarized as follows. First, we estimate using the observable character-
istics the a priori claim frequencies for three count variables: the two variables counting the claim
that trigger only one guarantee, and the variable counting the common shocks. We will assume
that each of these count variables follows a Poisson distribution. In a second step, a posteriori
ratemaking is done, by the introduction of random effects, leading to a Poisson-mixture. Relaxing
the independence between the random effects for a given policyholder as well as for policyholders
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living in the same household leads to a multivariate Poisson-mixture. The introduction of the
dependence between random effects for a given policyholder is motivated by the fact that the un-
observed risk factors influencing the claim frequencies may be the same for multiple guarantees
(e.g. regularly driving under dangerous conditions), while the household dependence may come
from shared unobserved risk characteristics. So, the dependence between the claim frequencies in
TPL and MD is two-sided. Part of the dependence comes from the common shocks and part of the
dependence comes from the correlated unobserved risk factors.

The remainder of this paper is organized as follows. In Section 2, we introduce the dataset
that will be used to illustrate our methodology. In Section 3, present our model and estimate its
parameters on our dataset. In Section 4, we assess the dependence between the claim frequencies in
TPL and MD and between policyholders from the same household. In Section 5, we illustrate two
applications of our model such as premium corrections and detection of cross-selling opportunities.

2 Dataset

Let us briefly describe the dataset that will be used to support our analysis. The data relate to
a portfolio of European policies of both motor TPL and MD insurance observed during the years
2011 to 2013. Only policyholders who have subscribed both guarantees are considered here. Also,
in the following, we only consider policyholders aged between 30 and 90 years. Indeed, for the other
ages, the number of policyholders that have subscribed both TPL and MD is too small to conduct
our present analysis.

For each policyholder we have at our disposal the number of claims triggering each guarantee,
as well as the number of claims that trigger both guarantees at the same time. In addition, some
characteristics (e.g. age, gender, place of residence) for each policyholder are available. We also
know the power, the age, the initial value and the use of the insured car (recall that each policy
covers a single vehicle and is associated with a main driver). Furthermore, we also have some
information about the contract and whether the premium payment has been split (premiums can be
paid annually, semi-annually, quarterly or monthly). The database also contains a litigation variable
indicating whether the policyholder has had a failure to pay its premium in due time. Finally, a
household identifier allows to determine the policyholders belonging to the same household. On
Table 3.1, we show that relative occurrence of types of claims, conditional to the occurrence of a
claim.

In the considered dataset, 219 038 households have only one policyholder while 10 982 households
contain two policyholders (i.e. 21 964 policyholders belonged to such households).

3 Choice of the model

We consider the two most common guarantees involved in motor insurance, namely TPL insurance
and MD insurance. Given the nature of the guarantees, it is possible that a single claim triggers
both guarantees at the same time. In fact, a claim will result in three possible cases, depending
on which guarantees are triggered. Table 3.1 shows which guarantees are triggered in our dataset,
conditional to the occurrence of a claim. A significant proportion of claims (about 20%) trigger
both guarantees which hints the need for a model that takes into account common shocks on both
guarantees. So, as for each policyholder we have at disposal the number of claims triggering both
guarantees, we won’t use a bivariate Poisson regression with common shocks as in Bermúdez (2009)
for modelling the number of claims that trigger TPL and the number of claims that trigger MD.
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Type of claims Frequency

Only MD 62.0%
Both TPL and MD 19.8%
Only TPL 18.2%

Table 3.1: Relative occurrence according to the type of claims

Let us define the following notations. Let H be the set of households in the dataset. In a
household h ∈ H with only one policyholder, we denote by h(1) the corresponding policyholder
while in a household h ∈ H with two policyholders, we denote by h(1) and h(2) the corresponding
policyholders. In this last case, for the ease of the presentation, since in most cases (86%) the age
difference between policyholders from the same household is below 15 years, we will designate both
policyholders as being spouses. Let us note that since we restrict our analysis to policyholders aged
between 30 and 90 years, we cannot be in a “parent-young driver” situation as defined in Pechon
et al. (2018). So, the “spouse” designation in this paper has to be understood in a broader sense
than in Pechon et al. (2018).

Furthermore, let us introduce the following claim count variables :

- NTPL
h(i),t: Number of claims of policyholder i from household h that triggered only TPL during

year t;

- NMD
h(i),t: Number of claims of policyholder i from household h that triggered only MD during

year t;

- NMD:TPL
h(i),t : Number of claims of policyholder i from household h that triggered both TPL

and MD simultaneously during year t.

This implies that the number of claims for policyholder i from household h that trigger TPL (resp.
MD) during year t is NTPL

h(i),t+NMD:TPL
h(i),t (resp. NMD

h(i),t+NMD:TPL
h(i),t ). We denote the corresponding a

priori claim frequencies as λTPLh(i),t = E
[
NTPL
h(i),t

]
, λMD

h(i),t = E
[
NMD
h(i),t

]
and λMD:TPL

h(i),t = E
[
NMD:TPL
h(i),t

]
.

We also introduce the aggregated number of claims over the considered time horizon t =
1, . . . , T , namely

- NTPL
h(i),• =

∑T
t=1N

TPL
h(i),t;

- NMD
h(i),• =

∑T
t=1N

MD
h(i),t;

- NMD:TPL
h(i),• =

∑T
t=1N

MD:TPL
h(i),t .

The corresponding a priori claim frequencies are denoted λTPLh(i),• = E
[
NTPL
h(i),•

]
, λMD

h(i),• = E
[
NMD
h(i),•

]
and λMD:TPL

h(i),• = E
[
NMD:TPL
h(i),•

]
.

The claim frequency analysis that follows can be split into two main parts. First, we perform a
marginal analysis using a Poisson GAM regression to account for individual risk profiles. For each
count variable and for each policyholder inside the household, we predict the expected number of
claims based on the information about the policyholder, his/her car and characteristics about the
policy. In a second part, information related to the other guarantee as well as the number of claims
filed by the other policyholder from the same household (if any) is included. This dependence
between the expected number of claims is introduced by means of a multivariate Poisson-mixture.
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In Pechon et al. (2018), the authors used a multivariate Poisson-mixture to model the dependencies
between claim frequencies in a household for motor TPL insurance. So, in the following, we extend
this model to incorporate another guarantee (namely MD) in which common shocks may occur.

3.1 Model

Let G := {TPL,MD ,MD : TPL} be the set of types of claims depending on which guarantees
are triggered. We introduce a multivariate Poisson mixture model that takes into account the
dependence that may exist between the frequencies related to these three count variables for each
policyholder as well as the dependence that may exist between the policyholders coming from the
same household h. Let us assume the following:

1. ∀h ∈ H , ∀i ∈ h, ∀g ∈ G, given Θg
h(i) = θ, the random variables Ng

h(i),1, N
g
h(i),2, . . . , N

g
h(i),T are

independent.

2. ∀h ∈ H, ∀i, j ∈ h, ∀gi, gj ∈ G, given (Θgi
h(i),Θ

gj
h(j)) = (θi, θj), the sequences of random variables

Ngi
h(i),1, N

gi
h(i),2, . . . , N

gi
h(i),T and N

gj
h(j),1, N

gj
h(j),2, . . . , N

gj
h(j),T are independent.

3. The Θh = (ΘTPL
h(1) ,Θ

MD
h(1) ,Θ

MD:TPL
h(1) ,ΘTPL

h(2) ,Θ
MD
h(2) ,Θ

MD:TPL
h(2) ) (or Θh = (ΘTPL

h(1) ,Θ
MD
h(1) ,Θ

MD:TPL
h(1) )

if there is only one policyholder in the household) are independent and identically distributed
following a LogNormal distribution with joint probability density function fΘh

, E [Θh] = 1

and V
[
log Θg

h(i)

]
= σ2

g ∀g ∈ G and ∀i ∈ h. Furthermore, ∀h ∈ H, ∀i ∈ h, the correlation

matrix of (log ΘTPL
h(i) , log ΘMD

h(i) , log ΘMD:TPL
h(i) ) is given by

A =

 1 ρTPL,MD ρTPL,MD:TPL

ρTPL,MD 1 ρMD,MD:TPL

ρTPL,MD:TPL ρMD,MD:TPL 1


while ∀gi, gj ∈ G, the correlations Corr

(
log Θgi

h(1), log Θ
gj
h(2)

)
:= Bij for i, j = 1, 2, 3 are given

by the following matrix

B =

 ρ11 ρ12 ρ13

ρ12 ρ22 ρ23

ρ13 ρ23 ρ33


So, block A stands for the correlations between the log of the random effects for a policyholder,
whereas blockB contains the correlations between the log of the random effects of the policyholders
from the same household. The variance-covariance matrix of log Θh is then obtained by

Σlog Θ = diag(σTPL, σMD, σMD:TPL)×P× diag(σTPL, σMD, σMD:TPL)

where P is the correlation matrix, given by A for households with only one policyholder, while for
households with two policyholders it is given by

P =

(
A B
B A

)
.

This parametrization implies that the model incorporates 15 parameters, from which 3 correspond
to variances, 3 to correlations between random effects for the same policyholder and the remaining
9 to the correlations between random effects for different policyholders from the same household.
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Note that we included a parametric hypothesis, namely that the random effects have a LogNormal
distribution. This parametric assumption was selected for the same dataset in Pechon et al. (2018)
after a comparison with Gamma distributions joined by a Gaussian copula using a Vuong test.
Since the support of each random effect is R+, we can write the likelihood as

L(Σlog Θ) =
∏
h∈H

∫ ∞
0
· · ·
∫ ∞

0︸ ︷︷ ︸
3×#h

∏
i∈h

∏
g∈G

exp
(
−λgh(i),•θ

g
h(i)

) (λgh(i),•θ
g
h(i)

)ng
h(i),•

ngh(i),•!

 fΘh
(θh)dθh

where #h denoted the number of policyholders in the household (1 or 2),
θh = (θTPLh(1) , θ

MD
h(1) , θ

MD:TPL
h(1) ) for households with only 1 policyholder (#h = 1), or

θh = (θTPLh(1) , θ
MD
h(1) , θ

MD:TPL
h(1) , θTPLh(2) , θ

MD
h(2) , θ

MD:TPL
h(2) ) for households with two policyholders (#h = 2).

3.2 Estimation of the parameters

Let us now estimate the 15 parameters related to the variance-covariance matrix of the log Θ. We
consider the following steps to estimate the parameters by maximum likelihood :

1. Consider each policyholder marginally, without the intra-household correlations (block B is
set to 0). This implies that we only have to estimate the 3 parameters from block A and the
three variances. We maximise the log-likelihood using the Nelder–Mead algorithm with as
initial values the moment estimates (e.g given in Denuit et al., 2007, Section 6.2.7).

2. Fix the six previous estimates to the values found in step 1 and estimate the remaining 9
parameters related to the household dependence (block B).

3. All 15 parameters are re-estimated simultaneously using the previous estimates as initial
values.

Note that in order to compute the log-likelihood, we need to approximate numerically the integrals.
Due to the choice of the density function fΘ, the Gauss-Hermite quadrature can be used, as in
Pechon et al. (2018). Confidence intervals related to the parameters of block B are all overlapping.
As a consequence, we impose a unique correlation parameter ρ in the block B matrix and re-
estimate the simplified model that contains only 7 parameters using the three steps approach. A
likelihood ratio test is conducted to assess whether the simplified model is significantly different
from the full model. The test statistic is 4.0382, implying a p-value of 0.8536. Therefore, the
simplified model is chosen.

The final estimates are given in Table 3.2.
These estimates are related to the underlying Normal distribution, which is on the score scale. The
variances and correlations of the LogNormals can be obtained thanks to the following Proposition:

Proposition 3.1. Let X = (X1, . . . , Xq) be a random vector obeying the multivariate Normal
distribution with variances V[Xi] = σ2

i , correlations Corr[Xi, Xj ] = ρij (with ρii = 1) and mean

vector µ = (−σ2
1
2 , . . . ,−

σ2
q

2 ). Define Yi = expXi. Then Y obeys the multivariate LogNormal
distribution with mean vector 1,

V[Yi] = exp(σ2
i )− 1 and Corr[Yi, Yj ] =

exp(ρijσiσj)− 1√
(exp(σ2

i )− 1)(exp(σ2
j )− 1)

.
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Estimate

V̂(log ΘTPL) 0.55843

V̂(log ΘMD) 0.36473

V̂(log ΘMD:TPL) 0.31750

Ĉorr(log ΘTPL, log ΘMD) 0.52414

Ĉorr(log ΘTPL, log ΘMD:TPL) 0.69405

Ĉorr(log ΘMD, log ΘMD:TPL) 0.51272
ρ̂ (Block B) 0.44117

Table 3.2: Maximum likelihood estimates of the variances and correlations of the underlying Normal
random variables, i.e. log Θ, where the log is taken on each component of the vector.

Estimate Std.Error p.value

V̂(ΘTPL) 0.747932 0.072114 3.34e-25 ***

V̂(ΘMD) 0.440121 0.020956 6.27e-98 ***

V̂(ΘMD:TPL) 0.373689 0.054846 9.53e-12 ***

Ĉorr(ΘTPL,ΘMD) 0.465137 0.047079 5.09e-23 ***

Ĉorr(ΘTPL,ΘMD:TPL) 0.642053 0.092781 4.51e-12 ***

Ĉorr(ΘMD,ΘMD:TPL) 0.470047 0.062446 5.18e-14 ***

Ĉorr(ΘTPL
1 ,ΘTPL

2 ) 0.373520 0.095339 8.94e-05 ***

Ĉorr(ΘTPL
1 ,ΘMD

2 ) 0.383984 0.095567 5.87e-05 ***

Ĉorr(ΘTPL
1 ,ΘMD:TPL

2 ) 0.386138 0.095693 5.46e-05 ***

Ĉorr(ΘMD
1 ,ΘTPL

2 ) 0.383984 0.095567 5.87e-05 ***

Ĉorr(ΘMD
1 ,ΘMD

2 ) 0.396656 0.096654 4.06e-05 ***

Ĉorr(ΘMD
1 ,ΘMD:TPL

2 ) 0.399421 0.097073 3.88e-05 ***

Ĉorr(ΘMD:TPL
1 ,ΘTPL

2 ) 0.386138 0.095693 5.46e-05 ***

Ĉorr(ΘMD:TPL
1 ,ΘMD

2 ) 0.399421 0.097073 3.88e-05 ***

Ĉorr(ΘMD:TPL
1 ,ΘMD:TPL

2 ) 0.402359 0.097667 3.79e-05 ***

Table 3.3: Final estimates of the variance-covariance matrix of Θ along with standard error esti-
mates and p-values.

Using Proposition 3.1, we can deduce the variance-covariance matrix of Θ. The estimates are
given in Table 3.3. The standard errors are computed thanks to the Delta Method.

It appears that the heterogeneity is the largest in the TPL case. The correlation between the
random effects TPL and MD : TPL for a given policyholder is the largest one, while the correlation
between MD and MD : TPL is weaker. Note that the correlations of the random effects of two
policyholders from the same household are similar to the ones given in Pechon et al. (2018), where
only the TPL guarantee is considered.

In the next section, we will analyse the implied correlations between the guarantees TPL and
MD.
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Figure 4.1: Mosaic plot between the categorized a priori claim frequencies λTPL, λMD, λMD:TPL.

4 Dependence between claim frequencies in a household

Let us assess the correlation between the claim frequencies in TPL and in MD for a given pol-
icyholder. Since these will depend on a priori claim frequencies, let us first discuss the possible
dependence between these a priori claim frequencies. To this end, for each of the three a priori
claim frequencies, we categorize, based on quantiles, “Low”, “Medium”, and “High” risk classes.
More specifically, we cut the unit interval into three segments of the same length and attribute to
each of these segments its median value. So, the “Low” risk profile for instance corresponds to the
profiles between quantiles 0 and 1/3, whereas the attributed value corresponds to the quantile 1/6.
This categorization is done on each of the three count variables separately.

Then, we can draw a mosaic plot (Figure 4.1), for instance, to visualize the dependence. In
case of independence, all the rectangles would be aligned. The dependence appears to be stronger
between λTPL and λMD than with respect to λMD:TPL. In fact, lower (resp. higher) risk profiles
in “TPL only” appear associated to lower (resp. higher) risk profiles in “MD only”. A similar
but weaker association can also be seen with respect to the common shock claim frequencies. This
correlation between the a priori claim frequencies partly comes from the fact that the guarantees are
all related to the same product (i.e. motor insurance) and consider common risk factors that enter
into the a priori model, such as for instance the place of residence, or the age of the policyholder.

In sight of these associations, we can compute the correlations between the claim frequencies in
TPL and in MD for a “Medium” risk profile. The medium risk profile is considered as a policyholder

with a medium risk profile in each of the three claim frequencies, i.e. median values of λ̂TPL, λ̂MD

and ̂λMD:TPL (i.e. a medium risk profile in each guarantee).

Ĉorr
(
λTPLh(1) ΘTPL

h(1) + λMD:TPL
h(1) ΘMD:TPL

h(1) , λMD
h(1)Θ

MD
h(1) + λMD:TPL

h(1) ΘMD:TPL
h(1)

)
= 0.6622

This correlation can be split into two parts: One part comes from the fact that some claims trig-
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ger both guarantees and are accounted by the variable NMD:TPL. Another part of this correlation
comes from the correlated random effects. Computation shows that about 75% of this correlation
comes from the correlated random effects. Similarly, we can compute the correlation between the
claim frequencies of two policyholders from the same household. Again, we consider here that both
policyholders have a medium risk profile. This gives

Ĉorr
(
λTPLh(1) ΘTPL

h(1) + λMD:TPL
h(1) ΘMD:TPL

h(1) , λTPLh(2) ΘTPL
h(2) + λMD:TPL

h(2) ΘMD:TPL
h(2)

)
= 0.4688

Ĉorr
(
λMD
h(1)Θ

MD
h(1) + λMD:TPL

h(1) ΘMD:TPL
h(1) , λMD

h(2)Θ
MD
h(2) + λMD:TPL

h(2) ΘMD:TPL
h(2)

)
= 0.4875

Ĉorr
(
λTPLh(1) ΘTPL

h(1) + λMD:TPL
h(1) ΘMD:TPL

h(1) , λMD
h(2)Θ

MD
h(2) + λMD:TPL

h(2) ΘMD:TPL
h(2)

)
= 0.4778

Unlike in the former case, here, only the correlated random effects introduce dependence between
the claim frequencies since we assume that no common shock between different policyholders are
possible.

Note that these correlations are already adjusted to the known characteristics of the policyhold-
ers (which are used to predict the a priori claim frequencies). So these correlations come on top of
these possibly correlated a priori characteristics of the policyholders (e.g. place of residence).

5 Insurance applications

The multivariate model can be used for various purposes. We will see that in fact, one can use
this model to refine estimated claim frequencies using the household claims history. Indeed, for
each policyholder, time will reveal information on the hidden characteristics that are represented
by the random effect. Due to the fact that these random effects for policyholders from the same
household are correlated, information related to a policyholder will in fact be also relevant for the
other policyholder from the same household.

Two main insurance applications will be presented below. First, we will show that using all
the household information, we can sharpen the prediction of the claim frequencies. So, for a given
household, any claim-free year, or any claim, will affect all the predictions for the claim frequencies
of the policyholders of the household under consideration. This also means that households with
multiple policyholders can help to improve the predictive power, since there is a higher flow of
information.

In a second example, we will show that in a situation where the insurer has only one policyholder
in a household, he can use this information to help identifying cross-selling opportunities.

5.1 A posteriori corrections

Let us first assume that a household consists of only one policyholder. We are looking to compute
the claim frequencies in TPL (resp. in MD) conditional to the observed number of claims in the
past from that policyholder, i.e.

E
[
λTPLh(1),T+1ΘTPL

h(1) + λMD:TPL
h(1),T+1 ΘMD:TPL

h(1) |Ng
h(1),• = ngh(1),•∀g ∈ G

]
E
[
λMD
h(1),T+1ΘMD

h(1) + λMD:TPL
h(1),T+1 ΘMD:TPL

h(1) |Ng
h(1),• = ngh(1),•∀g ∈ G

]
.
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The conditional expectations of the random effects can be computed using the Bayes formula and
numerical integration

E
[
Θg
h(1)|N

g̃
h(1),• = ng̃h(1),•,∀g̃ ∈ G

]
=

∫∞
0

∫∞
0

∫∞
0 θgh(1)P

[
N g̃
h(1),• = ng̃h(1),•, ∀g̃ ∈ G|Θ

g̃
h(1) = θg̃h(1),∀g̃ ∈ G

]
fΘ(θ)dθ∫∞

0

∫∞
0

∫∞
0 P

[
N g̃
h(1),• = ng̃h(1),•, ∀g̃ ∈ G|Θ

g̃
h(1) = θg̃h(1), ∀g̃ ∈ G

]
fΘ(θ)dθ

.

For the a priori claim frequencies (future and past), we consider three cases. As above, three
kinds of risk profiles are constructed, based on quantiles. For instance, for a “Low” risk profile,
we will assume that the policyholder’s three claim frequencies are the corresponding low claim
frequencies. Note that other combinations of risk profiles are possible, but for the ease of the
presentation, only these three cases are considered.

We then compute a posteriori expectations for each of these three risk classes and calculate the
ratio to the a priori claim frequency. We will call these ratios the correction factors.

As expected, the estimates of the correction factors depicted on Figure 5.1 show that claim-free
years will result in a correction below one. This means that in average such policyholders will have
lower claim frequencies than the forecast given by their a priori claim frequencies. In contrast,
a claim of any kind will increase all the estimates of the claim frequencies. Due to the higher
heterogeneity in TPL, the corrections appear to be more severe than in MD. Note that riskier
profiles have a less severe correction in case of a claim and stronger decrease in case of claim-free
years.

Let us now assume that the household consists of two policyholders. We are interested in the
estimates

E
[
λTPLh(i),T+1ΘTPL

h(i) + λMD:TPL
h(i),T+1 ΘMD:TPL

h(i) |Ng
h(j),• = ngh(j),•∀j ∈ {1, 2}, ∀g ∈ G

]
for i = 1, 2,

E
[
λMD
h(i),T+1ΘMD

h(i) + λMD:TPL
h(i),T+1 ΘMD:TPL

h(i) |Ng
h(j),• = ngh(j),•∀j ∈ {1, 2}, ∀g ∈ G

]
for i = 1, 2,

i.e. the conditional expectations of the number of claims triggering TPL (resp. MD). Note that

E
[
Θg
h(i)|N

g̃
h(j),•∀j ∈ {1, 2}, ∀g̃ ∈ G

]
=

∫∞
0 · · ·

∫∞
0 θgh(i)P

[
N g̃
h(j),• = ng̃h(j),•∀j ∈ {1, 2}, ∀g̃ ∈ G|Θ

g̃
h(j),•∀j ∈ {1, 2}, ∀g̃ ∈ G

]
fΘ(θ)dθ∫∞

0 · · ·
∫∞

0 P
[
N g̃
h(j),• = ng̃h(j),•∀j ∈ {1, 2},∀g̃ ∈ G|Θ

g̃
h(j),•∀j ∈ {1, 2},∀g̃ ∈ G

]
fΘ(θ)dθ

.

Again, we rely on numerical integration to compute the six-dimensional integrals.
The conditional expectation given above can be computed for different number of claims. Here,

we only consider a medium risk profile for both policyholders, again to ease the presentation.
On Figure 5.2, we show the ratio of the conditional expectations to the unconditional expectation

(i.e. the a priori claim frequencies), when no claim occurred, or when only one claim occurred. In
the latter case, three cases are distinguished depending on which guarantees have been triggered.
Both the estimates related to the policyholder and its spouse are included on the figure.

As it can be seen, a claim in TPL from the first policyholder, for instance, will have consequences
on all estimates for every policyholder from the household. So, a claim will penalize a policyholder
but a claim-free year for his or her spouse may in fact lessen this increase. On the other hand, a
claim-free household (with at least two policyholders) more rapidly reaches some lower correction
levels than in a single policyholder case.
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Figure 5.1: Ratio of a posteriori claim frequencies to a priori claim frequencies in TPL and MD
in a household with only one policyholder. Four cases are considered depending on whether there
was no claim or which guarantees were triggered by the claim.
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Figure 5.2: Ratio of a posteriori claim frequencies to a priori claim frequencies in TPL and MD in
a household with two policyholders. Four cases are considered depending on whether there was a
claim and if so, which guarantees were triggered by the claim.
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5.2 Cross-Selling

Let us assume that for the last T years, a policyholder has subscribed both the TPL and MD
guarantees. Furthermore, let us assume that he is the only policyholder in our database that comes
from this household h. We wish to quantify the a posteriori claim frequency correction in TPL
and in MD for his or her spouse who is not in the portfolio. This could be useful for instance in a
context of detection of cross-selling opportunities.

We will again assume that the policyholder that is already in our database, h(1), has had a
constant risk profile for the past T years, i.e. its a priori claim frequency was the same each year
of observation. We will assume that h(1) has one of the three aforementioned risk profiles. The
other member of the household, the spouse, who does not have a policy at this insurer yet will be
called h(?). First, we will assume that we do not have any claims related information on h(?). In
a second example, we will integrate these specific additional informations.

5.2.1 No claim-related informations on h(?)

Let us first assume that we do not have information related to the number of past claims of the
spouse h(?). We want to assess the correction factor to apply to the spouse, both in TPL and in
MD, given the past claims of the policyholder of the household h(1). Since

fΘh
(θ|Ng

h(1),• = ngh(1),•∀g ∈ G) =
P
[
Ng
h(1),• = ngh(1),•∀g ∈ G|Θh = θ

]
fΘh

(θ)

P
[
Ng
h(1),• = ngh(1),•∀g ∈ G

]
where Θh = (ΘTPL

h(1) ,Θ
MD
h(1) ,Θ

MD:TPL
h(1) ,ΘTPL

h(?) ,Θ
MD
h(?) ,Θ

MD:TPL
h(?) ), we can deduce the conditional ex-

pectations

E
[
λTPLh(?),T+1ΘTPL

h(?) + λMD:TPL
h(?),T+1 ΘMD:TPL

h(?) |Ng
h(1),• = ngh(1),•∀g ∈ G

]
= λTPLh(?),T+1

∫∞
0 · · ·

∫∞
0 θTPLh(?) P

[
Ng
h(1),• = ngh(1),•∀g ∈ G|Θh = θ

]
fΘh

(θ)

P
[
Ng
h(1),• = ngh(1),•∀g ∈ G

] (5.1)

+ λMD:TPL
h(?),T+1

∫∞
0 · · ·

∫∞
0 θMD:TPL

h(?) P
[
Ng
h(1),• = ngh(1),•∀g ∈ G|Θh = θ

]
fΘh

(θ)

P
[
Ng
h(1),• = ngh(1),•∀g ∈ G

]
and

E
[
λMD
h(?),T+1ΘMD

h(?) + λMD:TPL
h(?),T+1 ΘMD:TPL

h(?) |Ng
h(1),• = ngh(1),•∀g ∈ G

]
= λMD

h(?),T+1

∫∞
0 · · ·

∫∞
0 θMD

h(?)P
[
Ng
h(1),• = ngh(1),•∀g ∈ G|Θh = θ

]
fΘh

(θ)

P
[
Ng
h(1),• = ngh(1),•∀g ∈ G

] (5.2)

+ λMD:TPL
h(?),T+1

∫∞
0 · · ·

∫∞
0 θMD:TPL

h(?) P
[
Ng
h(1),• = ngh(1),•∀g ∈ G|Θh = θ

]
fΘh

(θ)

P
[
Ng
h(1),• = ngh(1),•∀g ∈ G

] .

These expressions can again be computed numerically, e.g. using Gauss quadrature.
On Figure 5.3, we show the correction to apply in TPL (resp. in MD) to the spouse h(?). We

consider three different risk profiles for h(1) and consider as well multiple time histories, ranging
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from 1 to 5 years. As could be expected, the correction is below one (i.e. in average, the claim
frequency of the spouse will be below the one given by a priori risk classification) when no claims
occurred to h(1). In particular, we see that for some riskier profiles for h(1), five claim-free years
will in average mean that the spouse seem to have 10% lower claim frequencies with respect to
their a priori risk classification, both in TPL and in MD. On the contrary, a claim from h(1) will
increase the correction, i.e. the spouse has higher claim frequencies than its a priori risk class.
Note however that if only one claim occurred in five years, estimates can in some cases decrease
below the unit threshold again. This application may prove to be useful to identify cross-selling
opportunities. The difference with Figure 5.2 is that, here, the policyholder h(?) is considered to
have zero exposure.

5.2.2 Integration of claim-related informations on h(?)

Let us now assume that we gather information on the number of past claims of h(?) has had (at
another insurer). This may correspond to the level occupied in a bonus-malus scheme or to the
claim experience over the last five years.

We can include that information and again compute the conditional expectation, with respect to
its past claims as well as the past claims of policyholder h(1) over the past T years. The difficulty,
however, lies in the estimation of the past a priori claim frequencies: We do not know h(?) risk
profile over the past T years, e.g. we do not know which kind of car h(?) has been driving during the
past T years. Additionally, generally the only information related to the past claims that is handed
out is only divided in two types of claims: those that triggered TPL and those that triggered MD.
In case only one claim was reported, we can deduce that there was not a common shock, i.e. one
claim triggering multiple guarantees at the same time. However, in case both kind of claims (TPL
and MD) show (at least) one record, one does not know whether this is a common shock, or two
separate claims. We can, however, compute the probability that, given that there has been a claim
in TPL and in MD, it was a common shock.

Let us now consider the particular case where one claim in TPL and one claim in MD has been
observed in the past on h(?)’s side. We do not know whether it is only one claim triggering both
guarantees or whether these are two separate claims.

First, we have to assess the probability that it was a common shock. Note that we have to also
condition on the claims related information of h(1). We have that

P [NMD:TPL
h(?),• = 1|NTPL

h(?),• +NMD:TPL
h(?),• = 1, NMD

h(?),• +NMD:TPL
h(?),• = 1, Ng

h(1),• = ng ∀g ∈ G]

=
P [NMD:TPL

h?,• = 1, NTPL
h?,• +NMD:TPL

h?,• = 1, NMD
h?,• +NMD:TPL

h?,• = 1, Ng
h(1),• = ng ∀g ∈ G]

P [NTPL
h(?),• +NMD:TPL

h(?),• = 1, NMD
h(?),• +NMD:TPL

h(?),• = 1, Ng
h(1),• = ng ∀g ∈ G]

=
P [NMD:TPL

h?,• = 1, NTPL
h?,• = 0, NMD

h?,• = 0, Ng
h(1),• = ng ∀g ∈ G]

P [NTPL
h?,• +NMD:TPL

h?,• = 1, NMD
h?,• +NMD:TPL

h?,• = 1, Ng
h(1),• = ng ∀g ∈ G]

=
A

A+B
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Figure 5.3: Correction to apply to a priori claim frequencies of h(?) in TPL (resp. in MD) condi-
tional to the number of claims of h(1). No claim related information on h(?) known.
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where

A =P [NMD:TPL
h?,• = 1, NTPL

h?,• = 0, NMD
h?,• = 0, Ng

h(1),• = ng ∀g ∈ G]

=

∫ +∞

0
· · ·
∫ +∞

0︸ ︷︷ ︸
6×

P [NMD:TPL
h?,• = 1, NTPL

h?,• = 0, NMD
h?,• = 0, Ng

h(1),• = ng ∀g ∈ G|Θh = θ]fΘh
(θ)dθ

B =P [NMD:TPL
h?,• = 0, NTPL

h?,• = 1, NMD
h?,• = 1, Ng

h(1),• = ng ∀g ∈ G]

=

∫ +∞

0
· · ·
∫ +∞

0︸ ︷︷ ︸
6×

P [NMD:TPL
h?,• = 0, NTPL

h?,• = 1, NMD
h?,• = 1, Ng

h(1),• = ng ∀g ∈ G|Θh = θ]fΘh
(θ)dθ

In case more than one claim were reported in TPL and in MD, we have that

P [NMD:TPL
h(?),• = n3|NTPL

h(?),• +NMD:TPL
h(?),• = n1, N

MD
h(?),• +NMD:TPL

h(?),• = n2, N
g
h(1),• = ng ∀g ∈ G]

=
P [NMD:TPL

h(?),• = n3, N
TPL
h(?),• = n1 − n3, N

MD
h(?),• = n2 − n3, N

g
h(1),• = ng ∀g ∈ G]∑min(n1,n2)

n=0 P [NMD:TPL
h(?),• = n,NTPL

h(?),• = n1 − n,NMD
h(?),• = n2 − n,Ng

h(1),• = ng ∀g ∈ G]

=
An3∑min(n1,n2)

n=0 An

with

An =

∫ +∞

0
· · ·
∫ +∞

0︸ ︷︷ ︸
6×

P [NMD:TPL
h?,• = n,NTPL

h?,• = n1−n,NMD
h?,• = n2−n,Ng

h(1),• = ng ∀g ∈ G|Θh = θ]fΘh
(θ)dθ.

We can use numerical integration to compute these probabilities, with as a priori claim frequencies
the median values on our portfolio (i.e. we assume a “Medium” risk class for h(?)). This probability
will of course depend on the number of years of observation (remember the a priori claim frequencies
are aggregated : a medium risk profile over T years will be T times the yearly median claim
frequency). The probabilities for different values of T years are given in Table 5.1.

T 1 2 3 4 5

0.9122 0.8522 0.8077 0.7731 0.7453

Table 5.1: Probability for different number of years of observation T that the two claim records in
TPL and MD triggered both guarantees at the same time. “Medium” risk profile assumed for h(1)
and for h(?).

Once the probability that the two claim records in TPL and MD are a common shock has
been computed, one can compute the correction to apply to the TPL (resp. MD) a priori claim
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frequency. We have that ∀g ∈ G,

E
[
Θg
h(?)|N

g̃
h(1),• = ng̃ ∀g̃ ∈ G, NTPL

h(?),• +NMD:TPL
h(?),• = 1, NMD

h(?),• +NMD:TPL
h(?),• = 1

]
=E

[
Θg
h(?)|N

g̃
h(1),• = ng̃ ∀g̃ ∈ G, NTPL

h(?),• = 0, NMD
h(?),• = 0, NMD:TPL

h(?),• = 1,
]
×

P [NMD:TPL
h(?),• = 1|N g̃

h(1),• = ng̃ ∀g̃ ∈ G, NTPL
h(?),• +NMD:TPL

h(?),• = 1, NMD
h(?),• +NMD:TPL

h(?),• = 1]

+

E
[
Θg
h(?)|N

g̃
h(1),• = ng̃ ∀g̃ ∈ G, NTPL

h(?),• = 1, NMD
h(?),• = 1, NMD:TPL

h(?),• = 0,
]
×

P [NMD:TPL
h(?),• = 0|N g̃

h(1),• = ng̃ ∀g̃ ∈ G, NTPL
h(?),• +NMD:TPL

h(?),• = 1, NMD
h(?),• +NMD:TPL

h(?),• = 1]

Using numerical integration and the expression above, we can compute

λTPLh(?),•E
[
ΘTPL
h(?) |N

g
h(1),• = ng ∀g ∈ G, NTPL

h(?),• +NMD:TPL
h(?),• = 1, NMD

h(?),• +NMD:TPL
h(?),• = 1

]
+

λMD:TPL
h(?),• E

[
ΘMD:TPL
h(?) |Ng

h(1),• = ng ∀g ∈ G, NTPL
h(?),• +NMD:TPL

h(?),• = 1, NMD
h(?),• +NMD:TPL

h(?),• = 1
]

and

λMD
h(?),•E

[
ΘMD
h(?) |N

g
h(1),• = ng ∀g ∈ G, NTPL

h(?),• +NMD:TPL
h(?),• = 1, NMD

h(?),• +NMD:TPL
h(?),• = 1

]
+

λMD:TPL
h(?),• E

[
ΘMD:TPL
h(?) |Ng

h(1),• = ng ∀g ∈ G, NTPL
h(?),• +NMD:TPL

h(?),• = 1, NMD
h(?),• +NMD:TPL

h(?),• = 1
]

and compare these a posteriori claim frequencies to the a priori claim frequencies λTPLh(?),•+λMD:TPL
h(?),•

and λMD
h(?),• + λMD:TPL

h(?),• .

We illustrate the case where h(1) has been claim-free while h(?) may have had no claim, or
a single claim in TPL or MD as well as the aforementioned case when there is one claim record
in both TPL and MD in Figure 5.4. In the very favourable claim-free case, after five years the
correction factor drops below 0.75, meaning that the average h(?) policyholders have a 25% lower
claim frequency in both TPL and MD with respect to the a priori claim frequencies. By comparison
with Figure 5.1, where we computed to correction to apply to a policyholder without accounting for
other policyholders from the household, we see that thanks to h(1) claim-free years, the corrections
factor drops from approximately 0.82 to below 0.75. Note that the first three cases considered
on Figure 5.4 coincide with the first three cases depicted on Figure 5.2. Only in the last case,
a difference appears and comes from the fact that on Figure 5.4, we do not know whether there
was only one claim (a double shock) or two separate claims. In the latter case, the correction is
expected to be higher than in the former case.

In the situation where h(?) had a claim triggering MD only, after five years of observation, the
estimates are again below one. By comparison with Figure 5.1, we see that the claim-free years of
policyholder h(1) helped to decrease the estimates by around 10%.
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Figure 5.4: Correction to apply to a priori claim frequencies of h(?) as a function of the number of
years of observation when h(1) has had no claim. Four cases are depicted depending on the claims
h(?) may be have had in the past.
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