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Multivariate Nonparametric Tests
Hannu Oja and Ronald H. Randles

Abstract. Multivariate nonparametric statistical tests of hypotheses are de-
scribed for the one-sample location problem, the several-sample location
problem and the problem of testing independence between pairs of vectors.
These methods are based on affine-invariant spatial sign and spatial rank vec-
tors. They provide affine-invariant multivariate generalizations of the univari-
ate sign test, signed-rank test, Wilcoxon rank sum test, Kruskal–Wallis test,
and the Kendall and Spearman correlation tests. While the emphasis is on
tests of hypotheses, certain references to associated affine-equivariant esti-
mators are included. Pitman asymptotic efficiencies demonstrate the excel-
lent performance of these methods, particularly in heavy-tailed population
settings. Moreover, these methods are easy to compute for data in common
dimensions.

Key words and phrases:Affine invariance, spatial rank, spatial sign, Pitman
efficiency, robustness.

1. INTRODUCTION

Modern data collection settings often involve col-
lecting information on multiple attributes of each ob-
ject (person, animal) in the study. In health studies,
for example, each observation on a patient is actu-
ally a whole array of measurements which together
describe the health status of the person at a particu-
lar point in time. Thus we are naturally led to con-
sider vector-valued observations in dealing with data
from these settings. There are special needs and con-
cerns when dealing with multivariate data. If each com-
ponent of the vectors is only studied marginally, then
certain outliers, strongly influential points and useful
relationships among variables may not be detected.
Thus a multivariate examination of the data is very ap-
propriate and important. Describe each observation as
a vectorxi = (xi1, . . . , xip)T of dimensionp. The com-
ponentsxi1, . . . , xip usually (but not always) represent
different types of measurements made on one experi-
mental unit. In our discussions, we consider each com-
ponent to be continuous (or at least fairly continuous)
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in nature. This paper examines a number of hypothesis
testing problem settings for multivariate data.

2. ONE-SAMPLE LOCATION PROBLEM

2.1 Hotelling’s T 2 Test

Let X1, . . . ,Xn be i.i.d. fromF(x − θ), whereF(·)
represents a continuousp-dimensional distribution
“located” at the vector parameterθ = (θ1, . . . , θp)T .
We wish to test the hypotheses

H0 : θ = 0 vs. Ha : θ �= 0.

Note that the zero vector,0, is used without loss of gen-
erality, because to testH0 : θ = θ0 vs. Ha : θ �= θ0, we
substitutexi − θ0 in place ofxi in the tests described
below.

The classical parametric test,Hotelling’s T 2, re-
jectsH0 if

T 2 = nX̄T S−1X̄ ≥ np

n − p
Fp,n−p(α),

whereX̄ = ave{Xi} andS = ave{(Xi − X̄)(Xi − X̄)T }
are the sample mean vector and sample covariance
matrix, respectively, andFν1,ν2(α) is the upperαth
quantile of anF distribution with ν1 and ν2 degrees
of freedom. Notation “ave” means the average taken
over all observationsi = 1, . . . , n. This test assumes
that the underlying population is multivariate normal
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with mean vectorθ and variance–covariance matrix�.
Hotelling’s T 2 test is alsoasymptotically nonparamet-
ric in the sense that if the random sampleX1, . . . ,Xn is
from anyp-variate population with mean vector0 and
finite second moments, then

T 2 d→ χ2
p

and therefore the quantiles of the chi-squared distri-
bution give large sample cutoff values in nonnormal
cases.

Let Ax be any nonsingularp × p matrix such that
AT

x Ax = S−1. The matrixAx may be an upper trian-
gular matrix obtained from a Choleski factorization of
S−1 or the symmetric square root matrixAx = S−1/2,
for example. Then

T 2 = nȲT Ȳ = n‖Ȳ‖2,

whereYi = AxXi , i = 1, . . . , n. ThusT 2 is n times
the squared length of the average(mean vector) of the
transformed data points.

The transformationAx makes the transformed points
appear to have come from a population with variance–
covariance matrix� = I , because the matrixS com-
puted on theYi ’s is I . However, the fundamental
purpose of the transformationAx is to give the test
statistic the following property: A test statisticT (x1,

. . . ,xn) for testingH0 : θ = 0 is said to beaffine invari-
ant if

T (Dx1, . . . ,Dxn) = T (x1, . . . ,xn)

for everyp × p nonsingular matrixD and for every
p-variate data setx1, . . . ,xn. In the current problem
T 2 is affine invariant. This property ensures that its per-
formance is consistent over all possible choices of the
coordinate system.

2.2 Multivariate Sign Test

In one dimension, the sign of an observation is basi-
cally its direction (+1 or−1) from the origin. In higher
dimensions, in this spirit, thespatial sign functionis
defined as

S(x) =
{

‖x‖−1x, x �= 0,

0, x = 0,

where‖x‖ is the L2 norm (Euclidean distance ofx
from 0). The function value is thus just a direction
(a point on the unitp sphere) wheneverx �= 0.

To create an affine-invariant sign test, we apply the
spatial sign function to transformed data points. Define
thespatial signsto be

Si = S(AxXi ) for i = 1, . . . , n,(1)

whereAx is now the data driven transformation pro-
posed by Tyler (1987).Tyler’s shape matrixVx is
the positive definite symmetricp × p matrix with
trace(Vx) = p such that, for anyAx with AT

x Ax = V −1
x ,

p ave{SiST
i } = Ip.

The matrixAx is then calledTyler’s transformation.
It is remarkable that Tyler’s transformationAx as
well as the spatial signsSi , i = 1, . . . , n, then depend
on the data cloud only through directions‖Xi‖−1Xi ,
i = 1, . . . , n.

Tyler’s transformationAx is thus the transforma-
tion that makes thesign covariance matrixequal
to [1/p]Ip, the variance–covariance matrix of a vec-
tor that is uniformly distributed on the unitp sphere.
Since Si and −Si contribute identically to the sam-
ple covariance matrix, the Tyler transformation may be
viewed as an attempt to make the signs (directions) of
the transformed data points±AxXi , i = 1, . . . , n, ap-
pear as though they are uniformly distributed on the
unit p sphere.

Matrix functions in modern computer programming
languages have made Tyler’s shape matrix and Tyler’s
transformation surprisingly easy to compute. Its itera-
tive construction may begin withV = Ip and use an
iteration step that transforms from oneV to the next
via

V ← pV 1/2 ave{SiST
i }V 1/2.

When ‖p ave{SiST
i } − Ip‖ is sufficiently small, stop

and setVx = [p/ trace(V )]V . ChooseAx so that
AT

x Ax = V −1
x . Here, the matrix norm‖A‖ =√

trace(AT A).
Having found the spatial signs described in (1), the

multivariate sign test then rejectsH0 in favor ofHa for
large values of

Q2 = npS̄T S̄ = np‖S̄‖2,(2)

which is simplynp times thesquared length of the av-
erage direction vector of the transformed data points.
This test was developed by Randles (2000).

Appropriate cutoff values for conducting this test de-
pend on the assumptions made about the underlying
distribution F(x − θ). The underlying distribution is
said to beelliptically symmetricif its density takes the
form

f (x − θ) = |�|−1/2g
(
(x − θ)T �−1(x − θ)

)
with symmetry centerθ and positive definite symmet-
ric p × p scatter matrix�. The contours of these



600 H. OJA AND R. H. RANDLES

densities form concentric ellipses centered atθ . The
multivariate normal and multivariatet distributions, for
example, are both members of this broad class. The test
statisticQ2 is strictly distribution-freeover the class of
elliptically symmetric distributions (and a somewhat
larger class). Thusα-level cutoffsQ ≥ qn,p(α) could
be established based on the elliptical distribution class.

Potentially weaker assumptions aboutF(·) include
symmetry (under whichX − θ has the same distribu-
tion asθ − X) or directional symmetry [under which
(X − θ)/‖X − θ‖ has the same distribution as(θ −
X)/‖θ −X‖]. Since symmetry implies directional sym-
metry, the latter is a weaker assumption aboutF(·).
Under the assumption of directional symmetry, acon-
ditional distribution-freep valueis found via

Eδ[I {Q2
δ ≥ Q2}],

whereδ is uniformly distributed over the 2n p-dimen-
sional vectors with each component a+1 or −1 and
Q2

δ is the value of the test statistic for the data set
δ1X1, . . . , δnXn. SinceAx does not depend on the signs
of theXi ’s it is sufficent to replace eachSi with δiSi in
the computation ofQ2

δ .
Finally note that, for large sample sizes, a cutoff can

be obtained by using the fact that when the underlying
distribution is directionally symmetric andH0 holds,
then

Q2 d→ χ2
p.

A multivariate median estimating a directional cen-
ter of the population and corresponding to the sign test
based onQ2 in the Hodges–Lehmann sense was de-
veloped by Hettmansperger and Randles (2002). This
median is called thetransformation–retransformation
spatial median. The tranformation–retransformation
technique was described by Chakraborty, Chaudhuri
and Oja (1998), for example.

2.3 Multivariate Rank Methods

Multivariate ranks are constructed using the signs of
transformed differences

Sij = S
(
Ax(Xi − Xj )

)
, i, j = 1, . . . , n,

again with a data based transformationAx . This leads
to the concept of acentered rank

Ri = avej {Sij }
with the property ave{Ri} = 0. To see that this is an
extension of the univariate centered rank, consider uni-
variate data. With univariate data,Ax can be taken to

be a positive scalar and henceSij = S(Ax(Xi −Xj)) =
sign(Xi −Xj), that is,Ax plays no role. If no ties exist,

Ri = 2

n

[
Rank(Xi) − n + 1

2

]
,

where Rank(Xi) denotes the usual univariate rank
of Xi amongX1, . . . ,Xn, ranking from smallest to
largest. Since(n + 1)/2 is the mean of Rank(Xi), we
see thatRi is 2/n times the regular rank centered at its
mean.

In multivariate settings, the data based transforma-
tion Ax is chosen to make the rank procedures affine
invariant. A natural choice ofAx is the transformation
needed so that the ranks satisfy the property

p ave{RiRT
i } = ave{RT

i Ri}Ip.

This transformation then makes therank covariance
matrix equal to a scalar times the identity matrix, that
is, ave{RiRT

i } = [c2
x/p]Ip, where c2

x = ave{‖Ri‖2}.
The ranks of the transformed points thus behave as
though they are spherically distributed in the unit
p sphere. The iterative construction is as in the case of
Tyler’s shape matrix: One can again start withV = Ip

and use an iteration step

V ← p

ave{RT
i Ri}V

1/2 ave{RiRT
i }V 1/2,

where theRi are calculated from theV −1/2Xi . In the
end,Vx = [p/ trace(V )]V and the transformationAx

is given byAT
x Ax = V −1

x . Unfortunately, there is no
proof of the convergence of the algorithm so far, but in
practice it seems always to converge.

The centered ranks are clearly invariant under loca-
tion shifts and ave{Ri} = 0. The ranksRi lie in the unit
p sphere; the direction ofRi roughly points outward
from the center (spatial median) of the data cloud and
its length (in a sense) tells how far away this point is
from the center.

With univariate data, the Wilcoxon signed-rank test
statistic is essentially the sign test statistic applied to
the Walsh sums (or averages)xi + xj for i ≤ j . Like-
wise, amultivariate one-sample signed-rank test sta-
tistic can be constructed using the signs of transformed
Walsh sums (or averages), that is,

U2 = np

4c2
x

∥∥ave
{
S
(
Ax(Xi + Xj )

)}∥∥2
,(3)

where the average is overi, j = 1, . . . , n. Here the
transformationAx is chosen to be the rank transfor-
mation andc2

x is the scalar described above. If, for
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example,X1, . . . ,Xn is a random sample from an el-
liptically symmetric distribution with symmetry center
θ = 0, then again

U2 d→ χ2
p

and approximate cutoffs can be obtained as quantiles
of the chi-squared distribution.

The multivariate one-sample affine equivariant
Hodges–Lehmann estimateis obtained as the trans-
formed–retransformed (spatial) median of pairwise
averages, that is, the value ofθ which would make
U2 = 0 whenU2 is computed replacing eachXi with
Xi − θ for i = 1, . . . , n. For the noninvariant versions
of the spatial tests and related estimators which do not
utilize the auxiliary transformationAx , see Möttönen
and Oja (1995).

2.4 Efficiencies

The Pitman asymptotic efficiencies of the multivari-
ate sign test and multivariate signed-rank test relative to
Hotelling’sT 2 when the underlying population is mul-
tivariate t were derived by Möttönen, Oja and Tienari
(1997). Some efficiencies are displayed in Table 1. We
see that as the dimensionp increases and as the dis-
tribution gets heavier tailed (df gets smaller), the per-
formance ofQ2 andU2 improves relative toT 2. The
sign test and the signed-rank test are clearly better than
T 2 in heavy-tailed cases. For high dimensions and very
heavy tails, the sign test is the more efficient test. Note
thatdf = +∞ is the multivariate normal. The efficien-
cies in this table also represent ratios of the asymp-
totic variances of the transformation–retransformation
spatial median to the sample mean vector (sign test
columns) and the Hodges–Lehmann estimator to the
sample mean vector (signed-rank test columns).

TABLE 1
Asymptotic efficiencies of the multivariate sign test and the
signed-rank test relative to Hotelling’s T 2 underp-variate

t distributions withν degrees of freedom for
selected values ofp andν

Dimension
p

Sign test Signed-rank test

ν = 3 ν = 6 ν = ∞ ν = 3 ν = 6 ν = ∞
1 1.62 0.88 0.64 1.90 1.16 0.95
2 2.00 1.08 0.78 1.95 1.19 0.97
4 2.25 1.22 0.88 2.02 1.21 0.98

10 2.42 1.31 0.95 2.09 1.22 0.99

2.5 Example

Merchant et al. (1975) studied changes in pulmonary
function of 12 workers after 6 hours of cotton dust ex-
posure. We examine the three-dimensional data pro-
duced by differences in forced vital capacity, forced
expiratory volume and closing capacity. The con-
cern in this problem is whether there is indication of
pulmonary change. Thus we seek to test whether the
three-dimensional population is located at0 or not. An-
alyzing their data yieldsT 2 = 8.5265 with ap value=
0.166 (F ), Q2 = 5.8345 with ap value= 0.120 (χ2

3)

andU2 = 4.8169 with ap value= 0.186(χ2
3).

3. SEVERAL-SAMPLES LOCATION PROBLEM

3.1 Classical Multivariate Analysis of Variance

Let

X1, . . . ,XN1;XN1+1, . . . ,XN2; · · · ;XNc−1+1, . . . ,XNc

be c independent random samples with sample sizes
n1, . . . , nc, from p-variate distributionsF(x − θ1),
F(x − θ2), . . . ,F (x − θc) located atp-variate centers
θ1, θ2, . . . , θc, respectively. HereNi = n1 + · · · + ni

andNc = N . Write alsoN0 = 0. We wish to test the
null hypothesis of no treatment difference, that is,

H0 : θ1 = θ2 = · · · = θc vs. Ha : θ i ’s not all equal.

Note that underH0, X1, . . . ,XN is a random sample
from a common multivariate distribution. The classical
multivariate analysis of variance (MANOVA) test sta-
tistic, Hotelling’s trace statistic, is constructed as fol-
lows. First calculate the global mean vectorX̄ and the
within samples covariance matrixS. Then Hotelling’s
trace statistic is

T 2 =
c∑

i=1

ni‖Ȳi‖2,

where

Ȳi = 1

ni

Ni∑
j=Ni−1+1

Yj , i = 1, . . . , c,

are the samplewise mean vectors of the transformed
data pointsYi = Ax(Xi − X̄), with transformationAx

satisfying AT
x Ax = S−1. The T 2 test statistic is a

weighted sum of squared lengths of transformed dis-
tances of the sample averages from the grand average.
It thus measures the variability among the locations of
the samples. If second moments exist, then under the
null hypothesis,

T 2 d→ χ2
p(c−1).
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Note that this is true also if the within covariance ma-
trix is replaced by the regular combined sample covari-
ance matrix.

Clearly the MANOVA statistic has the following
desired affine invariance property: A test statistic
T (x1, . . . ,xN1; · · · ;xNc−1+1, . . . ,xNc) for testingH0 :
θ1 = · · · = θc is said to beaffine invariantif

T (Dx1 + d, . . . ,DxN1 + d; · · · ;
DxNc−1+1 + d, . . . ,DxNc + d)

= T (x1, . . . ,xN1; · · · ;xNc−1+1, . . . ,xNc)

for every x1, . . . ,xN , d a (p × 1) vector andD a
(p × p) nonsingular matrix. This affine invariance
property ensures that the testing procedure is indepen-
dent of the choice of the coordinate system and behaves
consistently under different covariance structures. This
property is attained because of the transformationAx .

3.2 Several-Samples Rank Test

In the several-samples location problem, again con-
sider the combined sampleX1, . . . ,XN . Form the signs
of transformed differences

Sij = S
(
Ax(Xi − Xj )

)
, i, j = 1, . . . ,N,

which lead to spatial centered ranks of each observa-
tion within the combined sample:

Ri = avej {Sij }, i = 1, . . . ,N.

The data based transformationAx is chosen to make
the rank test affine invariant. It is determined by re-
quiring, as before, that the ranks satisfy the prop-
erty p ave{RiRT

i } = ave{RT
i Ri}Ip. The scalarc2

x =
ave{RT

i Ri} depends on the data cloud.
Multivariate extensions of the two-sample

Wilcoxon–Mann–Whitney test and the several-sample
Kruskal–Wallis test are then obtained as follows. The
several-samples spatial rank test statisticis

U2 = p

c2
x

c∑
i=1

ni‖R̄i‖2,(4)

whereR̄i for i = 1, . . . , c are samplewise mean vec-
tors of the spatial centered ranks as defined above. The
conditions under which the limiting null distribution
of U2 is the chi-squared distribution withp(c − 1) de-
grees of freedom are still to be settled. (The statisti-
cal properties ofAx are unknown.) Under these mild
assumptions, the test statistic is thusasymptotically
distribution-free.

Thep value of aconditionally distribution-free per-
mutation testbased onU2 is obtained via

Eγ [I {U2
γ ≥ U2}],

whereγ = (γ1, . . . , γN) is uniformly distributed over
the N ! permutations of(1, . . . ,N) and U2

γ is the
value of the test statistic for the permuted sample
Xγ1, . . . ,XγN

. Note that theAx used to define theRi ’s
is invariant under permutations, so it is sufficient just to
replace each spatial rankRi with Rγi

for i = 1, . . . ,N

when computingU2
γ using (4).

The several-samples multivariate sign tests—exten-
sions of the univariate Mood test—could be defined as
well. See Möttönen and Oja (1995) for noninvariant
versions. The Pitman asymptotic relative efficiencies
(ARE) of the several-samples multivariate spatial rank
test relative to the classical MANOVAT 2 statistic are
the same as the efficiencies of the multivariate signed-
rank test relative to Hotelling’sT 2; see Table 1.

3.3 An Example

Applying the methods of this section to the male
Egyptian skull data found in Hand et al. (1994,
page 299), we find that for these five samples of 30 ob-
servations in dimension 4,T 2 = 52.643 andU2 =
61.189, which both yield tinyp values when compared
to a chi-squared (df = 16) distribution.

4. TESTING FOR INDEPENDENCE

4.1 The Problem and Classical Test

It is often of interest to explore potential relation-
ships among subsets of multiple measurements. Some
measurements may represent attributes of psychologi-
cal characteristics, while others represent attributes of
physical characteristics. It may be of interest to de-
termine whether there is a relationship between the
psychological and the physical characteristics. This re-
quires a test of independence between pairs of vectors,
where the vectors potentially have different measure-
ment scales and dimensions. Accordingly, letXT

i =
(X(1)T

i ,X(2)T

i ) for i = 1, . . . , n denote a random sam-

ple of vector pairs, whereX(1)
i andX(2)

i are continuous
vectors of dimensionsp andq, respectively. We seek
to test

H0 : X(1)
i andX(2)

i are independent vs.

Ha : they are dependent.

In the multinormal case, Wilks (1935) derived the
likelihood ratio criterion for detecting deviations from
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the hypothesis of independence. The Wilks test statistic
can be expressed as

V n/2 = det
(
ave

{
Y(1)

i Y(2)T

i

})
,

where (as before)Y(v)
i = A

(v)
x (X(v)

i − X̄(v)), v = 1,2
andi = 1, . . . , n, with partitioned sample mean vectors
X̄(v), sample covariance matricesS(v) and transforma-

tionsA
(v)
x such thatA(v)T

x A
(v)
x = (S(v))−1 for v = 1,2.

An asymptotically equivalent test can be based on the
statistic

W = npq
∥∥ave

{
Y(1)

i Y(2)T

i

}∥∥2
.

The statisticW is seen to benpq times the sum of
squares of covariances between elements of the trans-
formed X(1)

i with elements of the transformedX(2)
i

vectors. UnderH0, the limiting distribution ofW is a
chi-squared distribution withpq degrees of freedom.

Muirhead (1982) examined the effect of the group of
transformations{x → Dx + d} on this problem. Here
d is anyp + q vector and

D =
(

D1 0

0 D2

)

is any(p+q)×(p+q) nonsingular matrix of the form
above withp × p matrix D1 and q × q matrix D2.
The Wilks test is invariant under this group of trans-
formations. Thus its value does not depend on the cho-
sen marginal coordinate systems and its performance
is consistent under different variance–covariance struc-
tures of eitherX(1)

i or X(2)
i . This characteristic gener-

ally improves its power and control ofα levels.

4.2 Rank Tests of Independence

To motivate multivariate nonparametric tests of in-
dependence, recall first the popular univariate (p =
q = 1) nonparametric tests due to Kendall (1938) and
Spearman (1904). Kendall’s tau is a scalar multiple of

ave
{
sign

(
X

(1)
i − X

(1)
j

)
sign

(
X

(2)
i − X

(2)
j

)}
or

ave
{
S

(1)
ij S

(2)
ij

}
and Spearman’s rho is a scalar multiple of

ave
{(

Rank
(
X

(1)
i

) − n + 1

2

)(
Rank

(
X

(2)
i

) − n + 1

2

)}

or

ave
{
R

(1)
i R

(2)
i

}
,

where Rank(X(v)
i ) is the usual univariate rank ofX(v)

i

amongX
(v)
1 , . . . ,X

(v)
n for v = 1,2. Kendall’s tau and

Spearman’s rho are correlations between signs of the
pairwise differences and centered ranks, respectively.

A multivariate extension of Kendall’s tau is cre-
ated by forming sign vectorsS(1)

ij = S(A
(1)
x (X(1)

i −
X(1)

j )), where the transformationA(1)
x is chosen so

that p ave{S(1)
ij S(1)T

ij } = Ip. This is the transformation
studied by Tyler (1987) but computed on differences
X(1)

i − X(1)
j . The corresponding shape matrixVx for

which AT
x Ax = V −1

x was introduced by Dümbgen
(1998). Note that theS(1)

ij ’s are invariant under loca-
tion shifts. Similarly,q-dimensional sign vectorsS(2)

ij

are formed based on differences amongA
(2)
x X(2)

1 , . . . ,

A
(2)
x X(2)

n with a similar transformationA(2)
x .

A multivariate version of the test based on Kendall’s
tau uses

τ2 = npq

(2c
(1)
x c

(2)
x )2

∥∥ave
{
S(1)

ij S(2)T

ij

}∥∥2

with data dependent constantsc
(1)
x andc

(2)
x described

below. Here the scalar multiple is chosen so that when
the marginal distributions ofX(v)

i are elliptically sym-
metric,v = 1,2, and whenH0 is true, the limiting dis-
tribution of τ2 is a chi-squared distribution withpq

degrees of freedom.
The multivariate extension of Spearman’s rho uses

centered rank vectorsR(1)
i based on differences among

the first componentsA(1)
x x(1)

1 , . . . ,A
(1)
x x(1)

n transformed

by A
(1)
x chosen so that

p ave
{
R(1)

i R(1)T

i

} = ave
{
R(1)T

i R(1)
i

}
Ip.

With analogous descriptions of theq-dimensional rank

vectorsR(2)
i , a multivariate version of the test based on

Spearman’s rho uses

ρ2 = npq

(c
(1)
x c

(2)
x )2

∥∥ave
{
R(1)

i R(2)T

i

}∥∥2

with (
c(1)
x

)2 = ave
{
R(1)T

i R(1)
i

}
and (

c(2)
x

)2 = ave
{
R(2)T

i R(2)
i

}
.

Again the scalar multiple is chosen so that the limiting
null distribution ofρ2 is a chi-squared distribution with
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pq degrees of freedom, under the same conditions de-
scribed forτ2. The statisticsτ2 andρ2 were proposed
by Taskinen, Oja and Randles (2005).

The statisticτ2 (ρ2) is seen to be a scalar multi-
ple of the sum of squares of covariances between ele-
ments of the sign-transformed differencesX(1)

i − X(1)
j

(rank-transformedX(1)
i ) and elements of the corre-

sponding sign-transformed differencesX(2)
i − X(2)

j

(rank-transformedX(2)
i ). The statisticsτ2 andρ2 are

easy to compute for data in common dimensions. This
property makes them very practical. For smalln, con-
ditionalp values can be generated via

Eγ [I {τ2
γ ≥ τ2}] and Eγ [I {ρ2

γ ≥ ρ2}],
whereγ = (γ1, . . . , γn) is uniformly distributed over
then! permutations of the integers(1,2, . . . , n) and

τ2
γ = npq

(2c
(1)
x c

(2)
x )2

∥∥ave
{
S(1)

ij S(2)T

γiγj

}∥∥2
,

ρ2
γ = npq

(c
(1)
x c

(2)
x )2

∥∥ave
{
R(1)

i R(2)T

γi

}∥∥2
.

A multivariate analogue to the univariate Blomqvist
(1950) quadrant test was developed by Taskinen,
Kankainen and Oja (2003).

4.3 Efficiencies and an Example

Using the model( X(1)

X(2)

)
=

(
(1− 
)Ip 
M1


MT
1 (1− 
)Iq

)( Z(1)

Z(2)

)
,

where Z(1) and Z(2) are independent, Pitman AREs
were developed by Taskinen, Oja and Randles (2005).
Here M1 denotes an arbitraryp × q matrix with
‖M1‖2 > 0. Some AREs for contaminated normalZ(v)

are shown in Table 2, wherep = q and
Z(v) ∼ (0.9)N(0, I ) + (0.1)N(0, cI ). The efficiencies

TABLE 2
Asymptotic efficiencies of the multivariate analogues to

Spearman’s rho and Kendall’s tau tests at different contaminated
normal distributions forε = 0.1 and for selected values ofc and

selected dimensionsp = q

Dimension
p = q

Kendall and Spearman

c = 1 c = 3 c = 6

2 0.93 1.17 1.92
5 0.96 1.23 2.05

10 0.98 1.26 2.11

are relative to the classical parametric test with test sta-
tistic W . Again we observe the superiority of the spa-
tial sign and rank based methods, particularly in higher
dimensions and with heavier tailed populations.

Applying these methods to the head length and head
breadth measurements on both first and second born
sons in 25 families (see Hand et al., 1994, page 85),
we test whether there is correlation among these paired
bivariate measurements. The tests yieldW = 75.872,
τ2 = 66.678 andρ2 = 26.914. Thep values are very
small for all three tests based on comparison to a chi-
squared (df = 4) distribution.

5. FINAL REMARKS

This paper describes only one possible approach to
creating multivariate analogues to common univariate
tests of hypotheses. Additional analogues based on al-
ternative principles include the following. First, the
so-called interdirection counts introduced by Randles
(1989) can be used to construct nonparametric tests
which are often asymptotically equivalent to the tests
discussed here. Second, methods based on marginal
signs and ranks were described by Puri and Sen (1971).
Other methods, based on distances measured via vol-
umes of simplices, were described by Oja (1999) and
the references contained therein. Optimal signed-rank
testing procedures based on interdirections and (uni-
variate) ranks of the lengths of the residual vectors
were developed by Hallin and Paindaveine (2002).
Also different depth functions (Liu, Parelius and Singh,
1999; Zuo and Serfling, 2000) provide center-outward
orderings or rankings of data points which can be used
in test constructions.

The authors wish to thank Seija Sirkiä for her help
in the implementation of the methods; the R func-
tions used in the calculation can be found on her web-
site:http://www.maths.jyu.fi/˜ssirkia/signrank/signrank.
html.
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