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Abstract Many diseases are associated with systematic

modifications in brain morphometry and function. These

alterations may be subtle, in particular at early stages of the

disease progress, and thus not evident by visual inspection

alone. Group-level statistical comparisons have dominated

neuroimaging studies for many years, proving fascinating

insight into brain regions involved in various diseases.

However, such group-level results do not warrant diag-

nostic value for individual patients. Recently, pattern rec-

ognition approaches have led to a fundamental shift in

paradigm, bringing multivariate analysis and predictive

results, notably for the early diagnosis of individual

patients. We review the state-of-the-art fundamentals of

pattern recognition including feature selection, cross-vali-

dation and classification techniques, as well as limitations

including inter-individual variation in normal brain anat-

omy and neurocognitive reserve. We conclude with the

discussion of future trends including multi-modal pattern

recognition, multi-center approaches with data-sharing and

cloud-computing.
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Abbreviations

AD Alzheimer disease

ADNI Alzheimer disease neuroimaging initiative

DTI Diffusion tensor imaging

fMRI Functional magnetic resonance imaging

MCI Mild cognitive impairment

MRI Magnetic resonance imaging

SVM Support vector machines

VBM Voxel based morphometry

Introduction

Many diseases cause systematic modifications in brain

structure that can be imaged using MRI. These modifica-

tions may be subtle, in particular, at early stages of the

disease, and, therefore, are not detectable by visual

inspection alone. For many years, most neuroimaging

studies have focused on group comparisons between

healthy controls and patients. While such group-level

results are fascinating from a research perspective and may

reliably identify brain regions involved in a given disease,

these findings do not automatically translate into useable

diagnostic procedures at the individual level.

Therefore, the application of tools from pattern recog-

nition to neuroimaging data contributed to a fundamental

paradigm shift to develop novel and sensitive imaging-
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based biomarkers, In principle, individual prediction is

possible using univariate techniques, however, tools from

pattern recognition—commonly referred to as multivariate

pattern analysis (MVPA)—have the ability to integrate

information across multiple variables. Exploiting multivar-

iate data structure can significantly improve sensitivity, in

particular when only subtle alterations occur, as it is typically

the case in the context of early detection or diagnosis.

Another fundamental feature of pattern recognition is

that it exploits in an elegant way high-dimensional data,

even when conventional multivariate statistical methods

would not work due to a limited number of data samples.

This can be well illustrated by an example in the field of

face perception based on images of female and male sub-

jects (Haller et al. 2011). A (univariate) pixel-wise statis-

tical test might for example find a significant difference of

the nose region between female and male faces. However,

it is impossible to reliably determine the gender based on

the nose alone. Using a classifier, multivariate information

is integrated using the pattern of multiple features such as

ear, nose, eyebrows, chin etc. to recognize an individual

face although each feature per se is not necessarily sig-

nificantly different between groups.

The interest in applying machine learning techniques to

neuroimaging data started by early work of Haxby and

colleagues (Haxby et al. 2001) where they explicitly rec-

ognized the distributed nature of activation patterns from

fMRI in the visual cortex. Until then, most fMRI analyses

were performed using mass univariate techniques (i.e.,

voxel by voxel), which did not exploit inter-voxel depen-

dencies. While, in principal, distributed patterns can be

revealed by multivariate statistical techniques (e.g., partial

least squares Krishnan et al. 2011), there was an almost

immediate interest to employ these patterns using tools

from machine learning that can then read out mental state

from previously unseen data (Cox and Savoy 2003; Pereira

et al. 2009). A multitude of interesting literature has

demonstrated that it is possible to train data-driven models

that can subsequently decode information from the sub-

ject’s brain images; for example semantic meaning of

words (Mitchell et al. 2008), emotional prosody pro-

nounced by actors (Ethofer et al. 2009), or more recently

visual imagery (Nishimoto et al. 2011) and even attempts

to decode dreams (Horikawa et al. 2013).

These developments have also started a promising

avenue for clinical neuroimaging. First, many neurological

diseases and disorders are characterized by diffuse rather

than focal changes (Seeley et al. 2009), and, therefore,

multivariate methods should be more sensitive in picking

up such changes. Second, predictive modeling at the level

of the single subject is key to ultimately provide new

neuroimaging markers with diagnostic value. Initially,

whole-brain morphometry from structural MRI has been

used to train models that can discriminate between healthy

controls and patients, such as Alzheimer’s disease and

frontotemporal dementia (Kloppel et al. 2008; Fan et al.,

2008a, c; Davatzikos et al. 2008), fragile-X syndrome

(Hoeft et al. 2008), psychosis (Davatzikos et al. 2005; Fan

et al. 2008b), depression (Costafreda et al. 2009), psychosis

(Sun et al. 2009), multiple sclerosis (Weygandt et al. 2011)

and so on. Advances in functional MRI, and more recently

resting-state fMRI, have made it possible to study altera-

tions in functional networks (Fox and Greicius 2010)

without behavioral confounds (Bullmore 2012). Measures

of functional connectivity between different brain regions

can be used as features for pattern recognition methods,

and has been applied, for example, to discriminate healthy

from early AD (Wang et al. 2006), schizophrenia (Demirci

et al. 2008), major depression (Craddock et al. 2009), pain

perception (Marquand et al. 2010), and multiple sclerosis

(Richiardi et al. 2012) or to predict brain maturity

(Dosenbach et al. 2010). Pattern recognition approaches

based on functional measures could potentially provide

fMRI a more central role in the clinical field.

The application of these advanced pattern recognition

data analysis techniques, in particular in a clinical context,

requires understanding of the underlying principles and

potential pitfalls, which will be discussed in the following

sections.

State of the Art

Data Processing Pipeline

Conventional confirmatory analysis is based on a (prede-

fined) generative model that is fitted to the data. Statistical

hypothesis testing then provides forward inference on how

well the model explains the data. Many group-studies use

such schemes to identify significant differences between

populations. Pattern recognition tools reverse the direction

of inference; i.e., the model is learned from the data during

a training phase in order to predict the explanatory vari-

able. The model performance is then validated during a

validation phase. The models depend on the type of clas-

sifier, but they are usually flexible and based on general

assumptions about the data structure. The ‘‘task’’ of a

classifier refers to the predicted variable; e.g., healthy

versus patient. The data that is made available to the

classifier, the definition of the task, and the performance of

the classifiers are three essential ingredients for the inter-

pretation of the results (see Fig. 1).

The pattern recognition pipeline (Lemm et al. 2011) has

the following essential components. As the first step, fea-

ture extraction converts the raw data into the best possible

form that maximizes the amount of information and
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minimizes the effect of confounds by various sources of

noise. Structural or functional features can be extracted

from imaging data, sometimes after a long procedure (e.g.,

spatial normalization to bring the data in the same ‘‘brain

space’’). For instance, a typical structural MRI dataset can

easily contain more than 1000000 voxels. In most cases, the

features are related (similarity of adjacent voxels or voxels

in homologous regions), and only a limited number of brain

regions (and consequently features) will carry discrimina-

tive information. Other possibilities of features include

those extracted from functional imaging (e.g., contrast of

an experimental condition in a conventional activation

study, or functional connectivity from resting-state fMRI),

from diffusion-weighted imaging (e.g., measures of struc-

tural connectivity), neuropsychological and clinical mea-

sures. As discussed below in more detail, it is also possible

to combine different types of features.

Feature Selection

In most cases, the number of features (e.g., voxels in the

case of structural MRI) is much larger than the number of

subjects available. The selection of the ‘‘best’’ features is a

long-standing problem in machine learning that can be

dealt with either explicitly (by a separate feature selection

step) or implicitly (by regularization in the classification

method). Conventional feature selection reduces the

dimensionality of the feature space by ranking features

according to their univariate statistical significance for

distinguishing between two populations and the N-first

features can be retained. Another approach is to apply

multivariate techniques that project the feature space onto a

(linear) subspace; e.g., principal components analysis can

be used to keep those feature dimensions that explain most

of the variance. In such case the new features will consists

of linear combinations of the initial ones and it might be

harder to interpret the final results. In general, correlated

features are often not optimal for prediction (i.e., only the

best predictive feature would be selected), however, from

the neuroimaging point-of-view it is desirable to identify

all correlated features to improve interpretability (Tolosi

and Lengauer 2011). For instance, it is better to select a

whole brain region as predictive for a certain task, instead

of a few voxels that might not be very stable due to noise or

slight variations in brain morphometry or the data.

Fig. 1 Schematic illustration of the data processing pipeline. Several

types of data input such as T1, diffusion weighted imaging or fMRI

are in a first step pre-processed in multiples ways usually known from

advanced image analysis techniques including depending on the

specific demands spatial normalization into a standard space, field

inhomogeneity correction, spatial (and temporal) smoothing, atlasing,

independent component decomposition, structural or functional

connectivity analyses and others. In the next step, the pre-processed

data is used for feature selection and classification
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Therefore, features are also sometimes transformed into

another domain that is (approximately) decorrelating; e.g.,

the spatial wavelet transform leads to a representation that

is more compact for piecewise smooth signals, a property

that is often used to improve detectability in fMRI studies

(Van De Ville et al. 2006). Finally, we also note that many

classifiers have an implicit feature selection built-in termed

as ‘‘regularization’’; i.e., the classifier optimizes a criterion

that favors fewer features.

Classification

Support-vector-machines (SVM) have been widely applied

to neuroimaging data, mostly because of their robustness

against outliers, but they are by far not the only choice

available (Cristianini and Shawe-Taylor 2000). Typically,

SVMs are used for binary classification such as discrimi-

nating patients from healthy controls. However, more

advanced classifiers have been developed (e.g., decision

forests (Criminisi and Shotton 2013) for a recent example)

and should be considered for multi-class classification and

regression as these tasks are increasingly important to build

clinically relevant tools; e.g., for differential diagnosis.

However, there is some trade-off between increasing the

complexity of the classifier and improving the feature

extraction. Usually, good features allow for better classi-

fication with almost any classifier.

Another issue with classifiers arises when features are

multimodal; i.e., combining different types of imaging data

with other measures such as scores from neuropsycholog-

ical tests. As the model of a single classifier will not allow

the necessary flexibility, ‘‘ensemble learning’’ is a rich field

in machine learning that deals with combining multiple

classifiers (and thus multiple models) to integrate the

richness of the data structure. One promising approach in

the future is the use of multi-level classifier algorithms to

aggregate information in a hierarchical way (see Fig. 2).

Cross-Validation

Classifiers are trained and evaluated on separate parts of

the data according to a cross-validation methodology.

Specifically, the classifier’s model is trained using part of

the data where both the features and the predicted variable

are given to the algorithm. Then, the classifier is evaluated

on the remaining part of the data by comparing its outcome

against the ground-truth prediction. The procedure is

repeated by removing different parts of the data and

Fig. 2 Illustrates the simplified processing pipeline for a single

domain classification (a) from data input to feature selection/

classification to output. In multi-modal classification (b, c, d), all

input data can directly enter one single feature selection/classification

(b). Alternatively, it is possible to have one feature selection/

classification per input data, followed by one single super- feature

selection/classification at the second level (c). Moreover, it is possible

to introduce an additional feature selection/classification levels, for

example regrouping all imaging modalities, followed by a super

feature selection/classification at the 3rd level (d)
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summarizing the average performance across the validation

folds (e.g., in terms of specificity and sensitivity). Ideally,

the classifier should have learned the main data structure,

ignoring the noise, and be able to generalize its model to

unseen data.

Current Challenges and Future Trends

Compared to applications of pattern recognition in cognitive

neuroimaging (Raizada and Kriegeskorte 2010), ameliorat-

ing the handling of various confounds is a remaining chal-

lenge before these techniques enter the clinical realm. In the

following, we review the fundamental current challenges,

potential pitfalls and limitations as well as future trends that

deserve consideration, in particular with respect to clinical

applications of pattern recognition analyses.

Normal Anatomical Inter-individual Variability

There is substantial normal inter-individual variation in

brain morphology even in healthy volunteers, for example,

approximately 15 % variability in cortical thickness (Haug

1987). In contrast, there is less variability in the inter-

hemispheric difference between homologous brain regions.

Correspondingly, a previous study demonstrated that due to

this decreased variability in the within-subject cortical

asymmetry, at-risk mental state subjects could be dis-

criminated from volunteers only when considering the

within-subject cortical asymmetry yet not based on direct

assessment of cortical thickness between-subjects (Haller

et al. 2009). Moreover, adjacent voxels are more likely to

carry similar information than distant voxels in non-related

areas. It is also notable that spatial information can be

integrated at several scales; e.g. across neighboring voxels,

subareas of predefined anatomical structures or even areas

distributed over larger distances based on prior knowledge

(e.g., Hackmack et al. 2012a).

Current classification analyses typically consider each voxel

as an independent feature ignoring the highly ordered structure

of the brain. In other words, SVMs are invariant to permutation

of the feature dimensions. To acknowledge spatial neighbor-

hood relationships, one can include spatial transformations in

the feature extraction step (e.g., spatial averaging or wavelet

transforms as mentioned above). This could potentially

improve classification accuracy and robustness.

Incorporating Prior Knowledge

Numerous previous structural and functional group level

studies have provided evidence of specific brain regions

involved in a wide range of different diseases and condi-

tions. This extensive prior knowledge is largely ignored in

recent individual level pattern recognition analyses,

although it might potentially improve classification accu-

racy and robustness.

Similar to the discussion about the anatomic structure of

the brain above, it is likely beneficial to inject any available

domain knowledge to improve the information content of

the features despite the fact that feature selection and state-

of-the-art classifiers are designed to deal with high-

dimensional learning. Purely data-driven methods might

miss important structures available in the data. In addition,

the interpretation of the results could often become easier

when features represent domain-relevant information.

Advanced methods have recently been proposed to exploit

spatial structure; e.g., based on hierarchical clustering to

regroup similar voxels and reinforce the robustness (Cui

et al. 2012). For some applications, features can also be

extracted from specific regions-of-interest instead of the

whole brain, or the ‘‘locality’’ of information can be probed

by a ‘‘searchlight’’ approach where classification perfor-

mance is reported in an information map for features

extracted from (sliding) local neighborhoods (Kriegeskorte

et al. 2006).

For functional data, there is often a significant amount of

within-subject non-stationary activity that interferes with

the signal of interest; in recent work, techniques for nor-

malizing out the non-stationary component of within-sub-

ject activity show promising avenues for improving the

robustness of subsequently extracted features (Samek et al.

2013). For resting-state fMRI data, interaction between

timecourse can often be well summarized by functional

connectivity measures such as Pearson correlation or more

complicated measures of dependencies (Friston 2011). In

principle, classifiers could learn the data structure that

leads to considering features based on inter-hemispherical

differences or functional connectivity, however, the avail-

able amount of data is often too limited and it often non-

trivial to understand the properties of the learned model.

Normal Inter-individual Variation in Cognitive Reserve

Pattern recognition analyses at the individual level (as well

as univariate group level analyses) are immanently based

on the assumption that there is a direct relationship

between brain pathology and symptomatology. In the

example of cognitive decline, the assumption is that

decreasing cognitive functions are paralleled by progres-

sive brain atrophy. This assumption is, however, not nec-

essarily true. Due to individual factors such as education

and social integration, the same degree of clinically evident

neurocognitive impairment can be caused by a variable
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degree of brain pathology—or from the other perspective,

the same degree of brain pathology can evoke variable

degree of clinical neurocognitive impairment. This inter-

individual variation in the neurocognitive reserve was

described already in 1968 (Tomlinson et al. 1968). This

means that for example of pattern recognition in the

domain of cognitive decline, the same amount of structural

brain alterations could be associated with clinically mani-

fested cognitive decline if the neurocognitive reserve is

exhausted, or the individual might still maintain intact

cognitive functioning if there is sufficient neurocognitive

reserve. This inter-individual variability in the neurocog-

nitive reserve, or more generally variability between brain

structural and functional alterations on the one hand, and

clinically manifest symptoms on the other hand, represent a

general and fundamental limitation for pattern recognition

approaches especially in a clinical setting.

Dysbalance Between Number of Features and Number

of Subjects, Data Reduction and Over-Fitting

It is worthwhile mentioning that a typical feature set

extracted from MRI data can easily contain more than

1000000 features, which clearly exceeds the number of

individuals in particular in single-center studies. In most

cases, the features are related (similarity of adjacent or

homologous voxels), and only a limited number will carry

discriminative information.

While the cross-validation methodology is essential to

train and evaluate classifiers, it still has the risk of over-

fitting the data as the parameters can be tuned. Therefore,

in practice, several nested levels of cross-validation should

be used, as well as a separate independent test dataset that

has not been used for any training/validation before. Often

the sample size for single-center studies is insufficient to

estimate such ‘‘real-world’’ performance, but this is one

important objective for clinical neuroradiology that can

benefit from ongoing multi-centric studies, data sharing,

and cloud computing (see below).

Another important concept that is commonly used in

machine learning is the ‘‘kernel trick’’ (Shawe-Taylor and

Cristianini 2004). Instead of learning the structure in the

high-dimensional feature space, which is rather empty as

there are not enough data points, one transforms the data

into a Euclidean space by a kernel function applying a

kernel function to each pair of data points, as such con-

stituting the kernel (Gram) matrix. The data structure can

then be learned in a space that has as many dimensions as

data points. Many different kernel functions have been

proposed, including polynomial and Gaussian kernels

(a.k.a. radial basis function kernel), or even kernels for

graph structures. Many classifiers operate in this more

economical space and relate back the model to the full

feature space.

In addition, parameter tuning for both feature selection

and classifiers requires an additional inner cross-validation

loop that decreases the available data for learning as well

as increasing the risk of over-fitting.

In summary, selecting and determining the importance

of features is an essential processing step in classification

analyses, yet identifying the related parameters such as

optimal number of features or regularization tuning is non-

trivial in practice. This is still an active field of research in

machine learning; e.g., stability selection, which refers to

the consistency of features when subsampling the feature

space (Meinshausen and Bühlmann 2010), including

applications to neuroimaging (Langs et al. 2011).

Variability Related to Patient Selection, Inter-scanner

Variability and Data Preprocessing

Additional potentially confounding factors, in particular

with respect to clinical applications, include scanner het-

erogeneity (Abdulkadir et al. 2011; Kruggel et al. 2010),

variability in data preprocessing and patient selection.

Multimodal Classification

One of the key challenges to obtain effective biomarkers

for computer-aided diagnosis and prognosis is to incorpo-

rate information from different modalities. Next to imaging

measures from functional and structural MRI, these should

take into account additionally available parameters such as

neuropsychological and clinical measures amongst others

in order to improve classification accuracy and robustness,

in particular for clinical applications.

Towards New Biomarkers

Classification of healthy subjects versus patients has lim-

ited importance for clinical practice. One clinically rele-

vant application is prediction of individuals at risk for

consequent cognitive decline in the domain of mild cog-

nitive impairment (MCI), which represents a transition

zone between normal aging and very early dementia (Pet-

ersen and Negash 2008). The definitions of MCI have

substantially evolved and changed over the past years,

which goes beyond the scope of this review. Depending on

the MCI subtype, only about half of MCI subjects will

progress to clinically overt dementia, whereas the other

half may remain stable or evolve to other forms of

dementia (Petersen 2004; Mariani et al. 2007; Forlenza
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et al. 2009). Assuming that only about half of unselected

MCI individuals will progress to clinically overt dementia,

the prediction of individuals at risk for consecutive cog-

nitive decline is of paramount importance for early indi-

vidual treatment as well as for clinical trials. In a typical

placebo-controlled pharmaceutical trial, 25 % of unse-

lected MCI will remain stable despite being in the placebo

group, while only 25 % of individuals will progress and

obtain the active compound. Therefore, pre-selection of at

risk individuals for future cognitive decline would sub-

stantially improve the design of clinical trials. As MRI is

routinely performed in the clinical workup of cognitive

decline, advanced data analysis techniques as those by

pattern recognition tools make use of already existing data,

which is thus cost effective and without additional dis-

comfort for the patient. It is possible to predict future

cognitive decline in MCI using baseline MRI based on grey

matter voxel based morphometry (VBM) (Plant et al. 2010;

Misra et al. 2009; Fan et al. 2008c), white matter DTI

(Haller et al. 2010a, b; O’Dwyer et al. 2012) or iron

deposition (Haller et al. 2010a, b). Another potential

application for pattern recognition is in patient follow-up

by a surrogate marker of patients’ cognitive function based

on imaging data; e.g., MVPA has been proposed as one

way to overcome the clinico-radiological paradox in mul-

tiple sclerosis (Hackmack et al. 2012b), and resting-state

fMRI appears as a promising candidate to provide relevant

features of MCI to AD progression (Damoiseaux et al.

2012).

It is further possible to combine for example DTI and

resting state fMRI to identify MCI individuals (Wee et al.

2012), to predict MCI to AD conversion using multimodal

measures also in combination with neuropsychological

scores or cerebrospinal fluid biomarkers (Cui et al. 2011,

2012) or by the combination of structural MRI and FDG-

PET (Zhang and Shen 2012a, b; Zhang et al. 2011).

Finally, it is possible to classify MCI subtypes, who have

different risk of disease progression and who might benefit

from different types of treatment, for example, based on

DTI (Haller et al. 2013b).

The clinical application of such pattern approaches is

not limited to dementia, and may also for example be

applied to predict the development of psychosis in at risk

mental state individuals (Mourao-Miranda et al. 2012; Orru

et al. 2012; Pettersson-Yeo et al. 2013; Gothelf et al. 2011).

Another clinically relevant task is to discriminate

between patients with typical Parkinson’s disease from

patients with atypical Parkinson’s disease (Haller et al.

2012, 2013a), which significantly modifies prognosis,

outcome and treatment. These studies represent promising

advances in early clinical detection of individual patients to

predict outcome or select specific at risk patients for clin-

ical trials.

Conclusions

In summary, the application of techniques from the field of

pattern recognition to neuroimaging data is an emerging

field. These methods have a number of attractive features,

including the use of multivariate information and the pos-

sibility to predict for previously unseen data. Ongoing

research is still needed to overcome a number of limita-

tions, including optimal feature selection that incorporates

better domain knowledge, and integration of multimodal

measurements. In addition, future methodological devel-

opments should be increasingly based on large datasets and

multi-centric studies to increase both reproducibility and

predictability. Recent data sharing initiatives such as ADNI

(Mueller et al. 2005), in combination with cloud-comput-

ing power, will provide the necessary prerequisites for

these developments. We will hopefully see new advances

in individual-level classification analysis in order to pro-

vide earlier and more accurate diagnoses, better estimation

of prognosis, and eventually improve patient care.
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