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Abstract

One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to 

identify potential skin sensitizers. The complexity of biological events necessary to produce skin 

sensitization suggests that no single alternative method will replace the currently accepted animal 

tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the 

adverse outcome pathway for skin sensitization that uses machine learning approaches to predict 

human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the 

direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and 

KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of 

skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two 

machine learning approaches, logistic regression (LR) and support vector machine (SVM), to 

predict human skin sensitization hazard. Models were trained on 72 substances and tested on an 

external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy 

(92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and 

KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed 

better at predicting human skin sensitization hazard than the murine local lymph node assay 

(accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries 

combining data from the individual methods (accuracy = 75%). These results suggest that 
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computational methods are promising tools to effectively identify potential human skin sensitizers 

without animal testing.
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Introduction

Allergic contact dermatitis (ACD) is an adverse health effect that frequently develops in 

workers and consumers exposed to skin-sensitizing substances and products. The 

development of ACD, which includes induction and elicitation phases, is well understood 

(Jowsey et al., 2006). The induction phase of ACD occurs when a susceptible individual is 

exposed topically to a skin-sensitizing substance. The substance passes through the 

epidermis, where it generally forms a hapten complex with dermal proteins. The hapten 

complex is processed by the Langerhans cells, the resident antigen-presenting cells in the 

skin. The processed hapten complex is then transported by the Langerhans cells to the 

draining lymph nodes, where the hapten complex is presented as an antigen to T-

lymphocytes, leading to T-lymphocyte proliferation. Studies have shown that the magnitude 

of T-lymphocyte proliferation correlates with the likelihood that skin sensitization will 

develop (Kimber and Dearman 1991; Kimber and Dearman 1996). The elicitation phase of 

ACD occurs when the individual is topically re-exposed to the same substance. As in the 

induction phase, the substance penetrates the epidermis, complexes with dermal proteins, is 

processed by the Langerhans cells, and is presented to circulating T-lymphocytes. The 

antigen-specific T-lymphocytes are then activated, which causes release of cytokines and 

other inflammatory mediators. This release produces a rapid dermal immune response that 

can lead to ACD (Basketter et al., 2003; ICCVAM 1999; Jowsey et al., 2006; Sailstad et al., 
2001).

To minimize the occurrence of ACD from exposure to chemical products, national and 

international regulatory authorities require that skin-sensitizing substances be labeled to 

identify the potential hazard posed by these items. Such hazards have historically been 

characterized based on results from animal tests that can use large numbers of animals and 

produce a painful allergic reaction during testing. For example, the guinea pig maximization 

test and the Buehler test use 20 to 40 animals per substance (OECD 1992). An alternative 

method, the murine local lymph node assay (LLNA) reduces and refines animal uses 

compared to guinea pig tests, but still uses animals (ICCVAM 1999).

Alternative methods replace, reduce, and refine (cause less pain and distress) animal use for 

chemical safety testing. Fostering the evaluation and promoting the use of alternative test 

methods for regulatory use in skin sensitization hazard assessment has long been a priority 

for the Interagency Coordinating Committee on the Validation of Alternative Methods 

(ICCVAM) (Dean et al., 2001; ICCVAM 1999; NIEHS 2013; Sailstad et al., 2001). 

Numerous non-animal alternatives for skin sensitization hazard assessment have been 

developed and are at various stages of evaluation (Johansson and Lindstedt 2014; Mehling et 
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al., 2012; Wong et al., 2015). Because skin sensitization is a complex process, it is unlikely 

that any individual alternative method will completely replace current animal tests. In fact, 

the in vitro and in chemico methods that have gained acceptance as international test 

guidelines are not recommended as stand-alone replacements for animal test methods 

(OECD 2015b; 2015c). Thus, a number of approaches to integrate the information from 

multiple alternative methods as a way to overcome the limitations of individual tests and 

more accurately assess the potential for skin sensitization have also been developed 

(Jaworska et al., 2013; Jaworska et al., 2015; Natsch et al., 2009; Nukada et al., 2013; 

Strickland et al., 2016; Urbisch et al., 2015). These approaches use combinations of non-

animal tests that align with key events in the adverse outcome pathway for skin sensitization 

(OECD 2012).

This paper, whose authors include members of the ICCVAM Skin Sensitization Working 

Group, describes integrated decision strategies that use non-animal data to predict human 

skin sensitization hazard. We have previously described the application of a number of 

machine learning approaches to integrate existing non-animal skin sensitization data and 

physicochemical properties that may be associated with skin penetration to predict skin 

sensitization hazard based on LLNA outcomes (Strickland et al., 2016). The optimal 

approach achieved greater accuracy (96%) than any of the individual non-animal test 

methods (≤85%) when compared to LLNA outcomes. Our next step, which is reported here, 

was to develop models to predict human skin sensitization hazard better than the LLNA, 

which has previously been demonstrated as 72% accurate in predicting human skin 

sensitization hazard (ICCVAM 1999).

Materials and Methods

Data Collection and Substance Database

We compiled a chemical database by collecting publicly available data for the direct peptide 

reactivity assay (DPRA), KeratinoSens™; the human cell line activation test (h-CLAT), and 

the LLNA (Table 1). DPRA, KeratinoSens, and h-CLAT were selected because international 

test guidelines are in the process of being adopted or were recently adopted by the 

Organisation for Economic Co-operation and Development (OECD) (OECD 2015a; 2015b; 

2015c).

Data from the LLNA were used to compare its performance in predicting human skin 

sensitization hazard with that of the non-animal integrated decision strategy. The majority of 

the LLNA data were collected previously by the National Toxicology Program Interagency 

Center for the Evaluation of Alternative Toxicological Methods (http://ntp.niehs.nih.gov/go/

40500). These data include sensitizer/nonsensitizer determinations for each substance as 

well as stimulation indices at the concentrations tested. The LLNA data for five substances 

that were not in this database came from published literature (Table 1).

The majority of the human skin sensitization hazard data were adapted from an ICCVAM 

evaluation of the LLNA for human potency categorization (ICCVAM 2011) and from 

potency categorizations listed in Basketter et al. (2014). While ICCVAM (2011) compiled 

sensitization results from human predictive patch tests, the potency assessments listed in 
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Basketter et al. (2014) were developed by a panel of experts that evaluated prevalence from 

dermatologic clinic data as well as data from predictive patch tests. Note that the Basketter 

et al. (2014) assessment has limitations for assessing predictive alternative tests because it is 

not based solely on the intrinsic allergenicity of a substance, but also considers exposure. 

Priority was given to the categorizations in Basketter et al. (2014) to resolve any conflicts 

(n=6) between these references. Human hazard data for 10 substances not included in these 

sources came from Basketter and Kimber (2006), Basketter et al. (1999), Bjorkner (1984), 

and White et al. (2006). References for each substance are provided in Supplemental File 1.

In total, the database for the analysis reported here includes 96 substances with human 

hazard data that were tested in DPRA, KeratinoSens, h-CLAT, and the LLNA. For each 

substance, we also collected data on six physicochemical properties relevant to skin 

exposure and penetration: octanol:water partition coefficient, water solubility, vapor 

pressure, melting point, boiling point, and molecular weight. These properties have been 

important for other models or weight-of-evidence assessments for skin sensitization 

potential (Jaworska et al., 2013; 2011; Patlewicz et al., 2014). We also performed an in silico 
prediction of skin sensitization hazard using the read-across algorithm in QSAR Toolbox 

v3.2 (OECD 2014).

Characterization of the Substances

Of the 96 substances in the database, 69% (66/96) are human sensitizers and 31% (30/96) 

are nonsensitizers. Of the 66 sensitizers, three are prehaptens that require oxidation to induce 

a skin sensitization reaction, 14 are prohaptens that require metabolism, and three are pre/

prohaptens that require both oxidation and metabolism. See Supplemental File 1 for the 

prehapten and prohapten information on each substance and the corresponding reference.

The 96 substances represent 14 product categories (Fig. 1). Product category information 

was obtained from the following sources:

• U.S. National Library of Medicine (NLM) Hazardous 

Substances Databank (HSDB; http://toxnet.nlm.nih.gov/

cgi-bin/sis/htmlgen?HSDB)

• NLM Haz-Map database (http://hazmap.nlm.nih.gov/)

• NLM Household Products Database (http://

hpd.nlm.nih.gov/index.htm)

• International Programme on Chemical Safety INCHEM 

database (http://www.inchem.org/)

• NLM Drug Information Portal (http://druginfo.nlm.nih.gov/

drugportal/drugportal.jsp?

APPLICATION_NAME=drugportal)

• U.S. National Toxicology Program (http://

ntp.niehs.nih.gov/)
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• List of pesticides registered by the U.S. Environmental 

Protection Agency (A. Lowit, personal communication)

• The United Nations Joint Expert Committee on Food 

Additives (http://apps.who.int/food-additives-contaminants-

jecfa-database/search.aspx?)

• The Good Scents Company (http://

www.thegoodscentscompany.com/)

• Scientific literature (i.e., papers that also presented test 

method data)

• Chemical Book (http://www.chemicalbook.com/)

Structural variety among substances in the database was assessed using ChemoTyper v1.0 

(https://chemotyper.org), a free software developed under contract with the U.S. Food and 

Drug Administration. ChemoTyper defines 729 chemotypes, generic structural fragments 

that represent chemical features, including connected and unconnected chemical patterns as 

well as atom, bond, and molecular properties (Yang et al., 2015). The 96 substances in the 

database included 183 chemotypes that appeared at a frequency of 1 to 59 over the entire 

dataset (Fig. 2). The most common chemotypes were bond:C=O_carbonyl_generic (59 

substances), ring:aromatic_benzene (57 substances), chain:aromaticAlkane_Ph-

C1_acyclic_generic (36 substances), bond:COH_alcohol_generic (31 substances), and 

chain:alkaneLinear_ethyl_C2(H_gt_1) (30 substances). Individual substances were 

characterized by 2–35 chemotypes each. See Supplemental File 1 for the chemotypes 

associated with each substance.

Data Inputs

The non-animal methods proposed for the integrated decision strategy are aligned to the 

adverse outcome pathway (AOP) for skin sensitization initiated by covalent binding to 

proteins (OECD 2012).

DPRA—DPRA is an in chemico test that assesses the ability of a substance to form a 

hapten–protein complex (Gerberick et al., 2004; 2007; OECD 2015b), which is the 

molecular initiating event in the skin sensitization AOP as described in OECD (2012). The 

integrated decision strategy evaluated average cysteine peptide depletion (Cys), average 

lysine peptide depletion (Lys), average depletion of cysteine and lysine peptides 

(Avg.Lys.Cys), and sensitizer/nonsensitizer outcome.

KeratinoSens—The KeratinoSens test method assesses the ability of a substance to 

activate cytokines and induce cytoprotective genes in keratinocytes (Emter et al., 2010; 

OECD 2015c), the second key event in the skin sensitization AOP (OECD 2012). We used a 

binary classification (sensitizer/nonsensitizer) because continuous KeratinoSens data (i.e., 

effective concentration at 1.5-fold luciferase induction) were not available for all substances 

at the time data were collected.
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h-CLAT—h-CLAT assesses the ability of a substance to activate and mobilize dendritic 

cells in the skin (Ashikaga et al., 2006; OECD 2015a), the third key event of the skin 

sensitization AOP (OECD 2012). We used a binary classification (sensitizer/nonsensitizer) 

because continuous h-CLAT data (i.e., effective concentration at 150% induction for the 

CD86 marker and the effective concentration at 200% induction for the CD54 marker) were 

not available for all substances when data were collected.

In Silico Read-across—QSAR Toolbox v3.2 (OECD 2009; 2014) was used to generate 

an in silico read-across prediction of whether each substance or its predicted auto-oxidation 

product or metabolite was a sensitizer or nonsensitizer based on in vivo data from 

structurally and mechanistically similar analogs. The in silico predictions cover the fourth 

key event of the AOP, T cell activation and proliferation (OECD 2012), and all preceding 

key events because in vivo data (LLNA, guinea pig, and human outcomes) are used to 

determine the read-across result. The read-across protocol for QSAR Toolbox is provided as 

Supplemental File 2. Briefly:

• The Chemical Abstracts Service Registry Number for a 

substance was provided as an input to QSAR Toolbox. All 

four protein binding profilers in QSAR Toolbox were used 

to search for protein binding alerts: OASISv1.2, OECD, 

potency, and alerts for skin sensitization by OASISv1.2.

• For substances with no protein binding alerts, auto-

oxidation products and skin metabolites were generated and 

then those were profiled for protein binding alerts. If the 

oxidation products and metabolites had no alerts, the 

substance was then classified as a nonsensitizer.

• Test substances, products, or metabolites with protein 

binding alerts were grouped into categories with substances 

of similar structural and mechanistic characteristics. The 

read-across prediction of skin sensitization hazard was 

produced using the in vivo skin sensitization hazard data 

for the substances nearest the target substance, based on log 

Kow.

Physicochemical Properties—We collected data for octanol:water partition coefficient, 

water solubility, vapor pressure, molecular weight, melting point, and boiling point from the 

following sources, with preference given to experimental values:

• SRC, Inc. – Epi Suite Data (http://esc.syrres.com/interkow/

EPiSuiteData.htm)

• ChemIDplus – NLM Toxicology Data Network (TOXNET) 

Database (http://chem.sis.nlm.nih.gov/chemidplus)

• ChemSpider – Royal Society of Chemistry database (http://

www.chemspider.com/)
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• HSDB – NLM Toxicology Data Network (TOXNET) 

Database (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?

HSDB)

• European Chemicals Agency – Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH) 

database (http://echa.europa.eu/information-on-chemicals)

For seven substances, values for one or more physicochemical properties could not be 

located. In these cases, values were imputed via quantitative structure–property relationship 

models built using binary molecular fingerprints and machine learning approaches (Q. Zang 

et al., unpublished data). See Supplemental File 1 for the individual physicochemical 

properties and data sources for each substance.

Data Processing

If a substance had multiple continuous results for the DPRA, we calculated a geometric 

mean of those results after first setting negative peptide depletion values to zero. If a 

substance had multiple sensitizer and nonsensitizer results for a particular assay, we used the 

most prevalent result; if there were an equal number of sensitizer and nonsensitizer results 

for a substance, the substance was classified as a sensitizer. There were eight substances 

with an equal number of sensitizer and nonsensitizer results for DPRA, four substances for 

KeratinoSens, seven substances for h-CLAT, and four substances for the LLNA. The final 

results for each substance are provided in Supplemental File 1, along with the QSAR 

Toolbox read-across results.

Development of Models to Predict Human Skin Sensitization Hazard

Selection of Training and Test Sets—The database of 96 substances included 66 

human sensitizers (69% [66/96]) and 30 human nonsensitizers (31% [30/96]). These 

substances were divided into training (n=72) and external test (n=24) sets with similar 

characteristics, such as product use categories, diversity of chemical structures, prehaptens/

prohaptens, and mechanistic protein binding domains (Supplemental File 3). Training and 

test sets also included approximately the same ratio of sensitizers and nonsensitizers as the 

database of 96 substances. Of the 72 substances in the training set, there were 51 sensitizers 

(71% [51/72]) and 21 nonsensitizers (29% [21/72]), while the 24 substances in the test set 

were comprised of 15 sensitizers (63% [15/24]) and 9 nonsensitizers (37% [9/24]).

Model Variables—The 13 variables listed in Table 2 were considered for building and 

testing multivariate machine learning models. DPRA, h-CLAT, KeratinoSens and QSAR 

Toolbox are binary categorical variables that were assigned a value of 1 for sensitizers and 0 

for nonsensitizers. The variable Avg.Lys.Cys represents the average lysine (Lys) and 

cysteine depletion (Cys) measurements from DPRA. All of these data were used as potential 

independent variables, in differing combinations, to predict human skin sensitization hazard.

Variable Importance Ranking—A random forest analysis was performed to assess the 

importance of each independent variable to the model based on how much the prediction 

error (i.e., mean squared error) increases when each variable in turn is replaced with random 
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noise while all others are left unchanged. Random forest is a non-linear consensus 

classification method based upon an ensemble of decision trees that are grown from separate 

bootstrap samples of the training data (Diaz-Uriarte 2007; Hao et al., 2011). A subset of 

samples, called out-of-bag samples, are not employed for tree growth and are instead used to 

evaluate the prediction accuracy. The deterioration in model quality is evaluated by the 

relative change in the error for the out-of-bag validation over all of the trees. After all the 

variables are successively permuted for all the samples, the random forest algorithm 

provides a ranked list of the variables ranging from the most to the least important in 

descending order (Zang et al., 2013).

Machine Learning Approaches—Two machine learning approaches, logistic regression 

(LR) and support vector machine (SVM), were used to develop a series of binary models to 

classify substances as human sensitizers or nonsensitizers.

LR is a probabilistic statistical classification method (Varmuza and Peter 2009). Binomial 

LR is used in situations in which the observed outcome for a dependent variable can have 

only two possible types, such as sensitizer and nonsensitizer. Probability scores are used to 

establish a relationship between the independent variables, i.e., the data inputs, and the 

categorical dependent variable, i.e., human skin sensitization hazard. The log-transformed 

posterior probabilities of the sensitizer and nonsensitizer classes are fitted to a linear 

function of the independent variables with the condition that each probability has a value of 

between 0 and 1 and the sum of the two probabilities is 1.

SVM performs classification by finding an optimal hyperplane as the decision boundary for 

separating the sensitizer and nonsensitizer classes. The hyperplane maximizes the margin 

between the closest data points of each class (Shen et al., 2011). The complex class 

boundary is modeled by using the Gaussian radial basis function kernel, which maps linearly 

inseparable input data into a higher dimensional feature space where the non-linear 

relationship is expressed in linear form and the sensitizers and nonsensitizers can be linearly 

separated.

The following packages in the R statistical analysis software for Windows (v3.2.1) (R Core 

Team 2013) were used to build the models:

• Package randomForest: for random forest

• Package MASS: for logistic regression

• Package e1071: for support vector machine

Once each LR and SVM model was trained using the training set of substances, it was used 

to predict human skin sensitization outcomes for each substance in the test set. These 

outcomes were reported as probabilities; substances with a probability greater than 0.5 of 

being either a sensitizer or nonsensitizer were assigned to the respective class.

Evaluation of Model Performance—Model performance was evaluated by calculating 

sensitivity, specificity, and accuracy for the training and test sets. These metrics were 

calculated by the following formulae:
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To confirm their robustness and reliability, the predictive models with the best performance 

were also evaluated using a leave-one-out cross-validation (LOOCV) procedure. The 

LOOCV avoids any bias introduced during the selection of test and training sets. To 

implement this procedure, the training and test set substances were combined. Then, 95 

substances were used as the training data for building the model. The single excluded 

substance then served as the test set. The procedure was performed 96 times with each of the 

substances used exactly once for external validation. The performance metrics were 

averaged over the 96 iterations.

Performance of the machine learning models for predicting human skin sensitization hazard 

was compared with the performance of the LLNA, the individual non-animal methods alone 

(DPRA, KeratinoSens, h-CLAT, and read-across), and with two test battery approaches 

using results from the non-animal methods. Test Battery 1 classified a substance as a 

sensitizer if any one non-animal method classified the substance as a sensitizer. Test Battery 

2 classified a substance as a sensitizer if at least two non-animal methods classified the 

substance as a sensitizer.

Results

Analysis of Variable Importance

A random forest analysis was conducted to assess the relative importance of the seven non-

animal test method variables and six physicochemical property variables (listed in Table 2) 

for predicting human skin sensitization hazard. Variable importance measures the degree of 

association between a given variable and the prediction results of a classification model, and 

hence variables with high importance have a strong association with the prediction 

performance. Fig. 3 presents the results, with the variables ranked in descending order of 

importance.

The most important variables were Cys and Avg.Lys.Cys from DPRA, followed by the read-

across prediction from QSAR Toolbox and the outcome of the h-CLAT. The least important 

variables mainly represented the physicochemical properties, with the octanol:water 

partition coefficient, log P, exhibiting higher importance than the other properties. To 

eliminate redundancy among the DPRA variables, we decided to use only the Avg.Lys.Cys 

readout from the DPRA, since it incorporates both the Lys and the Cys measurements. 

Overall, the data from the non-animal methods captured important information and were 

more discriminative than the physicochemical properties.

Performance of the Variable Groups with the SVM and LR Models

Seven variable groups, Groups A–G in Table 3, were defined using different combinations of 

the non-animal methods plus either log P, the most important physicochemical property, or 
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all six physicochemical properties. One variable group, Group H, contained only the six 

physicochemical properties. Four variable groups, Groups I–L, used different combinations 

of two or three of Avg.Lys.Cys from DPRA, h-CLAT, or KeratinoSens along with the in 
silico read-across QSAR Toolbox method without any physicochemical properties. The 

performance of each model was examined in terms of sensitivity, specificity, and accuracy 

both against the training set used to develop the model and the test set used to evaluate the 

model.

Models with log P as the only physicochemical property variable performed better than 

similar models with all six physicochemical properties. For the LR models, all seven 

variable groups containing log P produced higher accuracy for the test set of 24 substances 

than those containing all six physicochemical properties (Fig. 4). For the SVM models, two 

of the seven variable groups containing log P, i.e., Group C (KeratinoSens + Toolbox + Log 

P) and Group D (Avg.Lys.Cys + Toolbox + Log P), produced higher accuracy for the test set 

than groups containing all physicochemical properties (Fig. 5). Because the variable groups 

containing log P had the same or higher accuracy than variable groups with all six 

physicochemical properties, variable groups used in subsequent analyses included only log P 

when physicochemical properties were included with the non-animal methods.

Table 4 summarizes the accuracy, sensitivity and specificity of the LR and SVM models for 

the training and test sets for the 12 variable groups listed in Table 3. These variable groups 

used only log P when both physicochemical properties and non-animal methods were 

included. The variable group with the worst performance was Group H, which included only 

the six physicochemical properties. Accuracy was 54–58%, sensitivity was 67%, and 

specificity was 33–44% for the test set.

The variable groups with the highest performance for the test set were the same using either 

the LR or SVM models. Three variable groups—Group A (Avg.Lys.Cys + h-CLAT + 

KeratinoSens + Toolbox + Log P), Group I (Avg.Lys.Cys + h-CLAT + KeratinoSens + 

Toolbox) and Group K (Avg.Lys.Cys + h-CLAT + Toolbox)—produced accuracy of at least 

92%, sensitivity of at least 87% and specificity of at least 89% for both training and test sets. 

These six models (three variable groups times two machine learning approaches) correctly 

classified all prehaptens and prohaptens in the dataset. Variable Group A, with Avg.Lys.Cys 

+ h-CLAT + KeratinoSens + Toolbox + Log P, produced the best performing model using 

SVM, with accuracy of 94% (68/72), sensitivity of 94% (48/51), and specificity of 95% 

(20/21) for the training set; and accuracy of 92% (22/24), sensitivity of 93% (14/15), and 

specificity of 89% (8/9) for the test set.

In addition to testing the models with the external test set, we applied the LOOCV procedure 

to further assess the performance of the six models with classification accuracy of 92% (i.e., 

Variable Groups A, I, and K with the LR and SVM approaches). As shown in Table 5 for the 

whole dataset (training plus test sets), all models achieved an accuracy of at least 91%. 

These results are very close to those obtained from the external test set, confirming the 

robustness and reliability of the multivariate model.
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Misclassified Substances

Nine substances were misclassified by one or more of the six SVM and LR models with the 

highest accuracy. The reasons for the misclassifications are not entirely clear. Looking for 

commonalities, we observed that five of the nine misclassified substances are 

pharmaceuticals: sulfanilamide, streptomycin sulfate, penicillin G, benzocaine, and 

coumarin. Sulfanilamide, streptomycin sulfate, and penicillin G are antibiotics. Penicillin G 

formerly contained impurities (de Weck et al., 1968), which reminds us to mention that one 

of the limitations of the data is that the purity of the chemicals is not necessarily the same 

across all tests or across time. Sulfanilamide (Gao et al., 2014) and benzocaine (Allen 1993) 

have been reported to produce photocontact allergy, which may be difficult to distinguish 

from simple allergic contact dermatitis. No other commonalities, including structural 

similarity, were noted among the misclassified substances.

Training Set—The six SVM and LR models with the highest accuracies misclassified a 

total of six substances, one false positive and five false negatives, in the training set (Table 

6). None of the false negatives were prehaptens (n = 2 in the training set), prohaptens (n = 10 

in the training set), or pre/prohaptens (n = 2 in the training set).

2-Methoxyl-4-methylphenol was the only false positive substance in the training set. It was 

misclassified as a sensitizer by all of the six best LR and SVM models; three of the four non-

animal methods classified it as a sensitizer. 2-Methoxyl-4-methylphenol was tested in a 

human repeat insult patch test (HRIPT) at 118 μg/cm2 with a negative result (ICCVAM 

2011), however, other references classify it as a human sensitizer (Basketter et al., 1999). 

Although no supporting test results were provided in Basketter et al. (1999), we assume that 

the highest dose tested in the HRIPT was inadequate to produce sensitization. HRIPT are 

typically performed to confirm a no adverse effect level from animal studies rather than 

assess hazard (Politano and Api 2008).

Of the five false negative substances, sulfanilamide and penicillin G were misclassified by 

all six LR and SVM models. All of the non-animal data yielded negative results for 

sulfanilamide. An ICCVAM report classified it as a Category 1B (i.e., weak) sensitizer 

(ICCVAM 2011) based on the Globally Harmonized System of Classification and Labelling 

of Chemicals (GHS) (UN 2013). For pencillin G, two of the four non-animal data inputs 

yielded negative results. Penicillin G is consistently positive in human predictive tests 

(ICCVAM 2011). Benzocaine was false negative in five of the best six SVM and LR models, 

streptomycin sulfate was false negative in four, and α-amyl cinnamaldehyde was false 

negative in one. Penicillin G, streptomycin sulfate, and benzocaine are consistently positive 

in human predictive tests (ICCVAM 2011). While streptomycin sulfate is a GHS 1A (i.e., 

strong) sensitizer in humans, penicillin G, and benzocaine are 1B sensitizers. Although α-

amyl cinnamaldehyde produced negative results in human predictive tests (ICCVAM 2011), 

it is recognized as a weak sensitizer in humans by Basketter et al. (2014). Thus, four of the 

five false negative substances are weak human sensitizers.

Test Set—The six LR and SVM models with the highest accuracies (i.e., Variable Groups 

A, I, and K) misclassified three substances, one false positive and two false negatives, in the 
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test set (Table 6). Coumarin, was misclassified as a nonsensitizer by all six models. Three of 

the four non-animal methods misclassified coumarin as a nonsensitizer. Lilial was 

misclassified as a nonsensitizer by only one model and was misclassified by only one non-

animal method. Neither coumarin nor lilial require oxidation or metabolism to produce skin 

sensitization. Thus, all six models correctly classified all six prehaptens, prohaptens, and 

pre/prohaptens in the test set. Both ICCVAM (2011) and Basketter et al. (2014) classified 

coumarin and lilial as weak human sensitizers. Pentachlorophenol was misclassified as a 

sensitizer by five of the six LR and SVM models. Three of the four non-animal methods 

misclassified it as a sensitizer. The human evidence for skin sensitization potential for 

pentacholorophenol is equivocal. Although ICCVAM (2011) classified it as a weak 

sensitizer, we chose to classify it as a nonsensitizer for this analysis based on its 

classification in Basketter et al. (2014), which acknowledges that although it is a sensitizer, 

sensitization in the general population is likely to be extremely rare, occurring only after 

prolonged exposure at high levels.

Performance of the LLNA, Individual Methods, and Test Battery Approaches

For comparison with the results from the machine learning approaches, Table 7 shows 

performance statistics for the individual non-animal methods, the LLNA, and two test 

battery approaches to predict human skin sensitization hazard for the training and test sets 

and the entire set of 96 substances. For the test set of 24 substances, the models performed 

better at predicting human skin sensitization hazard than the murine local lymph node assay 

(accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test 

batteries combining data from the individual methods (accuracy = 75%).

Because the test set was relatively small, we also include the performance of the individual 

non-animal tests for the entire set of 96 substances: accuracy = 74–81%, sensitivity = 77–

88%, and specificity = 67–80%. Of the four non-animal methods, DPRA had the highest 

accuracy (83%) and specificity (80%), and h-CLAT had the highest sensitivity (88%). The 

LLNA, which is the recommended stand-alone animal test for skin sensitization (ICCVAM 

1999), had slightly higher accuracy (84%) and sensitivity (92%) than the best non-animal 

tests, but had the same specificity (67%) as the lowest performing non-animal tests. 

Compared with the individual non-animal methods, Test Battery 1 similar accuracy (78%), 

higher sensitivity (99%), and much lower specificity (33%). Test Battery 2 had higher 

accuracy (85%) and higher sensitivity (94%) than the individual non-animal methods, with 

the same specificity as the lowest performing non-animal methods (67%). Thus, in 

comparison to individual non-animal methods, battery approaches, and the LLNA, our 

integrated strategies using machine learning provided superior predictions for human skin 

sensitization hazard and achieved a better balance between sensitivity and specificity.

Discussion

ICCVAM is committed to the evaluation and implementation of alternative test methods for 

regulatory use in skin sensitization hazard assessment (Dean et al., 2001; ICCVAM 1999; 

NIEHS 2013; Sailstad et al., 2001). Considering the inherent complexity of the AOP for 

substances that produce skin sensitization, it is likely that an integrated decision strategy 
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combining data from several non-animal methods is needed to accurately predict this 

adverse health outcome. Here, we used data from the DPRA, KeratinoSens, and h-CLAT 

assays along with six physicochemical properties and an in silico read-across prediction of 

skin sensitization hazard as inputs to two machine learning approaches to predict human 

skin sensitization potential.

This study affirms the widely-held belief that integrated approaches to skin sensitization 

testing outperform individual non-animal methods used in isolation (Rovida et al., 2015). 

For the entire set of 96 substances used in this study, the highest accuracy for the prediction 

of human skin sensitization hazard outcomes for any non-animal method alone was only 

83% for the DPRA (Table 7). Combining non-animal methods into simple test batteries 

slightly improved accuracy to 85%. However, the six best machine learning models 

markedly improved upon the individual methods and simple test batteries with accuracy of 

93–94%. As a comparison, the LLNA, which is the recommended stand-alone animal test 

for skin sensitization (ICCVAM 1999), had an accuracy of only 84%.

High accuracy for both training and test sets (92–94%) was achieved for hazard 

classification predictions for six LR and SVM models using different variable combinations 

of non-animal data, read-across from QSAR Toolbox, and log P (i.e., Variable Groups A, I, 

and K). The LOOCV, which avoids bias introduced during the selection of test and training 

sets, yielded accuracies of 91–94%, which was nearly identical to the accuracies for the test 

set (92%). The similarity of these accuracies in the test set and LOOCV evaluations 

indicates that the test and training sets were well-chosen and that the models are stable. 

These results serve to demonstrate the potential utility of the integrated decision strategy 

developed here for identifying potential human skin sensitizers.

Models using log P in combination with non-animal methods often outperformed analogous 

models relying on six different physicochemical properties (Figs. 4 and 5). Interestingly, 

four of the six best performing models (i.e., Variable Group I, Avg.Lys.Cys + h-CLAT + 

KeratinoSens + Toolbox with LR and SVM; and Variable Group K, Avg.Lys.Cys + h-CLAT 

+ Toolbox with LR and SVM) required no physicochemical property information (Table 4). 

The two models using Variable Group K only required three of the four non-animal methods 

and may provide an avenue for some laboratories to conserve resources. However, there may 

be a very small preference for the SVM model using all of the non-animal methods and log 

P (i.e., Variable Group A, Avg.Lys.Cys + h-CLAT + KeratinoSens + Toolbox + Log P) due 

to the slightly higher accuracy and sensitivity for the training set. The in chemico and in 
vitro non-animal methods used for the LR and SVM models described here come from 

internationally accepted (or, in the case of h-CLAT, nearly accepted) OECD test guidelines. 

Together, these methods assess three of the four key events in the AOP for skin sensitization 

initiated by covalent binding to proteins. Still, each method, when used alone, has 

limitations that hinder its identification of potential sensitizers. The DPRA has no metabolic 

capacity and thus would not be expected to correctly classify prohaptens (OECD 2015b). 

KeratinoSens (OECD 2015c) and h-CLAT (OECD 2015a) correctly classify some, but not 

all prohaptens. Inclusion of the in silico read-across input, which evaluated auto-oxidation 

products and skin metabolites if no protein-binding alerts were identified in the parent 

compound, may have facilitated correct prediction of prohaptens.

Strickland et al. Page 13

J Appl Toxicol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although DPRA has consistently classified prehaptens correctly (OECD 2015b), 

KeratinoSens (OECD 2015c) and h-CLAT (OECD 2015a) have not. Collectively, DPRA, h-

CLAT, and read-across from QSAR Toolbox (Variable Group K) correctly identified all 

prehaptens and prohaptens, with or without the inclusion of the variables KeratinoSens and 

log P (Variable Groups A and I). Given the known limitations of the individual assays and 

the relatively small dataset, additional substances requiring metabolic capacity should be 

evaluated to bolster confidence in this approach. Although DPRA was included in the 

models using continuous data (Avg.Lys.Cys), KeratinoSens and h-CLAT were included in 

the models as binary (sensitizer or nonsensitizer) inputs. Continuous data for KeratinoSens 

and h-CLAT, which were not available at the time of our data collection, may produce 

different model outcomes. Continuous data for all three methods would be preferable 

because it would provide more information for the modeling efforts to distinguish between 

the human sensitizer and nonsensitizer classes.

Previous efforts to integrate data to predict skin sensitization hazard without the use of 

animals have emphasized prediction of LLNA outcomes using uncomplicated test batteries 

(Bauch et al., 2012; Natsch et al., 2009; Natsch et al., 2013; Nukada et al., 2013; Urbisch et 
al., 2015) and testing strategies (Nukada et al., 2013; Takenouchi et al., 2015) as well as 

various machine learning approaches (Hirota et al., 2015; Jaworska et al., 2013; Jaworska et 
al., 2011; Luechtefeld et al., 2015; Pirone et al., 2014; Tsujita-Inoue et al., 2014). While it is 

recognized as the gold standard for identification and characterization of skin-sensitizing 

chemicals (Anderson et al., 2011), the LLNA only predicted human sensitization with 84% 

accuracy for the 96 substances used in this study (Table 7). This accuracy is somewhat 

higher than the 72% found in the ICCVAM evaluation of LLNA performance (ICCVAM 

1999), which may be due to the difference in the substance sets evaluated.

While there is a clear and pressing need to predict skin sensitization outcomes in humans, 

only two studies prior to this one have evaluated the predictivity of non-animal methods 

based on what is known about human skin sensitization (Urbisch et al., 2015; van der Veen 

et al., 2014). Recently, Urbisch et al. (2015) published a study of 213 substances with LLNA 

and human data. In this study, the performance of the LLNA for predicting sensitization 

outcomes in humans was shown to be 82% whereas the accuracy of individual non-animal 

methods (i.e., DPRA, KeratinoSens and h-CLAT) ranged from 78–84% (Urbisch et al., 
2015). Accuracy was improved to 90% by using a “two-out-of-three” approach. Similarly, 

an analysis by van der Veen et al. (2014) found that the accuracy of the LLNA for predicting 

human skin sensitization was 78%, which was inferior to integrated testing strategies. 

Majority voting analysis (most prevalent result of DPRA, KeratinoSens or gene signature, 

and h-CLAT), yielded an accuracy of 96% whereas completion of a three-stage tiered 

approach, which included a QSAR analysis along with DPRA, KeratinoSens or gene 

signature, and h-CLAT, achieved 100% accuracy. These results are comparable to the 

highest performing LR and SVM models developed here (i.e., 92% accuracy), although the 

performance of our models cannot be directly compared with Urbisch’s and van der Veen’s 

because the three studies did not use the same substance set. While the tiered approach 

described by van der Veen et al. (2014) performed very well using a development set of 

substances, neither study tested assay performance using an external set. Consequently, 
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additional studies using more substances are warranted to more accurately gauge 

performance of the various models.

To date, all efforts to predict human skin sensitization potential using integrated testing 

strategies have been limited by an inability to support potency classification decisions. 

While potency data are necessary for risk assessors to identify the threshold level of 

exposure to a substance below which it is unlikely to produce skin sensitization, some 

regulatory classification and labeling applications only require hazard identification. For 

example, skin sensitization hazard information is used by the U.S. Environmental Protection 

Agency (EPA 2012a; 2012b) and the U.S. Occupational Safety and Health Administration 

(OSHA 2012) to caution consumers and workers about contact with potential skin 

sensitizers. In addition, consistent with the GHS (UN 2013), OSHA requires potency 

classification only if the skin sensitization data are adequate to characterize potency (OSHA 

2012) (Appendix A). For hazard identification, the LR and SVM models developed here 

offer an advantage over the other published models designed to predict human outcomes 

(Urbisch et al., 2015; van der Veen et al., 2014) in that laboratories have more than one 

model to choose from and, depending on specific needs, models using only two non-animal 

laboratory methods can be selected. The tiered strategy discussed above (van der Veen et al., 
2014) requires the use of four different QSAR models in tier I alone. The results of tier I 

must then be integrated into a Bayesian prediction model. Furthermore, application of van 

der Veen et al.’s approach requires unique technical expertise and additional expense to 

assess changes in the expression of 10 genes. On the other hand, the approach we describe 

supports the generation of high-quality predictions using freely available software supported 

by the OECD (OECD 2014) and publicly available physicochemical property data.

For a number of years, the LLNA has been the gold standard for identifying and determining 

the relative potency of skin sensitizers. However, recent evaluation of one database revealed 

that one-third of strong human sensitizers are underclassified as weaker sensitizers by this 

method (ICCVAM 2011). Consequently, the LLNA is not recommended by ICCVAM as a 

stand-alone method to predict skin sensitization potency (ICCVAM 2011), leaving a void in 

the risk assessment toolbox. Given the limitations of the LLNA and the superior 

performance of screening strategies built using non-animal methods, a logical next step 

would be to continue the development of mechanistically rational integrated decision 

strategies for predicting skin sensitization hazard with the capacity to predict sensitizer 

potency in humans. To that end, our future work will explore the use of continuous variables 

for DRPA, h-CLAT, and KeratinoSens to support the development of models to predict 

human skin sensitization potency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Product uses for 96 substances in the database. Total number of substances exceeds 96 

because most substances were associated with more than one product use.
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Figure 2. 
Frequency of appearance of 183 chemotypes for the 96 substance database. Height of bars 

represent the number of substances that included each of 183 chemotypes.
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Figure 3. 
Ranking of variable importance by random forest algorithm. Avg.Lys.Cys, average percent 

depletion for lysine and cysteine peptides from the DPRA; BP, boiling point; Cys, average 

percent depletion of cysteine peptide from the DPRA; DPRA, direct peptide reactivity assay 

binary result; hCLAT, human cell line activation test; %IncMSE, percent increase in mean 

squared error; Keratino, KeratinoSens assay; log P, log octanol:water partition coefficient; 

log S, log water solubility; log VP, log vapor pressure; Lys, average percent depletion of 

lysine peptide from the DPRA; MP, melting point; MW, molecular weight; Toolbox, read-

across prediction from QSAR Toolbox.
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Figure 4. 
Logistic regression models: comparison of accuracy for test set for variable groups 

containing either six physicochemical properties or log P. Test set contained nine 

nonsensitizers and 15 sensitizers. Variable Groups A–G are defined in Table 3. Log P, log 

octanol:water partition coefficient.
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Figure 5. 
Support vector machine models: comparison of accuracy for test set for variable groups 

containing either six physicochemical properties or log P. Test set contained nine 

nonsensitizers and 15 sensitizers. Variable Groups A–G are defined in Table 3. Log P, log 

octanol:water partition coefficient.
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Table 1

Data sources

Test Method Reference

DPRA

Bauch et al. (2011)

Bauch et al. (2012)

Gerberick et al. (2004)

Gerberick et al. (2007)

Jaworska et al. (2011)

Jaworska et al.(2013)

Joint Research Centre of the European Union (2013)

Natsch et al. (2013)

Nukada et al. (2013)

KeratinoSens

Ball et al. (2011)

Bauch et al. (2011)

Bauch et al. (2012)

Emter et al. (2010)

Joint Research Centre of the European Union (2014)

Natsch et al. (2013)

h-CLAT

Ashikaga et al. (2010)

Bauch et al. (2011)

Bauch et al. (2012)

Nukada et al. (2011)

Nukada et al. (2012)

Nukada et al. (2013)

Sakaguchi et al. (2010)

Takenouchi et al. (2013)

LLNA

Basketter et al. (1996) and Estrada et al. (2003) (xylene)

Basketter and Kimber (2006) (diphenylcyclopropenone, maleic anhydride, and propyl gallate)

NICEATM LLNA database

Van Och et al. (2000) (phthalic anhydride)

DPRA, direct peptide reactivity assay; h-CLAT, human cell line activation test; LLNA, murine local lymph node assay; NICEATM, National 
Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods.
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Table 2

Data types and ranges of 13 input variables

Name Description Data Type Value Range

h-CLAT h-CLAT majority call Categorical 0/1

DPRA DPRA majority call Categorical 0/1

KeratinoSens KeratinoSens majority call Categorical 0/1

Toolbox Read-across prediction using QSAR Toolbox Categorical 0/1

Avg.Lys.Cys Average lysine and cysteine depletion measurements from DPRA Numeric 0 – 95.0

Lys Average lysine depletion from DPRA Numeric 0 – 91.0

Cys Average cysteine depletion from DPRA Numeric 0 – 100

Log P Octanol:water partition coefficient Numeric −8.28 – 6.46a

Log S Water solubility (mol/L) Numeric −6.39 – 1.92a

Log VP Vapor pressure (mm Hg) Numeric −28.47 – 5.89a

MP Melting point (°C) Numeric −148.5 – 288.0

BP Boiling point (°C) Numeric −19.1 – 932.2

MW Molecular weight (g/mol) Numeric 30.03 – 581.57

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test.

a
Range for base 10 logarithm of these measurements.
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Table 7

Performance of individual methods and the LLNA for predicting human skin sensitization hazard compared 

with machine learning approaches

Method Data Seta Accuracy (%) Sensitivity (%) Specificity (%)

Machine learning modelsb

Training 93–94 92–94 95

Test 92 87–93 89–100

All 93–94 92–94 94–96

h-CLAT

Training 82 88 67

Test 79 87 67

All 81 88 67

DPRA

Training 88 88 86

Test 71 73 67

All 83 85 80

KeratinoSens

Training 78 82 67

Test 63 60 67

All 74 77 67

Toolbox

Training 81 82 76

Test 71 73 67

All 78 80 73

LLNA

Training 83 90 67

Test 88 100 67

All 84 92 67

Test Battery 1 (≥ 1 positive = positive)

Training 79 98 33

Test 75 100 33

All 78 99 33

Test Battery 2 (≥ 2 positives = positive)

Training 89 96 71

Test 75 87 56

All 85 94 67

DPRA, direct peptide reactivity assay; h-CLAT, human cell line activation test; LLNA, murine local lymph node assay; Toolbox, read-across using 
QSAR Toolbox.

a
Test set contains 15 sensitizers and nine nonsensitizers. The training set contains 51 sensitizers and 21 nonsensitizers. “All” is the entire dataset of 

96 substances: 66 sensitizers and 30 nonsensitizers.

b
Models with the highest performance from Table 4: support vector machine and logistic regression models with Variable Groups A, I, and K.
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