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Objective: To explore whether or not functional connectivity (FC) could be used as a

potential biomarker for classification of primary insomnia (PI) at the individual level by

using multivariate pattern analysis (MVPA).

Methods: Thirty-eight drug-naive patients with PI, and 44 healthy controls (HC)

underwent resting-state functional MR imaging. Voxel-wise functional connectivity

strength (FCS), large-scale functional connectivity (large-scale FC) and regional

homogeneity (ReHo) were calculated for each participant. We used support vector

machine (SVM) with the three types of metrics as features separately to classify patients

from healthy controls. Then we evaluated its classification performances. Finally, FC

metrics with significant high classification performance were compared between the two

groups and were correlated with clinical characteristics, i.e., Insomnia Severity Index

(ISI), Pittsburgh Sleep Quality Index (PSQI), Self-rating Anxiety Scale (SAS), Self-rating

Depression Scale (SDS) in the patients’ group.

Results: The best classifier could reach up to an accuracy of 81.5%, with a sensitivity of

84.9%, specificity of 79.1%, and area under the receiver operating characteristic curve

(AUC) of 83.0% (all P < 0.001). Right anterior insular cortex (BA48), left precuneus (BA7),

and left middle frontal gyrus (BA8) showed high classification weights. In addition, the

right anterior insular cortex (BA48) and left middle frontal gyrus (BA8) were the overlapping

regions between MVPA and group comparison. Correlation analysis showed that FCS in

left middle frontal gyrus and head of right caudate nucleus were correlated with PSQI

and SDS, respectively.

Conclusion: The current study suggests abnormal FCS in right anterior insular cortex

(BA48) and left middle frontal gyrus (BA8) might serve as a potential neuromarkers for PI.

Keywords: primary insomnia, insular cortex, frontal lobe, machine learning, support vector machine

INTRODUCTION

Primary insomnia (PI) is the most common sleep disorder and is a major risk factor for depression,
and in certain instances could increase mortality (1). At present, diagnosis for insomnia is mainly
based on self-reported sleep difficulties. Objective neurobiological markers remain largely unclear
and hence prevented the development of more cost-effective, efficient, and accessible therapies (2).
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Non-invasive neuroimaging technology opens a window for
the study of neuropsychiatric diseases, include insomnia (3–
5). Previous studies found aberrant brain metabolism and
connectivity related to the prefrontal cortex, insular cortex,
amygdala, precuneus, and caudate in primary insomnia (5–18).
For example, using PET, Nofzinger et al. (6) found a smaller
decrease in relative metabolism from waking to non-REM sleep
states in the ascending reticular activating system, hypothalamus,
thalamus, insular cortex, amygdala, hippocampus, anterior
cingulate, and medial prefrontal cortices, which supports the
CNS hyperarousal hypothesis. Using independent component
analysis, Chen et al. (9) demonstrated that the anterior insular
cortex had greater involvement with the salience network in
PI. This greater involvement was also correlated with self-
reported alertness and negative affect. This study highlights
the importance of the salience network in hyperarousal
and affective symptoms in insomnia. Stoffers et al. (15)
found that hyper-arousal was associated with reduced caudate
recruitment when performing an executive task. Interestingly,
attenuated caudate recruitment did not recover after successful
treatment, suggesting abnormal caudate activation is a potential
vulnerability biomarker for insomnia. Recently, Lee et al. (8)
observed that subcortical FC was changed after cognitive–
behavioral therapy, which suggested that FC may be a biomarker
for tracking response to treatment.

While these studies were valuable in finding relevant
neuroimaging biomarkers, the studies were based on group
comparisons, and hence was not sufficient for possible
translational applications, such as for direct clinical diagnostic
and prognostic evaluation (19). Up to now, it is still unclear
whether or not FC could be used as a biomarker for the diagnosis
of PI patients at the individual level.

In the present study, we explored whether or not three
commonly used FC methods (i.e., voxel-wise FCS, large-scale FC
and ReHo; please see the next section for details) could be used as
potential biomarkers for the classification of individual patients
with PI. This was performed using multivariate pattern analysis
(MVPA) with linear support vector machine (SVM) (20).

METHODS

Participants
This retrospective study was approved by the ethics committee
of Guangdong Second Provincial General Hospital and all
participants provided written informed consent after they were
provided a complete description of the study. Thirty-eight
patients with PI (16 men; mean ± standard deviation age,
40.61 years ± 9.43) were recruited from the Guangdong Second
Provincial General Hospital.

Abbreviations: PI, primary insomnia; HC, healthy controls; FC, functional

connectivity; Large-scale FC, large-scale functional connectivity; ReHo, regional

homogeneity; MVPA, multivariate pattern analysis; SVM, support vector machine;

FCS, functional connectivity strength; ROC, receiver operating characteristic

curve; AUC, area under the receiver operating characteristic curve; ISI, Insomnia

Severity Index; PSQI, Pittsburgh Sleep Quality Index; SAS, Self-rating Anxiety

Scale; SDS, Self-rating Depression Scale.

A total of 38 subjects with PI were recruited. The inclusion
criteria for PI patients were: (a) all patients must meet the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) for diagnosis of PI; (b) patients complained
of difficulty falling asleep, maintaining sleep, or early awakening
from sleep for at least 1 month; (c) patients had no other
sleep disorders such as hypersomnia, parasomnia, sleep-related
movement disorders, or other psychiatric disorders; (d) patients
were younger than 60 years old (e) free from any psychoactive
medication for at least 2 weeks prior to and during the study;
(f) patients were right-hand dominant as assessed using the
Edinburgh Handedness Inventory. Exclusion criteria were as
follows: (a) patients had an abnormal signal in any region
of the brain which was verified by conventional T1-weighted
or T2-fluid-attenuated inversion recovery MR imaging; (b) the
insomnia disorder was caused by organic disease or severemental
disease that was secondary to depression or generalized anxiety;
(c) other sleep disorders; (d) women who were pregnant, nursing,
or menstruating. Although all the subjects were collected using
the DSM-IV criterion, the DSM-V has been published. According
to DSM-V, participants must have substantial distress or daytime
impairment per week that lasts for at least 3 month (1 month for
DSM-IV) to be diagnosed with insomnia. Therefore, we further
chose those with a duration of more than 3 months. Most future
studies may adopt the DSM-V criteria, so we tried to select the
subjects who meet the DSM-V criteria as far as possible in order
that future studies can reproduce our research. A total of 44
age-, gender-, and education-matched healthy control subjects
were recruited (11 men and 33 women; age, 39.91 years ±

9.43) from the local community by advertisements. HC met the
following criterion: (a) Insomnia Severity Index (ISI) score <7;
(b) no history of swing shifts, shift work, or sleep complaints;
(c) no medication or substance abuse such as caffeine, nicotine,
or alcohol for at least 2 weeks prior to and during the study;
(d) no brain lesions or prior substantial head trauma, which
was verified by conventional T1-weighted or T2-fluid-attenuated
inversion recovery MR imaging; (e) no history of psychiatric or
neurological diseases; (f) right-hand dominant. All the patients
were part of previous studies (21–23). All previous studies were
investigations of between-group differences using resting-state
functional MR imaging, whereas the present study explored
whether resting-state functional MR imaging could be used as a
neuroimaging biomarker to identify primary insomnia.

Several questionnaires were completed by the study
participants. These questionnaires included the ISI, the
Pittsburgh Sleep Quality Index (PSQI), the Self-rating Anxiety
Scale (SAS), and the Self-rating Depression Scale (SDS).

Image Acquisition
Functional MR imaging was acquired using a 1.5 Tesla MR
scanner (Achieva Nova-Dual; Philips, Best, the Netherlands)
in the Department of Medical Imaging, Guangdong Second
Provincial General Hospital. Participants were instructed to rest
with their eyes closed and remain still without falling asleep.
Functional MR images were acquired in about 10min using a
gradient-echo planar imaging sequence as follows: interleaved
scanning, repetition time/echo time = 2,500 ms/50ms, section
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thickness = 4mm, intersection gap = 0.8mm, matrix = 64 ×

64, field of view = 224mm × 224mm, flip angle = 90◦, 27 axial
slices, and 240 volumes. After the scan, all subjects were asked if
they were asleep during the scan. Those subjects who fallen asleep
were excluded.

Data Preprocessing
Functional images were preprocessed using the SPM12 software
package and the Data Processing Assistant for Resting-State fMRI
software (DPARSF, Advanced Edition, V4.3) (http://www.rfmri.
org/DPARSF) (24). The first 10 images of each participant were
discarded to allow the signal to reach equilibrium. Subsequently,
the resting-state fMRI data was corrected for temporal differences
between slices and head motion. All participants had no more
than 2.0mm of maximal displacement and 2.0 of maximal
rotation in any direction. Next, the corrected fMRI data were
spatially normalized to the standard Montreal Neurological
Institute (MNI) template and were resampled to 3 × 3 × 3

mm3. We further processed the data to remove linear trends and
filtered temporally (band-pass, 0.01–0.1Hz). Finally, nuisance
signals, including 24 headmotion parameters, CSF signals, white-
matter signal, and global signal were regressed out from the
fMRI data.

Whole-Brain Voxel-Wise FCS Analysis
Whole-brain voxel-wise FCS as well as large-scale FC (large-
scale FC) and ReHo analysis were performed using DPARSF
(http://www.rfmri.org/DPARSF). For each participant, all voxels’
time series were extracted, and then the Pearson’s correlation
coefficients between the time series of all pairs of voxels were
obtained to form a whole-brain voxel-wise FC matrix. Then,
for each voxel, a FCS value was calculated as the sum of the
Pearson’s correlation coefficients between each voxel and all
other voxels. According to previous studies (25–27), we set a
threshold of r= 0.25 to remove weak correlations possibly arising
from signal noise as well as negative correlations. Consequently,

FIGURE 1 | Confusion matrix (A–C), classification performances (the upper part of D) and ROC (the lower part of D) of linear SVM classifier using the three types of

the functional connectivity features. ROC, receiver operating characteristic; SVM, support vector machine.
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we obtained a 3D FCS map for each participant. Finally, the
FCS map was converted to z scores using Fisher transformation
and further spatially smoothed with a 6mm full-width at half
maximum isotropic Gaussian kernel. It is worth noting that this
computation was constrained within a gray matter mask, which
was created by setting a threshold of 0.2 on the SPM12’s gray
matter probability template.

Whole-Brain Large-Scale FC Analysis
Nodes were demarcated by a 268-node functional atlas (28),
which was defined using a group-wise spectral clustering
algorithm (29), and consequent analysis were similar to previous
studies (30). The time series for each node was extracted for
each participant by averaging the time series throughout all
voxels for each node. FC between each pair of nodes was
calculated using Pearson’s correlation analysis, which produced
(268 × 267)/2 = 35,778 dimensional FC feature vector for
each participant. Finally, Fisher transformation was performed
for FC.

Whole-Brain ReHo Analysis
ReHo calculation was also constrained within the same gray
matter mask similar to the whole-brain voxel-wise FC analysis.
For each voxel of each participant, a ReHo value was calculated
by calculating Kendall’s Coefficient of Concordance (KCC) of the
time series for the given voxel with those of its 26 neighbors (31).
A 3D ReHo map was obtained for each participant. We further
normalized the ReHo map by dividing the ReHo value for each
voxel by the averaged ReHo value of the whole brain. Finally,
all ReHo maps were smoothed using a 6mm full-width at half
maximum isotropic Gaussian kernel.

Multivariate Pattern Classification Analysis
The MATLAB codes used in our analysis are available
online: https://github.com/lichao312214129/lc_rsfmri_
tools_matlab/tree/master/Machine_Learning/Classification
(SVM_LC_Kfold_PCA _∗.m). Our analysis consisted of a 5-fold
cross-validation procedure for each of the 3 metrics (i.e., FCS,

TABLE 1 | Demographic and scale data of all study participants.

Variables PI group (n = 38) HC group (n = 44) P value

Gender (M/F) 16/22 11/33 0.10*

Age (y) 40.61 ± 9.43 39.91 ± 9.43 0.74#

Duration (mo) 40.31 ± 40.09 N/A N/A

Education (y) 7.50 ± 3.54 8.45 ± 4.31 0.19#

ISI 19.32 ± 3.09 5.43 ± 2.46 < 0.001#

PSQI 12.45 ± 3.09 5.77 ±3.15 < 0.001#

SAS 50.29 ± 11.29 39.73 ± 5.68 < 0.001#

SDS 55.21 ± 9.57 40.39 ± 2.54 < 0.001#

Unless otherwise noted, data are mean ± standard deviation.
*The P value was obtained using the chi-square test.
#The P values were obtained using the Wilcoxon rank sum tests.

N/A, Not Available; PI, Primary Insomnia; HC, Healthy Control; ISI, Insomnia Severity

Index; PSQI, Pittsburgh Sleep Quality Index; SAS, Self-rating Anxiety Scale; SDS, Self-

rating Depression Scale.

large-scale FC and ReHo). At each fold k (k= 1, 2, 3, 4, 5), data of
both PI and HC were divided into 2 subsets of 8 to 2. Then the 2
larger subsets from both groups were fused together to form the
training data (80%), with the others being test subsets (20%) and
only used to assess generalization performance. Normalization
and principal component analysis (32) were further performed
on the training data. Testing data was also processed by these 2
processes using the same parameters (e.g., principal component
coefficients) from the training data. We retained all the principal
components, so the principal component analysis just amounts
to a coordinate transformation (32). Then, a linear SVM classifier
was trained on the training data and used to classify the testing
data. By comparing the predicted labels with the real labels,
we acquired the classification performances [i.e., accuracy,
sensitivity, specificity, and area under ROC curve (AUC)] of one
fold. Moreover, discriminative weights were obtained as linear
SVM weights (i.e., Beta values of features from the linear SVM
classifier). Final classification performances and discriminative
maps were acquired as the average over the 5 folds. At the end
of the iteration, we acquired the prediction labels for every
participant, which was used to build the confusion matrix (please
see Figures 1A–C).

Statistical Analysis
Demographic and scale data of all participants were analyzed
using SPSS (version 20; SPSS, Chicago, III). Differences in age,
education level, ISI, PSQI, SAS, and Self-rating Depression Scale
scores (SDS) between PI patients and healthy controls were
compared using Wilcoxon rank sum tests. Differences associated
with age were assessed using chi-squared tests.

Non-parametric permutation testing was used to estimate the
statistical significance of the averaged classification performances
by determining whether these performances exceeded chance
levels. The class labels (i.e., PI patients vs. HC) of the training
data were randomly permuted 1,000 times prior to training,
and repeated the entire 5-fold cross-validation procedure. The P
value of the permutation test was defined as: P = (Nexceed+1)/
(Npermutation+1). Where Nexceed represents the number of times
the permuted performance exceeded the one obtained for the true
labels. Npermutation represents the times of permutation.

Because of the unfavorable classification performance of
the large-scale FC and ReHo (please see Figure 1), we only
performed the permutation test on FCS. We additionally
analyzed the between-group differences of these three FCmetrics
using traditional two-sample t-test, with age, sex and years of
education as covariates. Since the focus of this study is FCS,
correlation analysis was conducted to determine whether FCS
was correlated with clinical characteristics in the PI group.

RESULTS

Demographic and Scale Data
As shown in Table 1, the PI patients and the controls showed
no significant differences in age (P = 0.74), sex (P = 0.10), and
education level (P = 0.19). However, PI patients had higher ISI,
PSQI, SAS, and SDS scores compared to HC (all P < 0.001).
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FIGURE 2 | The top one percent of classification weight maps from the linear SVM classifier using the FCS as feature (cluster size threshold = 100). FCS, functional

connectivity strength.

TABLE 2 | Top one percent of the region weights from SVM classifier using the

functional connectivity strength.

Brain regions MNI coordinates (Peak) Cluster size

(Voxels)

Weight

(Peak)

X Y Z

Anterior insular

cortex (R; BA48)

39 3 −6 122 0.03

Precuneus (L;

BA7)

−3 −66 60 114 −0.03

Middle frontal

gyrus (L; BA8)

−33 21 51 212 0.05

L, Left; R, Right.

Classification Performances
Figure 1 shows the confusion matrix and classification
performances of the 3 metrics. FCS reached 81.5 ± 9.0%
for accuracy, 84.9 ± 14.7% for sensitivity, 79.1 ± 12.3% for
specificity, and 83.0 ± 10.8% for AUC (all P < 0.001). However,
several performances for large-scale FC and ReHo were around
50%, i.e., the chance level. Consequently, the focus of our study
was only on FCS.

Classification Weight Maps
Figure 2, Table 2, and Figure S1 show the top one percent of
classification weight maps from linear SVM classifier using the
FCS (cluster size threshold = 100). Right anterior insular cortex,
left precuneus and left middle frontal gyrus contributed high
weight to the classifier.

MVPA Results of More Rigorous Inclusion
Criteria
Considering that previous research used more rigorous inclusion
criteria: duration > 6 month, total sleep time ≤ 6.5 h and either
sleep onset latency (SOL)> 45min orWASO> 45min or SOL+
WASO > 60min (33, 34), we also adopted the additional specific
severity criteria to the patients group and repeated the MVPA for
FCS (number of patients= 22; duration= 61.7± 69.2; total sleep
time= 326.8± 35.0; SOL= 46.8± 2 8.8; WASO= 95.0± 52.3).
Results showed that the classification performances were 76.6 ±
9.3% for accuracy, 76.3 ± 9.5% for sensitivity, 76.9 ± 13.7% for
specificity, and 86.0 ± 7.0% for AUC. The right anterior insular
cortex, left middle frontal gyrus and bilateral superior frontal
gyrus had relatively high classification weights (right anterior
insular cortex and left middle frontal gyrus were the repeated
regions in the two analyses). We reported the results that adopted
the specific criteria in the Figure S2.
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FIGURE 3 | FCS differences between PI patients and HC (PI-HC, A) and correlation between FCS and sleep scales in the PI group (B). The threshold was P < 0.01 at

the voxel level, with Alphasim corrections for multiple comparisons of P < 0.05. The color bar represents the t value. FCS, functional connectivity strength; PI, primary

insomnia; HC, healthy controls.

In addition, as to the healthy controls, substantial studies
reported that PSQI total score < 5 was defined to the healthy
controls (35–37). In order to minimize the influence of PSQI
on the results, we use linear regression method to remove
the covariate PSQI. Then, we repeated the MVPA for FCS.
Results showed that the classification performances were 82.9

± 5.9% for accuracy, 84.7 ± 13.4% for sensitivity, 80.7 ±

13.1% for specificity, and 90.7 ± 5.1% for AUC. The right
anterior insular cortex and left middle frontal gyrus had relatively
high classification weights (these two regions were all the
repeated regions in the two analyses). We reported the results in
the Figure S3.
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TABLE 3 | Between-group differences (PI-HC) for functional connectivity strength.

Brain regions MNI coordinates (Peak) Cluster size

(Voxels)

T values

(Peak)

X Y Z

Anterior insular

cortex (R; BA48)

36 3 −6 100 5.40

Head of caudate

nucleus (R; BA25)

9 12 9 70 −4.85

Middle frontal

gyrus (L; BA8)

−33 21 51 64 4.58

L, Left; R, Right. The significance level was set to P< 0.01 at the voxel level, with Alphasim

corrections for multiple comparisons of P < 0.05.

Between-Group Differences and
Correlation Analysis
Figure 3, Figure S4, and Table 3 illustrate the regions showing
between-group differences in FCS maps (Alphasim correction
for multiple comparisons of P < 0.05 combined with single
voxel P < 0.01). The estimated Gaussian filter widths (FWHM,
in mm) were [7.161, 7.834, and 7.771]. The number of Monte
Carlo simulations was 1000. Compared with HC, PI patients
showed increased FCS in right anterior insular cortex and left
middle frontal gyrus, while decreased in the right head of
the caudate nucleus. It is worth noting that the right anterior
insular cortex and left middle frontal gyrus also showed high
classification weights.

In addition, we found that patients with primary insomnia
showed increased ReHo in bilateral anterior cingulate gyrus, left
precentral gyrus and superior frontal gyrus (Alphasim correction
for multiple comparisons of P < 0.05 combined with single voxel
P< 0.01; Figure 4). The estimatedGaussian filter width (FWHM,
in mm) were [7.276, 8.014, and 7.841]. The number of Monte
Carlo simulations was 1000. However, larger scale FC showed no
between-group difference (FDR q < 0.05).

Correlation analyses showed the FCS in the left middle frontal
gyrus and right head of the caudate nucleus were correlated with
PSQI and SDS respectively (Figure 3B).

DISCUSSION

To our knowledge, this is the first study to employ MVPA for the
automatic classification of patients with PI using three types of FC
features. In the current study, we investigated whether or not the
three types of FC metrics could be used as biomarkers to define
PI. Specifically, the classification performances of FCS were all
approximately equal to or more than 80% for diagnosing PI
patients. The right anterior insular cortex (BA48) and left middle
frontal gyrus (BA8) not only had higher classification weights,
but also were the repeated regions with those of between-group
comparison. In addition, correlation analysis showed that FCS in
left middle frontal gyrus and head of right caudate nucleus were
correlated with PSQI and SDS, respectively.

Convergent findings based on functional MR imaging support
that spontaneous neural activity or FC in the insular cortex,
prefrontal cortex and precuneus were disrupted in patients with

insomnia or subjects with insomnia symptoms (8–14). Here we
show that these regions can be used to discriminate patients with
PI from HC.

Intriguingly, the right anterior insular cortex and the left
middle frontal gyrus not only had high classification weights, but
also showed differences between groups. Right anterior insular
cortex is a key node of the salience network, and is implicated
in arousal and insomnia (9, 38). Chen et al. demonstrated that
the anterior insular cortex had greater involvement with the
salience network, which indicated that the region was involved
in hyperarousal in insomnia, and may be an important target for
novel therapies for PI (9). Here we showed that the right anterior
insular cortex had increased FCS and can be used to discriminate
patients with PI from HC.

The finding regarding anterior insular cortex was right
lateralized. Previous study demonstrated that the right anterior
insular cortex plays a critical and causal role in switching between
the central-executive network and default-mode network for
better performance of cognitively demanding tasks, but not
the left anterior insular cortex (38). The abnormalities in these
networks and abnormal cognitive function were a common
observation in studies of insomnia. Therefore, our study further
highlighted the importance of the right anterior insular cortex
in the neurophysiologic of insomnia. However, our findings
that increased FCS in the left middle frontal gyrus were not
consistent with previous studies. Reduced metabolism, activation
or spontaneous neural activities in the prefrontal cortex are the
general findings (6, 12, 22, 39). One explanation might be that
increased FCS, a manifestation of increased interaction between
a given region and other regions, was compensatory to the above
reduction in the prefrontal cortex. Future research needs to verify
this hypothesis.

Previous study demonstrated that there are prominent beta
and theta oscillations in the middle frontal gyrus during REM
sleep and suggested this area may play a role in the regulation
of memory consolidation (40). Besides, the middle frontal gyrus
belongs to the dorsolateral prefrontal cortex which is thought to
be involved in alertness, attention, and higher-order cognitive
processes, and all these function are disrupted in patients with
insomnia (41). Therefore, dysfunction in the middle frontal
gyrus may also related with abnormal memory consolidation and
compromised cognitive function in PI patients.

In addition, we also found decreased FCS in the head
of the caudate nucleus, which also negatively correlated with
SDS. Previous studies have established that the caudate is
involved in the most consistently reported abnormalities for
insomnia, i.e., hyper-arousal, sleep problems and deficits in
working memory, episodic memory, and problem solving (15).
Furthermore, stimulating the caudate could reduce excitability of
the human cortex (42). Using functional MR imaging, Stoffers
et al. found that hyper-arousal, a most prominent characteristic
of insomnia, was associated with reduced caudate recruitment
when performing an executive task (15). Interestingly, our
study found that the functional interaction between the head
of the caudate nucleus and other brain regions was weaker at
the resting state. Considering that caudate nucleus can inhibit
brain excitation, decreased FCS in this area may reflect a
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FIGURE 4 | ReHo differences between PI patients and HC (PI-HC). The threshold was P < 0.01 at the voxel level, with Alphasim corrections for multiple comparisons

of P < 0.05. The color bar represents the t value. ReHo, regional homogeneity; PI, primary insomnia; HC, healthy controls.

decreased inhibition of the caudate nucleus on brain cortex.
Although FCS in the head of the caudate nucleus cannot be
used to identify insomnia, decreased FCS in this region might
be the underlying neurobiological substrate for hyper-arousal
in insomnia.

Besides, we also found increased ReHo in bilateral anterior
cingulate gyrus. This finding is in line with previous study (43).
Another previous study using PET-CT also found that patients
with PI have high glucose metabolism in the anterior cingulate
gyrus compared with HC when falling asleep (6). Genes in
the anterior cingulate gyrus control circadian rhythms, and are
dysregulated in depression (44). In addition, increased functional
connectivity in the anterior cingulategyrus is associated with both
sleep and depression (45). We speculated that increased ReHo
in the anterior cingulate gyrus was correlated with hyperarousal
emotional activity in PI patients.

Overall, above mentioned findings were related with hyper-
arousal, emotion and cognition. Hyperarousal brain activity and
emotional may led to difficulty in falling asleep, then cause
cognitive impairment in the day.

Several limitations of the current study have to be
acknowledged. First, the statistical correlations were derived with
comparisons form questionnaires only (Table S1). Although the
diagnosis of PI itself is purely subjective and polysomnography

(PSG) is only needed to exclude somatic diagnoses, a whole
night sleep study is the most objective and quantitative means of
diagnosing and describing PI. Second, a cohort of 38 PI patients
and 44 controls is low in order to correctly train an SVM.
Additional studies in a large number of PI patients are needed
in order to validate the MVPA analysis as a potential biomarker
to identify patients with PI. Third, we only used functional
MR imaging data. The integration of structural with functional
data may be a more effective method to elucidate disease
factors that are shared across different metrics. To investigate
morphometric changes in brain regions with abnormal FC could
be represent a useful approach to better identify the mechanisms
underlying the pathogenesis of PI. Forth, we only investigated
the static features of the three types of FC and did not study their
dynamic features. Increasing evidence has demonstrated that
the functional brain connectivity has dynamic characteristics,
emergent over time scales spanning milliseconds and tens of
minutes. Future studies using dynamic FC are needed when
performing MVPA for PI. Fifth, the participants in the present
study were all right-hand dominant, therefore, we cannot
identify the relation of the R-sided and L-sided findings with
handedness. Sixth, concerning the classification performances
of FCS, a diagnostic accuracy equal to or more than 80% for
diagnosing PI, is a good but not excellent in order to classify PI
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patients at the individual level (commonly diagnostic accuracy
of 100%).

In summary, these limitations notwithstanding, our findings
suggest that abnormal FCS in the right anterior insular cortex
(BA48) and left middle frontal gyrus (BA8) might serve as a
potential neuromarkers for PI.
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