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Abstract. Since the introduction of Stein’s method in the early 1970s, much re-
search has been done in extending and strengthening it; however, there does not
exist a version of Stein’s original method of exchangeable pairs for multivariate
normal approximation. The aim of this article is to fill this void. We present three
abstract normal approximation theorems using exchangeable pairs in multivariate
contexts, one for situations in which the underlying symmetries are discrete, and
real and complex versions of a theorem for situations involving continuous sym-
metry groups. Our main applications are proofs of the approximate normality of
rank k projections of Haar measure on the orthogonal and unitary groups, when
k = o(n).

1. Introduction

Stein’s method was introduced by Charles Stein (1972) as a tool for proving
central limit theorems for sums of dependent random variables. Stein’s version
of his method, best known as the “method of exchangeable pairs”, is described in
detail in his later work (Stein, 1986). The method of exchangeable pairs is a general
technique whose applicability is not restricted to sums of random variables; for
some recent examples, one can look at the work of Jason Fulman (2005) on central
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limit theorems for complicated objects arising from the representation theory of
permutation groups, and the work of the second-named author (Meckes, 2007) on
the distribution of eigenfunctions of the Laplacian on Riemannian manifolds.

One of the significant advantages of the method is that it automatically gives
concrete error bounds. Although Stein’s original theorem does not generally give
Kolmogorov distance bounds of the correct order, there has been substantial re-
search on modifications of Stein’s result to obtain rate-optimal Berry-Esséen type
bounds (see e.g. the works of Rinott and Rotar, 1997 and Shao and Su, 2006).
The “infinitesimal” version of the method described in Meckes (2006) and in our
Theorems 2.4 and 2.5 below frequently does produce bounds of the correct order,
in total variation distance in the univariate case and in Wasserstein distance in the
multivariate case.

Heuristically, the method of exchangeable pairs for univariate normal approxi-
mation goes as follows. Suppose that a random variable W is conjectured to be
approximately a standard Gaussian. The first step in the method is to construct a
second random variable W ′ on the same probability space such that (W, W ′) is an
exchangeable pair, i.e. (W, W ′) has the same distribution as (W ′, W ). The random
variable W ′ is generally constructed by making a small random change in W , so
that W and W ′ are close.

Let ∆ = W − W ′. The next step is to verify the existence of a small number λ

such that

E(∆ | W ) = λW + r1, (1.1)

E(∆2 | W ) = 2λ + r2, and (1.2)

E|∆|3 = r3, (1.3)

where the random quantities r1, r2, and r3 are all negligible compared to λ. If the
above relations hold, then, depending on the sizes of λ and the ri’s, one can conclude
that W is approximately Gaussian. The exact statement of Stein’s abstract normal
approximation theorem for piecewise differentiable test functions is the following:

Theorem 1.1 (Stein (1986), page 35). Let (W, W ′) be an exchangeable pair of
real random variables such that EW 2 = 1 and E

[

W − W ′ | W
]

= λW for some
0 < λ < 1. Let ∆ = W − W ′. Let h : R → R be bounded with piecewise continuous
derivative h′. Then for Z a standard normal random variable,

∣

∣Eh(W ) − Eh(Z)
∣

∣ ≤ ‖h − Eh(Z)‖∞
λ

√

Var(E
[

∆2 | W
]

) +
‖h′‖∞

4λ
E|∆|3.

Observe that the condition E
[

W − W ′∣
∣W
]

= λW implies that E∆2 = 2λ, and
thus the bound in Stein’s theorem above can also be stated as:

∣

∣Eh(W ) − Eh(Z)
∣

∣ ≤ 2‖h− Eh(Z)‖∞

√

E

[

1

2λ
E
[

∆2
∣

∣W
]

− 1

]

+
‖h′‖∞

4λ
E|∆|3.

Powerful as it is, the above theorem and all its existing modifications cater
only to univariate normal approximation. There has been some previous work in
proving multivariate central limit theorems using Stein’s method, though none of
these approaches have used exchangeable pairs. Rinott and Rotar (1996) proved
multivariate central limit theorems for sums of dependent random vectors using
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the dependency graph version of Stein’s method. Around the same time, Gold-
stein and Rinott (1996a) developed the size-bias coupling version of Stein’s method
for multivariate normal approximation. Both of these techniques are well-known
and in regular use. More recently, Raič (2004) proved a new multivariate central
limit theorem for sums of dependent random vectors with the dependency graph
approach which removed the need for finite third moments. However, as in the
univariate case, there are many problems which are more amenable to analysis via
exchangeable pairs (particularly the adaptation to the case of continuous symme-
tries) which necessitates the creation of a multivariate version of this method. The
present authors introduced, for the first time, a multivariate version of Theorem
1.1 in an earlier draft of this manuscript that was posted on arXiv. Subsequently,
an extension of one of our main results (Theorem 2.3) to the case of multivariate
normal approximation with non-identity covariance was formulated by Reinert and
Röllin (2008). Our current draft is mainly a reorganization of the original manu-
script, with better error bounds in several examples. We refer to the Reinert-Röllin
paper for many other interesting applications.

The contents of this paper are as follows. In Section 2, we prove three abstract
normal approximation theorems which give a framework for using the method of
exchangeable pairs in a multivariate context. The first is for situations in which
the symmetry used in constructing the exchangeable pair is discrete, and is a fairly
direct analog of Theorem 1.1 above. An an example, the theorem is applied in
Section 3 to prove a basic central limit theorem for a sum of independent, identically
distributed random vectors.

The second abstract theorem of Section 2 includes an additional modification,
making it useful in situations in which continuous symmetries are present. The
idea for the modification was introducted in the technical report by Stein (1995)
and further developed in Meckes (2006). Section 4 contains two applications of
this theorem. First, for Y a random vector in Rn with spherically symmetric
distribution, sufficient conditions are given under which the first k coordinates are
approximately distributed as a standard normal random vector in Rk. We then give
a treatment of projections of Haar measure on the orthogonal group. Specifically, for
M a random n×n orthogonal matrix and A1, . . . , Ak fixed matrices over R, we give
an explicit bound on the Wasserstein distance between (Tr (A1M), . . . , Tr (AkM))
and a Gaussian random vector.

As a corollary to the theorem discussed above, we state a theorem for bounding
the distance between a complex random vector and a complex Gaussian random
vector, in the context of continuous groups of symmetries. The main application of
this version of the theorem in given in Section 4, where for M a random n×n unitary
matrix and A1, . . . , An fixed matrices over C, we derive an explicit bound on the
Wasserstein distance between (Tr (A1M), . . . , Tr (AkM)) and a complex Gaussian
random vector.

Before moving into Section 2, we give the following very brief outline of the
literature around the various other versions of Stein’s method.

Other versions of Stein’s method. The three most notable variants of Stein’s
method are (i) the dependency graph approach introduced by Baldi and Rinott
(1989) and further developed by Arratia et al. (1990) and Barbour et al. (1989),
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(ii) the size-biased coupling method of Goldstein and Rinott (1996b) (see also Bar-
bour et al. (1992)), and (iii) the zero-biased coupling technique due to Goldstein
and Reinert (1997). In addition to these three basic approaches, an important
contribution was made by Andrew Barbour (1990), who noticed the connection
between Stein’s method and diffusion approximation. This connection has subse-
quently been widely exploited by practitioners of Stein’s method, and is a mainstay
of some of our proofs.

Besides normal approximation, Stein’s method has been successfully used for
proving convergence to several other distributions as well. Shortly after the method
was introduced for normal approximation by Stein, Poisson approximation by
Stein’s method was introduced by Chen (1975) and became popular after the
publication of Arratia et al. (1989, 1990). The method has also been developed
for gamma approximation by Luk (1994); for chi-square approximation by Pickett
(2004); for the uniform distribution on the discrete circle by Diaconis (2004); for
the semi-circle law by Götze and Tikhomirov (2005); for the binomial and multi-
nomial distributions by Holmes (2004) and Loh (1992); and the hypergeometric
distribution, also by Holmes (2004).

The method of exchangeable pairs was extended to Poisson approximation by
Chatterjee, Diaconis and Meckes in the survey paper Chatterjee et al. (2005), and
to a general method of normal approximation for arbitrary functions of independent
random variables in Chatterjee (2008).

For further references and exposition (particularly to the method of exchangeable
pairs), we refer to the recent monograph edited by Diaconis and Holmes (2004).

1.1. Notation and conventions. The total variation distance dTV (µ, ν) between the
measures µ and ν on R is defined by

dTV (µ, ν) = sup
A

∣

∣µ(A) − ν(A)|,

where the supremum is over measurable sets A. This is equivalent to

dTV (µ, ν) =
1

2
sup

f

∣

∣

∣

∣

∫

f(t)dµ(t) −
∫

f(t)dν(t)

∣

∣

∣

∣

,

where the supremum is taken over continuous functions which are bounded by 1
and vanish at infinity; this is the definition most commonly used in what follows.
The total variation distance between two random variables X and Y is defined to
be the total variation distance between their distributions:

dTV (X, Y ) = sup
A

∣

∣P(X ∈ A) − P(Y ∈ A)
∣

∣ =
1

2
sup

f

∣

∣Ef(X) − Ef(Y )
∣

∣.

If the Banach space of signed measures on R is viewed as dual to the space of
continuous functions on R vanishing at infinity, then the total variation distance is
(up to the factor of 1

2 ) the norm distance on that Banach space.
The Wasserstein distance dW (X, Y ) between the random variables X and Y is

defined by

dW (X, Y ) = sup
M1(g)≤1

∣

∣Eg(X) − Eg(Y )
∣

∣,

where M1(g) = supx 6=y
|g(x)−g(y)|

|x−y| is the Lipschitz constant of g. Note that Wasser-

stein distance is not directly comparable to total variation distance, since the class
of functions considered is required to be Lipschitz but not required to be bounded.



Multivariate normal approximation using exchangeable pairs 261

In particular, total variation distance is always bounded by 1, whereas the state-
ment that the Wasserstein distance between two distributions is bounded by 1 has
content. On the space of probability distributions with finite absolute first moment,
Wasserstein distance induces a stronger topology than the usual one described by
weak convergence, but not as strong as the topology induced by the total varia-
tion distance. See Dudley (1989) for detailed discussion of the various notions of
distance between probability distributions.

We will use N(µ, σ2) to denote the normal distribution on R with mean µ and
variance σ2; unless otherwise stated, the random variable Z = (Z1, . . . , Zk) is
understood to be a standard Gaussian random vector on Rk.

In Rn, the Euclidean inner product is denoted 〈·, ·〉 and the Euclidean norm is
denoted | · |. On the space of real (resp. complex) n × n matrices, the Hilbert-
Schmidt inner product is defined by

〈A, B〉H.S. = Tr (ABT ),
(

resp. 〈A, B〉H.S. = Tr (AB∗)
)

with corresponding norms

‖A‖H.S. =
√

Tr (AAT ),
(

resp. ‖A‖H.S. =
√

Tr (AA∗)
)

.

The operator norm of a matrix A over R is defined by

‖A‖op = sup
|v|=1,|w|=1

| 〈Av, w〉 |.

The n × n identity matrix is denoted In, the n × n matrix of all zeros is denoted
0n, and A ⊕ B is the block direct sum of A and B.

For Ω a domain in R
k, the notation Ck(Ω) will be used for the space of k-times

continuously differentiable real-valued functions on Ω, and Ck
o (Ω) ⊆ Ck(Ω) are

those Ck functions on Ω with compact support. For g : Rk → R, let

M1(g) := sup
x 6=y

|g(x) − g(y)|
|x − y| ;

if g ∈ C1(Rk) also, then let

M2(g) := sup
x 6=y

|∇g(x) −∇g(y)|
|x − y| ;

if g ∈ C2(Rk) as well, then

M3(g) := sup
x 6=y

‖Hess g(x) − Hess g(y)‖op

|x − y| .

The last definition differs from the one in Raič (2004), where M3 is defined in
terms of the Hilbert-Schmidt norm as opposed to the operator norm. Note that
if g ∈ C1(Rk), then M1(g) = supx |∇g(x)|, and if g ∈ C2(Rk), then M2(g) =
supx ‖Hess g(x)‖op.

Acknowledgement. The authors wish to thank an anonymous referee, whose
helpful comments and suggestions significantly improved both the results and the
exposition of this paper.
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2. Three abstract normal approximation theorems

In this section we develop the general machine that will be applied in the exam-
ples in Sections 3 and 4. In the following, we use the notation L(X) to denote the
law of a random vector or variable X . The following lemma gives a second-order
characterizing operator for the Gaussian distribution on Rk.

Lemma 2.1. Let Z ∈ Rk be a random vector with {Zi}k
i=1 independent, identically

distributed standard Gaussians.

(i) If f : Rk → R is two times continuously differentiable and compactly
supported, then

E
[

∆f(Z) − 〈Z,∇f(Z)〉
]

= 0.

(ii) If Y ∈ Rk is a random vector such that

E
[

∆f(Y ) − 〈Y,∇f(Y )〉
]

= 0

for every f ∈ C2(Rk) with E
∣

∣∆f(Y ) − 〈Y,∇f(Y )〉
∣

∣ < ∞, then L(Y ) =
L(Z).

(iii) If g ∈ C∞
o (Rk), then the function

Uog(x) :=

∫ 1

0

1

2t

[

Eg(
√

tx +
√

1 − tZ) − Eg(Z)
]

dt

is a solution to the differential equation

∆h(x) − 〈x,∇h(x)〉 = g(x) − Eg(Z). (2.1)

Remark. The form of Uog is a direct rewriting of the inverse of the Ornstein-
Uhlenbeck generator (see Barbour, 1990).

Proof . Part (i) is just integration by parts.
Part (ii) follows easily from part (iii): note that if

E
[

∆f(Y ) − 〈Y,∇f(Y )〉
]

= 0

for every f ∈ C2(Rk) with E
∣

∣∆f(Y ) − 〈Y,∇f(Y )〉
∣

∣ < ∞, then for g ∈ C∞
o given,

Eg(Y ) − Eg(Z) = E
[

∆(Uog)(Y ) − 〈Y,∇(Uog)(Y )〉
]

= 0,

and so L(Y ) = L(Z) since C∞
o is dense in the class of bounded continuous functions

vanishing at infinity, with respect to the supremum norm.
A proof of part (iii) is given in Barbour (1990), Götze (1991) and Raič (2004),

all using results about Markov semi-groups. For a direct proof, see Meckes (2006).
�

The next lemma gives useful bounds on Uog and its derivatives in terms of g and
its derivatives. As in Raič (2004), bounds are most naturally given in terms of the
quantities Mi(g) defined in the introduction.

Lemma 2.2. For g : Rk → R given, Uog satisfies the following bounds:

(i)
sup

x∈Rk

‖Hess Uog(x)‖H.S. ≤ M1(g).

(ii)

M3(Uog) ≤
√

2π

4
M2(g).
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Proof . Write h(x) = Uog(x) and Zx,t =
√

tx+
√

1 − tZ. Note that by the formula
for Uog,

∂rh

∂xi1 · · ·∂xir

(x) =

∫ 1

0

(2t)−1tr/2
E

[

∂rg

∂xi1 · · ·∂xir

(Zx,t)

]

dt. (2.2)

It follows by integration by parts on the Gaussian expectation that

∂2h

∂xi∂xj
(x) =

∫ 1

0

1

2
E

[

∂2g

∂xi∂xj
(
√

tx +
√

1 − tZ)

]

dt

=

∫ 1

0

1

2
√

1 − t
E

[

Zi
∂g

∂xj
(Zx,t)

]

dt,

(2.3)

and so

Hess h(x) =

∫ 1

0

1

2
√

1 − t
E

[

Z (∇g(Zx,t))
T
]

dt. (2.4)

Fix a k × k matrix A. Then

〈Hess h(x), A〉H.S. =

∫ 1

0

1

2
√

1 − t
E
[〈

AT Z,∇g(Zx,t)
〉]

dt,

thus

|〈Hess h(x), A〉H.S.| ≤ M1(g)E|AT Z|
∫ 1

0

1

2
√

1 − t
dt = M1(g)E|AT Z|.

If A = [aij ]ki,j=1, then

E|AZ| ≤
√

E|AZ|2 =

√

√

√

√

√E

k
∑

i=1





k
∑

j=1

ajiZj





2

=

√

√

√

√

k
∑

i,j=1

a2
ij = ‖A‖H.S.,

and thus

‖Hess h(x)‖H.S. ≤ M1(g)

for all x ∈ Rk, hence part (i).
For part (ii), let u and v be fixed vectors in Rk with |u| = |v| = 1. Then it follows

from (2.4) that

〈(Hess h(x) − Hess h(y)) u, v〉 =

∫ 1

0

1

2
√

1 − t
E [〈Z, v〉 〈∇g(Zx,t) −∇g(Zy,t), u〉] dt,

and so

|〈(Hess h(x) − Hess h(y))u, v〉| ≤ |x − y|M2(g) E| 〈Z, v〉 |
∫ 1

0

√
t

2
√

1 − t
dt

= |x − y|M2(g)

√
2π

4
,

since 〈Z, v〉 is just a standard Gaussian random variable. This completes the proof
of part (ii). �

There is an important difference in the behavior of solutions to the Stein equation
(iii) in the context of multivariate approximation versus univariate approximation.
In the univariate case, one can replace the expression on the left-hand side of (iii)
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with the first-order expression h′(x) − xh(x); the function g(x) = Uoh(x) which
solves the differential equation

h′(x) − xh(x) = g(x) − Eg(Z)

satisfies the bounds (see Stein, 1986)

‖g‖∞ ≤
√

π

2
‖h − Eh(Z)‖∞ M1(g) ≤ 2‖h− Eh(Z)‖∞ M2(g) ≤ 2M1(h),

and the fact that the differential equation is first order rather than second then
allows for reducing the degree of smoothness needed by one, over what is required
in the multivariate case. Alternatively, one can use the same expression as in
(iii) above; in this case, M3(g) ≤ 2M1(g) (see Raič, 2004), also decreasing by one
the degree of smoothenss needed. This improvement allowed the univariate version
proved in Meckes (2008) of Theorem 4.5 below, on the approximation of projections
of Haar measure on the orthogonal group by Gaussian measure, to be proved in
total variation distance as opposed to Wasserstein distance.

This improvement is not possible in the multivariate case; it can be shown, for
example (see Raič, 2004), that if

f(x, y) = max{min{x, y}, 0},

then Uof defined as in Lemma 2.1 is twice differentiable but ∂2(Uof)
∂x2 is not Lipschitz.

Theorem 2.3. Let X and X ′ be two random vectors in Rk such that L(X) =
L(X ′), and let Z = (Z1, . . . , Zk) ∈ R

k be a standard Gaussian random vector.
Suppose there is a constant λ such that

1

λ
E
[

X ′ − X
∣

∣X
]

= −X. (2.5)

Define the random matrix E by

1

2λ
E
[

(X ′ − X)(X ′ − X)T
∣

∣X
]

= σ2Ik + E
[

E
∣

∣X
]

. (2.6)

Then if g ∈ C2(Rk) with M1(g) < ∞ and M2(g) < ∞,

∣

∣Eg(X) − Eg(σZ)
∣

∣ ≤ 1

σ
M1(g)E‖E‖H.S. +

(√
2π

24σ

)

M2(g)

λ
E|X ′ − X |3. (2.7)

Proof . Fix g, and let Uog be as in Lemma 2.1. Note that it suffices to assume
that g ∈ C∞(Rk): let h : R

k → R be a centered Gaussian density with covariance
matrix ǫ2Ik. Approximate g by g ∗ h; clearly ‖g ∗ h − g‖∞ → 0 as ǫ → 0, and by
Young’s inequality, M1(g ∗ h) ≤ M1(g) and M2(g ∗ h) ≤ M2(g).

Note also that if f(x) = g(σx), then
∣

∣Eg(X)−Eg(σZ)
∣

∣ =
∣

∣Ef(σ−1X)−Ef(Z)
∣

∣.

It is easy to see that M1(f) = σM1(g) and M2(f) = σ2M2(g). It thus follows from
the theorem for σ = 1 that

∣

∣Eg(X) − Eg(σZ)
∣

∣ ≤ σM1(g)E
∥

∥σ−2E
∥

∥

H.S.
+

(√
2π

24

)

σ2M2(g)

λ
E
∣

∣σ−3(X ′ − X)
∣

∣

3

=
M1(g)

σ
E‖E‖H.S. +

√
2π M2(g)

24σλ
E|X ′ − X |3;

we therefore restrict our attention to the case σ = 1.
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For notational convenience, write h(x) = Uog(x). Then

0 =
1

λ
E [h(X ′) − h(X)]

=
1

λ
E

[

〈X ′ − X,∇h(X)〉 +
1

2
(X ′ − X)T (Hess h(X))(X ′ − X) + R

]

= E

[

−〈X,∇h(X)〉 + ∆h(X) + 〈E, Hess h(X)〉H.S. +
R

λ

]

= Eg(X) − Eg(Z) + E

[

〈E, Hess h(X)〉H.S. +
R

λ

]

, (2.8)

where R is the error in the second-order expansion. By an alternate form of Taylor’s
theorem (see Yomdin, 1983),

E|R| ≤ M3(h)

6
E|X ′ − X |3 ≤

√
2πM2(g)

24
E|X ′ − X |3.

Furthermore,

E |〈E, Hess h(X)〉| ≤
(

sup
y∈Rk

‖Hess h(y)‖H.S.

)

E‖E‖H.S. ≤ M1(g)E‖E‖H.S..

This completes the proof.
�

Remarks.

(i) Usually the X and X ′ of the theorem will make an exchangeable pair, but
this is not required for the proof.

(ii) The coupling assumed in (2.5) implies that EX = 0. It is not required that
X have a scalar covariance matrix, however, it follows from (2.5) and (2.6)
that

E
[

E
]

= E
[

XXT
]

− σ2Ik.

It should therefore be the case that the covariance matrix of X is not too
far from σ2Ik.

The following is a continuous analog of Theorem 2.3. A univariate version which
gives approximation in total variation distance was proved in Meckes (2008). As
was noted following the proof of Lemma 2.2, a bound on total variation distance
in the multivariate context is not possible with the method used here because of
the difference in the behavior of solutions to the Stein equation in the multivariate
context.

Theorem 2.4. Let X be a random vector in Rk and for each ǫ > 0 let Xǫ be
a random vector such that L(X) = L(Xǫ), with the property that limǫ→0 Xǫ =
X almost surely. Let Z be a normal random vector in Rk with mean zero and
covariance matrix σ2Ik. Suppose there is a function λ(ǫ) and a random matrix F

such that the following conditions hold.

(i)
1

λ(ǫ)
E
[

(Xǫ − X)i

∣

∣X
] L1−−−→

ǫ→0
−X.
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(ii)

1

2λ(ǫ)
E
[

(Xǫ − X)(Xǫ − X)T |X
] L1−−−→

ǫ→0
σ2Ik + E

[

F
∣

∣X
]

.

(iii) For each ρ > 0,

lim
ǫ→0

1

λ(ǫ)
E

[

∣

∣Xǫ − X
∣

∣

2
I(|Xǫ − X |2 > ρ)

]

= 0.

Then

dW (X, Z) ≤ 1

σ
E‖F‖H.S. (2.9)

Proof . Fix a test function g; as in the proof of Theorem 2.3, it suffices to assume
that g ∈ C∞(Rk) and to consider only the case σ = 1; the general result follows
exactly as before.

Let Uog be as in Lemma 2.1, and as before, write h(x) = Uog(x). Observe

0 =
1

λ(ǫ)
E [h(Xǫ) − h(X)]

=
1

λ(ǫ)
E

[

〈Xǫ − X,∇h(X)〉 +
1

2
(Xǫ − X)T (Hess h(X))(Xǫ − X) + R

]

,

(2.10)

where R is the error in the second-order approximation of h(Xǫ) − h(X). By
Taylor’s theorem, there is a constant K (depending on h) and a function δ with
δ(x) ≤ K min{x2, x3}, such that

∣

∣R
∣

∣ ≤ δ(|X ′ − X |). Fix ρ > 0. Then by breaking

up the integrand over the sets
{

|Xǫ − X | ≤ ρ
}

and
{

|Xǫ − X | > ρ
}

,

1

λ(ǫ)
E
∣

∣R
∣

∣ ≤ K

λ(ǫ)
E

[

|Xǫ − X |3I(|Xǫ − X | ≤ ρ) + |Xǫ − X |2I(|Xǫ − X | > ρ)
]

≤ KρE
∣

∣Xǫ − X
∣

∣

2

λ(ǫ)
+

K

λ(ǫ)
E

[

|Xǫ − X |2I(|X ′ − X | > ρ)
]

.

The second term tends to zero as ǫ → 0 by condition (iii); condition (ii) implies
that the first is bounded by CKρ for a constant C depending on k and on the
distribution of X . It follows that

lim
ǫ→0

1

λ(ǫ)
E
∣

∣R
∣

∣ = 0.

For the first two terms of (2.10),

lim
ǫ→0

1

λ(ǫ)
E

[

〈Xǫ − X,∇h(X)〉 +
1

2
(Xǫ − X)T (Hess h(X))(Xǫ − X)

]

= lim
ǫ→0

1

λ(ǫ)
E

[

〈

E
[

(Xǫ − X)
∣

∣X
]

,∇h(X)
〉

+
1

2

〈

E

[

(

Xǫ − X
)(

Xǫ − X
)T ∣
∣X
]

, Hess h(X)
〉

H.S.

]

= E
[

−〈X,∇h(X)〉 + ∆h(X) +
〈

E
[

F
∣

∣X
]

, Hess h(X)
〉

H.S.

]

= Eg(X) − Eg(Z) + E
[〈

E
[

F
∣

∣X
]

, Hess h(X)
〉

H.S.

]

,

(2.11)
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where conditions (i) and (ii) together with the boundedness of ∇h and Hess h are
used to get the third line and the definition of h = Uog is used to get the fourth
line. We have thus shown that

E
[

g(X) − g(Z)
]

= −E 〈F, Hess h(X)〉H.S. . (2.12)

The result now follows immediately by applying the Cauchy-Schwarz inequality to
(2.12) and then the bound ‖Hess h(x)‖H.S. ≤ M1(g) from Lemma 2.2 (i). �

Remarks.

(i) It is easy to see that if

(iii′) limǫ→0
1

λ(ǫ)E
∣

∣Xǫ − X
∣

∣

3
= 0,

then condition (iii) of the theorem holds. This is what is done in the
applications below.

(ii) As in Theorem 2.3, the condition (i) implies that EX = 0 and it follows
from (i) and (ii) that

EF = EXXT − σ2I;

the covariance matrix of X should thus not be far from σ2I.

Theorem 2.4 has the following corollary for complex random vectors.

Theorem 2.5. Let W be a random vector in Ck and for each ǫ > 0 let Wǫ be a
random vector such that L(W ) = L(Wǫ), with the property that limǫ→0 Wǫ = W

almost surely. Let Z = (Z1, . . . , Zk) be a standard complex Gaussian random vector;
i.e., with covariance matrix of the corresponding random vector in R2k given by
1
2I2k. Suppose there is a function λ(ǫ) and complex k×k random matrices Γ =

[

γij

]

and Λ =
[

λij

]

such that

(i)
1

λ(ǫ)
E
[

(Wǫ − W )
∣

∣W
] L1−−−→

ǫ→0
−W.

(ii)
1

2λ(ǫ)
E [(Wǫ − W )(Wǫ − W )∗|W ]

L1−−−→
ǫ→0

Ik + E
[

Γ
∣

∣W
]

.

(iii)
1

2λ(ǫ)
E
[

(Wǫ − W )(Wǫ − W )T |W
] L1−−−→

ǫ→0
E
[

Λ
∣

∣W
]

.

(iv) For each ρ > 0, lim
ǫ→0

1

λ(ǫ)
E

[

∣

∣Wǫ − W
∣

∣

2
I(|Wǫ − W |2 > ρ)

]

= 0.

Then

dW (W, Z) ≤ E‖Γ‖H.S. + E‖Λ‖H.S..

Proof . Identifying Ck with R2k, W satisfies the conditions of Theorem 2.4 with
σ2 = 1

2 and F given as a k× k matrix of 2× 2 blocks, with the i-jth block equal to

1

2

[

Re(γij + λij) Im(λij − γij)
Im(λij + γij) Re(γij − λij)

]

.

Thus ‖F‖2
H.S. = 1

2 (‖Γ‖2
H.S. + ‖Λ‖2

H.S.) and

E‖F‖H.S. ≤
1√
2

[

E‖Γ‖H.S. + E‖Λ‖H.S.

]

.

�
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3. Examples using Theorem 2.3

3.1. A basic central limit theorem. As a simple illustration of the use of Theorem
2.3, we derive error bounds in the classical multivariate CLT for sums of independent
random vectors. While the question of error bounds in the univariate CLT was
settled long ago, the optimal bounds in the multivariate case are still unknown and
much work has been done in this direction. One important contribution was made
by Götze (1991), who used Stein’s method in conjunction with induction. To the
best of our knowledge, the most recent results are due to V. Bentkus (2003), where
one can also find extensive pointers to the literature.

Suppose Y is a random vector in Rk with mean zero and identity covariance.
Let W be the normalized sum of n i.i.d. copies of Y . Götze (1991) and Bentkus
(2003) both give bounds on quantities like ∆n = supf∈A |Ef(W ) − Ef(Z)|, where
Z = (Z1, . . . , Zk) is a standard k-dimensional normal random vector and A is any
collection of functions satisfying certain properties. For example, when A is the
class of indicator functions of convex sets, Bentkus gets ∆n ≤ 400k1/4n−1/2E|Y |3,
improving on Götze’s earlier bound which has a coefficient of k1/2 rather than k1/4.
Note that E|Y |3 = O(k3/2).

Theorem 2.3 allows us to easily obtain uniform bounds on |Eg(Sn) − Eg(Z)| for
large classes of smooth functions.

Theorem 3.1. Let {Yi}n
i=1 be a set of independent, identically distributed random

vectors in R
k. Assume that the Yi are such that

E(Yi) = 0, E(YiY
T
i ) = Ik.

Let W = 1√
n

∑n
i=1 Yi. Then for any g ∈ C2

o ,

∣

∣Eg(W ) − Eg(Z)
∣

∣ ≤ M1(g)

2
√

n

√

E|Y1|4 − k +

√
2π

3
√

n
M2(g)E|Y1|3.

Proof . To apply Theorem 2.3, make an exchangeable pair (W, W ′) as follows. For
each i, let Xi be an independent copy of Yi, and let I be a uniform random variable
in {1, . . . , n}, independent of everything. Define W ′ by

W ′ = W − YI√
n

+
XI√

n
.

Then

E
[

W ′ − W
∣

∣W
]

=
1√
n

E
[

XI − YI

∣

∣W
]

=
1

n3/2

n
∑

i=1

E
[

Xi − Yi

∣

∣W
]

= − 1

n
W,

where the independence of Xi and W has been used in the last line. Thus condition
2.5 of Theorem 2.3 holds with λ = 1

n .
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It remains to check condition 2 and bound the Eij . Write Yi = (Y 1
i , . . . , Y k

i ).
For 1 ≤ j, ℓ ≤ k,

Ejℓ =
n

2
E
[

(W ′
j − Wj)(W ′

ℓ − Wℓ)
∣

∣W
]

− δjℓ

=
1

2
E

[

(Xj
I − Y

j
I )(Xℓ

I − Y ℓ
I )
∣

∣W
]

− δjℓ

=
1

2n

n
∑

i=1

E

[

X
j
i Xℓ

i − X
j
i Y ℓ

i − Xℓ
i Y

j
i + Y

j
i Y ℓ

i

∣

∣W
]

− δjℓ

=
1

2n

n
∑

i=1

E

[

Y
j
i Y ℓ

i − δjℓ

∣

∣W
]

,

by the independence of the Xi and the Yi. Thus

EE2
jℓ =

1

4n2
E

(

E

[

n
∑

i=1

(Y j
i Y ℓ

i − δjℓ)

∣

∣

∣

∣

∣

W

])2

≤ 1

4n2
E





(

n
∑

i=1

(Y j
i Y ℓ

i − δjℓ)

)2




=
1

4n2
E

n
∑

i=1

(Y j
i Y ℓ

i − δjℓ)
2

=
1

4n
E

[

Y
j
1 Y ℓ

1 − δjℓ

]2

=
1

4n

[

E

(

Y
j
1 Y ℓ

1

)2

− δjℓ

]

,

where the independence of the Yi has been used to get the third line. It follows
that

E‖E‖H.S. ≤
√

E‖E‖2
H.S. ≤

1

2
√

n

√

∑

j,ℓ

(

E(Y j
1 Y ℓ

1 )2 − δjℓ

)

=
1

2
√

n

√

E|Y1|4 − k.

It remains to bound the second term of Theorem 2.3.

1

λ
E|W ′ − W |3 =

1√
n

E
∣

∣XI − YI

∣

∣

3

=
1√
n

E
∣

∣X1 − Y1

∣

∣

3

≤ 1√
n

E
(

|X1|3 + 3|X1|2|Y1| + 3|Y1|2|X1| + |Y1|3
)

.

Applying Hölder’s inequality with p = 3
2 and q = 3,

E|X1|2|Y1| ≤
(

E|X1|3
)2/3 (

E|Y1|3
)1/3

= E|Y1|3.
It follows that

1

λ
E|W ′ − W |3 ≤ 8E|Y1|3√

n
.

Together with Theorem 2.3, this finishes the proof. �
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4. Examples using Theorem 2.4

4.1. Rank k projections of spherically symmetric measures on Rn. Consider a ran-
dom vector Y ∈ Rn whose distribution is spherically symmetric; i.e., if U is a fixed
orthogonal matrix, then the distribution of Y is the same as the distribution of
UY . Assume that Y is normalized such that EY 2

1 = 1. Note that the spherical
symmetry then implies that EY Y T = In. Assume further that there is a constant
a (independent of n) so that

Var(|Y |2) ≤ a. (4.1)

For k fixed, let Pk denote the orthogonal projection of Rn onto the span of the
first k standard basis vectors. In this section, Theorem 2.4 is applied to show
that Pk(Y ) = (Y, . . . , Yk) is approximately distributed as a standard k-dimensional
Gaussian random vector if k = o(n). That EPk(Y )Pk(Y )T = Ik is immediate from
the symmetry and normalization, as above.

This example is closely related to the following result from Diaconis and Freed-
man (1987).

Theorem 4.1 (Diaconis-Freedman). Let Z1,. . . ,Zn be independent standard Gauss-
ian random variables and let Pk

σ be the law of (σZ1, . . . , σZk). For a probability µ

on [0,∞), define Pµ,k by

Pµ,k =

∫

P
k
σdµ(σ).

Let Y = (Y1, . . . , Yn) ∈ Rn be a spherically symmetric random vector, and let Pk be
the law of (Y1, . . . , Yk). Then there is a probability measure µ on [0,∞) such that
for 1 ≤ k ≤ n − 4,

dTV (Pk, Pµ,k) ≤ 2(k + 3)

n − k − 3
.

Furthermore, the mixing measure µ can be taken to be the law of 1√
n
|Y |.

In some cases, the explicit form given in Theorem 4.1 for the mixing measure has
allowed the theorem to be used to prove central limit theorems of interest in convex
geometry; see Brehm and Voigt (2000) and Klartag (2007). Theorem 4.3 below
says that the variance bound (4.1) is sufficient to show that the mixing measure of
Theorem 4.1 can be taken to be a point mass. In fact, it is not too difficult to obtain
the total variation analog of Theorem 4.3 directly from the Diaconis-Freedman
result and (4.1); however, the Stein’s method proof given below is considerably
simpler than the direct proof given in Diaconis and Freedman (1987). The rates
obtained are of the same order, though the rate obtained by Diaconis and Freedman
is in the total variation distance, whereas the rate below is in the Wasserstein
distance.

To apply Theorem 2.4, construct a family of exchangeable pairs as follows. For
ǫ > 0 fixed, let

Aǫ =

[√
1 − ǫ2 ǫ

−ǫ
√

1 − ǫ2

]

⊕ In−2

= In +

[

− ǫ2

2 + δ ǫ

−ǫ − ǫ2

2 + δ

]

⊕ 0n−2,
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where δ is a deterministic constant and δ = O(ǫ4). Let U be a Haar-distributed
n×n random orthogonal matrix, independent of Y , and let Yǫ =

(

UAǫU
T
)

Y. Thus
Yǫ is a small random rotation of Y . In what follows, Theorem 2.4 is applied to the
exchangeable pair (Pk(Y ), Pk(Yǫ)).

Let K be the k×2 matrix made of the first two columns of U and C2 =

[

0 1
−1 0

]

.

Define Q := KC2K
T . Then by the construction of Yǫ,

Pk(Yǫ) − Pk(Y ) = ǫ
[

−
( ǫ

2
+ ǫ−1δ

)

PkKKT + PkQ
]

Y, (4.2)

and ǫ−1δ = O(ǫ3).

To check the conditions of Theorem 2.4, the following lemma is needed; see
Meckes (2006), Lemma 3.3 and Theorem 1.6 for a detailed proof.

Lemma 4.2. If U = [uij ]ni,j=1 is an orthogonal matrix distributed according to

Haar measure, then E

[

∏

u
kij

ij

]

is non-zero if and only if the number of entries

from each row and from each column is even. Second and fourth-degree moments
are as follows:

(i) For all i, j,

E
[

u2
ij

]

=
1

n
.

(ii) For all i, j, r, s, α, β, λ, µ,

E
[

uijursuαβuλµ

]

= − 1

(n − 1)n(n + 2)

[

δirδαλδjβδsµ + δirδαλδjµδsβ + δiαδrλδjsδβµ

+ δiαδrλδjµδβs + δiλδrαδjsδβµ + δiλδrαδjβδsµ

]

+
n + 1

(n − 1)n(n + 2)

[

δirδαλδjsδβµ + δiαδrλδjβδsµ + δiλδrαδjµδsβ

]

.

(iii) For the matrix Q =
[

qij

]n

i,j=1
defined as above, qij = ui1uj2 − ui2uj1. For

all i, j, ℓ, p,

E [qijqℓp] =
2

n(n − 1)

[

δiℓδjp − δipδjℓ

]

.

By the lemma, E
[

KKT
]

= 2
nI and E

[

Q
]

= 0, and so

lim
ǫ→0

n

ǫ2
E

[

(Pk(Yǫ) − Pk(Y ))
∣

∣

∣Pk(Y )
]

= −Pk(Y );

condition (i) of Theorem 2.4 thus holds with λ(ǫ) = ǫ2

n .
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Fix i, j ≤ k. By (4.2),

lim
ǫ→0

n

2ǫ2
E

[

(Pk(Yǫ) − Pk(Y ))i(Pk(Yǫ) − Pk(Y ))j

∣

∣

∣Y
]

=
n

2
E
[

(PkQY )i(PkQY )j

∣

∣Y
]

=
n

2
E





∑

ℓ,m

YℓYmqiℓqjm

∣

∣

∣

∣

∣

∣

Y





=
1

(n − 1)
E





∑

ℓ,m

YℓYm (δijδℓm − δimδℓj)





=
1

(n − 1)

[

δij |Y |2 − YiYj

]

.

Thus

F =
1

(n − 1)

[(

E
[

|Y |2 − (n − 1)
∣

∣Pk(Y )
])

· Ik − Pk(Y )Pk(Y )T
]

.

Now,

E‖Pk(Y )Pk(Y )T ‖H.S. = E |Pk(Y )|22 = k

by assumption, and

E
∣

∣E
[

|Y |2 − (n − 1)
∣

∣Pk(Y )
]∣

∣ ≤
√

a + 1,

so applying Theorem 2.4 gives:

Theorem 4.3. With notation as above,

dW (Pk(Y ), Z) ≤ k(
√

a + 2)

n − 1
.

4.2. Rank k projections of Haar measure on On.

A theme in studying random matrices from the compact classical matrix groups
is that these matrices are in many ways (though not all ways) similar to Gaussian
random matrices. For example, it was shown in D’Aristotile et al. (2003) that if
M is a random matrix in the orthogonal group On distributed according to Haar
measure, then

sup
A : Tr (AAT )=n

−∞<x<∞

∣

∣P(Tr (AM) ≤ x) − Φ(x)
∣

∣→ 0

as n → ∞. In Meckes (2008), this result was refined to include a rate of con-
vergence (in total variation) of W = Tr (AM) to a standard Gaussian random
variable, depending only on the value of Tr (AAT ). That is, rank one projections
of Haar measure on On are uniformly close to Gaussian, and rank one projections
of Gaussian random matrices are exactly Gaussian.

A natural question is whether rank k projections of Haar measure on On are
close, in some sense, to multivariate Gaussian distributions, and if so, how large
k can be. This is a more refined comparison of the type mentioned above, since
the distributions of all projections of any rank of Gaussian matrices are Gaussian.
In remarkable recent work, Jiang (2006) has shown that the entries of any pn × qn

submatrix of an n × n random orthogonal matrix are close to i.i.d. Gaussians in
total variation distance whenever pn = o(

√
n) and qn = o(

√
n), and that these
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orders of pn and qn are best possible. This improved an earlier result of Diaconis
et al. (1992), which proved the result in the case of pn = o(n1/3) and qn = o(n1/3).
As this article was in preparation, Collins and Stolz (2008) proved that for r fixed,
A1, . . . , Ar deterministic parameter matrices, and M a uniformly distributed ele-
ment of a classical compact symmetric space (represented as a space of matrices),
the random vector (Tr (A1M), . . . , Tr (ArM)) converges weakly to a Gaussian ran-
dom vector, as the dimension of the space tends to infinity. Their work in particular
covers the cases of M a Haar-distributed random orthogonal or unitary matrix, but
goes farther to consider more general homogeneous spaces.

In this section, it is shown that rank k projections of Haar measure on On are
close in Wasserstein distance to Gaussian for k = o(n). This in particular recovers
Jiang’s result (in Wasserstein distance), but is more general in that it is uniform
over all rank k projections, and not just those having the special form of truncation
to a sub-matrix. The theorem also strengthens the result of Collins and Stolz, in
the case that M is a random element of On.

Theorem 4.4. Let B1, . . . , Bk be linearly independent n×n matrices (i.e. the only
linear combination of them which is equal to the zero matrix has all coefficients
equal to zero) over R such that Tr (BiB

T
i ) = n for each i. Let bij = Tr (BiB

T
j ). Let

M be a random orthogonal matrix and let

X = (Tr (B1M), Tr (B2M), . . . , Tr (BkM)) ∈ R
k.

Let Y = (Y1, . . . , Yk) be a random vector whose components have the standard

Gaussian distribution, with covariance matrix C := 1
n (bij)

k
i,j=1. Then for n ≥ 2,

dW (X, Y ) ≤ k
√

2‖C‖op

n − 1
.

Remark. Lemma 4.2 and an easy computation show that for all i, j,

E
[

Tr (BiM)Tr (BjM)
]

=
1

n
〈Bi, Bj〉 ,

thus the matrix C above is also the covariance matrix of X .

It is shown below that Theorem 4.4 follows fairly easily from the following special
case.

Theorem 4.5. Let A1, . . . , Ak be n×n matrices over R satisfying Tr (AiA
T
j ) = nδij ;

for i 6= j, Ai and Aj are orthogonal with respect to the Hilbert-Schmidt inner
product. Let M be a random orthogonal matrix, and consider the vector X =
(Tr (A1M), Tr (A2M), . . . , Tr (AkM)) ∈ R

k. Let Z = (Z1, . . . , Zk) be a random
vector whose components are independent standard normal random variables. Then
for n ≥ 2,

∣

∣Ef(X) − Ef(Z)
∣

∣ ≤
√

2M1(f)k

n − 1

where M1(f) is the Lipschitz constant of f .
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Example. Let M be a random n × n orthogonal matrix, and let 0 < a1 < a2 <

. . . < ak = n. For each 1 ≤ i ≤ n, let

Bi =

√

n

ai
Iai

⊕ 0n−ai
;

Bi has
√

n
ai

in the first ai diagonal entries and zeros everywhere else. If i ≤ j,

then 〈Bi, Bj〉HS = n
√

ai

aj
; in particular, 〈Bi, Bi〉HS = n. The Bi are linearly

independent w.r.t. the Hilbert-Schmidt inner product since the ai are all dis-
tinct, so to apply Theorem 4.4, we have only to bound the eigenvalues of the

matrix
(
√

amin(i,j)

amax(i,j)

)k

i,j=1
. But this is easy, since |λ| ≤

√

∑k
i,j=1

amin(i,j)

amax(i,j)
≤ k for

all eigenvalues λ (see, e.g., Bhatia, 1997). It now follows from Theorem 4.4 that

if Y is a vector of standard normals with covariance matrix
(
√

amin(i,j)

amax(i,j)

)k

i,j=1
and

X = (Tr (B1M), . . . , Tr (BkM)), then

sup
|f |L≤1

∣

∣Ef(X) − Ef(Y )
∣

∣ ≤
√

2k3/2

n − 1
.

Proofs

Proof of Theorem 4.4 from Theorem 4.5. Perform the Gram-Schmidt algorithm on
the matrices {B1, . . . , Bk} with respect to the Hilbert-Schmidt inner product 〈C, D〉=

Tr (CDT ) to get matrices {A1, . . . , Ak} which are mutually orthogonal and have
H-S norm

√
n. Denote the matrix which takes the B’s to the A’s by D−1 for

D =
[

dij

]n

i,j=1
; the matrix is invertible since the B’s are linearly independent. Now

by assumption,

bij = 〈Bi, Bj〉

=

〈

∑

l

dilAl,
∑

p

djpAp

〉

= n
∑

l

dildjl.

Thus DDT = C = 1
n (bij)

k
i,j=1 .

Now, let f : Rk → R with M1(f) ≤ 1. Define h : Rk → R by h(x) = f(Dx).

Then M1(h) ≤ ‖D‖op ≤
√

‖DDT ‖op. By Theorem 4.5,

∣

∣Eh(Tr (A1M), . . . , Tr (AkM)) − Eh(Z)
∣

∣ ≤ k
√

2‖C‖op

n − 1

for Z a standard Gaussian random vector in Rk. But D
(

Tr (A1M), . . . , Tr (AkM)
)

=
(

Tr (B1M), . . . , Tr (BkM)
)

and DZ has standard normal components with covari-

ance matrix C = 1
n (bij)

k
i,j=1 . �
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Proof of Theorem 4.5. Make an exchangeable pair (M, Mǫ) as before; let Aǫ be the
rotation

Aǫ =

[√
1 − ǫ2 ǫ

−ǫ
√

1 − ǫ2

]

⊕ In−2 = In +

[√
1 − ǫ2 − 1 ǫ

−ǫ
√

1 − ǫ2 − 1

]

⊕ 0n−2,

let U be a Haar-distributed random orthogonal matrix, independent of M , and let

Mǫ = UAUT M.

Let Xǫ = (Tr (A1Mǫ), . . . , Tr (AkMǫ)).

As in section 4.1, define K to be the first two columns of U and C2 =

[

0 1
−1 0

]

,

and let Q = KC2K
T . Then

Mǫ − M = ǫ

[(−ǫ

2
+ O(ǫ3)

)

KKT + Q

]

M. (4.3)

It follows from Lemma 4.2 that E
[

KKT
]

= 2
nI and E

[

Q
]

= 0, thus

lim
ǫ→0

n

ǫ2
E
[

(Xǫ − X)i

∣

∣M
]

= lim
ǫ→0

n

ǫ2
E
[

Tr [Ai(Mǫ − M)]
∣

∣M
]

= lim
ǫ→0

n

ǫ2

[(

− ǫ2

2
+ O(ǫ4)

)

E
[

Tr (AiKKT M)
∣

∣M
]

+ ǫE
[

Tr (AiQM)
∣

∣M
]

]

= lim
ǫ→0

n

ǫ2

(

− ǫ2

2
+ O(ǫ4)

)

2

n
Xi

= −Xi.

Condition (i) of Theorem 2.4 is thus satisfied with λ(ǫ) = ǫ2

n . The random matrix
F is computed as follows. For notational convenience, write Ai = A = (apq) and
Aj = B = (bαβ). By (4.3),

lim
ǫ→0

n

2ǫ2
E

[

(Xǫ − X)i(Xǫ − X)j

∣

∣

∣M
]

=
n

2
E
[

Tr (AQM)Tr (BQM)
∣

∣M
]

=
n

2
E





∑

p,q,r,α,β,γ

apqbαβmrpmγαqqrqβγ

∣

∣

∣

∣

∣

∣

M





=
n

2
E





∑

p,q,r,α,βγ

apqbαβmrpmγα

(

2

n(n − 1)

)

(δqβδrγ − δqγδrβ)





=
1

(n − 1)
E [〈MA, MB〉H.S. − Tr (AMBM)]

=
1

(n − 1)
E [〈A, B〉H.S. − Tr (MAMB)]

=
1

(n − 1)
[nδij − Tr (MAMB)] .

(4.4)

Thus

F =
1

(n − 1)
E

[

[

δij − Tr (AiMAjM)
]k

i,j=1

∣

∣

∣X

]

.
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Claim: If n ≥ 2, then E [Tr (AiMAjM) − δij ]
2 ≤ 2 for all i and j.

The claim gives that, for n ≥ 2,

E‖F‖H.S. ≤
√

E‖F‖2
H.S. ≤

√
2k

n − 1
,

thus completing the proof.
To prove the claim, first observe that Lemma 4.2 implies

E
[

Tr (AiMAjM)
]

=
1

n
〈Ai, Aj〉 = δij .

Again writing Ai = A and Aj = B, applying Lemma 4.2 gives, (ii),

E

[

Tr (AMBM)
]2

= E







∑

p,q,r,s
α,β,µ,λ

aspaµαbqrbβλmpqmrsmαβmλµ







= − 2

(n − 1)n(n + 2)

[

Tr (AT ABT B) + Tr (ABT ABT ) + Tr (AAT BBT )
]

+
n + 1

(n − 1)n(n + 2)

[

2 〈A, B〉H.S. + ‖A‖2
H.S.‖B‖2

H.S.

]

Now, as the Hilbert-Schmidt norm is submultiplicative (see Bhatia, 1997, page 94),

Tr (AT ABT B) ≤ ‖AT A‖H.S.‖BT B‖H.S. ≤ ‖A‖2
H.S.‖B‖2

H.S. = n2,

and the other two summands of the first line are bounded by n2 in the same way.
Also,

2 〈A, B〉H.S. + ‖A‖2
H.S.‖B‖2

H.S. = n2(1 + 2δij),

Thus

E [Tr (AiMAjM) − δij ]
2 ≤ −6n2 + (n + 1)n2(1 + 2δij) − (n − 1)n(n + 2)δij

(n − 1)n(n + 2)
≤ 2.

�

4.3. Complex-linear functions of random unitary matrices.

In this section, we consider Haar-distributed random matrices in Un. As dis-
cussed in the previous section, a general theme in studying random matrices from
the classical compact matrix groups has been to compare to the corresponding
Gaussian distribution. In particular, it was shown in D’Aristotile et al. (2003) that
if M = Γ+iΛ is a random n×n unitary matrix and A and B are fixed real diagonal
matrices with Tr (AAT ) = Tr (BBT ) = n, then Tr (AΓ)+iTr (BΛ) converges in dis-
tribution to standard complex normal. This implies in particular that Re(Tr (AM))
converges in distribution to N

(

0, 1
2

)

. A total variation rate of convergence for this
last statement was obtained in Meckes (2008), giving as an easy consequence the
weak-star convergence of the random variable W = Tr (AM) to standard complex
normal, for A an n × n matrix over C with Tr (AA∗) = n. The approaches used in
D’Aristotile et al. (2003) and Meckes (2008) are somewhat awkward, partly due to
the fact that the limiting behavior of W is a multivariate question. In this section,
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Theorem 2.5 is applied to prove the analogous result to Theorem 4.5 for complex-
rank k projections of Haar measure on the space of random unitary matrices. As in
the previous section, this result recovers and strengthens the result of Collins and
Stolz (2008), in the case that M is a Haar-distributed unitary matrix.

Theorem 4.6. Let M ∈ Un be distributed according to Haar measure, and let
{Ai}k

i=1 be fixed n × n matrices over C such that Tr (AiA
∗
j ) = nδij. Let W (M) =

(Tr (A1M), . . . , Tr (AkM)) and let Z be a standard complex Gaussian random vector
in Ck. Then there is a universal constant c such that

dW (W, Z) ≤ ck

n
.

Remark: The constant c given by the proof is asymptotically equal to
√

2; for
n ≥ 4, c can be taken to be 3.

For the proof, the following lemma is needed. See Meckes (2006), Lemma 3.5 for
a detailed proof.

Lemma 4.7. Let H =
[

hij

]

i,j
∈ Un be distributed according to Haar measure.

Then the expected value of a product of entries of H and their conjugates is non-
zero only when there are the same number of entries as conjugates of entries from
each row and from each column. Second- and fourth-degree moments are as follows.

(i) For all i, j,

E
[

|hij |2
]

=
1

n
,

(ii) For all i, j, r, s, α, β, λ, µ,

E
[

hijhrshαβhλµ

]

=
1

(n − 1)(n + 1)

[

δiαδrλδjβδsµ + δiλδrαδjµδsβ

]

− 1

(n − 1)n(n + 1)

[

δiαδrλδjµδsβ + δiλδrαδjβδsµ

]

,

(iii)

E
[

(hi1hj2 − hi2hj1)(hr1hs2 − hr2hs1)
]

= − 2

(n − 1)(n + 1)
δisδjr +

2

(n − 1)n(n + 1)
δijδrs.

Proof of Theorem 4.6. The theorem is proved as an application of Theorem 2.5,
similarly to the proof of Theorem 4.5 via Theorem 2.4. Construct a family of
pairs (W, Wǫ) analogously to what was done in the orthogonal case: let U ∈ Un

be a random unitary matrix, independent of M , and let Mǫ = UAǫU
∗M , where as

before

Aǫ =

[√
1 − ǫ2 ǫ

−ǫ
√

1 − ǫ2

]

⊕ In−2,

thus Mǫ is a small random rotation of M . Let Wǫ = W (Mǫ); (W, Wǫ) is exchange-
able by construction.

As in the previous sections, let I2 be the 2 × 2 identity matrix, K the n × 2
matrix made from the first two columns of U =

[

uij

]

i,j
, and let

C2 =

[

0 1
−1 0

]

.
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Define the matrix Q = KC2K
∗. Then

Mǫ = M + K
[

(
√

1 − ǫ2 − 1)I2 + ǫC2

]

K∗M,

and

Tr (AiMǫ) − Tr (AiM) =

(

− ǫ2

2
+ O(ǫ4)

)

Tr (AiKK∗M) + ǫTr (AiQM). (4.5)

It follows from Lemma 4.7 that E
[

KK∗] = 2
nI and E

[

Q
]

= 0, thus

lim
ǫ→0

n

ǫ2
E
[

Tr (AiMǫ) − Tr (AiM)
∣

∣M
]

= −Tr (AiM), (4.6)

and the first condition of Theorem 2.5 holds with λ(ǫ) = ǫ2

n .

Let Ai =: A =
[

apq

]

and Aj =: B =
[

bαβ

]

; by (4.5) and Lemma 4.7,

lim
ǫ→0

n

2ǫ2
E
[

(Wǫ − W )i(Wǫ − W )j

∣

∣W
]

=
n

2
E
[

(Tr (AQM)) (Tr (BQM))
∣

∣W
]

=
n

2
E





∑

p,q,r,α,β,µ

apqmrpbαβmγα(uq1ur2 − uq2ur1)(uβ1uγ2 − uβ2uγ1)

∣

∣

∣

∣

∣

∣

W





=
1

(n − 1)(n + 1)





∑

p,q,α,β

apqmqpbαβmβα − n
∑

p,q,αβ

apqbαβmβpmqα





=
1

(n − 1)(n + 1)
[Tr (AM)Tr (BM) − nTr (AMBM)] .

(4.7)

Similarly, one can use part (iii) of Lemma 4.7 with the roles of r and s reversed to
get

lim
ǫ→0

n

2ǫ2
E
ˆ

(Wǫ − W )i(Wǫ − W )
j

˛

˛W
˜

=
n

2
E

h

Tr (AQM)Tr (BQM)
˛

˛W
i

=
n

2
E

2

4

X

p,q,r,α,β,γ

apqmrpbαβmγα(uq1ur2 − uq2ur1)(uβ1uγ2 − uβ2uγ1)

˛

˛

˛

˛

˛

˛

W

3

5

=
1

(n − 1)(n + 1)

2

4n
X

p,α

 

X

q

apqbαq

! 

X

γ

mγpmγα

!

−
X

p,q,α,β

apqbαβmqpmβα

3

5

=
1

(n − 1)(n + 1)

h

n
2
δij − Tr (AM)Tr (BM)

i

= δij +
1

(n − 1)(n + 1)

h

δij − Tr (AM)Tr (BM)
i

,

(4.8)

where the fact that M is unitary and the assumption Tr (AiA
∗
j ) = nδij have been

used to get the second to last line.
One can thus take

γij =
δij − Tr (AiM)Tr (AjM)

(n − 1)(n + 1)
λij =

Tr (AiM)Tr (AjM) − nTr (AiMAjM)

(n − 1)(n + 1)
.
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By the Cauchy-Schwarz inequality,

E‖Γ‖H.S. ≤
√

E

∑

i,j

|γij |2

and

E|γij |2 =
1

(n − 1)2(n + 1)2
E

[

δij − 2 Re(Tr (AiM)Tr (AjM))

+ |Tr (AiM)Tr (AjM)|2
]

.

Now,

E|Tr (AiM)Tr (AjM)| ≤
√

E|Tr (AiM)|2E|Tr (AjM)|2 = 1

by the normalization of the matrices Ai. Again writing A = Ai and B = Aj ,

E|Tr (AM)Tr (BM)|2

=
∑

p,q,r,s
α,β,λ,µ

apqarsbαβbλµE
[

mqpmβαmsrmµλ

]

=
1

(n − 1)(n + 1)

[

Tr (AA∗)Tr (BB∗) + (Tr (AB∗))2

− 1

n
Tr (AA∗BB∗) − 1

n
Tr (A∗AB∗B)

]

=
1

(n − 1)(n + 1)

[

n2(1 + δij) − 1

n
Tr (AA∗BB∗) − 1

n
Tr (A∗AB∗B)

]

,

where Lemma 4.7 has been used to get the third line and the normalization and
orthogonality conditions on the Ai have been used to get the last line. Now,

|Tr (AA∗BB∗)| ≤ ‖AA∗‖H.S.‖BB∗‖H.S.

≤ ‖A‖H.S.‖A∗‖H.S.‖B‖H.S.‖B∗‖H.S. = n2;

the first inequality is just the Cauchy-Schwarz inequality for the Hilbert-Schmidt in-
ner product and the second is due to the submultiplicativity of the Hilbert-Schmidt
norm (see Bhatia, 1997, page 94). It now follows that

E|γij |2 ≤ 1

(n − 1)2(n + 1)2

[

δij + 2 +
n2(1 + δij) + 2n

(n − 1)(n + 1)

]

≤ 1

(n − 1)2(n + 1)2

[

5 +
2

n − 1

]

,

and thus

E‖Γ‖H.S. ≤
k

(n − 1)(n + 1)

√

5 +
2

n − 1
. (4.9)

Taking a similar approach to bounding E‖Λ‖H.S.,

E|λij |2 =
1

(n − 1)2(n + 1)2
E

[

|Tr (AiM)Tr (AjM)|2 + n2|Tr (AiMAjM)|2

− 2n Re(Tr (AiM)Tr (AjM)Tr (AiMAjM))
]

.

(4.10)
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It has already been shown that

E|Tr (AiM)Tr (AjM)|2 ≤ n2(1 + δij) + 2n

(n − 1)(n + 1)
≤ 2 +

2

n − 1
.

One can use Lemma 4.7 to compute the other two terms similarly:

E

[

Tr (AM)Tr (BM)Tr (AMBM)
]

=
∑

p,q,r,s
α,β,λ,µ

apqaαβbrsbλµE
[

mqpmsrmβλmµα

]

=
1

(n − 1)(n + 1)

[

Tr (AA∗BB∗) + Tr (A∗AB∗B)

− 1

n
Tr (AA∗)Tr (BB∗) − 1

n
(Tr (AB∗))2

]

=
1

(n − 1)(n + 1)
[Tr (AA∗BB∗) + Tr (A∗AB∗B) − n(1 + δij)] ,

thus
˛

˛

˛
E

h

2n Re
“

Tr (AiM)Tr (AjM)Tr (AiMAjM)
”i˛

˛

˛
≤

4n3 + 2n(1 + δij)

(n − 1)(n + 1)
≤ 4n +

8

n − 1
;

and

E|Tr (AMBM)|2

=
∑

p,q,r,s
α,β,λ,µ

apqaαβbrsbλµE
[

mqrmspmβλmµα

]

=
1

(n − 1)(n + 1)

[

Tr (AA∗)Tr (BB∗) + (Tr (AB∗))2

− 1

n
Tr (AA∗BB∗) − 1

n
Tr (A∗AB∗B)

]

=
1

(n − 1)(n + 1)

[

n2(1 + δij) − 1

n
Tr (AA∗BB∗) − 1

n
Tr (A∗AB∗B)

]

,

thus

n2
E|Tr (AiMAjM)|2 ≤ n4(1 + δij) + 2n3

(n − 1)(n + 1)
≤ 2n2 +

2n2

n − 1
.

Using these three bounds in (4.10) yields

E‖Λ‖H.S. ≤
√

∑

i,j

E|λij |2 ≤ k

(n − 1)

√

2 +
2(n2 + 5)

(n − 1)(n + 1)2
.

�
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