MULTIVARIATE PARETO DISTRIBUTIONS
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1. Introduction and summary. It is well known that the family of Pareto dis-
tributions with densities
f(z; a, p) = pa®/z™", z>a>0,

(1.1)
=0’, xéa:p>0)

provides reasonably good fits to many empirical distributions, e.g., to distribu-
tions of income and of property values. In most of these cases, ancillary informa-
tion is present, which could be utilized if an appropriate multivariate Pareto
distribution were available.

The objects of this note are (i) to suggest two families of bivariate Pareto dis-
tributions with the property that both marginal distributions are of univariate
Pareto form; (ii) to extend these to multivariate forms; and (iii) to discuss es-
timation of the parameters in the bivariate distributions.

2. The bivariate Pareto distribution of type 1. A simple bivariate density
function satisfying the marginal property is

fi(z, y; 0,5, p) = [p(p + 1) (ab)*™]/ (b + ay — ab)**’,
(2.1) z>a>0,y>0b>0,
=0, r=a,y=b,p>0.

We shall call it a bivariate Pareto distribution of type 1.

The density for this distribution is constant on every line a ™z + b7y = .
The marginal density functions of z and y are f(z; a, p) and f(y; b, p) respec-
tively. Also, the conditional distribution of z given y is

(2.2) filz|y) = b(p+ 1) (ay) ™)/ (b2 + ay — ab)*™, z>a>0,y>b >0,
' = 0 otherwise,
which is again of Pareto form but with displaced origin. Further, we have
E(@) =ap/(p—1), p>1;

(2.3) ‘ . 2
V(z) = ap/{(p —1)(p—2)}, p>2,
(24) Cor(z,y) = 1/p, » > 2,
(2.5) E(x|y) = a+ {(ay)/(bp)},
(2.6) V(zly) = a'(p + 1)/{b'(p — 1p}.

Similarly E(y), V(y), fi(y | z) and V(y | z) can be immediately obtained.
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3. A bivariate distribution of type 2. The density function of u = p log(z/a),
where @ has the density function f(z; a, p) is

e, u>0,

3.1)
( 0, u = 0.

Therefore, the density function of u is a gamma function with index parameter
equal to 1, i.e., ¢(u, 1) in the notation of Kibble [3]. Similarly, v = ¢ log(y/b)
has the density function ¢(v, 1), where y is a random variate with the density
function f(y; b, ¢). Hence, a bivariate distribution of % and » may be taken as
the joint distribution of two dependent gamma type variables in the sense of
Kibble [3], with the index parameter equal to unity. On writing p = 1 and
o = ain Kibble [3], pp. 141, the joint density function of » and v is given by

L exp{ —2F 0l g, {2aw) | w> 00> 0,
(3.2) 1 —«a 1 —« 1 —«a
0, u=<00=00=a<1,
where

L) = 06 + DTG + 7 + DI ()"

is a modified Bessel function of the first kind and of the kth order, and
a=p = Cor(u,v).
Therefore, the joint density function of  and y is
(2,95 0,0,p, ¢, @) = [pg/(1 — a)ayll(a/z)"(b/y) 1"~
B [apq{IOg(x/a)}UOg(y/b)}]r 1

= 1 — a) N2’

2l O

1, [P og (z/0) g /']

1 —«

)

t>a>0y>b>0,p>0,¢>00=a<]l.

For x =< a,y < b, the density function is zero. The marginal density functions
of z and y are f(z; a, p) and f(y; b, q) respectively and (3.3) is termed the
Pareto distribution of type 2.

E(x) and V(x) are the same as in (2.3), and F(y) and V(y) are immediate
by interchanging (a, p) and (b, q). Further,

Cor(z, y) = alpg(p — 2)(¢ — )} (p — 1)(g — 1) — o},

(3.4)
P>2,q9> 2,
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fz(x | y) = [p/(l — a)x][(a/x):ﬂ(b/y)q]ll(l-—a)

(3.5) 3
“Io[2{apgllog(z/a) lllog(y/b)1}*/(1 — a)],
(3.6) E(z|y) = [pa/(p — 1 + o)]ly/b]"/ 7,
o (b—ly)2aq/(2a—2+p) _ (b—ly)Zaq/(a-—H—p)

Similarly, fo(y | ), E(y | ) can be written by symmetry. Further, the moment
generating function of w and » derived by Kibble [3], gives the characteristic

function ¢ (¢, t2) of log(x/a) and log(y/b) as
(3.8) ¢t t) = [L =it + ¢ ') — p g (1 — )]
4. Multivariate Pareto Type 1. Writing (2.1) in the form
filz, y; 0,0, p) = p(p + 1)/{aba™e + b7y — 1)*"},
z>a>0y>b>0,p>0,

a generalization to the Z-variate case becomes obvious and the joint density
function can be written as

_ (p+1)---(p+k—1)
an filzy, @, <+, %) <ﬁpai)> {(:1 a?‘xf)i . +11}p+k’

1=1
zi>a;>0,¢=1,--- k;p>0.

The density of the mass for this distribution is constant on every hyperplane
D i ai'w; = ¢. The marginal density function of z; is f(z: ; a:, p) and the
conditional distributions are again of the Pareto form but with displaced origin.
The regressions of 2y, +++ , z,, (r< k), on Zpyy, - -+, i, are linear. All the
correlations of zero order are equal to 1/p. Every partial correlation coefficient
of the sth order is 1/(p + s). The multiple correlation of a variate with the
other (& — 1) variate is [(k — 1)/{p(p + k — 2)}1%

6. Multivariate Pareto type 2. If the dependent random variables x; have the
marginal density functions f(z; ; a;, p:), then the joint distribution of random
variables u; = p;log(z:/a), 1 = 1, ---, k, might be taken as a multivariate
gamma distribution with parameter p = 1 in the sense of Krishnamoorthy and
Parthasarthy [4]. Hence in the notation of this reference, the required joint
density function of z;, « - - , zy is

5.1) gf(xi 3 @iy Pi) ;ZO [;JCHL(I%‘ log(x:/a;), 1) L(p;log(x;/a;), 1)
+ o 4+ Cro..xL(pilog(ai/a), 1) -+ L(pxlog(zr/ax), 1)]7:

where the marginal density function of z; is f(x; ; a;, p:). The regressions of
log z; on log 22, - -+, log 2, k # 2, and of z; on 5, -- -, &, are non-linear.
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6. Comparison of the two bivariate distributions. The two distribution func-
tions are distinct. In type 2, unlike type 1 but like the normal distribution, both
parameters in the marginal distribution of # may be different from the parameters
in the marginal distribution of y, and Cor(z, y) = 0 implies that 2 and y are
independent Paretos. The correlation between x and y is positive in type 1 while
non-negative in type 2. The regressions of & on y in type 1 and type 2 are linear
and exponential respectively, but V(z | y) depends on y. In type 2, the regres-
sion of log z on log ¥ is linear.

7. Estimation of the parameters in bivariate Pareto type 2. Let (., v.),
{=1,---,n, be a random sample of size n from bivariate Pareto type 2 popu-
lation.

TuroreM 7.1. Consistent estimates of a and b are X and Y respectively, where
X s mingmum (x1, -+, Tn) and Y is mingmum (Y1, -+, Yn).

Proor. The sample extremes are consistent estimates of the population
extremes when the latter are finite.

TuroREM 7.2. Consistent estimates of p and q are {log(G./X)}™" and
{log(G,/Y)} ™" respectively, where G and Gy are the geometric means of (1, - , %)
and (y1, +++ , Ya) respectively.

Proor. It is shown by Muniruzzaman [8], Section 9, that

El{log(G./X)}7"] = np/(n — 2),
and

Vl{log(G./X)} '] = p*/n.

THEOREM 7.3. A consistent estimate of o vs
3~ llog (23/G.)] liog (35/G5)
{i log (z/ )T 3 log (m-/G,,)JZ}’

=1 =

f:

Proor. From (3.8), the central moments of log(z/a) and log(y/b) may be
derived as

M20 = 1/p27 Mao = 9/p4,
pu = a/(pg), pe = {(2a + 1)/ (pg)}’,
wn =20/ (0'q),  pm = 9o/ (P°q)-

Interchanging p and ¢, wos , mos, w2, and ps can be obtained immediately.
For large values of n, by Cramér [2], Section 27.8, and the above moments,

we have
E(7) = E[Sample Cor{log(z/a), log(y/b)}]
Population Cor{log(z/a), log(y/b)}

II-

=a,
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and

2
V(f) - ﬁli@ _]_@ € 2 _ dpg _ 4#13]
4n | po ue M20 Moz 11 Moo M11 Moz

= (1 —d") (2" + 6a + 1)/n.

Therefore, 7 is a consistent estimate of a.

The above theorems provide consistent estimates of a, b, p, ¢ and a.

It is interesting to note that, for given a and b, the maximum likelihood esti-
mates of p and ¢ on the basis of the sample (x;, ¥:), 7 = 1, -+, n, from the
bivariate population are the same as that on the basis of the samples (z;) and
(y:),i= 1, - -+, n, from the univariate Pareto populations f(z; a, p) and f(y; b, )
respectively, while the maximum likelihood estimate of « is given by

n

of = 0t Y e L2efei/ (1 — @)1/ Lo2ekc:/ (1 — )]}

=1

where
¢; = [{log(x:/a)}{log(y:/b)}/{log(Gs/a)}{log(Gy/b)} 1.

8. Estimates of parameters in bivariate Pareto type 1. The maximum likelihood
estimates from a random sample (z;, ¥:),7 = 1, ---, n, can be shown easily
to be the following:

¢ = minimum (21, -+, z.) = X,

b = minimum (y1, -+, ya) = Y,
and

p=(C" =+ (C+ D
where

C

wt Y log(X e + Yy — 1).
7=1

9. Sampling problem for the bivariate Pareto type 2. The general problem in
the succeeding sections is to obtain the appropriate ratio and regression estimates
of the measure of location of ¥ under a few important sampling techniques, when
z is an ancillary variable and a, b are given. The measure of central tendency is
taken to be the geometric mean. Its appropriateness and importance in the
univariate Pareto population is exhibited by Muniruzzaman [8]. The log-scale
is convenient in the subsequent discussion.

10. Ratio estimate. Let (z;, y:), ¢ = 1, ---, n, be a random sample from
Pareto type 2. Suppose » and & are the population geometric means of z and y

respectively, i.e.,

(10.1) v = aé'®, & = be''".
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We define a ratio estimate of 6 (parallel to the standard ratio estimate) for
given v, as
(10.2) R = (G,/Gy)v.
Lemma 10.1. Log Gy is an unbiased and consistent estimate of log 6.
Proor. We have
(10.3) E(log G,) = logs, V(og G,) = 1/(ng’).

TureoreM 10.1. Log R is an unbiased, consistent estimate of log & and has smaller
variance than log G, if o > iqp~".
Proor. Define

(10.4) z = log{aR/(bv)} = 1Z::llog(y,-/b) (a/z:).

Its characteristic function is
(10.5) {1 —dt(g™ — p Hn + (1 — o) (n'pg) )™
We obtain E(z) and V(z), and use (10.1) and (10.4), to get E(log B) = logé
and V(logR) = (1/n){p”* + ¢ — 2a(pg)”} < 1/(ng") = V(log G,) if
a> gp .

Incidentally we can obtain the probability density function of E. On applica-
tion of the inverse theorem to the characteristic function (10.5), we find that
the density function of z is

f(z) = ;rl;—ﬁtd—"— e/ (¢ + d)] Ky [% z(c + d)] , 220,

(n — 1)!
(10.6) L o 1
= = (nC_ 51 e—%z(c-—d)[—-z/(c + d)]n-—%K,‘_%l:—-éz(c + d):l , 20,
where
¢ =1{(g—p + (p+ 9" — 4pgal’}/2(1 — @)},
d={(p— ¢ +(p+ 9" — 4pgal’}/(2(1 — @)},
and

Ken() = (x/20)% 3= (n + 1) {ri(n = r) 1(2u)'),

is a modified Bessel function of the second kind of order » + %. (See, for in-
tegration, Section 2 in Mardia [12].) Hence the probability density function of
R is known.

11. Regression estimate (simple sampling). A random sample (z:, y.), ¢ = 1,
.-+, n, is drawn from the Pareto type 2. We define

9 = log G, + B(log v — log G.),
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where

n

Zl [log (ys/b)] [log (x:/G:)]

=

3 log (a1/G)"

TarEOREM 11.1. 7§ is an unbiased estimate of log o.
Proor. By (3.2), we have
Ellog(y/b) | 2] = (1 — a)g ' + pag '{log(z/a)},
so that
E(glz) = (1 —a) + logb + pag *log G, .
On taking expectations with respect to z, the theorem follows. Therefore § can
be termed the simple regression estimate of log 4.

LemMa 11.1. The joint distribution of log G. and log G, is asymptotically bi-
variate normal with parameters (log v, log 8, 1/(np), 1/(ng), a) where (my, ms,
o1, 03, p) denote the standard parameters of the bivariate normal population.

Proor. The central limit theorem of equal components applies to the joint
distribution of log G, and log G,. Hence if we know a solution to a sampling
problem for a random sample (2, y:),% = 1, -+ -, n, from a bivariate normal
population with parameters (m,, mz, 1, 02, p) then the same problem, and
its solution for large n, can be written for a random sample from Pareto type 2,
on replacing z;, yi, &, §, M1, ma, 01, 0z, and p by the respective quantities
log z:, log y: , log G, , log G, , log », log §, 1/p, 1/q and a.

TuEOREM 11.2. 9 is a more efficient estimate than log Gy , at least for large values
of n.

Proor. Application of Lemma 11.1 to the variance of the corresponding
regression estimate for (%, ) of bivariate normal population (Sukhatme [10],
pp- 203) gives for large values of n

V(9) = (1 — o)/(ng) < 1/(ng") = V(log G,).

12. Regression estimate (double sampling). Let (z1, -+, Tm) be a random
sample on variate z from Pareto type 2, (z1, --- , Z.) be a sub-sample of it
(m < n), and (¥, ---, ¥s) are corresponding observed values of variate y.
Suppose @, is the geometric mean of (1, ", zr). We define

0 = log G, + B(log G, — log Ga).
TuEOREM 12.1. ¢ is an unbiased estimate and, at least for large n, more efficient
estimate of log & than log Gy .
Proor. Unbiasedness may be established as in Theorem 11.1. Further,
application of Lemma 11.1 in the solution to a similar problem for (Z, #) of the
bivariate normal population (Cochran [9], pp. 278) gives for large n,

V(g = {/(mg)} + {(1 — &)/(ng)}; n< m,
<1/(ng") = V(log G,).
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Therefore ¢; can be termed the regression estimate of log 6 in double sampling.

13. Remarks. Consistent estimates of the parameters in the multivariate dis-
tributions can be obtained on the line of Sections 7 and 8. The generalization of
Lemma 11.1 to the multivariate case is obvious. Its application provides, for
large n, solutions to problems in multi-stage sampling from Pareto type 2.
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