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Abstract: Falls are unpredictable accidents and resulting injuries can be serious to the 
elderly. A preventative solution can be the use of vibration stimulus of white noise to 
improve the sense of balance. In this work, a pair of vibration shoes were developed and 
controlled by a touch-type switch which can generate mechanical vibration noise to 
stimulate the patient’s feet while wearing the shoes. In order to evaluate the balance stability 
and treatment effect of vibrating insoles in these shoes, multivariate multiscale entropy 
(MMSE) algorithm is applied to calculate the relative complexity index of reconstructed 
center of pressure (COP) signals in antero-posterior and medio-lateral directions by the 
multivariate empirical mode decomposition (MEMD). The results show that the balance 
stability of 61.5% elderly subjects is improved after wearing the developed shoes, which is 
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more than 30.8% using multiscale entropy. In conclusion, MEMD-enhanced MMSE is able 
to distinguish the smaller differences between before and after the use of vibration shoes in 
both two directions, which is more powerful than the empirical mode decomposition 
(EMD)-enhanced MSE in each individual direction. 

Keywords: center of pressure; vibration; multivariate multiscale entropy; multivariate 
empirical mode decomposition 

 

1. Introduction 

Falls are a major public health concern among old-aged people, and they often cause serious injuries [1]. 
They most frequently occur during walking and are associated with the chronic deterioration in the 
neuromuscular and sensory systems, as well as with ankle muscle weakness and lower endurance of 
these muscles to fatigue [2]. Falls are a major cause of morbidity and mortality in the U.S., the medical 
research has shown that the degradation of physiological functions and nervous system functions makes 
the reduced the balance ability of the elderly, so they may easily fall down while walking [3]. In order to 
reduce the harm from falls in the elderly, it is suggested that the health care system develops a system 
which can improve and evaluate the sense of body balance. According to the phenomenon of stochastic 
resonance, which is based on the concept that the information transmitted through a system can be 
amplified by the presence of a particular level of noise [4], the noise is used to enhance the detection and 
transmission of weak signals in nonlinear system[5]. Furthermore, the particular mechanical noise is 
employed to improve the performance of the human balance control system through the eccentric 
rotating mass (ERM), linear resonant actuator (LRA), piezoelectric vibration generator (PVG) [6]. 
Besides, the stimulation from noise-based vibration devices such as vibrating insoles was employed to 
improve parkinsonian gait steadiness in a short-term setting [7].  

The postural stability is an important feature to protect people from falls and to complete the desired 
actions, which can be measured by the displacement of center of pressure (COP) [8,9]. The COP 
displacements in the two anterior-posterior (AP) and medial-lateral (ML) directions are often used to 
characterize the COP stabilogram [10]. Furthermore, they are commonly applied to predict fall-risk [11] 
and evaluate balance stability enhancement systems [12]. Due to the non-stationary and non-linear 
characteristics of COP signals, our previous research demonstrated that the COP data analyzed by the 
multiscale entropy (MSE) is effectively better than that processed by the traditional method [13].  

Nevertheless, MSE is suitable for one-dimensional time series, but not for the multivariate time series 
that are routinely measured in experimental and biological systems [14,15]. Based on empirical mode 
decomposition (EMD) [16] and MSE, their extensions such as multivariate EMD (MEMD) [17] and 
multivariate multiscale entropy (MMSE) [18,19] were proposed to process the multichannel input for 
practical applications. Therefore, the multivariate time series from different channels can be 
decomposed by MEMD and analyzed by MMSE. According to the COP data containing ML and AP 
directions, the MEMD and MMSE adapt to processing the COP signals. Therefore, the aim of this 
paper is to measure the effectiveness of the MEMD-enhanced MMSE for analysis of COP signals in 
order to evaluate the balance stability when compared to the EMD-enhanced MSE presented in the 
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previous study. Furthermore, it aims to verify the performance of the proposed vibration shoes through 
a comparison between before and after wearing the shoes. This paper is organized as follows: the 
analysis methods such as the MEMD and MMSE employed in this study are described in the next 
section. The third section introduces the developed vibration insoles, experimental subjects and 
experimental procedure. Then the results analyzed and compared by EMD-enhanced MSE and 
MEMD-enhanced MMSE are shown in the fourth section. Finally, we discuss the above results and draw 
the conclusions. 

2. Methods 

2.1. Multivariate Empirical Mode Decomposition  

Since EMD was proposed by Huang et al. [16], it has been widely used for non-linear, non-stationary 
data analysis based on the intrinsic characteristics of time series. The intrinsic mode functions (IMFs) 
are decomposed by the mean m(t) of upper and down envelops of a time series X(t), expressed  
as follows: 

t ∑   (1) 

where ci and rn are the ith IMF and the last residue of time series. In order to expand the applications of 
EMD, MEMD, a multivariate extension of EMD, was presented to decompose multivariate nonlinear 
and nonstationary signals [20,21]. MEMD not only overcomes the single input limitation of EMD, but 
also solves the problem of mode mixing through addition of white noise to different channels. 
Furthermore, it is similar to EMD that acts as a dyadic filter bank on each channel of the multivariate 
input, and has the advantage of aligning the corresponding IMFs from different channels across the 
same frequency range [20]. Therefore, the more frequencies that exist in different channels, the more 
IMFs that are decomposed in each channel. 

In computation of MEMD, the mean m(t) is calculated by means of the multivariate envelope curves 
of a set of K direction vectors, shown as equation (2): 

t ∑   (2) 

where  are the multivariate envelope curves of all vectors that are the projections of 
multichannel input s(t) along K directions. Then, the multivariate IMF is calculated by s(t)-m(t) and 
the stoppage criterion. This process is repeated until the stoppage criteria in standard EMD is fulfilled 
by all the projected signals. 

2.2. Multivariate Multiscale Entropy  

In the entropy family, MSE is an effective method to evaluate the complexity of signals over 
different time scales, and has been applied effectively in the analysis of physiology, biology, and 
geosciences data [22–24]. There are two procedures in the MSE, the first one is coarse-grained 
procedure that computes the  of original time series x , x , , xN  based on the scale factor τ, which 
is according to equation (3):  
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 ∑  (3) 

Then the sample entropy (SampEn) [25] is employed to measure the degree of randomness of the 
finite length time series y , in which 1 ⁄ . SampEn is considered as a conditional probability 
that is computed according to the following steps: firstly, two sequences of m consecutive data points 
such as , … ,  and , … ,  are selected to compute the number of  
that meets the condition  , γ . . ( 1, ’ ,   0,1 ), in which the S.D. is the 
standard deviation of the time series  y , y , , N’  and  ,  is the maximum distance 
between  and : 

 , max ,  0, 1  (4) 

Then  is the amount of all  similar to , and its average for 1, N’  is:  

 B N m ∑ BN’  (5) 

Thus, the  is the average similarity of m consecutive data points over whole ′  data, and 
 is that of m+1 consecutive data points. Finally, the SampEn is obtained using equation (6) : 

’, , (6) 

Like MSE, the MMSE is used to calculate the relative complexity of normalized multichannel 
signals by plotting multivariate SampEn as a set of the scale factor. Its first step is to define temporal 
scales of the increased length by coarse-graining the p-variate time series x ,

N , k 1,2, … , p. For a scale 
factor τ, the multivariate coarse-grained time series ,  are calculated as equation (7), where 1 ⁄ : 

, ∑ ,   (7) 

But the second step is different from that in MSE, the multivariate SampEn (MSampEn) is 
calculated for each coarse-grained multivariate , , and it is plotted as a function of the scale factor τ. 

In order to obtain the MSampEn, the multivariate emdedded vectors  must be constructed 
firstly, which is shown as: 

Y i y , , y , , … , y , , y , , y , , …, 

          y , , … , y , , y , , … , y ,  (8) 

where 1 N  and N ⁄ ,   .  , , … ,  is the embedding 
vector, while , , … ,  is the time lag vector and ∑ . Then the maximum norm is 
defined by Chebysev distance between any two composite delay vectors  and , that is 
expressed as: 

, ,…, |y 1 y 1 |  (9) 

where 1, N  , . For a given , Pi is the number of vector pairs that meets 
, . .  ( 1, ’ ,   0,1 ) where S.D. is the standard deviation of the 
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multivariate emdedded vectors Y i , so that / N 1 , where   . For 
all i, N ∑N . 

Finally, the average similarity  over all 1, N   and the  over all 1, p

N   are used to gain the MSampEn, as shown in equation (10):  

 N , , ,  (10) 

where  is the tolerance level and N  is the length of the time series , .  
In MMSE, the multivariate time series are considered more complex than another if the MSampEn 

values are higher than other for majority of the scales, which is the same as the original MSE. The 
embedding vector , , … ,  and the tolerance level  in MMSE have the equivalent 
function with parameters m and  in MSE. In the following anaysis, m is 2 and  is 0.2 in calculation 
of SampEn, and , … , , … , , , … , , … , 2, 1, 1, , and =0.2 are set in 
MMSE so as to compare the performace between MSE and MMSE with the same parameters. 

3. Experiments 

3.1. Experimental Devices  

The Danish Catsys 2000 system (DPD Company, Snekkersten, Denmark) is an advanced tool in 
quantitative analysis of some neurobehaviors such as tremors, postural stability, reaction time and 
coordination ability. It detects the movements in AP and ML directions as the COP recording of a 
subject, as shown in Figure 1. With a sampling rate of 31.25Hz in this system, Figure 1 shows COP 
data of the subject collected in one minute. This device was used in our experiments to detect and 
record the COP data of all subjects.  

Figure 1. An example of COP data recorded by the Catsys2000. 

 

Moreover, we developed a pair of vibration shoes controlled by a touch-type switch which can 
generate mechanical vibration noises to stimulate the feet while patients are wearing these shoes. In 
these shoes, an insole with micro-motors is designed for the purpose of enhancing the stability of the 
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elderly with presumed fall risk. Because of the drawbacks of ERM or LRA in response to the 
instantaneous signals and the PVG in generation of strong enough vibrations, therefore, the touch-type 
switch is preferred. According to the constant frequency vibrations which is controlled by the 
touch-type switch, if it is connected to the eccentric motor device in the insoles, the eccentric motor will 
start running when the feet press the touch-type switch. In our developed vibration shoes, each vibratory 
insole has three eccentric motors connected to three touch-type switches respectively, and there are two 
eccentric motors on the forefoot, and one on the heel. In addition, we design a variable resistor in vibratory 
insole which is controllable in accordance with the feelings of each subject to adjust the degree of  
vibration intensity. 

3.2. Experimental Subjects 

This study was approved by the Research Ethics Review Committee of the TaoYuan Veterans 
Hospital. After obtaining written informed consent from the subjects, we measured the COP data from 
40 healthy subjects without any disease or fall history. They were divided into young group (21.95 ± 
2.16 years) and elderly group (58.7 ± 4.77 years). The feasibility of evaluation of balance stability was first 
verified by these obviously different two groups based on analysis of MSE and MMSE. 

Secondly, in order to prove the effectiveness of the vibration shoes and the advantages of MMSE, 
the high-risk subjects (i.e., elderly group) who had a history of falling down more than twice in a year 
were chosen to measure the COP data before and after wearing our shoes. There were 26 elderly 
subjects (84.1 ± 4.1 years) in this group who had normal living habits without any disability. 

3.3. Experiment Procedure 

The experiment on the elderly subjects in the TaoYuan Veterans Hospital has three procedures. 
First, the subjects walk from their rooms to the experiment place one by one. Since the two places are 
in different buildings, the subjects were accompanied by a nurse and this would take at least 6–7 
minutes. After the walk, the subjects stood on the non-invasive measurement physiological signals 
machine (i.e., Catsys 2000 system) to collect the COP data for one minute. Second, the subjects put on 
the vibratory shoes that supply the physical stimulation to the nerves on their feet. Subjects walk back 
and forth normally in an open place for six minutes. Third, the subjects are asked to stand on the 
non-invasive measurement physiological signals machine again for COP recording in one minute. 
Through these experimental procedures, we collected the COP data of all subjects during normal 
walking and after stimulation using the vibration shoes for the further analysis. 

4. Results 

4.1. EMD-Enhanced MSE 

Analysis of COP data through EMD-enhanced MSE starts with EMD in order to decompose the 
COP data into IMFs, and then the appropriate IMFs are selected to reconstruct signals of AP and ML 
directions. For example, there are original signals of AP (COP-Y) and ML (COP-X) directions as 
shown in Figures 2(a) and (b), and the reconstructed IMF3+4 of the decomposed IMFs in each 
direction are displayed in Figures 2(c) and (d). The reconstructed signals of the two directions are 
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smoother than the original signals at the cost of missing high frequency parts in IMF1 and IMF2. So 
far there is no clear frequency range in COP that is able to represent the balance stability of people. 
Thus, even though EMD has the dyadic filter bank property, different combinations of IMFs should be 
tested for further analysis of their complexity degree in statistics. The complexity degree of different 
combinations in each direction is measured by the complexity index (CI), which is defined as the area 
under the MSE curve over all scales [9]: ∑ 1 , in which scale is the maximum of the 
scale factors. The whole process of analyzing COP data based EMD-enhanced MSE is shown in Figure 3.  

Figure 2. (a) Original COP data in ML direction. (b) Original COP data in AP direction. 
(c) Reconstructed COP data of IMF 3+4 in ML direction. (d) Reconstructed COP data of 
IMF 3+4 in AP direction. 

 

Figure 3. The procedure of computation of EMD-enhanced MSE. 

 

In the analysis of experimental results, there are 11 IMFs decomposed by original data through 
EMD. Which one or ones are appropriate to reconstruct the features of balance stability in signals of 
AP and ML directions? Because of the unclear meaning of each IMF, it is important to try the possible 
combinations from IMF 1 to IMF 11. After studying the frequency band of IMF 2–6, they are more 
suitable to reconstruct the signals of AP and ML directions due to the fact they contain more 
information from the original signals. Taking the CI in ML direction and AP direction, Table 1 shows 
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the CI of the EMD-enhanced MSE values calculated by individual IMF or various combinations of 
IMFs. Reconstructed signals of IMF 3+4+5, IMF 4+5, and IMF 5 have statistically significant 
differences in complexity between the young and elderly subjects. Therefore these three combinations 
are selected to verify the effect of the vibration shoes further. Table 2 shows the CI of COP data and 
statistical results of paired t-test, but it is obvious that all three combinations of IMFs have no 
statistically significant difference (p > 0.05) before and after the use of vibration shoes. 

Table 1. Mean and standard deviation of CI of EMD-enhanced MSE curve and 
independent t-test between young and elderly subjects for the twenty cases. 

IMF 
ML (x-direction) AP (y-direction) 

Young Elderly p-value Young Elderly p-value 
2 2.73 ± 1.07 2.74 ± 1.30 0.972  4.07 ± 1.18 2.92 ± 1.03 0.002  
3 3.05 ± 0.94 2.74 ± 0.68 0.240  3.44 ± 0.72 3.24 ± 0.90 0.444  
4 2.92 ± 0.52 2.36 ± 0.49 0.001  2.81 ± 0.54 2.56 ± 0.61 0.180  

5 (*) 1.95 ± 0.48 1.61 ± 0.44 0.026  2.00 ± 0.49 1.66 ± 0.42 0.024  
6 0.99 ± 0.43 0.84 ± 0.27 0.201  1.11 ± 0.36 0.79 ± 0.30 0.004  

2+3 4.18 ± 1.43 3.93 ± 1.30 0.581  5.24 ± 1.15 3.93 ± 1.30 0.127  
2+4 4.52 ± 1.16 4.07 ± 1.14 0.231  4.89 ± 1.34 4.48 ± 1.40 0.350  
2+5 3.62 ± 0.93 3.73 ± 1.47 0.765  4.17 ± 1.26 3.80 ± 1.12 0.329  
2+6 3.01 ± 1.32 3.54 ± 1.58 0.253  3.33 ± 0.99 3.22 ± 1.33 0.768  
3+4 3.82 ± 0.88 3.16 ± 0.51 0.005  3.92 ± 0.87 3.50 ± 0.83 0.130  
3+5 3.54 ± 0.92 3.04 ± 0.74 0.066  3.78 ± 0.80 3.26 ± 0.64 0.300  
3+6 3.31 ± 1.23 2.85 ± 0.68 0.156  3.62 ± 0.72 3.02 ± 0.86 0.023  

4+5(*) 2.58 ± 0.45 2.22 ± 0.50 0.019  2.71 ± 0.41 2.21 ± 0.46 0.001  
4+6 2.42 ± 0.69 2.14 ± 0.52 0.156  2.45 ± 0.52 2.03 ± 0.69 0.034  
5+6 1.54 ± 0.63 1.27 ± 0.36 0.105  1.68 ± 0.39 1.29 ± 0.45 0.005  

2+3+4 4.73 ± 1.12 4.13 ± 0.87 0.066  5.12 ± 1.33 4.69 ± 1.24 0.301  
2+3+5 4.37 ± 1.15 4.06 ± 1.16 0.402  4.91 ± 1.11 4.37 ± 0.91 0.106  
2+3+6 4.20 ± 1.51 3.92 ± 1.09 0.507  4.71 ± 0.98 4.21 ± 1.29 0.177  
2+4+5 3.66 ± 0.83 3.63 ± 1.17 0.931  4.17 ± 1.11 3.77 ± 0.97 0.244  
2+4+6 3.67 ± 1.20 3.66 ± 1.13 0.977  3.70 ± 0.92 3.54 ± 1.34 0.652  
2+5+6 2.91 ± 1.05 3.26 ± 1.38 0.369  3.21 ± 0.83 3.05 ± 1.21 0.615  

3+4+5(*) 3.39 ± 0.66 2.96 ± 0.60 0.037  3.67 ± 0.70 3.19 ± 0.62 0.026  
3+4+6 3.38 ± 0.89 2.92 ± 0.57 0.057  3.51 ± 0.68 3.06 ± 0.81 0.060  
3+5+6 3.00 ± 0.90 2.73 ± 0.67 0.286  3.41 ± 0.72 2.82 ± 0.82 0.021  
4+5+6 2.29 ± 0.61 2.07 ± 0.59 0.249  2.49 ± 0.37 1.99 ± 0.58 0.003  

2+3+4+5 4.09 ± 0.84 3.94 ± 0.98 0.604  4.69 ± 1.12 4.25 ± 0.88 0.175  
2+3+4+6 4.17 ± 1.15 3.90 ± 0.95 0.425  4.41 ± 0.98 4.05 ± 1.24 0.319  
2+3+5+6 3.79 ± 1.17 3.68 ± 1.10 0.758  4.33 ± 0.93 3.85 ± 1.16 0.157  
2+4+5+6 3.24 ± 0.94 3.39 ± 1.13 0.648  3.66 ± 0.82 3.67 ± 1.12 0.352  
3+4+5+6 3.12 ± 0.71 2.77 ± 0.62 0.110  3.41 ± 0.56 2.90 ± 0.73 0.020  

2+3+4+5+6 3.77 ± 0.90 3.71 ± 0.98 0.842  4.23 ± 0.93 3.89 ± 1.07 0.282  
Note: The combinations of IMFs are marked with asterisk when p < 0.05 in both ML and AP 
directions. 
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Table 2. Mean and standard deviation of CI of EMD-enhanced MSE curve and paired t-test 
between before and after the use of vibration shoes. 

IMF 
ML (x-direction) AP (y-direction) 

Before After p-value Before After p-value
5 1.52 ± 0.33 1.56 ± 0.44 0.702 1.87 ± 0.51 1.90 ± 0.36 0.803 

4+5 2.26 ± 0.41 2.18 ± 0.51 0.439 2.51 ± 0.53 2.58 ± 0.52 0.641 
3+4+5 3.03 ± 0.40 2.98 ± 0.52 0.731 3.56 ± 0.85 3.64 ± 0.82 0.733 

4.2. MEMD-Enhanced MMSE 

As shown in Figure 4, the COP data including signals of AP and ML directions and two added white 
noise signals are the multivariate input for the MEMD. According to the flat power spectral density of 
white noise and the property of dyadic filter bank in MEMD, the two added white noise signals not 
only are helpful to solve the mixing mode, but also decompose the IMFs with more detailed frequency 
ranges. Then the output of MEMD is a matrix of IMFs, which includes the IMFs of AP (COP-Y), 
ML(COP-X) and two white noise signals, furthermore, each input signal has the same number of 
decomposed IMFs. After reconstruction using different combinations in each direction of AP and ML, 
the same combination of IMFs in individual direction becomes the multi-input of the MMSE for the 
integrated complexity of balance stability. For example, the combination of IMF 2+4 in AP direction is 
chosen as one input for MMSE, so that the IMF2+4 in ML direction should be the other input for 
consistency and integrated complexity. 

Figure 4. The procedure of computation of MEMD-enhanced MMSE. 

 

Compared to three in the EMD-enhanced MSE, there are 16 combinations that have the significant 
differences (i.e., p < 0.05) between the young and elderly subjects through MEMD-enhanced MMSE, 
shown in Table 3. The four combinations with p < 0.005 in Table 3 are asterisk-marked. Furthermore, 
it is apparent that the MEMD-enhanced MMSE has better performance in analysis of the differences 
before and after wearing the vibration shoes and the improvement of balance stability. In Table 4, the 
mean of the CI calculated by the combinations such as IMF 4, IMF 2+4, IMF 3+4 and IMF 2+3+4 has 
a relatively higher value after putting on our shoes to improve the sense of balance. The CI of these 
four combinations has a statistically significant difference (p < 0.05) before and after the use of 
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vibration shoes. Therefore, it is proven that the CI is effective in measuring the balance stability 
through MEMD-enhanced MMSE in comparison with EMD-enhanced MSE. 

Table 3. CI of MEMD-enhanced MMSE curve and p-value of young group and elderly 
group (Independent-Samples T Test). 

IMF Young Elderly p-value 
2 4.07 ± 0.57 3.74 ± 0.68 0.117  
3 4.18 ± 0.74 3.69 ± 1.04 0.095  

4(*) 4.57 ± 0.85 3.61 ± 1.00 0.002  
5 4.23 ± 0.73 3.70 ± 0.94 0.053  
6 4.10 ± 0.77 3.83 ± 0.64 0.237  

2+3 4.82 ± 0.77 4.31 ± 1.16 0.114  
2+4(*) 5.18 ± 1.03 4.01 ± 1.18 0.002  
2+5(*) 4.63 ± 0.75 3.91 ± 1.08 0.019  

2+6 4.30 ± 0.84 3.92 ± 0.61 0.111  
3+4(*) 5.26 ± 0.96 4.18 ± 1.04 0.002  
3+5(*) 5.13 ± 0.69 4.24 ± 1.16 0.006  

3+6 4.77 ± 0.89 4.28 ± 0.62 0.051  
4+5(*) 5.08 ± 0.83 4.31 ± 1.06 0.015  
4+6(*) 5.13 ± 0.78 4.59 ± 0.70 0.026  

5+6 4.26 ± 0.65 4.34 ± 0.62 0.687  
2+3+4(*) 5.59 ± 1.10 4.47 ± 1.18 0.003  
2+3+5(*) 5.41 ± 0.71 4.41 ± 1.24 0.004  
2+3+6(*) 4.92 ± 0.91 4.36 ± 0.61 0.029  
2+4+5(*) 5.31 ± 0.93 4.42 ± 1.12 0.010  
2+4+6(*) 5.28 ± 0.84 4.66 ± 0.69 0.015  

2+5+6 4.38 ± 0.68 4.41 ± 0.64 0.864  
3+4+5(*) 5.54 ± 0.89 4.61 ± 1.15 0.007  
3+4+6(*) 5.51 ± 0.87 4.84 ± 0.75 0.014  

3+5+6 4.60 ± 0.75 4.55 ± 0.68 0.828  
4+5+6 4.88 ± 0.68 4.74 ± 0.77 0.552  

2+3+4+5(*) 5.75 ± 0.97 4.74 ± 1.24 0.007  
2+3+4+6(*) 5.61 ± 0.89 4.94 ± 0.74 0.013  

2+3+5+6 4.62 ± 0.78 4.53 ± 0.68 0.707  
2+4+5+6 4.97 ± 0.71 4.79 ± 0.80 0.457  
3+4+5+6 5.15 ± 0.76 4.89 ± 0.82 0.308  

2+3+4+5+6 5.28 ± 0.81 4.95 ± 0.84 0.227  
Note: The combinations of IMFs are marked with asterisk while p value < 0.05. 

Table 4. CI of MEMD-enhanced MMSE curve and p-value before and after the use of 
vibration shoes (Paired-Samples T Test). 

IMF Before After p-value 
4 3.06 ± 1.13 3.74 ± 0.96 0.028 

2+4 3.55 ± 1.35 4.32 ± 1.18 0.037 
3+4 3.78 ± 1.38 4.64 ± 1.21 0.027 

2+3+4 4.03 ± 1.47 4.93 ± 1.30 0.030 
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4.3. Comparison between EMD-Enhanced MSE and MEMD-Enhanced MMSE in Analysis of COP 

When comparing COP of young and elderly subjects, there are three combinations with p < 0.05 in 
both AP and ML directions through the EMD-enhanced MSE as shown in Table 1, however, sixteen 
combinations with p < 0.05 are obtained using the MEMD-enhanced MMSE. Besides, the variation of 
entropic parameters with the scale factors is also different for the two methods. For instance, the 
combinations of IMF2+4 in both cases are selected to reconstruct signals of AP and ML directions. In 
Figure 5, the SampEn and MSampEn curves are shown over scales of 1 to 7, in which the young group 
is marked as blue line/circle symbols and the elderly group is red line/star symbols. Due to the fact that 
AP and ML are independent directions, MSE only can process each of them separately as shown in 
Figures 5(a,b), however, Figure 5(c) shows the MMSE curves in two directions together. It is obvious 
that the blue circles are higher than red stars over the all scales in Figure 5(c), which fully complies 
with the common phenomenon that the young group usually has better sense of balance than the 
elderly group. On the other hand, in Figures 5(a) and (b), the SampEn of young subjects are close to 
that of elderly subjects with scales of 1, 6 and 7, while the distance of SampEn between young and 
elderly subjects are apparently smaller than that of MSampEn for each scale. Moreover, in the example 
of the combination of IMF2+4, the statistical analyses of CI in both AP and ML directions based on 
EMD-enhanced MSE shows no significant differences between young and elderly groups as shown in 
Table 1. Nevertheless, it has significant difference (p < 0.05) based on the MEMD-enhanced MMSE as 
shown in Table 3. It means that MEMD-enhanced MMSE is more sensitive in detecting the differences 
between young and elderly subjects. Therefore, the CI with combinations in EMD-enhanced MSE has 
statistically significant differences between young and elderly group but does not show that before and 
after using the vibration shoes, as shown in the Tables 1 and 2. On the contrary, there is statistically 
significant CI difference which is not only between young and elderly group but also between before 
and after using the vibration shoes through MEMD-enhanced MMSE, as displayed in Tables 3 and 4. 

Finally, in order to observe the individual differences of improvement in sense of balance in details, 
results of 26 elderly subjects who have falling records are shown in Table 5. The CI and its difference 
between before and after the use of vibration shoes in each case are compared between the two 
methods on the basis of the combination of IMF 2+3+4. In these 26 cases, there are 16 cases with 
increasing degree of complexity in COP data through MEMD-enhanced MMSE, but only eight cases, 
half of the former, appear in the analysis of EMD-enhanced MSE. Therefore, based on the 
combination of IMF 2+3+4, the MEMD-enhanced MMSE has the results of 61.5% elderly subjects 
with improved balance stability in comparison with 30.8% in EMD-enhanced MSE. 

According to the results shown in Tables 1 and 3, even though the EMD-enhanced MSE and 
MEMD-enhanced MMSE are both feasible to analyze and measure the balance stability, they have 
different performance in the amount of appropriate combinations and the sensitivity for detecting the 
distinct complexity of balance stability between young and elderly subjects. These results indicate that 
the MEMD-enhanced MMSE is more sensitive in detecting differences in the balance stability between 
young and elderly subjects. Moreover, the MSE and MMSE curves of the combination of IMF 2+4 as 
shown in Figure 5 indicates that MSampEn is better than SampEn in analysis of multiple signals and 
have bigger difference over the whole scale factors. Under this condition, the results shown in Table 5 
not only indicate that MEMD-enhanced MMSE has better performance in analysis of COP, but also 
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prove that the vibration insoles controlled by touch-type switch can effectively improve the sense of 
balance for elderly people. 

Figure 5. Mean and standard deviation between young and elderly groups analyzed by 
MSE and MMSE for the twenty cases. (a) MSE in ML direction. (b) MSE in AP direction. 
(c) MMSE in both AP and ML directions. 

 

Table 5. CI of EMD-enhanced MSE and MEMD-enhanced MMSE curve and p-value in 
Paired-Samples t-test between before and after the use of vibration shoes. Diff = (CI after 
vibration) – (CI before vibration). 

ID 
MMSE MSE 
ML&AP ML (x-axis) AP (y-axis) 

Before After Diff Before After Diff Before After Diff 
1 3.50 4.51 1.01 3.45 4.59 1.13 3.63 6.99 3.36 
2 3.76 3.54 −0.22 4.39 4.48 0.08 6.29 5.46 −0.83 
3 3.52 4.75 1.23 3.51 4.16 0.65 5.18 5.30 0.12 
4 3.07 4.84 1.77 3.42 3.06 −0.35 5.76 4.77 −1.00 
5 5.57 4.66 −0.91 2.75 4.97 2.22 5.15 5.95 0.80 
6 2.95 5.49 2.55 3.69 2.08 −1.61 3.51 6.35 2.84 
7 4.42 5.51 1.09 5.30 3.87 −1.44 6.48 5.16 −1.32 
8 2.11 5.43 3.33 4.13 4.64 0.51 6.60 6.57 −0.02 
9 5.70 5.51 −0.19 4.37 5.75 1.38 6.10 6.54 0.43 
10 2.62 1.88 −0.75 3.94 4.32 0.38 5.24 4.26 −0.97 
11 1.05 6.14 5.10 3.07 4.51 1.44 1.37 6.38 5.02 
12 2.68 5.97 3.29 3.35 3.61 0.26 5.23 4.67 −0.57 
13 4.34 4.25 −0.09 4.14 2.58 −1.57 5.97 6.00 0.03 
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Table 5. Cont. 

ID 
MMSE MSE 
ML&AP ML (x-axis) AP (y-axis) 

Before After Diff Before After Diff Before After Diff 
14 5.51 5.70 0.19 5.75 4.37 −1.38 6.54 6.10 −0.43 
15 3.02 5.97 2.95 3.16 4.83 1.67 4.01 6.48 2.47 
16 3.98 3.50 −0.48 4.86 3.71 −1.15 5.50 5.26 −0.24 
17 5.21 5.37 0.16 3.45 3.68 0.22 5.58 5.30 −0.28 
18 5.68 0.96 −4.71 6.94 4.16 −2.78 7.00 0.56 −6.44 
19 5.82 5.50 −0.32 3.11 3.43 0.33 5.92 4.40 −1.53 
20 2.14 5.35 3.20 3.66 3.78 0.12 3.50 4.79 1.29 
21 5.67 5.40 −0.27 4.63 3.35 −1.28 7.41 6.39 −1.02 
22 6.24 5.48 −0.76 4.08 4.12 0.03 4.92 4.10 −0.82 
23 6.42 6.64 0.22 5.81 6.34 0.53 6.91 8.17 1.25 
24 3.76 4.49 0.73 3.51 3.45 −0.06 4.80 4.38 −0.43 
25 3.02 6.55 3.53 4.01 3.33 −0.69 5.55 5.38 −0.16 
26 2.86 4.74 1.88 3.84 3.85 0.02 6.31 5.34 −0.96 

Mean ± SD 
4.03 ±  
1.47 

4.93 ±  
1.30 

0.91 ± 
2.00 

4.09 ± 
0.98 

4.04 ± 
0.90 

−0.05 ± 
1.18 

5.40 ±  
1.34 

5.43 ±  
1.38 

0.02 ± 
2.06 

p−value 0.03 0.827 0.955 
Improve 16/26 = 61.5% 8/26 = 30.8% 

5. Discussion  

Although MEMD-enhanced MMSE is shown to be very promising technique in this study, there are 
still some combinations of IMFs with relevant CI as shown in Table 3. These kinds of combinations in 
Tables 1 and 3 represent that the IMFs involved have no features of balance stability or only have parts 
of them which are impossible to measure by MSE and MMSE. Therefore, the MEMD-enhanced MMSE 
still has several problems when using this combination method. Firstly, it is difficult to determine 
which IMF includes the valuable physiological features in these bio-signals. In our previous studies of 
the Monte Carlo verification [26,27], it can distinguish the properties of IMFs between noise and 
bio-signals. However, it is still impossible to recognize which IMFs are dominant factors for these 
diseases or events accurately. Although the obvious physiological response of patients within the 
particular frequency band through Valsalva maneuver test [28] is helpful to trace the IMF that is more 
related to this event, it is still intended to test for this kind of experiment. Most bio-signal analysis 
situations do not have this kind of patient stimulation. Therefore, the physiological features of 
bio-signals related to diseases or events are the key of choosing the IMFs that are more important. 
Currently, the lack of theoretical support in neuroscience for controlling balance of human body has 
led to the use of trial and error feedback to decide the IMFs which are dominant factors in this study. 
Additionally, there are even 16 combinations with the significant difference between young and 
elderly groups in Table 3, but some combinations cannot discriminate the small improvement achieved 
by the vibration shoes. It may be related to the meaning of each IMF, thus, these combination of IMFs 
need to be validated in future research. 
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Secondly, there is a biasing problem when increasing the scales in MSE, and it is not well adapted 
to the nonlinear and nonstationary signals within a low sampling rate through the coarse-graining 
procedure. Recently, an adaptive multiscale entropy (AME) [29] and the MSE based on adaptive 
sampling procedure [30] were presented to solve this problem. For MMSE, however, the research on 
the influence of variation of parameters and its computation performance is our focus in the next stage, 
while the problem caused by coarse-graining procedure in MMSE will be studied in the future works.   

Finally, the calculation in MEMD-enhanced MMSE is time consuming and memory-intensive. It is 
suggested that a very large internal memory is necessary if it is calculated on a desktop style computer. 
Also, there are several tricks in Matlab for more efficient computation, for instance, if there is a 
multiple-core processor in your computer, you can specify that in the preamble of Matlab and then 
computation will be more efficient. Moreover, the general-purpose computing on the graphics 
processing unit (GPGPU) is also able to enhance the performance of computation, which has already 
been applied in calculating the ensemble empirical-mode decomposition (EEMD) to improve its 
efficiency [31]. Therefore, a desktop style computer with more powerful and large internal memory 
can solve these problems in the computation of MEMD-enhanced MMSE in the near future. 

6. Conclusions  

To conclude, the developed vibration shoes are able to improve the sense of balance in elderly 
subjects through the noise stimulation. Though the EMD-enhanced MSE and MEMD-enhanced 
MMSE are able to distinguish the differences between young and elderly subjects, the latter are more 
sensitive to the changes between before and after the use of vibration shoes in both two directions, 
which is more powerful than the former in each individual direction. 
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