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MULTIVARIATE NEGATIVE BINOMIAL

DISTRIBUTIONS GENERATED BY MULTIVARIATE

EXPONENTIAL DISTRIBUTIONS

Abstract. We define a multivariate negative binomial distribution
(MVNB) as a bivariate Poisson distribution function mixed with a mul-
tivariate exponential (MVE) distribution. We focus on the class of MVNB
distributions generated by Marshall–Olkin MVE distributions. For simplic-
ity of notation we analyze in detail the class of bivariate (BVNB) distribu-
tions. In applications the standard data from [2] and [7] and data concerning
parasites of birds from [4] are used.

1. Introduction. It is known that a univariate geometrical probability
distribution function is a mixed Poisson distribution with exponentially dis-
tributed parameter. A univariate negative binomial distribution is a mixed
Poisson distribution where the mixing parameter has a gamma distribution.
Also it is easy to see, considering convolution and mixture, that mutually
corresponding are: the class of negative binomial distributions and the class
of gamma distributions. These univariate properties suggest the definition
of a multivariate negative binomial (MVNB) distribution on the basis of
multivariate exponential (MVE) distributions and convolution. There exist
a few variants of MVE distributions with exponential marginals; we focus on
the class of Marshall–Olkin MVE distributions. For simplicity of notation
we consider in detail bivariate (BVNB) distributions defined by the BVE
class.

We present three applications of BVNB distributions using the standard
data from [2] and [7] concerning accidents, and the data concerning the
number of parasites of the pheasant [4]. A new variant of MVNB distri-
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butions for random variables characterized by a small correlation may be
useful.

In [7] the existence of a negative correlated MVNB distribution is sug-
gested. In an example a negative correlated BVNB distribution is shown.
We also present an example of a bivariate distribution with negative bino-
mial marginals which do not belong to any class of BVNB distributions.

2. The negative binomial distribution. Let us recall the elementary
notations and definitions concerning univariate negative binomial distribu-
tions, suitable for the construction of a multivariate analogue. A random
variable X is geometrically distributed with parameter p if P (X = k) = qpk,
k ≥ 0, 0 < p < 1, q = 1 − p. Its probability generating function (pgf)
is φp(u) = q(1 − pu)−1, and also we have E(X) = pq−1, Var(X) = pq−2.
The random variable X is negative binomial with parameters p and r if

X
d
= EΛ(Π(Λ)), where Π(Λ) under the condition Λ = λ is a Poisson ran-

dom variable with parameter λ, and Λ has a gamma distribution with shape
parameter r and scale parameter p. Its pgf is φp,r(u) = φrp(u). The param-
eter r is also called aggregation. This random variable has

(1) E(X) = rpq−1, Var(X) = rpq−2.

The random variables (Λ1, Λ2) have a Marshall–Olkin BVE distribution

[6] if there exist random variables U , V , W , mutually independent and
exponentially distributed with parameters α ≥ 0, β ≥ 0, γ ≥ 0, respectively,
α+ β + γ > 0, such that Λ1 = min(U,W ), Λ2 = min(V,W ). The

(2) P (Λ1 > x,Λ2 > y) = exp(−αx− βy − γmax(x, y)), x ≥ 0, y ≥ 0.

We say that (X1,X2) are generated by (Λ1, Λ2) if

(3) (X1,X2)
d
= E(Λ1,Λ2)(Π1(Λ1),Π2(Λ2))

df
= T (Λ1, Λ2),

where Π1(Λ1),Π2(Λ2) under the condition Λ1 = λ1, Λ2 = λ2 are indepen-
dent Poisson random variables with parameters λ1, λ2, respectively. The
relation (3) defines a transformation of the distributions of random variables
which we also call a transformation of random variables.

Definition 1. The random variables (X1,X2) have a bivariate geomet-

rical distribution if they are generated by (Λ1, Λ2) which have a BVE dis-
tribution:

(4) P (X1 = i, X2 = j) = E(p(i, Λ1)p(j, Λ2)), i, j ≥ 0,

where p(i, λ) = (λi/i!)e−λ, i ≥ 0, λ > 0.

Proposition 1. If (Λ1, Λ2) has a BVE distribution,

ψ(s, t) = E(exp(−sΛ1 − tΛ2))
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is the Laplace–Stieltjes transform and (X1,X2) is generated by (Λ1, Λ2),
then its pgf is

(5) φ(u, v) = E(uX1vX2) = ψ(1− u, 1− v).

Moreover ,

E(Xi) = E(Λi), Var(Xi) = Var(Λi) + E(Λi), i = 1, 2,

Cov(X1,X2) = Cov(Λ1, Λ2).

The proof is omitted.

Definition 2. The random variable (X1,X2) has a BVNB distribution

with aggregation r if its pgf is

(6) φr(u, v) = E(uX1vX2) = φr(u, v),

where φ(u, v) is the pgf of a bivariate geometrical distribution.

The pgf of a bivariate geometrical distribution function may be presented
in terms of the pgf of the univariate geometrical distribution.

Proposition 2. If (Λ1, Λ2) is the BVE distribution (2), then the distri-

bution function (5) is geometrical and it has the pgf

φ(u, v) = φα(u)φβ(v) +
γ

α+ γ
φα(u)φα+γ(u)φβ(v)(7)

+
γ

β + γ
φα(u)φβ(v)φβ+γ(v)

+
γ

α+ β + γ
φα(u)φβ(v)φ1+α+β+γ(u+ v),

where φ = 1− φ.

P r o o f. The Laplace–Stieltjes transform of the BVE distribution (2)
(see [6]) is

ψ(s, t) = E(exp(−sΛ1 − tΛ2))

=
(α+ β + γ + s+ t)(α+ γ)(β + γ) + stγ

(α+ β + γ + s+ t)(α + γ + s)(β + γ + t)
.

Thus, by (5), the result can be restated as

φ(u, v) =
1

(1− u+ α)(1 − v + β)

[

αβ + γβ
1− u

1− u+ α+ γ

+ γα
1− v

1− v + β + γ
+ γ

(1− u)(1 − v)

2− u− v + α+ β + γ

]

.

Proposition 3. If (X1,X2) has a BVNB distribution generated by

(Λ1, Λ2) with BVE distribution with aggregation r, then
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(8)

E(Xi) = rE(Λi), Var(Xi) = rVar(Λi) + rE(Λi), i = 1, 2,

Cov(X1,X2) = rCov(Λ1, Λ2),

P (X1 = 0, X2 = 0) =

(

(2 + α+ β + γ)(α + γ)(β + γ) + γ

(2 + α+ β + γ)(1 + α+ γ)(1 + β + γ)

)r

.

It is well known [6] that (Λ1, Λ2) distributed as (2) has

(9)

E(Λ1) =
1

α+ γ
, E(Λ2) =

1

β + γ
,

Cov(Λ1, Λ2) =
γ

(α+ γ)(β + γ)(α+ β + γ)
.

Example 1. Let (Λ1, Λ2) = (α1U,α2U), where α1 > 0, α2 > 0, and U is
exponentially distributed with parameter γ > 0. Then the density function
of (U,U) is singular, f(u, u) = γe−γu, u > 0. From (4) for i ≥ 0, j ≥ 0 we
have

P (X1 = i, X2 = j) =

∞\
0

γαi
1α

j
2u

i+j

i!j!
e−(α1+α2+γ)u du

=

(

i+ j

i

)

pi1p
j
2(1− p1 − p2),

p1 =
α1

α1 + α2 + γ
, p2 =

α2

α1 + α2 + γ
.

The pgf of the above distribution is

φ(u, v) =
1− p1 − p2

1− p1u− p2v
,

and the marginals are geometrically distributed with parameters (α1+γ)
−1

and (α2 + γ)−1, respectively.

3. Convolutions. It is known that the class of negative binomial distri-
butions with common scale parameter is closed with respect to convolution.
Accordingly the multivariate analogue is defined as the class of multivariate
geometrical distributions and their convolutions.

Recall two useful formulas. The convolution of bivariate distributions
{pm,n} and {am,n} is

{bm,n} = {pm,n} ∗ {am,n},
where

bm,n =

m
∑

i=0

n
∑

j=0

pi,jam−i,n−j, m ≥ 0, n ≥ 0.

The bivariate square root of a distribution {pm,n} is

{cm,n} = {pm,n}1/2,
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recursively defined, where

c0,0 =
√
p0,0,

c0,n =
1

2c0,0

[

b0,n −
n
∑

j=1

c0,jc0,n−j

]

, n ≥ 1,

cm,0 =
1

2c0,0

[

bm,0 −
m
∑

i=1

ci,0cm−i,0

]

, m ≥ 1,

cm,n =
1

2c0,0

[

bm,n −
m
∑

i=0

n
∑

j=0

(i,j)6=(0,0),(m,n)

ci,jcm−i,n−j

]

, m ≥ 1, n ≥ 1.

Theorem 1. Let f1, f2 denote two MVNB distributions and f3 = f1 ∗f2
denote their convolution. If fi is generated by gi, i= 1, 2, 3, then g1∗g2=g3.

P r o o f. In the proof we use the transform T of random variables defined
in (3). We have

T (Λ
(1)
1 , Λ

(1)
2 ) + T (Λ

(2)
1 , Λ

(2)
2 )

= E
Λ

(1)
1 ,Λ

(1)
2

(Π(Λ
(1)
1 ),Π(Λ

(1)
2 )) + E

Λ
(2)
1 ,Λ

(2)
2

(Π(Λ
(2)
1 ),Π(Λ

(2)
2 ))

= E
Λ

(1)
1 ,Λ

(1)
2 ,Λ

(2)
1 ,Λ

(2)
2

((Π(Λ
(1)
1 ),Π(Λ

(1)
2 )) + (Π(Λ

(2)
1 ),Π(Λ

(2)
2 )))

= E
Λ

(1)
1 ,Λ

(2)
1 ,Λ

(1)
2 ,Λ

(2)
2

(Π(Λ
(1)
1 ) +Π(Λ

(2)
1 ),Π(Λ

(1)
2 ) +Π(Λ

(2)
2 ))

= E
Λ

(1)
1 ,Λ

(2)
1 ,Λ

(1)
2 ,Λ

(2)
2

(Π(Λ
(1)
1 + Λ

(2)
1 ),Π(Λ

(1)
2 + Λ

(2)
2 ))

= T (Λ
(1)
1 + Λ

(2)
1 , Λ

(1)
2 + Λ

(2)
2 ).

4. The Edwards–Gurland BVNB distribution. Edwards and Gur-
land [2] define a variant of BVNB distribution as a compound correlated bi-
variate Poisson distribution using the Campbell correlated bivariate Poisson
distribution. It has been used by several authors (see [2]) to the description
of the number of accidents in successive intervals of time. We recall this
definition in the form which enables the comparison with Definition 2.

Definition 3. Let X, Y , Z and Λ denote random variables such that
X, Y , Z under the condition Λ = λ are mutually independent with Poisson
distribution with parameters α1λ, α2λ, α1,2λ, respectively, where λ > 0,
0 ≤ α1,2 ≤min(α1, α2), α1 +α2+α1,2 > 0, and Λ has a gamma distribution
with shape parameter r and scale parameter mr−1.

Then (X1,X2) = EΛ(X + Z, Y + Z) has the Edwards–Gurland BVNB

distribution with parameters λ, α1, α2, α1,2.
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The pgf of the Edwards–Gurland BVNB distribution is

(10) f(u, v) =

(

1− m

r
(α1(u− 1) + α2(v − 1) + α1,2(uv − 1))

)−r

,

and from this its moments can be obtained:

E(Xi) = (αi + α1,2)E(Λ),

Var(Xi) = (αi + α1,2)
2 Var(Λ) + (αi + α1,2)E(Λ), i = 1, 2,

Cov(X1,X2) = (α1 + α1,2)(α2 + α1,2)Var(Λ) + α1,2E(Λ).

Remark. If α1,2 = 0, then a Edwards–Gurland BVNB distribution is
a Bates–Neyman distribution and also a BVNB distribution defined by (6)
given in Example 1.

5. The negative correlated BVNB distribution. BVNB distribu-
tions generated by Marshall–Olkin BVE distributions (and also Edwards–
Gurland BVNB distributions) are positive correlated. Now we present two
examples of negative correlated distributions. In Example 2 we define a dis-
tribution function whose marginals are negative binomial, but which cannot
be generated by any BVE distribution function. In Example 3 we define a
BVNB distribution which is generated by BVE distributions and has nega-
tive correlation.

Example 2. Consider the singular density function

f(x, y) =

{

(

1
2

)i
λe−λx for 0 < x < a, y = ia+ x, i ≥ 1,

(

1
2

)j
λe−λy for x = ja+ y, 0 < y < a, j ≥ 1,

where a = 1
λ
log 2, λ > 0.

To construct (X1,X2) with this density define three mutually inde-
pendent random variables: U , geometrically distributed with parameter
p = 1/2; Z, exponentially distributed with parameter λ truncated to the
interval [0, a]; and a binary random variable δ with probability 1/2 for 0 and
1. Then

X1
d
= (U + 1)aδ + Z, X2

d
= (U + 1)a(1 − δ) + Z.

The Laplace transform of f is

ψ(s, t) =
λ

s+ t+ λ
(1− e−(s+t+λ)a)

(

e−(s+λ)a

1− e−(s+λ)a
+

e−(t+λ)a

1− e−(t+λ)a

)

,

the marginals are exponential with parameter λ, and the covariance and
correlation are

Cov(X1,X2) = 2aλ−1 − 3
2a

2, ̺(X1,X2) = log 2− 3
2 log

2 2 = −0.028.
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Example 3. Consider the bivariate distribution function

(11) P (X1 = i, X2 = j) =

{

(

1
2

)i+1
for j = 0, i ≥ 1,

(1
2
)j+1 for i = 0, j ≥ 1.

The pgf is

φ(u, v) =

∞
∑

i=1

ui
(

1

2

)i+1

+

∞
∑

j=1

vj
(

1

2

)j+1

=
1

2

(

u

2− u
+

v

2− v

)

;

the marginals are geometrical with p = 1/2 and we have Cov(X1,X2) = −1,
̺(X1,X2) = −1/2.

From Proposition 1 the Laplace transform of the BVE distribution gen-
erated by (11), if it exists, is

ψ(s, t) = φ(1− s, 1− t) =
1

2

(

1− s

1 + s
+

1− t

1 + t

)

.

Unfortunately the BVE measure which corresponds to this transform is not
probabilistic. If µ is such that

ψ(s, t) =

∞\
0

∞\
0

e−sx−ty µ(dx, dy),

then

µ{(0, 0)} = −1, µ{0× [y,∞)} = e−y, µ{[x,∞)× 0} = e−x.

6.Applications.In population models two random mechanisms may be
described by BVNB distributions. The first is the variation of the population
(in the examples: technical state of an omnibus, condition of a bird) which
is represented here by random variables (Λ1, Λ2). The second mechanism is
in creation of random variables for an individual (the number of accidents of
an omnibus, the number of parasites of a bird, and so on). In the definition
of a BVNB distribution both mechanisms are conditionally independent.

The key problem in the applications of MVNB distributions is the es-
timation of parameters of the distribution. Edwards and Gurland [2] and
Subrahmaniam and Subrahmaniam [7] analyze this problem for some stan-
dard data and examine a few techniques. Here this problem is solved in
two stages. In the first stage we consider the estimation of the parameters
p, r of the marginal distributions by the maximum likelihood method; for
computations of the maximum of the likelihood function we use directly its
definition. In the second stage we estimate the parameters α, β and γ of the
joint distribution defined according to the suggestion in [7] in such a way as
to preserve the probability of (0,0) cells (Zero-Zero Cell Frequency Method),
or alternatively, as to preserve the correlation coefficient (Moment Method).

In the consideration of the number of parasites of birds (see [3]–[5]) it
is supposed that outliers in the data exist, e.g. with a small probability
items with a very large number of parasites occur. Hence the moment or
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maximum likelihood estimators may be biased. Therefore in Application 3
a right side truncated distribution is used (in place of the kth extreme order
statistic; here k = 3). For information on goodness of fit the chi-square
statistic was computed. In the presentation of results the marginal classes
are grouped in such a way that the frequencies exceed a fixed number (here
6). The negative value of the estimator in the case of positive parameter
has been corrected to 0.

Application 1. In [2] (Table 1, see also [7], Table 5) Edwards and
Gurland analyze some standard data concerning the number of accidents.
Using this in our computations, under the assumption of negative binomial
distribution the estimation of the parameters of the marginal distributions
of 251 observations gives p1 = 0.79, r1 = 0.91, p2 = 0.77, r2 = 1.01. In
the class of BVNB we have r1 = r2. For simplicity of further calculations
let r1 = r2 = r = 1; then p1 = 0.7733, p2 = 0.7724. Using the marginal
parameters and (0,0) cell frequency, we obtain α = 0.0005, β = 0.0019, γ =
0.2927. The observed and expected frequencies are given in Table 1. Using
the parameters of marginals and the correlation coefficient, after correction
of negative values of the estimators, we obtain α = 0, β = 0, γ = 0.3792.
The observed and expected frequencies computed using (7) are presented in
Table 2.

TABLE 1. The observed and expected frequencies for the Edwards–Gurland data ([2],
Table 5) (using the Zero-Zero Cell Frequency Method) r = 1, α = 0, β = 0, γ = 0.3792,
χ2 = 91.4, df = 45

0 1 2 3 4 5-7 ≥ 8

0 40 40.00 20 16.81 3 7.07 0 2.97 2 1.25 0 0.84 0 0.07
1 10 16.81 22 14.13 7 8.91 1 4.99 1 2.62 0 2.28 0 0.27
2 4 7.07 9 8.91 10 7.49 5 5.25 2 3.31 2 3.63 0 0.63
3 1 2.97 5 4.99 1 5.25 3 4.41 1 3.24 2 4.38 0 1.05
4 0 1.25 2 2.62 2 3.31 5 3.24 6 2.73 7 4.46 3 1.46

5-7 0 0.84 0 2.28 2 3.63 5 4.38 5 4.46 15 9.95 11 5.58
≥ 8 0 0.07 0 0.27 1 0.63 0 1.05 3 1.46 5 5.58 28 10.11

TABLE 2. The observed and expected frequencies for the Edwards–Gurland data ([2],
Table 5) (using the Moment Method) r = 1, α = 0.0005, β = 0.0019, γ = 0.2927,
χ2 = 60.3, df = 45

0 1 2 3 4 5-7 ≥ 8

0 40 32.07 20 13.98 3 6.10 0 2.66 2 1.16 0 0.84 0 0.09
1 10 14.01 22 12.20 7 7.97 1 4.63 1 2.53 0 2.34 0 0.33
2 4 6.13 9 7.99 10 6.95 5 5.05 2 3.30 2 3.84 0 0.76
3 1 2.69 5 4.65 1 5.06 3 4.40 1 3.36 2 4.82 0 1.32
4 0 1.19 2 2.55 2 3.31 5 3.36 6 2.93 7 5.10 3 1.90

5-7 0 0.89 0 2.38 2 3.88 5 4.85 5 5.12 15 12.23 11 7.97
≥ 8 0 0.13 0 0.37 1 0.80 0 1.36 3 1.94 5 8.04 28 19.39
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Application 2. In [2] (Table 1, see also [7], Table 2), to describe the
number of accidents of omnibuses in London in two consecutive years, a
negative binomial distribution is used. The estimation of the parameters of
the marginals of 166 pairs of observations is a negative binomial distribution
for the first variable with p1 = 0.2052, r1 = 6.2533 and for the second
variable with p2 = 0.2710, r2 = 4.1810. Assuming r1 = r2 = r, we obtain
r = 5.045. For simplicity of further calculations let (see [7]) r = 5; then
p1 = 0.244, p2 = 0.237. Using the marginal parameters and (0,0) cell
frequency, after the correction of negative values of parameters, we obtain
α = 0, β = 0, γ = 3.2. Table 3 shows the observed and expected frequencies
computed using (7) and convolutions. Here χ2 = 17.86; using correlation,
one obtains a similar goodness of fit (χ2 = 17.66).

TABLE 3. The observed and expected frequencies for the Ed-
wards–Gurland data ([2], Table 1) (using Zero-Zero Cell Fre-
quency Method) r = 5, α = 0, β = 0, γ = 3.24, χ2 = 17.9,
df = 20

0 1 2 3 4-9

0 15 15.00 15 14.32 4 8.20 2 3.65 1 2.09
1 17 14.32 18 16.39 9 10.95 3 5.57 5 3.77
2 4 8.20 16 10.95 12 8.36 6 4.79 5 3.79
3 2 3.65 6 5.57 5 4.79 2 3.04 4 2.80

4-9 2 2.09 4 3.77 5 3.79 0 2.80 4 3.29

Application 3. In [3]–[5] for some species of birds and some species of
parasites it was established that the number of parasites of a bird is a nega-
tive binomial or a mixture of negative binomials. We consider the parasites
of the species Goniocotes chrysocephalus and Zlotorzyckiella colchici of the
pheasant (Phasianus colchicus L.). For the data on the number of parasites
of these species for 50 pheasants see [4].

According to the supposition that outliers exist, the truncated random
variables min(X1, 95) in place of X1 and min(X2, 92) in place of X2 are
used. Assuming marginals with common r, by the maximum likelihood
method we estimate v1 = 0.1691, p1 = 0.9923 for X1 and v2 = 0.1487,
p2 = 0.9936 for X2. If it is assumed that v1 = v2 = v, then r = 0.1520,
p1 = 0.9909, p2 = 0.9914. For simplicity of further calculations of the
expected frequencies let r = 0.15625 = 1

8 + 1
32 (then the technique of

square roots and convolutions may be used). Then p1 = 0.9906, p2 =
0.9911.

We estimate the parameter γ by the Zero-Zero Cell Frequency Method.
Using (1) and (9) we obtain α = 0.0087, β = 0.0082, γ = 0.0008. Table 4
gives the observed and expected frequencies.
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T A B L E 4. The observed and expected frequencies for the number of parasites of the
pheasant (using Zero-Zero Cell Frequency Method): r = 0.18625, α = 0.0087, β = 0.0082,
γ = 0.0008, χ2 = 25.1

X1
0 1 2-4 5-12 13-40 ≥ 40 Total

0 15 15.00 0 1.36 3 1.10 1 1.33 3 2.44 1 2.89 23 24.11
1 2 1.36 1 0.68 2 0.68 0 0.24 0 0.33 0 0.44 5 3.73

2-4 3 1.09 1 0.68 0 1.43 0 0.76 1 0.32 0 0.56 5 4.85
X2 5-12 3 1.31 0 0.24 0 0.75 1 1.87 1 0.50 1 0.54 6 5.21

13-40 2 2.41 1 0.32 1 0.32 1 0.50 0 2.13 2 0.48 7 6.16
≥ 41 0 2.73 1 0.42 0 0.53 1 0.51 0 0.45 2 1.30 4 5.94

Total 25 23.91 4 3.70 6 4.82 4 5.18 5 6.18 6 6.21 50 50.00
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