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Abstract Multivariate peaks over thresholds modelling based on generalized Pareto

distributions has up to now only been used in few and mostly two-dimensional sit-

uations. This paper contributes theoretical understanding, models which can respect

physical constraints, inference tools, and simulation methods to support routine use,

with an aim at higher dimensions. We derive a general point process model for

extreme episodes in data, and show how conditioning the distribution of extreme

episodes on threshold exceedance gives four basic representations of the family

of generalized Pareto distributions. The first representation is constructed on the

real scale of the observations. The second one starts with a model on a standard

exponential scale which is then transformed to the real scale. The third and fourth

representations are reformulations of a spectral representation proposed in Ferreira

and de Haan (Bernoulli 20(4), 1717–1737, 2014). Numerically tractable forms of

densities and censored densities are found and give tools for flexible parametric like-

lihood inference. New simulation algorithms, explicit formulas for probabilities and

conditional probabilities, and conditions which make the conditional distribution of

weighted component sums generalized Pareto are derived.
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1 Introduction

Peaks over thresholds (PoT) modelling was introduced in the hydrological litera-

ture (NERC 1975). The philosophy is simple: extreme events, perhaps extreme water

levels, are often quite different from ordinary everyday behaviour, and ordinary

behaviour then has little to say about extremes, so that only other extreme events

give useful information about future extreme events. To make this idea operational,

one defines an extreme event as a value, say a water level, which exceeds some high

threshold, and only uses the sizes of the excesses over this threshold, the “peaks over

the threshold”, for statistical inference. This idea was given a theoretical foundation

by combining it with asymptotic arguments motivating that the natural model is that

exceedances occur according to a Poisson process and that excess sizes follow a gen-

eralized Pareto (GP) distribution (Balkema and de Haan 1974; Pickands 1975; Smith

1984; Davison and Smith 1990).

Since then, numerous papers have used one-dimensional PoT models (though

often not under this name), in areas ranging from earth and atmosphere science to

finance, see e.g. Kyselý et al. (2010), Katz et al. (2002), and McNeil et al. (2015).

The method has also been presented in a number of books, see e.g. Coles (2001),

Beirlant et al. (2004), and Dey and Yan (2015).

However, often it is not just one extreme event which is important, but an entire

extreme episode. In the 2005 flooding of New Orleans caused by windstorm Katrina,

more than 50 levees were breached. However, many others held, and damage was

determined by which levees held and which were flooded (Andersen et al. 2007).

Extreme rain can lead to devastating landslides, and can be caused by one day with

very extreme rainfall, or by two or more consecutive days with smaller, but still

extreme rain amounts (Guzzetti et al. 2007). The 2003 heat-wave in central Europe is

estimated to have killed between 25 000 and 70 000 people. Many deaths, however,

were not caused by one extremely hot day, but rather by a long sequence of high min-

imum nightly temperatures which led to increasing fatigue and eventually to death

(Grynszpan 2003). These and very many other important societal problems under-

line the importance of statistical methods which can handle multivariate extreme

episodes.

Using the same philosophy as for extreme events in one dimension, PoT modelling

of extreme episodes proceeds by choosing a high threshold for each component of

the episode, and then to consider an episode as extreme if at least one component

exceeds its threshold. One then only models the difference between the values of

the components and their respective thresholds. However, in the multivariate case all

the componentwise differences in an extreme episode are modelled, both the over-

shoots and the undershoots. For instance, in a rainfall episode affecting a number

of catchments, both the amount of rain in the catchments where rainfall exceeds the
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threshold and in catchments where the threshold is not exceeded are important. Addi-

tionally, the inclusion of undershoots increases the amount of information that can

be used for inference. Just as in one dimension, the natural model is that extreme

episodes occur according to a Poisson process and that overshoots and undershoots

(or undershoots larger than a censoring threshold) jointly follow a multivariate GP

distribution.

The aim of this paper is to contribute probabilistic understanding, physically moti-

vated models, likelihood tools, and simulation methods, all of which are needed for

multivariate PoT modelling of extreme episodes via multivariate GP distributions.

Specifically, the key contributions are: new representations of GP distributions con-

ducive to model construction; density formulas for each of these representations;

new properties of multivariate GP distributions; and simulation tools. Many of these

results are oriented towards enabling improved statistical modelling, but here we

restrict ourselves to a probabilistic study. A companion paper (Kiriliouk et al. 2016)

addresses practical modelling aspects.

We begin by deriving the basic properties of the class of multivariate GP

distributions. We then pursue the following program:

(i) to exhibit the possible point process limits of extreme episodes in data;

(ii) to show how conditioning on threshold exceedances transforms the distribution

of the extreme episodes to GP distributions, and to use this to find physically

motivated representations of the multivariate GP distributions; and

(iii) to derive likelihoods and censored likelihoods for the representations in (ii).

In part (ii) of the program, we develop four representations. The first one is in

the same units as the observations, i.e., on the real scale, and in the second one the

model is built on a standard exponential scale and then transformed to the real obser-

vation scale. The third is a spectral representation proposed in Ferreira and de Haan

(2014), and the fourth one a simple reformulation of this representation aimed at aid-

ing model construction. A useful, and to us surprising, discovery is that it is possible

to derive the density also for the fourth representation, and that this density in fact

is simpler than the densities for the other two first representations. The importance

of (iii) is that likelihood inference makes it possible to incorporate covariates, e.g.

temporal or spatial trends, in a flexible and practical way.

The insights and results obtained in carrying out this program, we believe, will

lead to new models, new computational techniques, and new ways to make the neces-

sary compromises between modelling realism and computational tractability which

together will make possible routine use, also in dimensions higher than two. The

limiting factor is the number of parameters rather than the number of variables. The

models mentioned in Example 3 may be a case in point. The formulas for probabil-

ities, conditional probabilities and conditional densities given in Sections 5 and 6,

together with the discovery that weighted sums of components of GP distributions

conditioned to be positive also have a GP distribution, add to the usefulness of the

methods. Simulation of GP distributions is needed for several reasons, including

computation of the probabilities of complex dangerous events and goodness of fit

checking. The final contribution of this paper is a number of simulation algorithms

for multivariate GP distributions.
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The multivariate GP distributions were introduced in Tajvidi (1996), Beirlant et al.

(2004, Chapter 8), and Rootzén and Tajvidi (2006); see also Falk et al. (2010, Chap-

ter 5). A closely related approximation was used in Smith et al. (1997). The literature

on applications of multivariate PoT modelling is rather sparse (Brodin and Rootzén

2009; Michel 2009; Aulbach et al. 2012). Some earlier papers use point process mod-

els which are closely related to the PoT/GP approach (Coles and Tawn 1991; Joe

et al. 1992). Other papers consider nonparametric or semiparametric rank-based PoT

methods focusing on the dependence structure but largely ignoring modelling the

margins (de Haan et al. 2008; Einmahl et al. 2012; Einmahl et al. 2016). However, the

GP approach has the advantages that it provides complete models for the threshold

excesses, that it can use well-established model checking tools, and that, compared

to the point process approach, it leads to more natural parametrizations of trends in

the Poisson process which governs the occurrence of extreme episodes.

There is an important literature on modelling componentwise, perhaps yearly,

maxima with multivariate generalized extreme value (GEV) distributions: for a

survey in the spatial context see Davison et al. (2012). However, componentwise

maxima may occur at different times for different components, and in many situations

the focus is on the PoT structure: extremes which occur simultaneously. Addition-

ally, likelihood inference for GEV distributions is complicated by a lack of tractable

analytic expressions for high-dimensional densities, so that inference often is much

easier, and perhaps more efficient, in GP models; see Huser et al. (2015) for a sur-

vey and an extensive comparison. The most important special case of GP models are

those for which all variables can be simultaneously extreme, and there is no mass

placed on hyperplanes (see Section 2 for details of the support); this is a typical mod-

elling assumption. Further comment on the situation of asymptotic independence,

where this does not hold, is made in Section 8, as well as in Kiriliouk et al. (2016).

Section 2 derives and exemplifies the basic properties of the GP cumulative distri-

bution functions (cdf-s). In Section 3 we develop a point process model of extreme

episodes, and Section 4 shows how conditioning on exceeding high thresholds leads

to three basic representations of the GP distributions. Section 5 exhibits the fourth

representation and derives densities and censored likelihoods, while Section 6 gives

formulas for probabilities and conditional probabilities in GP distributions. Finally,

Section 7 contributes simulation algorithms for multivariate GP distributions and

Section 8 discusses parametrization issues and gives a concluding overview.

2 Multivariate generalized Pareto distributions

This section first briefly recalls and adapts existing theory for multivariate GEV

distributions, and then derives a number of the basic properties of GP distributions.

Throughout we use notation as follows. The maximum and minimum operators

are denoted by the symbols ∨ and ∧, respectively. Bold symbols denote d-variate

vectors. For instance, α = (α1, . . . , αd) and 0 = (0, . . . , 0) ∈ Rd . Operations and

relations involving such vectors are meant componentwise, with shorter vectors being

recycled if necessary. For instance ax + b = (a1x1 + b1, . . . , adxd + bd), x ≤ y

if xj ≤ yj for j = 1, . . . , d , and tγ = (tγ1 , . . . , tγd ). If F is a cdf then we write
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F̄ = 1 − F for its tail function, and also write F for the probability distribution

determined by the cdf. That X ∼ F means that X has distribution F , and
d
−→ denotes

convergence in distribution. The symbol 1 is the indicator function: 1A equals 1 on

the set A and 0 otherwise.

For fixed γ ∈ R, the functions x �→ (xγ −1)/γ (for x > 0) and x �→ (1+γ x)1/γ

are to be interpreted as their limits log(x) and exp(x), respectively, if γ = 0. This

convention also applies componentwise to expressions of the form (xγ − 1)/γ and

(1 + γ x)1/γ .

Below we repeatedly use that if X is a d-dimensional vector with P(X � u) > 0

and s > 0 then

P[s(X−u) ≤ x | X−u � 0] =
P[X ≤ x/s + u] − P[X ≤ (x ∧ 0)/s + u]

P[X � u]
. (2.1)

2.1 Background: multivariate generalized extreme value distributions

Throughout, G denotes a d-variate GEV distribution, so that in particular G has

non-degenerate margins. The class of GEV distributions has the following equiv-

alent characterizations, see e.g. Beirlant et al. (2004): (M1) It is the class of limit

distributions of location-scale normalized maxima, i.e., the distributions which are

limits

P[a−1
n (
∨d

i=1 Xi − bn) ≤ x]
d
−→ G(x), as n → ∞, (2.2)

of normalized maxima of independent and identically distributed (i.i.d.) vectors

X1, X2, . . . ∼ F , for an > 0 and bn; and (M2) It is the class of max-stable distribu-

tions, i.e., distributions such that taking maxima of i.i.d. vectors from the distribution

only leads to a location-scale change of the distribution. By (M1) the class of GEV

distributions is closed under location and scale changes.

The marginal distribution functions, G1, . . . , Gd , of G may be written as

Gj (x) = exp

{

−
(

1 + γj
x−μj

αj

)−1/γj

}

, (2.3)

for x ∈ R such that αj +γj (x−μj ) > 0. We will use this parametrization throughout.

The parameter range is (γj , μj , αj ) ∈ R × R × (0, ∞). Define

σ = α − γµ,

so that σj = αj − γjμj , j ∈ {1, . . . , d}. Then Gj is supported by the interval

Ĩj =

⎧

⎨

⎩

(−σj/γj , ∞) if γj > 0,

(−∞, ∞) if γj = 0,

(−∞, −σj/γj ) if γj < 0,

(2.4)

while G is supported by a (subset of) the rectangle Ĩ1 ×· · ·× Ĩd . The lower and upper

endpoints of Gj are denoted by ηj ∈ R ∪ {−∞} and ωj ∈ R ∪ {+∞}, respectively.

One may alternatively write the condition x ∈ Ĩ1 × · · · × Ĩd as γ x + σ > 0.

Below we assume that 0 < G(0) < 1. This inequality is equivalent to Gj (0) > 0

for all j ∈ {1, . . . , d} and Gj (0) < 1 for some j ∈ {1, . . . , d}. The equivalence follows

from positive quadrant dependence, G(0) ≥
∏d

j=1 Gj (0) (Marshall and Olkin 1983).
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PoT models are determined by the difference between the thresholds and the location

parameters of the observations, and not by their individual values. Hence, it does

not entail any loss of generality to shift the location parameters {μi} to make the

assumption 0 < G(0) < 1 hold.

We will often use the stronger condition that σ > 0, i.e., that σj > 0 for all

j ∈ {1, . . . , d}. By Eq. 2.4, this is equivalent to assuming that 0 is in the interior of

the support of every one of the d margins G1, . . . , Gd , i.e., that ηj < 0 < ωj and

thus 0 < Gj (0) < 1 for all j ∈ {1, . . . , d}. This is an additional restriction only for

γj < 0: if γj = 0, then σj = αj > 0, while if γj > 0 then G(0) > 0 implies ηj < 0

and thus σj = −γjηj > 0.

An easy argument shows that G is max-stable if and only if for each t > 0 there

exist scale and location vectors at ∈ (0, ∞)d and bt ∈ Rd such that G(atx + bt )
t ≡

G(x) (Resnick 1987, Equation (5.17)). It follows from Eq. 2.3 that these parameters

are given by

at = tγ , bt = σ (tγ − 1)/γ . (2.5)

To a GEV distribution G we can associate a Borel measure ν on
∏d

j=1[−ηj , ∞) \

{η} by the formula ν({y; y ≤ x}) = − log G(x) for x ∈ [−∞, ∞)d , with the con-

vention that − log(0) = ∞ (Resnick 1987, Proposition 5.8). The measure ν is called

intensity measure because, by (M1), the limit of the expected number of location-

scale normalized points, say a−1
n (Xi − bn), i ∈ {1, . . . , n}, in a Borel set A which

is bounded away from η and such that ν(∂A) = 0, is equal to ν(A). The inten-

sity measure ν determines the limit distribution of the sequence of point processes
∑n

i=1 δ
a−1

n (Xi−bn)
, see Section 3.

2.2 Generalized Pareto distributions

Let G be a GEV distribution with 0 < G(0) < 1 and let ν be the corresponding

intensity measure. Then 0 < ν({y; y ≤ 0}) < ∞, so that we can define a probability

measure supported by the set {y; y ≤ 0} by restricting the intensity measure ν to

that set and normalizing it. The result is the generalized Pareto (GP) distribution

associated to G. Its cdf H may be expressed as

H(x) =

⎧

⎪

⎨

⎪

⎩

1

log G(0)
log

(

G(x ∧ 0)

G(x)

)

if x > η,

0 if xj < ηj for some j = 1, . . . , d ,

(2.6)

see Beirlant et al. (2004, Chapter 8) and Rootzén and Tajvidi (2006). If a GEV cdf G

and a GP cdf H satisfy (2.6), then we say that they are associated and write H ↔ G.

For completeness, we prove (2.6) in the Appendix. For points x ∈ [−∞, ∞)d with

x ≥ η and xj = ηj for some j , the value of H(x) is determined by right-hand

continuity. Below it is shown that η is determined by the values of H(x) for x ≥ 0.

The probability that the j -th component, j ∈ {1, . . . , d}, exceeds zero is equal

to 1 − Hj (0) = log Gj (0)/ log G(0), which is positive if and only if Gj (0) < 1,

that is, when σj = αj − γjμj > 0. Since G(0) < 1 implies that Gj (0) < 1 for

some but not necessarily all j , the GP family includes distributions for which one (or

several) of the components never exceed their threshold, so that the support of that
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component lies in [−∞, 0]. This could be useful in some modelling situations, but

still, the situation of main interest is when all components have a positive probability

of being an exceedance, or equivalently when Hj (0) < 1 for all j ∈ {1, . . . , d}, or,

again equivalently, when σ > 0.

Similarly to the characterizations (M1) and (M2) of the GEV distributions, the

class of GP distributions H such that Hj (0) < 1 for all j ∈ {1, . . . , d} has the

following characterizations (Rootzén and Tajvidi 2006).1 The functions σ t , ut in

the characterizations are assumed to be continuous, and additionally ut is assumed

increasing.

(T1) The GP distributions are limits of distributions of threshold excesses: Let X ∼

F . If there exist scaling and threshold functions st ∈ (0, ∞)d and ut ∈ Rd

with F(ut ) < 1 and F(ut ) → 1 as t → ∞, such that

P[s−1
t (X − ut ) ∨ 0 ≤ · | X � ut ]

d
−→ H+, as t → ∞,

for some cdf H+ with nondegenerate margins, then the function H+(x); x > 0

can be uniquely extended to a GP cdf H(x); x ∈ Rd , and

P[s−1
t (X − ut ) ∨ η ≤ · | X � ut ]

d
−→ H, as t → ∞. (2.7)

(T2) The GP distributions are threshold-stable: Let X ∼ H where H has non-

degenerate margins on R+. If there exist scaling and threshold functions

st ∈ (0, ∞)d and ut ∈ Rd , with u1 = 0 and H(ut ) → 1 as t → ∞, such that

P[s−1
t (X − ut ) ≤ x | X � ut ] = H(x) (2.8)

for x ≥ 0 then there is an uniquely determined GP cdf H̃ such that H̃ (x) =

H(x) for x > η. Conversely, all GP distributions H for which Hj (0) < 1 for

all j ∈ {1, . . . , d} satisfy (2.8) for all x ∈ Rd .

We use the term “threshold-stable” for property (T2) in analogy with the terms

“sum-stable” and “max-stable”. A distribution is sum- or max-stable if the sum or

maximum, respectively, of independent variables with this distribution has the same

distribution, up to a location-scale change. Analogously, a distribution is threshold-

stable if conditioning on the exceedance of suitable higher thresholds leads to

distributions which, up to scale changes, are the same as the original distribution.

This property is illustrated in Fig. 1, with ut and st as given below in Theorem 1(viii).

If (T1) holds we say that F belongs to the (threshold) domain of attraction of

H . In contrast to the limit in (M1), different threshold functions can lead to limits

which are not location-scale transformations of one another. A cdf F is in a domain

of attraction for maxima if and only if it is in a threshold domain of attraction.

The GP distribution H is supported by the set

[η, ω] \ [η, 0] = {x ∈ Rd : ηj ≤ xj ≤ ωj for all j , and xj > 0 for some j}.

1In the article, the truncation factor “ ∨η” is missing in Theorem 2.2 and Theorem 2.3 (ii). A correction

note is forthcoming.
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Fig. 1 Illustration of (T2). Left panel: points from a two-dimensional multivariate GP distribution with

parameters σ = (2, 0.5) and γ = (0.2, 0.1). Centre: black points denote exceedances of the threshold

ut = σ (tγ −1)/γ , for t = 5. Right: excesses of ut rescaled by st = tγ have the same distribution as points

in the left panel, but are five times fewer. In particular, extremes in the right plot are therefore smaller

It may assign positive mass to the hyperplanes {y : yj = ηj }, even if ηj = −∞; see

Example 1 below.

For a non-empty subset J of {1, . . . , d}, let HJ denote the corresponding |J |-

variate marginal distribution of H . Further, let H+
J denote HJ conditioned to have at

least one positive component; this presupposes that σj > 0 for some j ∈ J , where

σj = αj − μjγj as before. By Theorem 1(i) below, if σ > 0, then H+
j := H+

{j}, the

j -th marginal distribution of H , conditioned to be positive, has cdf

H+
j (x) = 1 −

(

1 + γj
x
σj

)−1/γj

, for x ≥ 0 such that σj + γjx > 0. (2.9)

This proves the intuitively appealing result that H+
j is a one-dimensional GP distri-

bution, and shows that σ , γ and then also η are determined by the values of H(x) for

x ≥ 0.

If J is a non-empty subset of {1, . . . , d} and x ∈ [−∞, ∞]J , then x̄ ∈ [−∞, ∞]d

is defined by x̄j = xj if j ∈ J and x̄j = ∞ if j ∈ J . Thus, if X ∼ H , then

the marginal distribution, HJ , of (Xj : j ∈ J ) is given by HJ (x) = H(x̄) for

x ∈ [−∞, ∞]J , and if HJ (0) < 1 then

H+
J (x) =

HJ (x) − HJ (x ∧ 0)

H̄J (0)
(2.10)

is the conditional distribution of (Xj : j ∈ J ) given that maxj∈J Xj > 0, see Eq. 2.1

above. Recall that G and H are said to be associated, H ↔ G, if they satisfy (2.6).

Theorem 1 Let G be a GEV with margins (2.3) and suppose H ↔ G.

(i) Let J ⊂ {1, . . . , d}. If HJ (0) < 1 then H+
J is a GP cdf too, with H+

J ↔ GJ ,

and if σj > 0 then Eq. 2.9 holds. Further, HJ is a GP distribution if and only

if HJ (0) = 0.

(ii) A scale transformation of H is also a GP distribution.

(iii) Let X ∼ H . If σ > 0 and u ≥ 0 with H(u) < 1, then the conditional

distribution of X − u given that X � u is a GP distribution with the same

shape parameter γ and σ replaced by σ + γu.

(iv) If {Hn} is a sequence of GP distributions with all components of the vectors

σ n bounded away from 0 and if Hn
d
−→ H̃ then H̃ is a GP distribution too.
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(v) A finite or infinite mixture of GP distributions with the same σ and γ is a GP

distribution.

(vi) We have H ↔ Gt for all t > 0. Conversely, if H ↔ G∗ for some G∗ and if

σ > 0 then G∗ = Gt1 for some t1 > 0.

(vii) If G(0) = e−v then G(x) = exp{−vH̄ (x)}, x ≥ 0, and if σ > 0 this

determines G.

(viii) If σ > 0, the scaling and threshold functions in the (T2) characterization of

GP distributions may be taken as st = tγ and ut = σ (tγ − 1)/γ , for t ≥ 1.

(ix) The parameters γ and σ are identifiable from H .

In words, Theorem 1(i) says that conditional margins of GP distributions are GP,

but that marginal distributions of GP distribution are typically not GP. For instance,

if H is a two-dimensional GP cdf, then H+
1 is a one-dimensional GP cdf (given by

(2.9)), but typically H1 is not. Intuitively, the reason is that the conditioning event

implicit in H1(x) also includes the possibility that it is the second component, rather

than the first one, that exceeds its threshold. Theorem 1 (ii)−(v) also establish closure

properties of the class of GP distributions. By (vi) and (vii) a GEV distribution speci-

fies the associated GP distribution and conversely a GP distribution specifies a curve

of associated GEV distributions in the space of distribution functions. Regarding

(vii), note that a GEV distribution G such that 0 < Gj (0) < 1 for all j is determined

by its values for x ≥ 0 (proof in the Appendix). Finally, (viii) identifies the affine

transformations which leave H unchanged, and (ix) establishes identifiability of the

marginal parameters.

Proof (i) Let 0̄ denote x̄ for the special case when x = 0 ∈ (−∞, ∞)J and let

GJ (x) = G(x̄) be the marginal distribution of G. Clearly x̄∧0 = (x ∧ 0)∧0

and hence, for x > η,

HJ (x) − HJ (x ∧ 0)

=
1

log G(0)
log

(

G(x̄ ∧ 0)

G(x̄)

)

−
1

log G(0)
log

(

G((x ∧ 0) ∧ 0)

G(x ∧ 0)

)

=
1

log G(0)
log

(

GJ (x ∧ 0)

GJ (x)

)

and

H̄J (0) = 1 −
1

log G(0)
log

(

G(0̄ ∧ 0)

G(0̄)

)

=
log GJ (0)

log G(0)
,

so that

H+
J (x) =

1

log GJ (0)
log

(

GJ (x ∧ 0)

GJ (x)

)

.

Inserting (2.3) into the equation above for J = {j} together with straight-

forward calculation proves (2.9), and hence completes the proof of the first

assertion.

If HJ (0) = 0, then HJ = H+
J and it follows from the first assertion that

HJ is a GP distribution function. Further, GP distributions are supported by
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{y; y � 0} and hence if HJ (0) > 0 then HJ is not a GP cdf. This proves the

second assertion.

(ii) If G is a GEV cdf then, for s > 0, the map x �→ G(x/s) is a GEV cdf too,

and the result then follows from

H(x/s)=
1

log G(0)
log

(

G((x/s) ∧ 0)

log G(x/s)

)

=
1

log G(0/s)
log

(

G((x ∧ 0)/s)

G(x/s)

)

.

(iii) Proceeding as in the proof of (i), but in the first step instead using that (x +

u) ∧ 0 = (x ∧ 0 + u) ∧ 0, shows that the conditional distribution of X − u

given that X � u is

H(x + u) − H(x ∧ 0 + u)

H̄ (u)
=

1

log G(u)
log

(

G(x ∧ 0 + u)

G(x + u)

)

.

The map x �→ G̃(x) = G(x + u) is also a GEV cdf, but with the vector

σ = α − γµ replaced by σ̃ = α − γ (µ − u) = σ + γu.

(iv) Convergence in distribution in Rd implies convergence of the marginal dis-

tributions, and using standard converging subsequence arguments it follows

from marginal convergence that there exist σ > 0 and γ such that σ n → σ

and γ n → γ . Define un,t and sn,t from Hn as in Eq. 2.8 (vi). Then, since

Hn is a GP cdf we have, using first (T2) and (viii), and then the continuous

mapping theorem, that

Hn(x) =
Hn(x/sn,t + un,t ) − Hn((x/sn,t ) ∧ 0 + un,t )

H̄n(un,t )

d
→

H̃ (x/st + ut ) − H̃ ((x/st ) ∧ 0 + ut )

¯̃
H(ut )

, as n → ∞.

Since Hn
d
→ H̃ it follows that H̃ satisfies (T2) and hence is a GP cdf.

(v) We only prove that a mixture of two GP cdf-s with the same σ and γ is a

GP cdf too, using Theorem 4 below (the proof of that theorem does not use

the result we are proving now). The proof for arbitrary finite mixtures is the

same, and the result for infinite mixtures then follows by taking limits of finite

mixtures and using (iv). Let H1 and H2 be GP cdf-s with the same marginal

parameters σ , γ and let p ∈ (0, 1). By Theorem 4 and Eq. 4.2 there exists cdf-

s Fi = FRi such that Hi(x) = ci

∫∞
0 {Fi(t

γ (x + σ
γ
))−Fi(t

γ (x ∧ 0 + σ
γ
))} dt

with ci = 1/
∫∞

0 F̄i(t
γ σ

γ
) dt , and with the convention that if γi = 0 then

tγi (xi +
σi

γi
) is interpreted to mean xi +σi log t . Writing F =

pc1

pc1+(1−p)c2
F1 +

(1−p)c2

pc1+(1−p)c2
F2 it follows that

H̃ (x) := pH1(x) + (1 − p)H2(x)

= [pc1 + (1 − p)c2]

∫ ∞

0

{

F
(

tγ (x+ σ
γ
)
)

−F
(

tγ (x ∧ 0 + σ
γ
)
)}

dt.

Straightforward calculation shows that pc1 + (1 − p)c2 = 1/
∫∞

0 F̄ (tγ σ
γ
) dt

so that H̃ (x) satisfies Eq. 4.2 and hence is a GP cdf.
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(vi) The first assertion follows from Eq. 2.6. Choose t1 so that − log G(0)t1 =

− log G∗(0). Then H ↔ G and H ↔ G∗ imply together that

G(x ∧ 0)t1

G(x)t1
=

G∗(x ∧ 0)

G∗(x)
,

and in particular, that G(x)t1 = G∗(x) for x ≥ 0. Since a GEV cdf with

σ > 0 is determined by its values for x ≥ 0, see the Appendix, this completes

the proof.

(vii) The first part follows from Eq. 2.6, and that this determines G again follows

from the appendix.

(viii) By the proofs of (iii) and (vi) the conditional distribution of s−1
t (X − ut )

given that X � ut is associated with G(stx + ut ) = G(x)1/t , and the result

follows from (vii).

(ix) For t > 0, let (γj (t), μj (t), αj (t)) ∈ R×R× (0, ∞) be the parameter vector

of Gt
j , and let σj (t) = αj (t) − γj (t) μj (t). By assertion (vi), the GPD H

determines the curve of GEV-s Gt for t > 0. It suffices to show that γj (t)

and σj (t) do not depend on t . But this follows by straightforward calculations

from the max-stability property G(x)t = G(a−1
t (x − bt )) with at and bt as

in Eq. 2.5.

Example 1 below exhibits two-dimensional GP distributions with positive mass

on certain lines, and the first part of Example 2 provides a cdf where the second

assertion in (i) of Theorem 1 comes into play. In contrast to scale transformations,

it seems likely that if σ > 0 then a non-trivial location transformation of a GP cdf

never is a GP cdf. The second part of Example 2 shows one of the exceptional cases

where the support of one of the components is contained in (−∞, 0) and where a

location transformation of a GP distribution does give another GP distribution.

Example 1 This example rectifies the one on pages 1726–1727 in Ferreira and de

Haan (2014). Let G(x, y) = exp{−1/(x+1)−1/(y+1)} for (x, y) ∈ (−1, ∞)2, the

distribution of two independent unit Fréchet random variables with lower endpoints

α1 = α2 = −1. The corresponding multivariate generalized Pareto distribution is

given by

H(x, y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
2

(

1 − 1
x+1

+ 1 − 1
y+1

)

if (x, y) ∈ [0, ∞)2,

1
2

(

1 − 1
x+1

)

if (x, y) ∈ [0, ∞) × [−1, 0],

1
2

(

1 − 1
y+1

)

if (x, y) ∈ [−1, 0] × [0, ∞),

0 otherwise.

(2.11)

We conclude that H is the distribution function of the random vector (X, Y ) given by

(X, Y ) =

{

(−1, T ) with probability 1/2,

(T , −1) with probability 1/2,
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where T is generalized Pareto, P(T ≤ t) = 1 − 1/(t + 1) for t ≥ 0. Hence H is

supported by the union of the two lines {−1}× (0, ∞) and (0, ∞)×{−1}, see Fig. 2,

left panel.

If we modify the example by choosing Gumbel rather than Fréchet margins, so

that G(x, y) = exp(−e−x − e−y) for (x, y) ∈ R2, then the GP cdf H is the cdf of

the vector

(X, Y ) =

{

(−∞, T ) with probability 1/2,

(T , −∞) with probability 1/2,

where T is a unit exponential random variable, P(T ≤ t) = 1 − e−t for t ∈ [0, ∞).

The support of H is the union of two lines {−∞} × (0, ∞) and (0, ∞) × {−∞}

through −∞.

Example 2 Let G(x, y) = exp[−1/{(x ∧ y)+ 1}] for (x, y) ≥ −1, the cdf of (Z, Z)

for Z unit Fréchet with lower endpoint −1. The corresponding GP cdf is

H(x, y) =

{

1 − 1
(x∧y)+1

if (x, y) ∈ [0, ∞)2,

0 otherwise.
(2.12)

We identify H as the distribution of the random pair (T , T ), where P(T ≤ t) =

1 − 1/(t + 1) for t ∈ [0, ∞). The support of H is the diagonal {(t, t) : 0 < t < ∞},

see Fig. 2, middle panel. It follows that, e.g., H1(0) = 0 and hence in this example

H1 = H+
1 .

As a variation of the example let G(x, y) = exp[−e−x∧(y+μ)] be the cdf of

(Z, Z − μ), with Z standard Gumbel and μ > 0. The corresponding GP cdf is

H(x, y) = e−(x∧0)∧(y∧0+μ) − e−x∧(y+μ) = e−(x∧0)∧(y+μ) − e−x∧(y+μ), (2.13)

and H is the cdf of (T , T − μ) with T standard exponential. Now, for −μ < ν the

location transformed cdf H(x, y + ν) equals e−(x∧0)∧(y+ν+μ) − e−x∧(y+ν+μ), which

is the same as in Eq. 2.13, but with μ replaced by ν +μ > 0. Hence also H(x, y +ν)

is a GP cdf. The support of H is shown in the right-hand panel of Fig. 2.

Fig. 2 Supports (solid lines) of the GP distributions H in Eqs. 2.11 (left), 2.12 (middle) and 2.13 (right)
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3 Point processes of extreme episodes

The first step in our program for PoT inference is to specify a point process model

for extreme episodes. This model exhibits extreme episodes as a product process

obtained by multiplying a random vector, the “shape” vector, with a random quan-

tity, the “intensity” of the episode. (For γ = 0, the model instead is a sum.) This

is parallel to models commonly used for max-stable processes, see e.g. Schlather

(2002). In Section 4 below we obtain basic and physically interpretable representa-

tions of the GP distributions by conditioning the product process of extreme episodes

on threshold exceedance.

In this and subsequent sections we assume that σ > 0. Let X1, X2, . . . be i.i.d.

random vectors with cdf F and marginal cdf-s F1, . . . , Fd , and let an, bn be as in

Eq. 2.2. Further, let η be the vector of lower endpoints of the limiting GEV distri-

bution, see Eq. 2.4 and the sentences right below it. We consider weak limits of the

point processes

Nn =

n
∑

i=1

δ
a−1

n (Xi−bn)
,

where δx denotes a point mass at x. Define Ij = [−σj/γj , ∞) or [−∞, ∞) or

[−∞, −σj/γj ) according to whether γj > 0 or γj = 0 or γj < 0, and set

S̄γ = I1 × · · · × Id and Sγ = S̄γ \ {η}.

The limit point process is specified as follows: Let 0 < T1 < T2 < . . . be the points

of a Poisson process on [0, ∞) with unit intensity and let (Ri)i≥1 be independent

copies of a random vector R which satisfies Condition 2 below. Further assume that

the vectors (Ri)i≥1 are independent of (Ti)i≥1, and define the point process

Pr =
∑

i≥1

δ(Ri/T
γ
i −σ/γ ), (3.1)

where, by convention, Ri,j/T
0
i − σj/0 is interpreted to mean Ri,j − σj log T . The

condition on R is as follows.

Condition 2 The components of the random vector R satisfy Rj ∈ [0, ∞) if γj > 0,

Rj ∈ [−∞, ∞) if γj = 0, and Rj ∈ [−∞, 0) if γj < 0, and furthermore 0 <

E[|Rj |
1/γj ] < ∞ if γj = 0 and E[exp(Rj/σj )] < ∞ if γj = 0, for j = 1, . . . , d .

Let FR be the cdf of R. For γj = 0, the moment restriction in Condition 2

can be seen to be equivalent to requiring that 0 <
∫∞

0 P(Rj > tγj xj ) dt < ∞,

if xj ∈ (0, ∞) and γj > 0 or if xj ∈ (−∞, 0) and γj < 0. For γj = 0, the

moment condition is instead equivalent to 0 <
∫∞

0 P(Rj > σj log t + xj ) dt < ∞,

for xj ∈ (−∞, ∞). For example, if γj < 0, then
∫∞

0 P(Rj > tγj xj ) dt =
∫∞

0 P(|Rj |
1/γj > t) dt |xj |

−1/γj = E(|Rj |
1/γj ) |xj |

−1/γj . Since P(Rj > tγj xj ) ≤

F̄R(tγ x) ≤
∑d

i=1 P(Ri > tγi xi), it in turn follows that the moment condition implies

that 0 <
∫∞

0 F̄R(tγ (x + σ/γ )) dt < ∞, if the components xj of x are as above,

and where we have used the convention that t0(xj + σj/0) should be replaced by

σj log t + xj .
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Theorem 3 Suppose F satisfies (2.2). Then, for some R which satisfies Condition 2,

Nn
d
→ Pr on Sγ , as n → ∞. (3.2)

Conversely, for any Pr given by Eq. 3.1 there exist a GEV cdf G and an > 0 and bn,

with 0 < Gj (bn,j ) < 1 and Gj (bn,j ) → 1 for j = 1, . . . , d , such that Eq. 3.2 holds

for F = G.

Proof Let Y ∼ G and define Y ∗ by Y ∗
j = (1 +

γj

αj
(Yj − μj ))

1/γj if γj = 0 and

Y ∗
j = exp{(Yj − μj )/αj } if γj = 0, for µ, α, γ given by Eq. 2.3 so that the marginal

cdf-s of Y ∗ are standard Fréchet. It follows as in Theorem 5 of Penrose (1992) (see

also (de Haan and Ferreira 2006) and Schlather (2002)) that there exists a random

vector R∗ ∈ [0, ∞)d with E(R∗
j ) < ∞ such that Y ∗ has the same distribution as

supi≥1 R∗
i /Ti where the random vectors R∗

i are i.i.d. copies of R∗ and independent

of the unit rate Poisson process (Ti)i≥1. Reversing the transformation which led from

Y to Y ∗, it follows that Y has the same distribution as supi≥1(
α
γ
(R∗

i )
γ /T

γ
i − σ

γ
).

Setting R = α
γ
(R∗)γ it follow that Y has the same distribution as supi≥1(Ri/T

γ
i −

σ
γ
) with the Ri satisfying Condition 2, and where throughout expressions should be

interpreted as specified after Eq. 3.1 for γj = 0.

For ν the intensity measure of Pr , we have G(x) = exp{−ν({y : y � x})}. By

standard reasoning, convergence in distribution of a−1
n (
∨n

i=1 Xi − bn) is equivalent

to n P[a−1
n (X1 − bn) � x] → − log G(x) = ν({y : y � x}), which implies that

n P[a−1
n (X1−bn) ∈ · ] converges vaguely to ν( · ) on Sγ . By Theorem 5.3 of Resnick

(2007) this proves (3.2).

Conversely, given Pr , define the cdf G by G(x) = P[supi≥1(Ri/T
γ
i − σ

γ
) ≤

x]. Straightforward calculation as in Schlather (2002, Theorem 2) show that G is

max-stable. Hence there exist sequences an and bn with the stated properties such

that for independent random vectors X1, X2, . . . with common distribution G, the

distribution of a−1
n (
∨n

i=1 Xi − bn) is equal to G too. By the first part of the proof,

this proves (3.2).

In the proof of Theorem 3 we obtained part of the following result, which we

record here for completeness.

Corollary 1 Suppose R satisfies Condition 2. Then G(x) = P[supi≥1(Ri/T
γ
i −

σ
γ
) ≤ x] is a GEV cdf and

G(x) = exp

{

−

∫ ∞

0

F̄R

(

tγ
(

x + σ
γ

))

dt

}

for x ∈ Sγ , (3.3)

and to any GEV cdf there exists an R which satisfies this equation. Here we use the

convention that t0(xj + σj/0) should be replaced by σj log t + xj .

Proof Writing ν for the intensity measure of Pr we have ν({y; y � x}) =
∫∞

0 F̄R(tγ (x + σ
γ
)) dt . The right-hand side of Eq. 3.3 is therefore equal to the
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probability that Pr has no points in the set {y; y � x}. The result now follows from

the proof of Theorem 3.

4 Representations of multivariate GP distributions

This section contains the second step in the program for PoT inference. We show how

conditioning on threshold exceedances in the point process (3.1) gives four widely

useful representations of the class of multivariate GP distributions. The first represen-

tation, (R) is on the real scale and corresponds to the point process Pr in Eq. 3.1 with

points obtained as products of shape vectors and intensity variables. In the second

representation, (U), the basic model is constructed on a standard scale and then trans-

formed to the real scale. The third representation, (S), is equivalent to the spectral

representation in Ferreira and de Haan (2014). A fourth representation, (T ), which is

a variation of the (S) representation, is introduced in Section 5.

In the literature the standard scale is chosen as one of the following: Pareto scale,

γ = 1, uniform scale, γ = −1, or exponential scale, γ = 0. Here we choose

the γ = 0 scale because of the simple additive structure it leads to. For all four

representations, it is straightforward to switch from one scale to another one.

To understand the GP representation (R) we first approximate Pr by a trun-

cated point process P̄r where {Ti} is replaced by a unit rate Poisson process {T̄i}

on a bounded interval [0, K]. Recalling the representation of {T̄i} as a Poisson dis-

tributed number of Unif [0, K] variables, P̄r consists of a Poisson number of vectors

R/T̄ γ − σ
γ

with T̄ ∼ Unif [0, K]. Thus, for large n, a point a−1
n (X − bn) in Nn has

approximately the same distribution as R/T̄ γ − σ
γ

. Hence, by Eq. 2.1,

P[a−1
n (X − bn) ≤ x | X − bn � 0] ≈ P[R/T̄ γ − σ

γ
≤ x | R/T̄ γ − σ

γ
� 0]

=

1
K

∫ K

0 {FR(tγ (x + σ
γ
)) − FR(tγ (x ∧ 0 + σ

γ
))} dt

1
K

∫ K

0 F̄R(tγ σ
γ
) dt

=

∫ K

0 {FR(tγ (x + σ
γ
)) − FR(tγ (x ∧ 0 + σ

γ
))} dt

∫ K

0 F̄R(tγ σ
γ
) dt

. (4.1)

By the assumptions in Condition 2, the limit as K → ∞ of this expression,

HR(x) =

∫∞
0 {FR(tγ (x + σ

γ
)) − FR(tγ (x ∧ 0 + σ

γ
))} dt

∫∞
0 F̄R(tγ σ

γ
) dt

, (4.2)

exists (cf the discussion just before Theorem 3), and it is also immediate that

HR(∞) = 1, so that HR is a cdf on [−∞, ∞)d . If γi = 0 then tγi (xi + σi

γi
) should be

interpreted to mean xi + σi log t . We write GPR(σ , γ , FR) for the cdf (4.2) and call

it the (R) representation. Theorem 4 shows that the class of such cdf-s is the same as

the class of all GP cdf-s with σ > 0.

Heuristically, for simplicity assuming that γj = 0, j = 1, . . . d , the calculations

above proceed by equating a−1
n (X − bn) with R/T̄ γ − σ

γ
so that extremes of X
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asymptotically have the form anR/T γ +bn −an
σ
γ

. Setting b = bn −an
σ
γ

and noting

that R satisfies Condition 2 if and only if anR satisfies Condition 2, the intuition is

that, asymptotically, extremes of X have the form

X∞ = R/T γ + b, (4.3)

for some constant b and a random vector R which satisfies Condition 2. The interpre-

tation is that the vector R is the shape of the extreme episode, say a storm, and that

T −γ is the intensity of the storm. Here T represents a pseudo random variable with

an improper uniform distribution on (0, ∞). Although such a X∞ therefore does not

have a proper distribution, one can verify that the cdf HR in Eq. 4.2 is derived as if

it were the conditional distribution of X∞ − u, given that X∞ � u, for σ
γ

= u − b,

i.e., as the formal conditional distribution of R/T γ − σ
γ

given that R/T γ − σ
γ
� 0.

In statistical application one would assume that u is large enough to make it possible

to use the cdf HR as a model for threshold excesses. The parameters of R and the

parameters σ and γ are then estimated from the observed threshold excesses. The

heuristic interpretation in case one or more of the γj equals 0 is the same, one only

has to write Rj − σj log T instead of Rj/T 0 − σj/0.

Figure 3 illustrates how the multivariate GP distribution is derived from the Pois-

son process representation. Each realization of the Poisson process (3.1) yields a

small, Poisson distributed, number of points in the region {x; x � 0}. The expected

number of such points is E[
∨d

j=1(γjRj/σj )
1/γj ], where if γj = 0 the component

is to be interpreted as eRj /σj , and thus depends on the distribution of R and the

parameters σ , γ .

Defining U by σ
γ
eγU = R, where we use the convention that if γj = 0 then the

j -th component is given by σjUj = Rj , we can write (4.2) as

HU (x)=

∫∞
0

{

FU

(

1
γ

log(
γ
σ
x + 1) + log t

)

− FU

(

1
γ

log(
γ
σ
(x ∧ 0) + 1) + log t

)}

dt
∫∞

0 F̄U (log t) dt
,

(4.4)

Fig. 3 Deriving the GP from the Poisson process representation. Left: two-dimensional illustrations of

“shape vectors” R and the 1000 largest “intensities” T −γ for γ = (0.3, 0.4). Centre: points X = R/T γ −

σ/γ , where σ = (0.5, 0.5) against index, with a horizontal line at zero. Right: points X2 versus X1 with

exceedances of zero in at least one coordinate highlighted
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for x such that
γ
σ
x + 1 > 0, and where FU is the cdf of U . Here we assume that

0 < E(eUj ) < ∞ for j = 1, . . . , d , which is equivalent to assuming that R sat-

isfies Condition 2. We write GPU (σ , γ , FU ) for the cdf defined by Eq. 4.4 and call

it the (U) representation. The intuition parallel to Eq. 4.3 is that HU is the formal

conditional distribution of

σ
eγ (U−log T ) − 1

γ

given that σ
γ
(eγ (U−log T ) − 1) � 0 or, equivalently, given that U − log T � 0.

For later use we note that a GPU (1, 0, FU ) vector X0 has the cdf

HU (x) =

∫∞
0 {FU (x + log t) − FU (x ∧ 0 + log t)} dt

∫∞
0 F̄U (log t) dt

, (4.5)

and that a general GPU vector X is obtained from X0 through the transformation

X = σ
eγX0 − 1

γ
. (4.6)

Suppose now that U = S where S satisfies
∨d

j=1 Sj = 0 and that σ = 1. It

is straightforward to see that if t > 0 then FS(x + log t) − FS(x ∧ 0 + log t) =

1{0<t<1} FS(x + log t), and, in particular, that F̄S(log t) = 1{0<t<1}. Inserting this

into Eq. 4.5 then gives the cdf

HS(x) =

∫ 1

0

FS(x + log t) dt =

∫ ∞

0

FS(x − v) e−v dv, (4.7)

where the second equality follows from the change of variable log t = −v. Further,

using the transformation (4.6) which connects (4.5) with Eq. 4.4, it follows more

generally that if U = S, where
∨d

j=1 Sj = 0, then for general σ , γ one obtains the cdf

HS(x)=

∫ 1

0

FS

(

1
γ

log
( γ

σ
x+1

)

+ log t
)

dt =

∫ ∞

0

FS

(

1
γ

log
( γ

σ
x+1

)

− v
)

e−v ds.

(4.8)

We write GPS(σ , γ , FS) for the cdf (4.8), and call it the (S) representation.

The last expression in Eq. 4.7 can be given an interpretation in terms of random

variables: it is the cdf of S + E, where E is a standard exponential variable which is

independent of S, and then Eq. 4.8 is the cdf of σ
γ

(

eγ (S+E) − 1
)

. This is the Ferreira

and de Haan (2014) spectral representation transformed to the exponential scale.

Theorem 4 Suppose σ > 0. The GPR(σ , γ , FR), GPU (σ , γ , FU ), and GPS(σ , γ ,

FS) classes defined by Eqs. 4.2, 4.4, and 4.8, are all equal to the class of all GP

distributions with σ > 0. For each class the conditional marginal distributions are

given by Eq. 2.9.

Proof The assertion for the GPR(σ , γ , FR) distributions follows from combining

Eq. 3.3 with Eq. 2.6.

By definition, the class of GPU (σ , γ , FU ) cdf-s is the same as the class of

GPR(σ , γ , FR) cdf-s, and thus the same conclusion holds for the GPU (σ , γ , FU )
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cdf-s. Since GPS(σ , γ , FS) cdf-s are GPU (σ , γ , FU ) cdf-s, it follows that they are

GP distributions.

To prove the full statement about the class GPS(σ , γ , FS) we first note that by the

construction of the GPS(σ , γ , FS) cdf-s, it is enough to prove that the statement holds

for GP distributions with γ = 0 and σ = 1. However, then the result follows by

combining (T2) with the discrete version of de Haan and Ferreira (2006), Theorem

2.1, translated to the exponential scale (i.e., with their W replaced by eS+E), and with

ω0 = 1.

The last assertion follows by straightforward calculation. As an example we prove

it for the GPR(σ , γ , FR) class for the case γj = 0; j = 1, . . . , d . Let Fj be the

marginal distribution of the j -th component of R. It follows from Eqs. 2.10 and 4.2

that H+
j , the distribution of the j -th component of HR conditioned to be positive, is

given by

H+
j (x) = 1 −

∫∞
0 F̄j (t

γj (x +
σj

γj
)) dt

∫∞
0 F̄j (t

γj
σj

γj
) dt

= 1 − (1 +
γj

σj
x)−1/γj ,

where the second equality follows from making a change of variables from t (
γj

σj
x +

1)1/γj to t in the numerator.

It may be noted that since FR , FU , and FS are cdf-s then also HR , HU , and

HS are cdf-s, so that in contrast to Eq. 2.6 the Eqs. 4.2, 4.4, and 4.8 hold for

all x ∈ [−∞, ∞)d , subject to the provision that Eqs. 4.4 and 4.5 only apply for

γ x + σ > 0.

The distributions of the random vectors R and U are not uniquely determined by

the corresponding GP distributions HR and HU in Eqs. 4.2 and 4.4, respectively. The

next proposition is a generalization of Theorem 1 (vi).

Proposition 1 Suppose that the random variable Z is strictly positive, has finite

mean and is independent of R or U . Then GPR(σ , γ , FZγ R) = GPR(σ , γ , FR) and

GPU (σ , γ , FU+log Z) = GPU (σ , γ , FU ), where Zγj Rj should be interpreted to

mean Rj + σj log Z if γj = 0.

Proof We only prove the assertion for R, since the one for U follows from it.

Replacing FR by FZγ R in the numerator and denominator of Eq. 4.2 yields, after an

application of Fubini’s theorem and a change of variables, a factor E(Z) coming out

in front the integrals both in the numerator and denominator. Upon simplification,

the random variable Z is seen to have had no effect on HR .

Usually one would let the model for U include free location parameters for each

component, and the model for R a free scale parameter for each component, in order

to let data determine the relative sizes of the components. However, as one conse-

quence of the proposition, one should then, e.g., fix the location parameter for one of

the components of U , or fix the sum of the components, to ensure parameter iden-

tifiability. Similarly, if γj = 0 for j = 1, . . . , d and if the model for R includes a

free scale parameter for each component, then one should, e.g., fix one of these scale

parameters.
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5 Densities, likelihoods, and censored likelihoods

5.1 Densities

To find the densities for the (R) and (U) representations, we assume that R and U have

densities with respect to Lebesgue measure on Rd . For the (S) representation, we

make the assumption that S is obtained from a vector T by setting S = T −
∨d

j=1 Tj .

We write GPT (σ , γ , FT ) for these distributions, write HT for the cdf-s, and call

it the (T ) representation. Clearly, the class of GPT distributions is the same as the

class of GPS distributions, and hence is equal to the class of all GP distributions

with σ > 0. The densities for the (R) and (U) representations are just as would be

obtained if the R and U cdf-s were continuously differentiable and interchange of

differentiation and integration was allowed. However, they, in fact, do not require

any assumptions beyond absolute continuity with respect to d-dimensional Lebesgue

measure.

The support of the vector T −
∨d

j=1 Tj is contained in the (d − 1)-dimensional

set {x;
∨d

j=1 xj = 0} and hence T −
∨d

j=1 Tj does not have a density with respect

to Lebesgue measure on Rd . Nevertheless, the density of HT exists and can be

computed if T has a density with respect to Lebesgue measure on Rd .

Theorem 5 Suppose σ > 0. If FR has a density fR on Rd , then HR has the density

hR given below, if FU has density fU on Rd , then HU has the density hU below, and

if FT has density fT on Rd , then HT has density hT below:

hR(x) = 1{x�0}

1
∫∞

0 F̄R(tγ σ
γ
) dt

∫ ∞

0

t
∑d

j=1 γj fR(tγ (x + σ
γ
)) dt, (5.1)

hU (x) = 1{x�0}

∏d
j=1(γjxj + σj )

−1

∫∞
0 F̄U (log t) dt

∫ ∞

0

fU ( 1
γ

log(
γ
σ
x+1) + log t) dt, (5.2)

hT (x) = 1{x�0}

∏d
j=1(γjxj +σj )

−1

∨d
j=1(

γj

σj
xj +1)1/γj

∫ ∞

0

t−1fT ( 1
γ

log(
γ
σ
x+1)+log t)dt, (5.3)

for γ x + σ > 0, and where the densities are 0 otherwise. If γj = 0 then for hR

the expressions tγj (xj +
σj

γj
) should be replaced by xj + σj log t . For hU and hT , if

γj = 0, the expressions 1
γj

log(
γj

σj
xj + 1) should be replaced by their limits xj/σj .

Proof We first prove (5.1) for the special case when σ = γ = 1, and for x � 0, x+

1 > 0. The change of variables y = t (z + 1) shows that for this case

FR(t (x + 1)) − FR(t (x ∧ 0 + 1)) =

∫

1{y≤t (x+1), y�t (x∧0+1)}fR(y) dy

=

∫

1{z≤x, z�x∧0}t
dfR(t (z + 1)) dz.
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Hence, by Eq. 4.2, and using Fubini’s theorem,

HR(x) =

∫∞
t=0

∫

1{z≤x, z�x∧0}t
dfR(t (z + 1)) dzdt

∫∞
0 FR(t1) dt

=

∫

1{z≤x, z�x∧0}

∫∞
t=0 tdfR(t (z + 1)) dt
∫∞

0 FR(t1) dt
dz

=

∫

(−∞,x]

1{z�0}

∫∞
t=0 tdfR(t (z + 1)) dt
∫∞

0 FR(t1) dt
dz.

We conclude that Eq. 5.1 holds for σ = γ = 1. The proof of the general form of

Eq. 5.1 only differs from this case in bookkeeping details, and is omitted.

To prove (5.2), recall that HU = HR if γ = 0, σ = 1, so that, by (5.1),

hU (x) = 1{x�0}

∫∞
t=0 fU (x + log t) dt
∫∞

0 FU (log t) dt
.

Writing H̃ for the corresponding cdf, the general cdf HU is obtained as HU (x) =

H̃ ( 1
γ

log(
γ
σ
x + 1)) and Eq. 5.2 then follows by a chain rule type argument.

We again only prove (5.3) for the case σ = 1, γ = 0, and with x � 0. Also here

extension to the general case is a chain rule argument. It follows from Eq. 4.7 that

HT (x) =

∫ 1

t=0

F
T −
∨d

j=1 Tj
(x + log t)=

∫ ∞

t=0

∫

s

1{0≤t≤1, s−∨d
j=0sj ≤x+log t}fT (s)ds dt.

Hence, using first Fubini’s theorem, then a change of variables from te
∨d

j=1 sj to t and

Fubini’s theorem, and finally a change of variables from s to s + log t and Fubini’s

theorem,

HT (x) =

∫

s

∫ ∞

t=0

e
−
∨d

j=1 sj1
{0≤te

−
∨d

j=1
sj ≤1, s≤x+log(t)}

fT (s) dt ds

=

∫ ∞

t=0

∫

s

e
−
∨d

j=1 sj t−1
1

{e
−
∨d

j=1
sj ≤1, s≤x}

fT (s + log t) ds dt

=

∫ x

−∞

1{s�0} e
−
∨d

j=1 sj

∫ ∞

t=0

t−1fT (s + log t) dt ds.

This proves that Eq. 5.3 holds for γ = 0 and σ = 1.

In some cases, the integrals in Eqs. 5.1, 5.2 and 5.3 can be computed explicitly; see

the examples below. Otherwise the one-dimensional integrals allow for fast numerical
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computation as soon as one can compute densities and distribution functions of R

or U efficiently. Either way, this can make full likelihood inference possible, also in

high dimensions.

5.2 Censored likelihood

Sometimes one does not trust the GP distribution to fit the excesses well on the entire

set x � 0. Then, instead of using a full likelihood obtained as a product of the densi-

ties in Theorem 5, one can use a censored likelihood which is based on the values of

the excesses which are larger than some censoring threshold v = (v1, . . . , vd). This

idea was introduced for multivariate extremes in Smith et al. (1997), and has since

become a standard approach to inference. Huser et al. (2015) explore the merits of

this and other approaches via simulation.

Write D = {1, . . . , d}, and let C ⊂ D be the set of indices which correspond to the

components which are censored, i.e., which do not exceed their censoring threshold

vi . Then, using the notation xA = {xj ; j ∈ A} and writing h for hR, hU or hT , the

likelihood contribution of a censored observation is

hC(xD\C) =

∫

{xj ∈(−∞,vj ]; j∈C}

h(x) dxC . (5.4)

For certain models, the |C|−dimensional integral in Eq. 5.4 can be avoided, which

is advantageous from a practical perspective.

Example 3 The simplest situation is when the components of the shape vector R are

mutually independent. This could e.g. be a model for windspeeds over a small area,

perhaps a wind farm, with T −γ representing the intensity of the average geostrophic

wind and with the components of R representing random wind variations caused by

local turbulence.

Let fj be the density function of Rj , the j th component of R, let Fj be the corre-

sponding cdf, write yj = xj + σj/γj , and assume that vj ≤ 0, j ∈ C. The integral

which appears in the numerator in Eq. 5.4 for h = hR in Eq. 5.1 can then be written

as

1{xD\C�0}

∫ ∞

0

t
∑

j∈D\C γj
∏

j∈C

Fj (t
γj vj )

∏

j∈D\C

fj (t
γj yj ) dt

and the integral in the denominator equals
∫∞

0 {1 −
∏d

j=1 Fj (t
γj σj/γj )} dt . Here

quick numerical computation of both integrals is typically possible.

Sometimes these integrals can also be computed analytically, and similarly for the

corresponding integrals for hU and hT . As a simple example, consider (5.3) with

γ = 0 and σ = 1 and with the components of T having independent standard

Gumbel distributions with cdf exp{−e−x}. Then, with c the number of elements in
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C, i.e., the number of censored components, and abbreviating 1{xD\C�0} to 1D\C , we

obtain that

hC(xD\C) = 1D\C e
−
∨d

j=1 xj

∫ ∞

0

∏

j∈D\C

e−xj −log t exp{−e−xj −log t }
∏

j∈C

exp{−e−vj −log t } dt

= 1D\C e
−
∨d

j=1 xj −
∑

j∈D\C xj

∫ ∞

0

t−(d−c) exp

⎧

⎨

⎩

−t−1

⎛

⎝

∑

j∈D\C

e−xj +
∑

j∈C

e−vj

⎞

⎠

⎫

⎬

⎭

dt

= 1D\C (d − c − 2)! e
−
∨d

j=1 xj −
∑

j∈D\C xj

⎛

⎝

∑

j∈D\C

e−xj +
∑

j∈C

e−vj

⎞

⎠

−(d−c)+1

.

Whilst the previous example is a theoretical illustration, the class of GP distribu-

tions obtained by letting R (or U ) have independent components with parametrized

marginal distributions does make for a large and flexible class of models. It includes,

for example, the GP distributions associated to the commonly used logistic and neg-

ative logistic max-stable distributions. For this and further examples, see Kiriliouk

et al. (2016).

5.3 Further examples

We illustrate two further constructions with tractable densities. The first is a toy

example to exhibit the idea of building process knowledge into a model. The second

is a variation on existing extreme value models based on lognormal distributions.

Example 4 An extreme flow episode in a river network consisting of two tributaries

which join to form the main river could be modeled as R/T γ = (R1/T γ , R2/T γ ,

(R1 + R2 + E)/T γ ), with γ > 0, so that R3 = R1 + R2 + E. Here the first

component corresponds to flow in tributary number one, the second component to

flow in tributary number two, and the third component to flow in the main river. The

simplest model is that R1, R2, E are independent and have a standard exponential

distribution. Then,

∫ ∞

0

t3γ fR(tγ y) dt = 1{0≤y, y1+y2≤y3}

∫ ∞

0

t3γ e−tγ y3 dt

= 1{0≤y, y1+y2≤y3} γ −1Ŵ(3 + 1/γ ) y
−3−1/γ

3 . (5.5)

Assuming in addition that σ = (σ, σ, σ ), we have

∫ ∞

0

F̄R(tγ σ/γ ) dt = E[
∨3

j=1(Rj γ /σ)1/γ ]

= (γ /σ)1/γ E[R
1/γ

3 ]

= (γ /σ)1/γ Ŵ(3 + 1/γ )/2,
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since R3 is a sum of three exponential variables, and thus has a gamma distribution.

It follows from Eqs. 5.1 and 5.5 with y = x + σ
γ

that

hR(x) = 1{x�0,−σ/γ≤x, x1+x2≤x3}
γ −12(σ/γ )1/γ (x3 + σ/γ )−3−1/γ .

Example 5 Lognormal distributions have been used in max-stable modelling, e.g.,

in Huser and Davison (2013), and as point process models in Wadsworth and Tawn

(2014), and are an important class of models. As an example, in the (R) represen-

tation, suppose that 0 ≤ γ and that FR(x) = �(log x), where � is the cdf of a

d-dimensional normal distribution with mean µ and nonsingular covariance matrix

�. Write φ for the corresponding density and let A = �−1 be the precision matrix.

Then, writing y = log(x + σ
γ
) − µ, we have

∫ ∞

0

t
∑d

j=1 γj fR

(

tγ (x + σ
γ
)
)

dt =
1

∏d
j=1(xj +

σj

γj
)

∫ ∞

0

φ
(

γ log t + log(x + σ
γ
)
)

dt

=
1

∏d
j=1(xj +

σj

γj
)

|A|1/2

(2π)d/2

∫ ∞

0

exp
(

− 1
2
(γ log t + y)A(γ log t + y)′

)

dt.

Making the change of variables from log t to t and completing the square, we can

evaluate the integral, finding

hR(x)=1{x�0}

|A|1/2

[(2π)(d−1) γAγ ′]1/2

1
∏d

j=1(xj +
σj

γj
)

exp
[

− 1
2

(

yAy′−
(γAy′−1)2

γAγ ′

)]

∫∞
0 �̄ (γ log(t)+log(σ/γ )) dt

.

The integral in the denominator can be expressed as a sum of d components, each

of which involves a (d − 1)-dimensional normal cdf, see Huser and Davison (2013).

However, if d is large then this expression is cumbersome. Inference methods for

similar high-dimensional models are explored in de Fondeville and Davison (2016).

6 Probabilities and conditional probabilities

Equations 4.2, 4.4, and 4.8 give probabilities of rectangles for GP distributions, on the

real scale. In this section they are generalized to expressions for probabilities of gen-

eral sets and for conditional probabilities. Below, we only consider GPR models. It

is straightforward to derive the corresponding formulas for the other representations.

Let F = {y; y � 0}, set A = {y; y ≤ x}, and for a, b ∈ Rd and a set B ⊂ Rd

write a(B + b) for the set {a(y + b); y ∈ B}. As is easily checked,

HR(x) = HR(A) =

∫∞
0 P[R ∈ tγ (A ∩ F + σ/γ )] dt
∫∞

0 P[R ∈ tγ (F + σ/γ )] dt
. (6.1)
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Now, if in the derivation of Eq. 4.2 the special set A defined above is replaced by a

general set A ⊂ Rd , the result still is the same,

HR(A) =

∫∞
0 P[R ∈ tγ (A ∩ F + σ/γ )] dt
∫∞

0 P[R ∈ tγ (F + σ/γ )] dt
=

∫∞
0 P[R/tγ − σ/γ ∈ A ∩ F ] dt
∫∞

0 P[R/tγ − σ/γ ∈ F ] dt
.

(6.2)

A proof that Eq. 6.2 holds for any set A is immediate: using Fubini’s theorem it is

seen that the right-hand side of the equation is a probability distribution as function

of A, and since it agrees with the distribution HR on sets of the form {y; y ≤ x}, the

two distributions are equal. The intuition is that HR(A) is the (formal) conditional

probability of the event {R/T γ − σ/γ ∈ A} given the event {R/T γ − σ/γ � 0}.

Let the random vector X have the distribution HR in Eq. 4.2. Then P[X ∈ A |

X ∈ B] = HR(A ∩ B)/HR(B), and hence (6.2) can also be used to find conditional

probabilities. Further, assuming continuity, Eq. 5.1 determines the conditional den-

sities. For instance, writing f|X1=x for the conditional density of (X2, . . . Xd) given

that X1 = x, we find, for x > 0,

f|X1=x(x2, . . . xd) =

∫∞
0 t

∑d
j=1 γj fR

(

tγ ((x, x2, . . . xd) + σ
γ
)
)

dt

∫∞
0 tγ1fR1

(

tγ1(x + σ1
γ1

)
)

dt
. (6.3)

By further integration, it follows that

P[X ∈ A | X1 = x]

=

∫∞
0 tγ1fR1

(

tγ1 (x + σ1
γ1

)
)

P[(x, R2, . . . Rd )/tγ − σ
γ

∈ A | R1 = tγ1 (x + σ1
γ1

)] dt

∫∞
0 tγ1fR1

(

tγ1 (x + σ1
γ1

)
)

dt
. (6.4)

Example 6 In Example 4, extreme flow episodes in the two river tributaries are

modelled using (R1/T γ , R2/T γ ) with R1 and R2 independent standard exponential

variables and with γ > 0. Suppose X ∼ H where H is the GP distribution obtained

from (R1/T γ , R2/T γ ) and let s > 0. Since R1 + R2 has a gamma distribution, it is

straightforward to evaluate (6.2) to find the distribution of the sum of the flows in the

two tributaries:

P[X1 + X2 > s] = c1

(

1 +
γ

σ1+σ2
s
)−1/γ

, (6.5)

with c1 = γ −1(1 + γ )(σ1 + σ2)
−1/γ /[σ

−1/γ

1 + σ
−1/γ

2 − (σ1 + σ2)
−1/γ ].

Similar computations using Eq. 6.3 show that for x1, x2 > 0

f|X1=x1
(x2) = c2

(

1 +
γ /(1 + γ )

(γ x1 + σ1 + σ2)/(1 + γ )
x2

)−1−1/[γ /(1+γ )]
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and

P[X2 > x2 | X1 = x1] = c3

(

1 +
γ /(1 + γ )

(γ x1 + σ1 + σ2)/(1 + γ )
x2

)−1/[γ /(1+γ )]

,

for c2 = (1 + γ )(x1 + σ1/γ )1+1/γ (γ x1 + σ1 + σ2)
−2−1/γ and c3 = (x1 +

σ1/γ )1+1/γ (γ x1 + σ1 + σ2)
−1−1/γ . Hence, dividing (6.5) with the same expression

with s set to zero, we find that the sum conditioned to be positive has a GP distribution

with the same shape parameter as the marginal distributions but with a larger scale

parameter. The conditional distribution of X2 given that X1 = x > 0, conditioned to

be positive, has a GP distribution with a smaller shape parameter, γ /(1 + γ ).

Many of the results in Example 6 hold more generally. For instance, the con-

ditional GP distribution of sums holds as soon as the marginals have the same

shape parameter. The intuition is simple: Suppose the GPR distribution has been

obtained from the vector (R1/T γ − σ1/γ, . . . , Rd/T γ − σd/γ ) by (formal) con-

ditioning on at least one of the components being positive. Then a weighted

sum of the components equals R/T γ − σ/γ , for R =
∑d

j=1 ajRj and σ =
∑d

j=1 ajσj , with coefficients a1, . . . , ad . According to the GPR representation, pro-

vided a1, . . . , ad ≥ 0, the distribution of R/T γ − σ/γ conditioned to be positive

is a one-dimensional GP distribution with parameters γ and σ . Further, that a sum

is positive implies that at least one component is positive, and hence first condi-

tioning on at least one component being positive, and then conditioning on the sum

being positive gives the same result as conditioning directly on the sum being pos-

itive. Thus the one-dimensional GP distribution holds for component sums in GP

distributions. Similar reasoning can be applied to, e.g., joint distributions of several

weighted sums and several components. Here, we only prove the one-dimensional

result.

Proposition 2 Let X be a GP random vector with common shape parameter γ for

all d margins and with scale parameter σ > 0, and if γ ≤ 0 additionally assume

that P[
∑d

j=1 ajXj > 0] > 0. Then, for a ∈ [0, ∞) \ {0}, the conditional distribution

of the weighted sum
∑d

j=1 ajXj given that it is positive is generalized Pareto with

shape parameter γ and scale parameter σ =
∑d

j=1 ajσj .

Proof Since P[
∑d

j=1 ajXj > 0] > 0 holds automatically if γ > 0 and σ > 0, this

condition is satisfied for all values of γ . Let Ax = {y ∈ Rd |
∑d

j=1 ajyj > x} and

as above define R =
∑d

j=1 ajRj . Then, for x > 0 and with F = {y; y � 0}, as

above, Ax ∩ F = Ax , and [for γ = 0 using the convention that t0(x + σ/0) means

x + σ log t] the numerator in Eq. 6.1 for A = Ax is

∫ ∞

0

P[R/tγ − σ/γ ∈ Ax] dt =

∫ ∞

0

P[R/tγ − σ/γ > x] dt,
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and hence by Eq. 6.1

P
[

∑d
j=1 ajXj > x

∣

∣

∣

∑d
j=1 ajXj > 0

]

=
HR(Ax)

HR(A0)
=

∫∞
0 P[R/tγ − σ/γ > x] dt
∫∞

0 P[R/tγ − σ/γ > 0] dt

= (1 +
γ
σ
x)−1/γ ,

where the last equality follows from making the change of variables from t (1 +

x/σ)1/γ to t in the numerator.

Example 1 exhibits a situation where the component sum in a GP distribution is

identically equal to −∞ and hence the assumption P[X1 + X2 > 0] > 0 is not

satisfied.

7 Simulation

In this section we outline four methods for sampling from multivariate GP distribu-

tions. For Methods 1 to 3 we focus on simulation of a GP vector X0 with σ = 1 and

γ = 0, since a vector X with general σ and γ is obtained at once from the vector

X0 through (4.6). Furthermore, using the connection between GPU and GPR distri-

butions, GPR vectors may be obtained by simulating GPU vectors, and vice versa.

Throughout we assume that simulation of U from FU and T from FT is possible.

Recall the relation S = T −
∨d

j=1 Tj which was used to define the (T ) representation.

The first method follows immediately from Eq. 4.7.

Method 1: simulation from the (T ) representation. Simulate a vector T ∼ FT and

an independent variable E ∼ Exp(1) and set X0 = E + T − max1≤j≤d Tj .

Simulation from the (R) and (U) representations is less direct. We propose three

methods: rejection sampling, MCMC sampling, and approximate simulation using

(4.1). The idea in Methods 2 and 3 is to use an appropriate change of measure so that

Method 1 can be used to simulate from the (T ) representation. The GPT (1, 0, FT )

density is

hT (x) = 1{x�0} e
−
∨d

j=1 xj

∫ ∞

0

t−1fT (x + log t) dt.

If in this equation one replaces T by T 0 where T 0 has density

fT 0
(x) =

e
∨d

j=1 xj fU (x)
∫∞

0 F̄U (log t) dt
(7.1)

then

hT (x) = 1{x�0}

e
−
∨d

j=1 xj
∫∞

0 t−1e
∨d

j=1(xj +log t)
fU (x + log t) dt

∫∞
0 F̄U (log t) dt

= 1{x�0}

∫∞
0 fU (x + log t) dt
∫∞

0 F̄U (log t) dt
= hU (x).
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Thus, if one can simulate T 0 vectors, then these give GPU (1, 0, FU ) vectors via

Method 1.

Method 2: simulation of T 0 via rejection sampling. Let ϕ be a probability den-

sity function which satisfies fT 0
(x) ≤ Kϕ(x), for some constant K > 0.

Draw a candidate vector T c
0 from ϕ and accept the candidate with probability

fT 0
(T c

0)/[Kϕ(tc
0)], and repeat otherwise. Use the accepted vector as input T in

Method 1.

The acceptance probability is 1/K , and thus it is advantageous to find a ϕ such

that K is not too large. In high dimensions however, such a ϕ might be difficult to

find.

Method 3: simulation of T 0 via MCMC. Use a standard Metropolis–Hastings

algorithm to simulate from a Markov chain with stationary distribution (7.1). At

iteration i, draw a candidate vector T c
0 from the density fT and accept the candi-

date with probability min{1, exp(
∨d

j=1 T c
0,j −

∨d
j=1 T i−1

0,j )}, where T i−1
0 is the

current state of the chain. If the candidate is not accepted, then the previous state

of the chain is repeated. After a suitable burn-in time, values of the chain should

represent dependent samples from Eq. 7.1; the draws can be thinned to produce

approximately independent replicates. Use the simulated values of the chain as

inputs T to Method 1.

Alternative proposal distributions could be used with appropriate modification of

the acceptance probability; for details see e.g. Chib and Greenberg (1995).

By Eq. 4.1, an approximate way to simulate X ∼ GPR(σ , γ , FR) is as follows.

Method 4: approximate simulation from the (R) representation. Choose a large K > 0.

Simulate T̄ ∼ Unif [0, K] and an independent R ∼ FR . If R/T̄ γ � σ/γ set

X = R/T̄ γ − σ/γ , and repeat otherwise.

In this algorithm, the probability to keep a simulated R/T̄ γ value is

1

K

∫ K

0

F̄R(tγ σ
γ
) dt ≈

1

K

∫ ∞

0

F̄R(tγ σ
γ
) dt,

so one has to simulate approximately K/
∫∞

0 F̄R(tγ σ
γ
) dt values of R/T̄ γ to get one

X-value. Hence a large K, which ensures that the approximating distribution H (K) is

close to H, leads to longer computation times, and a compromise has to be made. As

a guide to the compromise, it is often, e.g. for Gaussian or log-Gaussian processes,

possible to compute, analytically or numerically, sharp bounds for the approximation

errors.

To summarize, Method 1 is simplest, but only produces GPT (σ , γ , FT ) vectors.

Method 2 and Method 3 provide ways to simulate vectors T 0 from distribution (7.1),

which can then be inserted into Method 1 to simulate from the GPU (σ , γ , FU ) and

GPR(σ , γ , FR) distributions. Method 4 is as simple to program as Method 1 and

produces i.i.d. vectors, but, similarly to Method 3, only approximates the target

distribution.
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8 Conclusion

This paper studies the probability theory underlying peaks over thresholds modelling

of multivariate data using generalized Pareto distributions. We first derive basic prop-

erties of the multivariate GP distribution, including behaviour under conditioning;

scale change; convergence in distribution; mixing; and connections with general-

ized extreme value distributions. The main results are a point process limit result

which gives a general and concrete description of the behaviour of extreme episodes;

new representations of the cdf-s of multivariate GP distributions, motivated by and

derived from the point process result; expressions for likelihoods and censored like-

lihoods; formulas for probabilities and conditional probabilities of general sets; and

algorithms for random sampling from multivariate GP distributions. Throughout, the

results are illustrated by examples.

We provided four different representations of GP distributions, labelled (R), (S),

(T ), and (U). Computationally, the (T ) densities are simplest, and simulation from

the (T ) representation also is simpler than simulation from the other representations.

On the other hand, it seems impractical to use the (T ) representation for prediction

or spatial modelling, since taking lower-dimensional margins of it do not simply lead

to the proper lower-dimensional (T ) representations, and since a d-dimensional (T )

representation does not include any prescription for how to extend it to a (d + 1)-

dimensional one. The (S), (T ) and (U) representations allow for smooth transitions

from positive to negative γj , in contrast to the (R) representation. In some situations,

however, requirements of realistic physical modelling can nevertheless lead to the

use of the (R) representation.

Peaks over thresholds modelling of extremes of a random vector Y first selects a

suitable level u and then models the distribution of the over- and undershoots, X =

Y − u, conditional on the occurrence of at least one overshoot, by a GP distribution.

Of course, this GP model also models the conditional distribution of the original

vector Y , since Y = X + u. Modelling issues which are not treated include choice

of the level u, perhaps as a function of covariates like time, and modelling of the

Poisson process which governs the occurrence of extreme episodes.

A further practical issue, which is outside the scope of the current paper, is that

of asymptotic independence of extremes. In the event that the limiting probability

of joint occurrence of extremes, conditional upon at least one extreme component,

is zero, multivariate GP distributions will typically not represent the best models.

Asymptotic independence is usually manifested in practice by the threshold stability

properties of multivariate GP distributions not holding. Diagnostics based on these

stability properties are presented in Kiriliouk et al. (2016).

The paper gives a basis for understanding and modelling of extreme episodes. We

believe it will contribute to the solution of many different and important risk handling

problems. However, it still is an early excursion into new territory, and much research

remains to be done. Important challenges include incorporating temporal dependence

and developing methods for prediction of the unfolding of extreme episodes.
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Appendix

Proof of Eq. 2.6 If xj < ηj for some j ∈ {1, . . . , d}, then ν({y; y ≤ x}) = 0, so

that H(x) = 0 too. Let x > η. We have

{y ; y ≤ 0, y ≤ x} = {y ; ∃j, yj > 0; ∀j, yj ≤ xj }

= {y ; ∃j, yj > xj ∧ 0; ∀j, yj ≤ xj }

= {y ; y ≤ x ∧ 0, y ≤ x}.

As a consequence,

H(x) =
ν({y; y ≤ 0, y ≤ x})

ν({y; y ≤ 0})

=
ν({y; y ≤ x ∧ 0, y ≤ x})

ν({y; y ≤ 0})

=
(− log G(x ∧ 0)) − (− log G(x))

− log G(0)
=

1

log G(0)
log

(

G(x ∧ 0)

G(x)

)

,

as required.

The following property was used in the course of the proof of Theorem 1(vi).

Proof: a GEV cdf G with σ > 0 is determined by its values for x ≥ 0 Since σ > 0

the margins of G has the form (2.3), and hence σ and γ are determined by the values

of G(x) for x > 0. Further, by max-stability we have that G(atx + bt )
t = G(x)

and hence G(x) is determined for all values of x such that atx + bt ≥ 0 i.e. for

x ≥ −a−1
t bt . Using Eq. 2.5, it is seen that if γi > 0 then −a−1

t,i bt,i → −σi/γi = ηi

and if γi = 0 then −a−1
t,i bt,i → −∞ = ηi as t → ∞. Further, if γi < 0 then

−a−1
t,i bt,i → −∞ = ηi as t → 0. Thus G(x) is determined for all values in the

support of G, and this in turn determines G(x) for all values of x.
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