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Abstract

One of ICCVVAM’s top priorities is the development and evaluation of non-animal approaches to
identify potential skin sensitizers. The complexity of biological events necessary to produce skin
sensitization suggests that no single alternative method will replace the currently accepted animal
tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the
adverse outcome pathway for skin sensitization that uses machine learning approaches to predict
human skin sensitization hazard. We combined data from three /n chemico or in vitro assays—the
direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and
KeratinoSens™ assay—six physicochemical properties, and an /n silico read-across prediction of
skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two
machine learning approaches, logistic regression (LR) and support vector machine (SVM), to
predict human skin sensitization hazard. Models were trained on 72 substances and tested on an
external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy
(92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and
KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed
better at predicting human skin sensitization hazard than the murine local lymph node assay
(accuracy = 88%), any of the alternative methods alone (accuracy = 63-79%), or test batteries
combining data from the individual methods (accuracy = 75%). These results suggest that
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computational methods are promising tools to effectively identify potential human skin sensitizers
without animal testing.
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Introduction

Allergic contact dermatitis (ACD) is an adverse health effect that frequently develops in
workers and consumers exposed to skin-sensitizing substances and products. The
development of ACD, which includes induction and elicitation phases, is well understood
(Jowsey et al., 2006). The induction phase of ACD occurs when a susceptible individual is
exposed topically to a skin-sensitizing substance. The substance passes through the
epidermis, where it generally forms a hapten complex with dermal proteins. The hapten
complex is processed by the Langerhans cells, the resident antigen-presenting cells in the
skin. The processed hapten complex is then transported by the Langerhans cells to the
draining lymph nodes, where the hapten complex is presented as an antigen to T-
lymphocytes, leading to T-lymphocyte proliferation. Studies have shown that the magnitude
of T-lymphocyte proliferation correlates with the likelihood that skin sensitization will
develop (Kimber and Dearman 1991; Kimber and Dearman 1996). The elicitation phase of
ACD occurs when the individual is topically re-exposed to the same substance. As in the
induction phase, the substance penetrates the epidermis, complexes with dermal proteins, is
processed by the Langerhans cells, and is presented to circulating T-lymphocytes. The
antigen-specific T-lymphocytes are then activated, which causes release of cytokines and
other inflammatory mediators. This release produces a rapid dermal immune response that
can lead to ACD (Basketter et al., 2003; ICCVAM 1999; Jowsey et al., 2006; Sailstad et al.,
2001).

To minimize the occurrence of ACD from exposure to chemical products, national and
international regulatory authorities require that skin-sensitizing substances be labeled to
identify the potential hazard posed by these items. Such hazards have historically been
characterized based on results from animal tests that can use large numbers of animals and
produce a painful allergic reaction during testing. For example, the guinea pig maximization
test and the Buehler test use 20 to 40 animals per substance (OECD 1992). An alternative
method, the murine local lymph node assay (LLNA) reduces and refines animal uses
compared to guinea pig tests, but still uses animals (ICCVAM 1999).

Alternative methods replace, reduce, and refine (cause less pain and distress) animal use for
chemical safety testing. Fostering the evaluation and promoting the use of alternative test
methods for regulatory use in skin sensitization hazard assessment has long been a priority
for the Interagency Coordinating Committee on the Validation of Alternative Methods
(ICCVAM) (Dean et al., 2001; ICCVAM 1999; NIEHS 2013; Sailstad et al., 2001).
Numerous non-animal alternatives for skin sensitization hazard assessment have been
developed and are at various stages of evaluation (Johansson and Lindstedt 2014; Mehling et
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al., 2012; Wong et al., 2015). Because skin sensitization is a complex process, it is unlikely
that any individual alternative method will completely replace current animal tests. In fact,
the /in vitroand in chemico methods that have gained acceptance as international test
guidelines are not recommended as stand-alone replacements for animal test methods
(OECD 2015b; 2015¢). Thus, a number of approaches to integrate the information from
multiple alternative methods as a way to overcome the limitations of individual tests and
more accurately assess the potential for skin sensitization have also been developed
(Jaworska et al., 2013; Jaworska et al., 2015; Natsch et al., 2009; Nukada et a/., 2013;
Strickland et al., 2016; Urbisch et al., 2015). These approaches use combinations of non-
animal tests that align with key events in the adverse outcome pathway for skin sensitization
(OECD 2012).

This paper, whose authors include members of the ICCVAM Skin Sensitization Working
Group, describes integrated decision strategies that use non-animal data to predict human
skin sensitization hazard. We have previously described the application of a number of
machine learning approaches to integrate existing non-animal skin sensitization data and
physicochemical properties that may be associated with skin penetration to predict skin
sensitization hazard based on LLNA outcomes (Strickland et a/., 2016). The optimal
approach achieved greater accuracy (96%) than any of the individual non-animal test
methods (<85%) when compared to LLNA outcomes. Our next step, which is reported here,
was to develop models to predict human skin sensitization hazard better than the LLNA,
which has previously been demonstrated as 72% accurate in predicting human skin
sensitization hazard (ICCVAM 1999).

Materials and Methods

Data Collection and Substance Database

We compiled a chemical database by collecting publicly available data for the direct peptide
reactivity assay (DPRA), KeratinoSens™; the human cell line activation test (h-CLAT), and
the LLNA (Table 1). DPRA, KeratinoSens, and h-CLAT were selected because international
test guidelines are in the process of being adopted or were recently adopted by the
Organisation for Economic Co-operation and Development (OECD) (OECD 2015a; 2015b;
2015c).

Data from the LLNA were used to compare its performance in predicting human skin
sensitization hazard with that of the non-animal integrated decision strategy. The majority of
the LLNA data were collected previously by the National Toxicology Program Interagency
Center for the Evaluation of Alternative Toxicological Methods (http://ntp.niehs.nih.gov/go/
40500). These data include sensitizer/nonsensitizer determinations for each substance as
well as stimulation indices at the concentrations tested. The LLNA data for five substances
that were not in this database came from published literature (Table 1).

The majority of the human skin sensitization hazard data were adapted from an ICCVAM
evaluation of the LLNA for human potency categorization (ICCVAM 2011) and from
potency categorizations listed in Basketter et a/. (2014). While ICCVAM (2011) compiled
sensitization results from human predictive patch tests, the potency assessments listed in
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Basketter et al. (2014) were developed by a panel of experts that evaluated prevalence from
dermatologic clinic data as well as data from predictive patch tests. Note that the Basketter
et al. (2014) assessment has limitations for assessing predictive alternative tests because it is
not based solely on the intrinsic allergenicity of a substance, but also considers exposure.
Priority was given to the categorizations in Basketter et a/. (2014) to resolve any conflicts
(n=6) between these references. Human hazard data for 10 substances not included in these
sources came from Basketter and Kimber (2006), Basketter et a/. (1999), Bjorkner (1984),
and White et al. (2006). References for each substance are provided in Supplemental File 1.

In total, the database for the analysis reported here includes 96 substances with human
hazard data that were tested in DPRA, KeratinoSens, h-CLAT, and the LLNA. For each
substance, we also collected data on six physicochemical properties relevant to skin
exposure and penetration: octanol:water partition coefficient, water solubility, vapor
pressure, melting point, boiling point, and molecular weight. These properties have been
important for other models or weight-of-evidence assessments for skin sensitization

potential (Jaworska et al., 2013; 2011; Patlewicz et al., 2014). We also performed an /in silico
prediction of skin sensitization hazard using the read-across algorithm in QSAR Toolbox
v3.2 (OECD 2014).

Characterization of the Substances

Of the 96 substances in the database, 69% (66/96) are human sensitizers and 31% (30/96)
are nonsensitizers. Of the 66 sensitizers, three are prehaptens that require oxidation to induce
a skin sensitization reaction, 14 are prohaptens that require metabolism, and three are pre/
prohaptens that require both oxidation and metabolism. See Supplemental File 1 for the
prehapten and prohapten information on each substance and the corresponding reference.

The 96 substances represent 14 product categories (Fig. 1). Product category information
was obtained from the following sources:

. U.S. National Library of Medicine (NLM) Hazardous
Substances Databank (HSDB; http://toxnet.nlm.nih.gov/
cgi-bin/sis/htmlgen?HSDB)

. NLM Haz-Map database (http://hazmap.nim.nih.gov/)

. NLM Household Products Database (http://
hpd.nIm.nih.gov/index.htm)

. International Programme on Chemical Safety INCHEM
database (http://www.inchem.org/)

. NLM Drug Information Portal (http://druginfo.nlm.nih.gov/
drugportal/drugportal.jsp?
APPLICATION_NAME=drugportal)

. U.S. National Toxicology Program (http://
ntp.niehs.nih.gov/)
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. List of pesticides registered by the U.S. Environmental
Protection Agency (A. Lowit, personal communication)

. The United Nations Joint Expert Committee on Food
Additives (http://apps.who.int/food-additives-contaminants-
jecfa-database/search.aspx?)

. The Good Scents Company (http://
www.thegoodscentscompany.com/)

. Scientific literature (i.e., papers that also presented test
method data)

. Chemical Book (http://www.chemicalbook.com/)

Structural variety among substances in the database was assessed using ChemoTyper v1.0
(https://chemotyper.org), a free software developed under contract with the U.S. Food and
Drug Administration. ChemoTyper defines 729 chemotypes, generic structural fragments
that represent chemical features, including connected and unconnected chemical patterns as
well as atom, bond, and molecular properties (Yang et a/., 2015). The 96 substances in the
database included 183 chemotypes that appeared at a frequency of 1 to 59 over the entire
dataset (Fig. 2). The most common chemotypes were bond:C=0_carbonyl_generic (59
substances), ring:aromatic_benzene (57 substances), chain:aromaticAlkane_Ph-
C1_acyclic_generic (36 substances), bond:COH_alcohol_generic (31 substances), and
chain:alkaneLinear_ethyl C2(H_gt 1) (30 substances). Individual substances were
characterized by 2—-35 chemotypes each. See Supplemental File 1 for the chemotypes
associated with each substance.

The non-animal methods proposed for the integrated decision strategy are aligned to the
adverse outcome pathway (AOP) for skin sensitization initiated by covalent binding to
proteins (OECD 2012).

DPRA—DPRA is an /n chemico test that assesses the ability of a substance to form a
hapten—protein complex (Gerberick et al., 2004; 2007; OECD 2015b), which is the
molecular initiating event in the skin sensitization AOP as described in OECD (2012). The
integrated decision strategy evaluated average cysteine peptide depletion (Cys), average
lysine peptide depletion (Lys), average depletion of cysteine and lysine peptides
(Avg.Lys.Cys), and sensitizer/nonsensitizer outcome.

KeratinoSens—The KeratinoSens test method assesses the ability of a substance to
activate cytokines and induce cytoprotective genes in keratinocytes (Emter et a/., 2010;
OECD 2015c), the second key event in the skin sensitization AOP (OECD 2012). We used a
binary classification (sensitizer/nonsensitizer) because continuous KeratinoSens data (i.e.,
effective concentration at 1.5-fold luciferase induction) were not available for all substances
at the time data were collected.
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h-CLAT—h-CLAT assesses the ability of a substance to activate and mobilize dendritic
cells in the skin (Ashikaga et al., 2006; OECD 2015a), the third key event of the skin
sensitization AOP (OECD 2012). We used a binary classification (sensitizer/nonsensitizer)
because continuous h-CLAT data (i.e., effective concentration at 150% induction for the
CD86 marker and the effective concentration at 200% induction for the CD54 marker) were
not available for all substances when data were collected.

In Silico Read-across—QSAR Toolbox v3.2 (OECD 2009; 2014) was used to generate
an in silico read-across prediction of whether each substance or its predicted auto-oxidation
product or metabolite was a sensitizer or nonsensitizer based on /n vivo data from
structurally and mechanistically similar analogs. The /n sifico predictions cover the fourth
key event of the AOP, T cell activation and proliferation (OECD 2012), and all preceding
key events because /n vivo data (LLNA, guinea pig, and human outcomes) are used to
determine the read-across result. The read-across protocol for QSAR Toolbox is provided as
Supplemental File 2. Briefly:

. The Chemical Abstracts Service Registry Number for a
substance was provided as an input to QSAR Toolbox. All
four protein binding profilers in QSAR Toolbox were used
to search for protein binding alerts: OASISv1.2, OECD,
potency, and alerts for skin sensitization by OASISv1.2.

. For substances with no protein binding alerts, auto-
oxidation products and skin metabolites were generated and
then those were profiled for protein binding alerts. If the
oxidation products and metabolites had no alerts, the
substance was then classified as a nonsensitizer.

. Test substances, products, or metabolites with protein
binding alerts were grouped into categories with substances
of similar structural and mechanistic characteristics. The
read-across prediction of skin sensitization hazard was
produced using the /n vivo skin sensitization hazard data
for the substances nearest the target substance, based on log
Kow-

Physicochemical Properties—We collected data for octanol:water partition coefficient,
water solubility, vapor pressure, molecular weight, melting point, and boiling point from the
following sources, with preference given to experimental values:

. SRC, Inc. — Epi Suite Data (http://esc.syrres.com/interkow/
EPiSuiteData.htm)

. ChemIDplus— NLM Toxicology Data Network (TOXNET)
Database (http://chem.sis.nIm.nih.gov/chemidplus)

. ChemSpider — Royal Society of Chemistry database (http://
www.chemspider.com/)

J Appl Toxicol. Author manuscript; available in PMC 2018 March 01.


http://esc.syrres.com/interkow/EPiSuiteData.htm
http://esc.syrres.com/interkow/EPiSuiteData.htm
http://chem.sis.nlm.nih.gov/chemidplus
http://www.chemspider.com/
http://www.chemspider.com/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Strickland et al.

Page 7

. HSDB — NLM Toxicology Data Network (TOXNET)
Database (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?
HSDB)

. European Chemicals Agency — Registration, Evaluation,

Authorisation and Restriction of Chemicals (REACH)
database (http://echa.europa.eu/information-on-chemicals)

For seven substances, values for one or more physicochemical properties could not be
located. In these cases, values were imputed via quantitative structure—property relationship
models built using binary molecular fingerprints and machine learning approaches (Q. Zang
et al., unpublished data). See Supplemental File 1 for the individual physicochemical
properties and data sources for each substance.

Data Processing

If a substance had multiple continuous results for the DPRA, we calculated a geometric
mean of those results after first setting negative peptide depletion values to zero. If a
substance had multiple sensitizer and nonsensitizer results for a particular assay, we used the
most prevalent result; if there were an equal number of sensitizer and nonsensitizer results
for a substance, the substance was classified as a sensitizer. There were eight substances
with an equal number of sensitizer and nonsensitizer results for DPRA, four substances for
KeratinoSens, seven substances for h-CLAT, and four substances for the LLNA. The final
results for each substance are provided in Supplemental File 1, along with the QSAR
Toolbox read-across results.

Development of Models to Predict Human Skin Sensitization Hazard

Selection of Training and Test Sets—The database of 96 substances included 66
human sensitizers (69% [66/96]) and 30 human nonsensitizers (31% [30/96]). These
substances were divided into training (n=72) and external test (n=24) sets with similar
characteristics, such as product use categories, diversity of chemical structures, prehaptens/
prohaptens, and mechanistic protein binding domains (Supplemental File 3). Training and
test sets also included approximately the same ratio of sensitizers and nonsensitizers as the
database of 96 substances. Of the 72 substances in the training set, there were 51 sensitizers
(71% [51/72]) and 21 nonsensitizers (29% [21/72]), while the 24 substances in the test set
were comprised of 15 sensitizers (63% [15/24]) and 9 nonsensitizers (37% [9/24]).

Model Variables—The 13 variables listed in Table 2 were considered for building and
testing multivariate machine learning models. DPRA, h-CLAT, KeratinoSens and QSAR
Toolbox are binary categorical variables that were assigned a value of 1 for sensitizers and 0
for nonsensitizers. The variable Avg.Lys.Cys represents the average lysine (Lys) and
cysteine depletion (Cys) measurements from DPRA. All of these data were used as potential
independent variables, in differing combinations, to predict human skin sensitization hazard.

Variable Importance Ranking—A random forest analysis was performed to assess the
importance of each independent variable to the model based on how much the prediction
error (i.e., mean squared error) increases when each variable in turn is replaced with random
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noise while all others are left unchanged. Random forest is a non-linear consensus
classification method based upon an ensemble of decision trees that are grown from separate
bootstrap samples of the training data (Diaz-Uriarte 2007; Hao et a/., 2011). A subset of
samples, called out-of-bag samples, are not employed for tree growth and are instead used to
evaluate the prediction accuracy. The deterioration in model quality is evaluated by the
relative change in the error for the out-of-bag validation over all of the trees. After all the
variables are successively permuted for all the samples, the random forest algorithm
provides a ranked list of the variables ranging from the most to the least important in
descending order (Zang et al., 2013).

Machine Learning Approaches—Two machine learning approaches, logistic regression
(LR) and support vector machine (SVM), were used to develop a series of binary models to
classify substances as human sensitizers or nonsensitizers.

LR is a probabilistic statistical classification method (Varmuza and Peter 2009). Binomial
LR is used in situations in which the observed outcome for a dependent variable can have
only two possible types, such as sensitizer and nonsensitizer. Probability scores are used to
establish a relationship between the independent variables, i.e., the data inputs, and the
categorical dependent variable, i.e., human skin sensitization hazard. The log-transformed
posterior probabilities of the sensitizer and nonsensitizer classes are fitted to a linear
function of the independent variables with the condition that each probability has a value of
between 0 and 1 and the sum of the two probabilities is 1.

SVM performs classification by finding an optimal hyperplane as the decision boundary for
separating the sensitizer and nonsensitizer classes. The hyperplane maximizes the margin
between the closest data points of each class (Shen ef a/., 2011). The complex class
boundary is modeled by using the Gaussian radial basis function kernel, which maps linearly
inseparable input data into a higher dimensional feature space where the non-linear
relationship is expressed in linear form and the sensitizers and nonsensitizers can be linearly
separated.

The following packages in the R statistical analysis software for Windows (v3.2.1) (R Core
Team 2013) were used to build the models:

. Package randomfForest. for random forest
. Package MASS: for logistic regression
. Package e1071: for support vector machine

Once each LR and SVM model was trained using the training set of substances, it was used
to predict human skin sensitization outcomes for each substance in the test set. These
outcomes were reported as probabilities; substances with a probability greater than 0.5 of
being either a sensitizer or nonsensitizer were assigned to the respective class.

Evaluation of Model Performance—Model performance was evaluated by calculating
sensitivity, specificity, and accuracy for the training and test sets. These metrics were
calculated by the following formulae:
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To confirm their robustness and reliability, the predictive models with the best performance
were also evaluated using a leave-one-out cross-validation (LOOCYV) procedure. The
LOOCYV avoids any bias introduced during the selection of test and training sets. To
implement this procedure, the training and test set substances were combined. Then, 95
substances were used as the training data for building the model. The single excluded
substance then served as the test set. The procedure was performed 96 times with each of the
substances used exactly once for external validation. The performance metrics were
averaged over the 96 iterations.

Performance of the machine learning models for predicting human skin sensitization hazard
was compared with the performance of the LLNA, the individual non-animal methods alone
(DPRA, KeratinoSens, h-CLAT, and read-across), and with two test battery approaches
using results from the non-animal methods. Test Battery 1 classified a substance as a
sensitizer if any one non-animal method classified the substance as a sensitizer. Test Battery
2 classified a substance as a sensitizer if at least two non-animal methods classified the
substance as a sensitizer.

Results

Analysis of Variable Importance

A random forest analysis was conducted to assess the relative importance of the seven non-
animal test method variables and six physicochemical property variables (listed in Table 2)
for predicting human skin sensitization hazard. Variable importance measures the degree of
association between a given variable and the prediction results of a classification model, and
hence variables with high importance have a strong association with the prediction
performance. Fig. 3 presents the results, with the variables ranked in descending order of
importance.

The most important variables were Cys and Avg.Lys.Cys from DPRA, followed by the read-
across prediction from QSAR Toolbox and the outcome of the h-CLAT. The least important
variables mainly represented the physicochemical properties, with the octanol:water
partition coefficient, log P, exhibiting higher importance than the other properties. To
eliminate redundancy among the DPRA variables, we decided to use only the Avg.Lys.Cys
readout from the DPRA, since it incorporates both the Lys and the Cys measurements.
Overall, the data from the non-animal methods captured important information and were
more discriminative than the physicochemical properties.

Performance of the Variable Groups with the SVM and LR Models

Seven variable groups, Groups A-G in Table 3, were defined using different combinations of
the non-animal methods plus either log P, the most important physicochemical property, or
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all six physicochemical properties. One variable group, Group H, contained only the six
physicochemical properties. Four variable groups, Groups I-L, used different combinations
of two or three of Avg.Lys.Cys from DPRA, h-CLAT, or KeratinoSens along with the /n
silico read-across QSAR Toolbox method without any physicochemical properties. The
performance of each model was examined in terms of sensitivity, specificity, and accuracy
both against the training set used to develop the model and the test set used to evaluate the
model.

Models with log P as the only physicochemical property variable performed better than
similar models with all six physicochemical properties. For the LR models, all seven
variable groups containing log P produced higher accuracy for the test set of 24 substances
than those containing all six physicochemical properties (Fig. 4). For the SVM models, two
of the seven variable groups containing log P, i.e., Group C (KeratinoSens + Toolbox + Log
P) and Group D (Avg.Lys.Cys + Toolbox + Log P), produced higher accuracy for the test set
than groups containing all physicochemical properties (Fig. 5). Because the variable groups
containing log P had the same or higher accuracy than variable groups with all six
physicochemical properties, variable groups used in subsequent analyses included only log P
when physicochemical properties were included with the non-animal methods.

Table 4 summarizes the accuracy, sensitivity and specificity of the LR and SVM models for
the training and test sets for the 12 variable groups listed in Table 3. These variable groups
used only log P when both physicochemical properties and non-animal methods were
included. The variable group with the worst performance was Group H, which included only
the six physicochemical properties. Accuracy was 54-58%, sensitivity was 67%, and
specificity was 33-44% for the test set.

The variable groups with the highest performance for the test set were the same using either
the LR or SVM models. Three variable groups—Group A (Avg.Lys.Cys + h-CLAT +
KeratinoSens + Toolbox + Log P), Group | (Avg.Lys.Cys + h-CLAT + KeratinoSens +
Toolbox) and Group K (Avg.Lys.Cys + h-CLAT + Toolbox)—produced accuracy of at least
92%, sensitivity of at least 87% and specificity of at least 89% for both training and test sets.
These six models (three variable groups times two machine learning approaches) correctly
classified all prehaptens and prohaptens in the dataset. Variable Group A, with Avg.Lys.Cys
+ h-CLAT + KeratinoSens + Toolbox + Log P, produced the best performing model using
SVM, with accuracy of 94% (68/72), sensitivity of 94% (48/51), and specificity of 95%
(20/21) for the training set; and accuracy of 92% (22/24), sensitivity of 93% (14/15), and
specificity of 89% (8/9) for the test set.

In addition to testing the models with the external test set, we applied the LOOCV procedure
to further assess the performance of the six models with classification accuracy of 92% (i.e.,
Variable Groups A, I, and K with the LR and SVM approaches). As shown in Table 5 for the
whole dataset (training plus test sets), all models achieved an accuracy of at least 91%.
These results are very close to those obtained from the external test set, confirming the
robustness and reliability of the multivariate model.
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Misclassified Substances

Nine substances were misclassified by one or more of the six SVM and LR models with the
highest accuracy. The reasons for the misclassifications are not entirely clear. Looking for
commonalities, we observed that five of the nine misclassified substances are
pharmaceuticals: sulfanilamide, streptomycin sulfate, penicillin G, benzocaine, and
coumarin. Sulfanilamide, streptomycin sulfate, and penicillin G are antibiotics. Penicillin G
formerly contained impurities (de Weck et a/., 1968), which reminds us to mention that one
of the limitations of the data is that the purity of the chemicals is not necessarily the same
across all tests or across time. Sulfanilamide (Gao et a/., 2014) and benzocaine (Allen 1993)
have been reported to produce photocontact allergy, which may be difficult to distinguish
from simple allergic contact dermatitis. No other commonalities, including structural
similarity, were noted among the misclassified substances.

Training Set—The six SVM and LR models with the highest accuracies misclassified a
total of six substances, one false positive and five false negatives, in the training set (Table
6). None of the false negatives were prehaptens (n = 2 in the training set), prohaptens (n = 10
in the training set), or pre/prohaptens (n = 2 in the training set).

2-Methoxyl-4-methylphenol was the only false positive substance in the training set. It was
misclassified as a sensitizer by all of the six best LR and SVM models; three of the four non-
animal methods classified it as a sensitizer. 2-Methoxyl-4-methylphenol was tested in a
human repeat insult patch test (HRIPT) at 118 pg/cm? with a negative result (ICCVAM
2011), however, other references classify it as a human sensitizer (Basketter et al., 1999).
Although no supporting test results were provided in Basketter ef a/. (1999), we assume that
the highest dose tested in the HRIPT was inadequate to produce sensitization. HRIPT are
typically performed to confirm a no adverse effect level from animal studies rather than
assess hazard (Politano and Api 2008).

Of the five false negative substances, sulfanilamide and penicillin G were misclassified by
all six LR and SVM maodels. All of the non-animal data yielded negative results for
sulfanilamide. An ICCVAM report classified it as a Category 1B (i.e., weak) sensitizer
(ICCVAM 2011) based on the Globally Harmonized System of Classification and Labelling
of Chemicals (GHS) (UN 2013). For pencillin G, two of the four non-animal data inputs
yielded negative results. Penicillin G is consistently positive in human predictive tests
(ICCVAM 2011). Benzocaine was false negative in five of the best six SVM and LR models,
streptomycin sulfate was false negative in four, and a-amyl cinnamaldehyde was false
negative in one. Penicillin G, streptomycin sulfate, and benzocaine are consistently positive
in human predictive tests (ICCVAM 2011). While streptomycin sulfate is a GHS 1A (i.e.,
strong) sensitizer in humans, penicillin G, and benzocaine are 1B sensitizers. Although a-
amyl cinnamaldehyde produced negative results in human predictive tests (ICCVAM 2011),
it is recognized as a weak sensitizer in humans by Basketter ef a/. (2014). Thus, four of the
five false negative substances are weak human sensitizers.

Test Set—The six LR and SVM models with the highest accuracies (i.e., Variable Groups
A, 1, and K) misclassified three substances, one false positive and two false negatives, in the
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test set (Table 6). Coumarin, was misclassified as a nonsensitizer by all six models. Three of
the four non-animal methods misclassified coumarin as a nonsensitizer. Lilial was
misclassified as a nonsensitizer by only one model and was misclassified by only one non-
animal method. Neither coumarin nor lilial require oxidation or metabolism to produce skin
sensitization. Thus, all six models correctly classified all six prehaptens, prohaptens, and
pre/prohaptens in the test set. Both ICCVAM (2011) and Basketter ef al. (2014) classified
coumarin and lilial as weak human sensitizers. Pentachlorophenol was misclassified as a
sensitizer by five of the six LR and SVM models. Three of the four non-animal methods
misclassified it as a sensitizer. The human evidence for skin sensitization potential for
pentacholorophenol is equivocal. Although ICCVAM (2011) classified it as a weak
sensitizer, we chose to classify it as a nonsensitizer for this analysis based on its
classification in Basketter et al. (2014), which acknowledges that although it is a sensitizer,
sensitization in the general population is likely to be extremely rare, occurring only after
prolonged exposure at high levels.

Performance of the LLNA, Individual Methods, and Test Battery Approaches

For comparison with the results from the machine learning approaches, Table 7 shows
performance statistics for the individual non-animal methods, the LLNA, and two test
battery approaches to predict human skin sensitization hazard for the training and test sets
and the entire set of 96 substances. For the test set of 24 substances, the models performed
better at predicting human skin sensitization hazard than the murine local lymph node assay
(accuracy = 88%), any of the alternative methods alone (accuracy = 63-79%), or test
batteries combining data from the individual methods (accuracy = 75%).

Because the test set was relatively small, we also include the performance of the individual
non-animal tests for the entire set of 96 substances: accuracy = 74-81%, sensitivity = 77—
88%, and specificity = 67-80%. Of the four non-animal methods, DPRA had the highest
accuracy (83%) and specificity (80%), and h-CLAT had the highest sensitivity (88%). The
LLNA, which is the recommended stand-alone animal test for skin sensitization (ICCVAM
1999), had slightly higher accuracy (84%) and sensitivity (92%) than the best non-animal
tests, but had the same specificity (67%) as the lowest performing non-animal tests.
Compared with the individual non-animal methods, Test Battery 1 similar accuracy (78%),
higher sensitivity (99%), and much lower specificity (33%). Test Battery 2 had higher
accuracy (85%) and higher sensitivity (94%) than the individual non-animal methods, with
the same specificity as the lowest performing non-animal methods (67%). Thus, in
comparison to individual non-animal methods, battery approaches, and the LLNA, our
integrated strategies using machine learning provided superior predictions for human skin
sensitization hazard and achieved a better balance between sensitivity and specificity.

Discussion

ICCVAM is committed to the evaluation and implementation of alternative test methods for
regulatory use in skin sensitization hazard assessment (Dean et a/., 2001; ICCVAM 1999;
NIEHS 2013; Sailstad et a/., 2001). Considering the inherent complexity of the AOP for
substances that produce skin sensitization, it is likely that an integrated decision strategy
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combining data from several non-animal methods is needed to accurately predict this
adverse health outcome. Here, we used data from the DPRA, KeratinoSens, and h-CLAT
assays along with six physicochemical properties and an /n silico read-across prediction of
skin sensitization hazard as inputs to two machine learning approaches to predict human
skin sensitization potential.

This study affirms the widely-held belief that integrated approaches to skin sensitization
testing outperform individual non-animal methods used in isolation (Rovida et a/., 2015).
For the entire set of 96 substances used in this study, the highest accuracy for the prediction
of human skin sensitization hazard outcomes for any non-animal method alone was only
83% for the DPRA (Table 7). Combining non-animal methods into simple test batteries
slightly improved accuracy to 85%. However, the six best machine learning models
markedly improved upon the individual methods and simple test batteries with accuracy of
93-94%. As a comparison, the LLNA, which is the recommended stand-alone animal test
for skin sensitization (ICCVAM 1999), had an accuracy of only 84%.

High accuracy for both training and test sets (92-94%) was achieved for hazard
classification predictions for six LR and SVM models using different variable combinations
of non-animal data, read-across from QSAR Toolbox, and log P (i.e., Variable Groups A, 1,
and K). The LOOCYV, which avoids bias introduced during the selection of test and training
sets, yielded accuracies of 91-94%, which was nearly identical to the accuracies for the test
set (92%). The similarity of these accuracies in the test set and LOOCYV evaluations
indicates that the test and training sets were well-chosen and that the models are stable.
These results serve to demonstrate the potential utility of the integrated decision strategy
developed here for identifying potential human skin sensitizers.

Models using log P in combination with non-animal methods often outperformed analogous
models relying on six different physicochemical properties (Figs. 4 and 5). Interestingly,
four of the six best performing models (i.e., Variable Group I, Avg.Lys.Cys + h-CLAT +
KeratinoSens + Toolbox with LR and SVM; and Variable Group K, Avg.Lys.Cys + h-CLAT
+ Toolbox with LR and SVM) required no physicochemical property information (Table 4).
The two models using Variable Group K only required three of the four non-animal methods
and may provide an avenue for some laboratories to conserve resources. However, there may
be a very small preference for the SVM model using all of the non-animal methods and log
P (i.e., Variable Group A, Avg.Lys.Cys + h-CLAT + KeratinoSens + Toolbox + Log P) due
to the slightly higher accuracy and sensitivity for the training set. The /in chemicoand in
vitro non-animal methods used for the LR and SVM models described here come from
internationally accepted (or, in the case of h-CLAT, nearly accepted) OECD test guidelines.
Together, these methods assess three of the four key events in the AOP for skin sensitization
initiated by covalent binding to proteins. Still, each method, when used alone, has
limitations that hinder its identification of potential sensitizers. The DPRA has no metabolic
capacity and thus would not be expected to correctly classify prohaptens (OECD 2015b).
KeratinoSens (OECD 2015c¢) and h-CLAT (OECD 2015a) correctly classify some, but not
all prohaptens. Inclusion of the /n silico read-across input, which evaluated auto-oxidation
products and skin metabolites if no protein-binding alerts were identified in the parent
compound, may have facilitated correct prediction of prohaptens.
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Although DPRA has consistently classified prehaptens correctly (OECD 2015b),
KeratinoSens (OECD 2015c¢) and h-CLAT (OECD 2015a) have not. Collectively, DPRA, h-
CLAT, and read-across from QSAR Toolbox (Variable Group K) correctly identified all
prehaptens and prohaptens, with or without the inclusion of the variables KeratinoSens and
log P (Variable Groups A and I). Given the known limitations of the individual assays and
the relatively small dataset, additional substances requiring metabolic capacity should be
evaluated to bolster confidence in this approach. Although DPRA was included in the
models using continuous data (Avg.Lys.Cys), KeratinoSens and h-CLAT were included in
the models as binary (sensitizer or nonsensitizer) inputs. Continuous data for KeratinoSens
and h-CLAT, which were not available at the time of our data collection, may produce
different model outcomes. Continuous data for all three methods would be preferable
because it would provide more information for the modeling efforts to distinguish between
the human sensitizer and nonsensitizer classes.

Previous efforts to integrate data to predict skin sensitization hazard without the use of
animals have emphasized prediction of LLNA outcomes using uncomplicated test batteries
(Bauch et al., 2012; Natsch et al.,, 2009; Natsch et al., 2013; Nukada et a/., 2013; Urbisch et
al., 2015) and testing strategies (Nukada et a/., 2013; Takenouchi et al., 2015) as well as
various machine learning approaches (Hirota et al., 2015; Jaworska et al., 2013; Jaworska et
al., 2011; Luechtefeld et al., 2015; Pirone et al., 2014; Tsujita-Inoue et al., 2014). While it is
recognized as the gold standard for identification and characterization of skin-sensitizing
chemicals (Anderson et al., 2011), the LLNA only predicted human sensitization with 84%
accuracy for the 96 substances used in this study (Table 7). This accuracy is somewhat
higher than the 72% found in the ICCVAM evaluation of LLNA performance (ICCVAM
1999), which may be due to the difference in the substance sets evaluated.

While there is a clear and pressing need to predict skin sensitization outcomes in humans,
only two studies prior to this one have evaluated the predictivity of non-animal methods
based on what is known about human skin sensitization (Urbisch et al., 2015; van der Veen
et al., 2014). Recently, Urbisch et al. (2015) published a study of 213 substances with LLNA
and human data. In this study, the performance of the LLNA for predicting sensitization
outcomes in humans was shown to be 82% whereas the accuracy of individual non-animal
methods (i.e., DPRA, KeratinoSens and h-CLAT) ranged from 78-84% (Urbisch et al.,
2015). Accuracy was improved to 90% by using a “two-out-of-three” approach. Similarly,
an analysis by van der Veen et al. (2014) found that the accuracy of the LLNA for predicting
human skin sensitization was 78%, which was inferior to integrated testing strategies.
Majority voting analysis (most prevalent result of DPRA, KeratinoSens or gene signature,
and h-CLAT), yielded an accuracy of 96% whereas completion of a three-stage tiered
approach, which included a QSAR analysis along with DPRA, KeratinoSens or gene
signature, and h-CLAT, achieved 100% accuracy. These results are comparable to the
highest performing LR and SVM models developed here (i.e., 92% accuracy), although the
performance of our models cannot be directly compared with Urbisch’s and van der \een’s
because the three studies did not use the same substance set. While the tiered approach
described by van der Veen et al. (2014) performed very well using a development set of
substances, neither study tested assay performance using an external set. Consequently,
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additional studies using more substances are warranted to more accurately gauge
performance of the various models.

To date, all efforts to predict human skin sensitization potential using integrated testing
strategies have been limited by an inability to support potency classification decisions.
While potency data are necessary for risk assessors to identify the threshold level of
exposure to a substance below which it is unlikely to produce skin sensitization, some
regulatory classification and labeling applications only require hazard identification. For
example, skin sensitization hazard information is used by the U.S. Environmental Protection
Agency (EPA 2012a; 2012b) and the U.S. Occupational Safety and Health Administration
(OSHA 2012) to caution consumers and workers about contact with potential skin
sensitizers. In addition, consistent with the GHS (UN 2013), OSHA requires potency
classification only if the skin sensitization data are adequate to characterize potency (OSHA
2012) (Appendix A). For hazard identification, the LR and SVM models developed here
offer an advantage over the other published models designed to predict human outcomes
(Urbisch et al., 2015; van der Veen et al., 2014) in that laboratories have more than one
model to choose from and, depending on specific needs, models using only two non-animal
laboratory methods can be selected. The tiered strategy discussed above (van der Veen et al.,
2014) requires the use of four different QSAR models in tier | alone. The results of tier |
must then be integrated into a Bayesian prediction model. Furthermore, application of van
der Veen et al’s approach requires unique technical expertise and additional expense to
assess changes in the expression of 10 genes. On the other hand, the approach we describe
supports the generation of high-quality predictions using freely available software supported
by the OECD (OECD 2014) and publicly available physicochemical property data.

For a number of years, the LLNA has been the gold standard for identifying and determining
the relative potency of skin sensitizers. However, recent evaluation of one database revealed
that one-third of strong human sensitizers are underclassified as weaker sensitizers by this
method (ICCVAM 2011). Consequently, the LLNA is not recommended by ICCVAM as a
stand-alone method to predict skin sensitization potency (ICCVAM 2011), leaving a void in
the risk assessment toolbox. Given the limitations of the LLNA and the superior
performance of screening strategies built using non-animal methods, a logical next step
would be to continue the development of mechanistically rational integrated decision
strategies for predicting skin sensitization hazard with the capacity to predict sensitizer
potency in humans. To that end, our future work will explore the use of continuous variables
for DRPA, h-CLAT, and KeratinoSens to support the development of models to predict
human skin sensitization potency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Product uses for 96 substances in the database. Total number of substances exceeds 96

because most substances were associated with more than one product use.
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Figure 2.
Frequency of appearance of 183 chemotypes for the 96 substance database. Height of bars

represent the number of substances that included each of 183 chemotypes.
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Figure 3.
Ranking of variable importance by random forest algorithm. Avg.Lys.Cys, average percent

depletion for lysine and cysteine peptides from the DPRA; BP, boiling point; Cys, average
percent depletion of cysteine peptide from the DPRA; DPRA, direct peptide reactivity assay
binary result; hCLAT, human cell line activation test; %IncMSE, percent increase in mean
squared error; Keratino, KeratinoSens assay; log P, log octanol:water partition coefficient;
log S, log water solubility; log VP, log vapor pressure; Lys, average percent depletion of
lysine peptide from the DPRA; MP, melting point; MW, molecular weight; Toolbox, read-
across prediction from QSAR Toolbox.
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Figure 4.
Logistic regression models: comparison of accuracy for test set for variable groups

containing either six physicochemical properties or log P. Test set contained nine
nonsensitizers and 15 sensitizers. Variable Groups A-G are defined in Table 3. Log P, log
octanol:water partition coefficient.
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Figure 5.
Support vector machine models: comparison of accuracy for test set for variable groups

containing either six physicochemical properties or log P. Test set contained nine
nonsensitizers and 15 sensitizers. Variable Groups A-G are defined in Table 3. Log P, log
octanol:water partition coefficient.
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Data sources

Table 1

Test Method

Reference

DPRA

Bauch et al. (2011)

Bauch et al. (2012)

Gerberick et al. (2004)

Gerberick et al. (2007)

Jaworska et al. (2011)

Jaworska et a/.(2013)

Joint Research Centre of the European Union (2013)
Natsch et al. (2013)

Nukada et al. (2013)

KeratinoSens

Ball et al. (2011)

Bauch et al. (2011)

Bauch et al. (2012)

Emter et al. (2010)

Joint Research Centre of the European Union (2014)
Natsch et al. (2013)

h-CLAT

Ashikaga et al. (2010)
Bauch et al. (2011)
Bauch et al. (2012)
Nukada et al. (2011)
Nukada et al. (2012)
Nukada et al. (2013)
Sakaguchi et al. (2010)
Takenouchi et al. (2013)

LLNA

Basketter et al. (1996) and Estrada et a/. (2003) (xylene)

Basketter and Kimber (2006) (diphenylcyclopropenone, maleic anhydride, and propyl gallate)
NICEATM LLNA database

Van Och et al. (2000) (phthalic anhydride)

DPRA, direct peptide reactivity assay; h-CLAT, human cell line activation test; LLNA, murine local lymph node assay; NICEATM, National

Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods.
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Name Description Data Type Value Range
h-CLAT h-CLAT majority call Categorical 0/1
DPRA DPRA majority call Categorical 0/1
KeratinoSens KeratinoSens majority call Categorical 0/1
Toolbox Read-across prediction using QSAR Toolbox Categorical 0/1
Avg.Lys.Cys | Average lysine and cysteine depletion measurements from DPRA Numeric 0-95.0
Lys Average lysine depletion from DPRA Numeric 0-91.0
Cys Average cysteine depletion from DPRA Numeric 0-100
Log P Octanol:water partition coefficient Numeric -8.28 — 6.464
Log S Water solubility (mol/L) Numeric -6.39-1.924
Log VP Vapor pressure (mm Hg) Numeric -28.47 - 5.894
MP Melting point (°C) Numeric -148.5-288.0
BP Boiling point (°C) Numeric -19.1-932.2
MW Molecular weight (g/mol) Numeric 30.03 - 581.57

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test.

a .
Range for base 10 logarithm of these measurements.
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Table 7

Performance of individual methods and the LLNA for predicting human skin sensitization hazard compared

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

with machine learning approaches

Method Data Set@ | Accuracy (%) | Sensitivity (%) | Specificity (%0)
Training 93-94 92-94 95
Machine learning models? Test 92 87-93 89-100
All 93-94 92-94 94-96
Training 82 88 67
h-CLAT Test 79 87 67
All 81 88 67
Training 88 88 86
DPRA Test 71 73 67
All 83 85 80
Training 78 82 67
KeratinoSens Test 63 60 67
All 74 7 67
Training 81 82 76
Toolbox Test 71 73 67
All 78 80 73
Training 83 90 67
LLNA Test 88 100 67
All 84 92 67
Training 79 98 33
Test Battery 1 (= 1 positive = positive) Test 75 100 33
All 78 99 33
Training 89 96 71
Test Battery 2 (= 2 positives = positive) Test 75 87 56
All 85 94 67

DPRA, direct peptide reactivity assay; h-CLAT, human cell line activation test; LLNA, murine local lymph node assay; Toolbox, read-across using

QSAR Toolbox.

a . . . . - . L . . .
Test set contains 15 sensitizers and nine nonsensitizers. The training set contains 51 sensitizers and 21 nonsensitizers. “All” is the entire dataset of

96 substances: 66 sensitizers and 30 nonsensitizers.

Models with the highest performance from Table 4: support vector machine and logistic regression models with Variable Groups A, I, and K.
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