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MULTIVARIATE PERIODIC WAVELETS

I. E. MAKSIMENKO AND M. A. SKOPINA

Abstract. A general construction of a multiresolution analysis with a matrix dila-
tion for periodic functions is described, together with a method of finding wavelet
biorthogonal bases. The convergence of expansions with respect to these bases is
studied.

§1. Introduction

Wavelet bases play an important role in solving numerous applied problems; also,
they are an indispensable tool in approximation theory. In the late 1980s, a method of
construction of wavelet bases for L2(R) was proposed in the papers [2] by Mallat and [3]
by Meyer; this method is based on what is called multiresolution analysis (MRA in the
sequel). The essence of this method is as follows. MRA is generated by a function (called
a scaling function) with certain special properties. Starting with the scaling function,
one creates another function (called a wavelet function) such that the shifts and dilations
of it constitute a wavelet basis for L2(R) (see, e.g., [1, Chapter 5]).

Multivariate wavelet bases can be produced in a number of ways. First, it is possible
to take the tensor product of several one-dimensional wavelet bases. This is simple, but
the resulting multivariate system does not inherit all assets of the initial univariate bases.
In particular, the localization property, which is of great value for applied problems, is
not preserved. This can easily be demonstrated with the help of the Haar system. In
the one-dimensional case, a basis function with a large index has a small support. But
for the tensor product of two Haar systems (indexed doubly in a natural way), a basis
function with an arbitrarily large absolute value of the index may have a support large
in one direction.

Another approach to constructing a d-dimensional wavelet basis is to consider the
tensor product of d one-dimensional MRAs. Such a structure is similar to that of a
one-dimensional MRA and is generated by the tensor product of one-dimensional scaling
functions. In this case, we have several wavelet functions whose shifts and dilations con-
stitute a basis of L2(Rd). A still more general definition of a multivariate multiresolution
analysis was given by Meyer in [3]. By this definition, an MRA of L2(Rd) is a collection
of closed subspaces Vj , j ∈ Z, of the space L2(Rd) that satisfy the following conditions:

1) Vj ⊂ Vj+1 for any j ∈ Z;
2)
⋃
j∈Z Vj is dense in L2(Rd);

3)
⋂
j∈Z Vj = {0};

4) f(x1, . . . , xd) ∈ V0 ⇐⇒ f(2jx1, . . . , 2jxd) ∈ Vj ;
5) there exists ϕ ∈ V0 (the scaling function) such that the functions ϕ(· + k), k ∈ Z,

constitute an orthonormal basis of the space V0.
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The problem of finding wavelet functions becomes more complex in the multidimen-
sional case. Under various assumptions on the scaling function, this problem was con-
sidered by de Boor, DeVore, and Ron [4], Jia and Micchelli [5], [6], and Riemenschneider
and Shen [7], [8]. In the most general case, a method for constructing wavelet functions
was described explicitly by Jia and Shen in [11]. In Meyer’s definition of an MRA, the
scale factor is the diagonal matrix with 2’s on the diagonal, i.e., dilations in all directions
are the same. Other scale factors are also of interest for some applied problems. A more
general approach to the multivariate MRA was given, e.g., in the book [18] by Woj-
taszczyk. In that book, integral matrices satisfying some natural requirements played
the role of the scale factor, and a general algorithm for construction of wavelet functions
was presented. The problem reduces to finding a unitary matrix whose first row elements
are given functions. Similarly, in order to find a biorthogonal pair of wavelet bases, we
need to construct two matrices the first rows of which coincide with a given pair of or-
thogonal vector-valued functions. In [9], [10], Jia, Riemenschneider, and Shen presented
a description of an algorithm for constructing orthogonal and biorthogonal compactly
supported wavelet bases.

Usually, univariate periodic wavelets are defined by periodization of wavelets in L2(R).
Such an approach to periodic objects is not quite natural; moreover, in the literature we
find periodic wavelets (e.g., in the paper [12] by Chui and Mhaskar) that do not match
this definition. Definitions of a multiresolution analysis for periodic functions (PMRA)
has been proposed by many authors (Chui and Wang [13], Zheludev [14], Goh, Lee,
Shen, and Tang [16], Petukhov [15], etc.). The most general definition of a PMRA in the
spaces Lp, 1 < p <∞, and C was suggested by Skopina in [19], where also a description
of the periodic wavelet bases was presented together with a method of constructing
them. Moreover, in [19] conditions were found that ensure the convergence of a Fourier
series with respect to a wavelet system. All descriptions were given in terms of Fourier
coefficients. From the viewpoint of applications, this approach has an advantage as
compared to the nonperiodic constructions, because the problems become discrete.

The present paper is devoted to description of multivariate PMRAs, to construction
of orthogonal and biorthogonal wavelet bases, and to expansions with respect to such
bases. As a scale factor, we take (d× d)-matrices, where d is the dimension of the space.
Let M be an integral matrix such that the absolute values of all of its eigenvalues exceed
1. We note that the operator with the matrix M , applied many times, provides dilation
in all directions, because

(1) lim
n→+∞

‖M−n‖ = 0.

This follows from the fact that the entire spectrum of M (in the finite-dimensional case
the spectrum coincides with the set of eigenvalues) is located in the disk |λ| ≤ r(M−1),
where r(M−1) := limn→∞ ‖M−n‖1/n is the spectral radius of M−1, and there exists at
least one point of the spectrum on the boundary of that disk (see, e.g., [17, Russian
p. 267]). Since the absolute values of all eigenvalues of M−1 are strictly less than 1 and
the set of eigenvalues is finite, we have r(M−1) < 1. Therefore, the sequence ‖M−n‖
decays faster than a geometric progression.

§2. Notation and preliminary information

Throughout the paper, N is the set of positive integers, Rd is the d-dimensional
Euclidean space, x = (x1, . . . , xd) and y = (y1, . . . , yd) are elements of Rd (vectors),
(x, y) = x1y1 + · · · + xdyd, |x| =

√
(x, x), 0 = (0, . . . , 0) ∈ Rd, Zd is the integral lattice

in Rd, Z+ = {x ∈ Z1 : x ≥ 0}, Td = [0, 1)d is the unit d-dimensional torus, and δlk
is the Kronecker delta. By the space X we mean either C(Td) or Lp(Td), 1 ≤ p < ∞;
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MULTIVARIATE PERIODIC WAVELETS 167

f̂(k) =
∫
Td f(t)e−2πi(k,t) dt is the kth Fourier coefficient of f ∈ X ; 〈f, g〉 =

∫
Td fg. We

shall identify the functions defined on Td = [0, 1)d with their periodic extensions to Rd.
Let A be a nonsingular integral (d×d)-matrix; we denote by ‖A‖ the norm of A as an

operator from Rd to Rd, by A∗ the matrix adjoint to A, and by detA the determinant of
A. The unit (d× d)-matrix is denoted by Ed. We shall say that two elements k, n ∈ Zd
are congruent modulo A (we write k ≡ n (mod A)) if k − n = A`, ` ∈ Zd. The lattice
Zd is split into cosets with respect to this congruence. The number of cosets is equal
to | detA| (see, e.g., [18, p. 107]). We fix an arbitrary representative in each coset, call
these elements digits, and denote the set of digits by D(A). For two sets K and L, we
say that K is congruent to L modulo A (modulo Zd if A = Ed) if K can be split into
finitely many disjoint subsets, K =

⋃N
n=1Kn, in such a way that for some integral vectors

`1, . . . , `N we have L =
⋃N
n=1 (Kn +A`n) and the sets (Kn +A`n) are mutually disjoint.

Obviously, if K is congruent to L, then L is congruent to K. Congruence modulo Zd
means that we can “aggregate” L by shifting parts of K by integral vectors. Congruence
modulo A means that we can “aggregate” L by shifting parts of K by vectors of the
form A` with integral `. Obviously, if two measurable sets are congruent, then they are
of equal measure.

Lemma 1. If A is a nonsingular integral (d× d)-matrix, then

K :=
⋃

r∈D(A)

(A−1[0, 1)d +A−1r)

is congruent to [0, 1)d modulo Zd, and∫
Td
f =

∑
r∈D(A)

∫
A−1[0,1)d+A−1r

f

for any f ∈ L1(Td).
Proof. Set Kn := [n, n + 1)d ∩ K, n ∈ Zd. Clearly, Kn ∩ Kn1 = ∅ for n 6= n1, and
K =

⋃
nKn. Since the set K is bounded, only finitely many of the sets Kn are nonempty.

We show that Kn ∩ (Kn1 − `) = ∅ for every ` ∈ Zd. Let u ∈ Kn ⊂ K; this means that
u = A−1v+A−1r with v ∈ [0, 1)d and r ∈ D(A). Suppose there exists u1 ∈ Kn1 , n 6= n1,
such that u = u1 − `, ` ∈ Zd, or (what is the same) the difference u− u1 is integral. Let
u1 = A−1v1 +A−1r1, v1 ∈ [0, 1)d, r1 ∈ D(A); then A−1(v−v1)+A−1(r−r1) = `, ` ∈ Zd.
Multiplying this relation by A from the right, we get v− v1 + r− r1 = A`, ` ∈ Zd. Since
the vectors r, r1, and A` are integral and the vectors v and v1 are in [0, 1)d, this is possible
only if v = v1. However, since r, r1 ∈ D(A), these vectors cannot be congruent modulo A
unless they coincide. Therefore, r = r1, i.e., u = u1, which contradicts the assumption
n 6= n1. Now we show that [0, 1)d =

⋃
n (Kn − n). Observe that Kn−n ⊂ [0, 1)d for any

n by the definition of Kn. Moreover, (Kn − n) ∩ (Kn1 − n1) = ∅. We check that for any
u ∈ [0, 1)d there exist n ∈ Zd and w ∈ Kn such that u = w − n. Multiplying the vector
u by the matrix A from the left, we represent Au in the form Au = p+ v, where p ∈ Zd,
v ∈ [0, 1)d. The vector p is congruent to one of the digits, i.e., there are r ∈ D(A) and
l ∈ Zd such that p = r +Al. Then u = A−1r + l +A−1v, whence u− l ∈ K. Therefore,
u− l ∈ Kn for some n ∈ Zd, and n = −l. Putting w = u− l = u+ n, we get w ∈ Kn.

The second statement of the lemma readily follows from the 1-periodicity of the func-
tion f . �
Lemma 2 ([22]). Let A be a nonsingular integral (d× d)-matrix with | detA| > 1. Then

(2)
∑

s∈D(A∗)

e2πi(A−1r,s) =

{
| detA| if r ≡ 0 (modA),
0 if r 6≡ 0 (modA).
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For completeness, we include the proof of this lemma.

Proof. We set m := | detA| = | detA∗|. The cosets with respect to A∗ form a group
relative to addition; this group consists of m elements. If r ≡ 0 (mod A), i.e., r = Al
with l ∈ Zd, then (30) is obvious. If r 6≡ 0 (mod A), we take any vector a ∈ Zd such
that (A−1r, a) /∈ Z; then, in particular, a 6≡ 0 (mod A∗). Consider the vectors a, 2a, 3a,
. . . , and let m1 be the minimum positive integer such that m1a ≡ 0 (mod A∗). Then
1 < m1 ≤ m (if none of the elements ka, k = 1, . . . ,m, is congruent to zero, then they
are mutually noncongruent, but the group in question has only m elements). Thus, the
vectors a, 2a, . . . , m1a form a subgroup of m1 elements. By the Lagrange theorem, m
is divisible by m1. Let m = m1n, and let a1 = 0, a2, . . . , an be representatives of the
elements of the corresponding quotient group. Then the elements ak + ja, k = 1, . . . , n,
j = 1, . . . ,m1, run over all of the group, and

m∑
k=1

e2πi(A−1r,sk) =
n∑
k=1

m1∑
j=1

e2πi(A−1r,ak+ja) =
n∑
k=1

e2πi(A−1r,ak)
m1∑
j=1

e2πi(A−1r,ja)

= C
1− e2πim1(A−1r,a)

1− e2πi(A−1r,a)
.

Since m1a = A∗l, l ∈ Zd, and (A−1r, a) /∈ Z by assumption, it follows that the ratio on
the right is equal to zero. �

Corollary 3. Under the assumptions of Lemma 2, the matrix {e2πi(A−1n,r)}n∈D(A),
r∈D(A∗)

is

unitary up to the factor
√
| detA|.

Indeed, the inner product of the n1th and n2th columns is equal to∑
r∈D(A∗)

e2πi(A−1(n1−n2),r).

By Lemma 2, this sum is equal to | detA| for n1 = n2, and otherwise it is equal to zero
because n1 6≡ n2 (mod A).

Lemma 4. Let A be a nonsingular integral (d × d)-matrix with | detA| > 1. Then the
set {r +Ajp}, r ∈ D(Aj), p ∈ D(A), is a set of digits for the matrix Aj+1.

Proof. The number of all possible pairs (r, p) with r ∈ D(Aj) and p ∈ D(A) is equal
to | detA|j+1. Thus, it suffices to prove that different pairs cannot give rise to vectors
congruent modulo Aj+1. Let r, r1 ∈ D(Aj) and p, p1 ∈ D(A). Assume that r + Ajp
and r1 + Ajp1 are congruent modulo Aj+1; then (r − r1) + Aj(p − p1) = Aj+1n for
some n ∈ Zd. Multiplying both sides of this relation by A−j form the left, we get
A−j(r − r1) = −(p− p1) +An ∈ Zd, i.e., r ≡ r1 (mod Aj). Since r and r1 belong to the
set D(Aj), which contains only one representative of each coset, we have r = r1. The
relation (p− p1) = An implies that p = p1. Thus, r +Ajp and r1 + Ajp1 are congruent
modulo Aj+1 if and only if r = r1 and p = p1. �

Throughout the paper, M denotes a fixed integral (d×d)-matrix such that the absolute
values of all of its eigenvalues exceed 1; we put m = | detM |. Obviously, for such a matrix
we have m ∈ Z, m > 1, and, as has already been noted,

(3) lim
n→∞

|Mnx| =∞

for all x ∈ Rd, x 6= 0.
On the space X , we define a shift operator Sjp, p ∈ Zd, j ∈ Z+, by the formula

(4) Sjpf(x) := f(x+M−jp).
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§3. PMRA and the scaling sequence

Definition 5. Let Vj ⊂ X , j ∈ Z+. The collection {Vj}∞j=0 is called a PMRA of X if
the following conditions (axioms) are fulfilled.
(MR1) Vj ⊂ Vj+1;
(MR2)

⋃∞
j=0 Vj = X ;

(MR3) dimVj = mj ;
(MR4) dim{f ∈ Vj : Sjnf = λnf for all n ∈ Zd} ≤ 1 for any {λn}n∈Zd ,;
(MR5) f ∈ Vj ⇐⇒ Sjnf ∈ Vj for all n ∈ Zd;
(MR6) a) f ∈ Vj =⇒ f(M ·) ∈ Vj+1,

b) f ∈ Vj+1 =⇒
∑
s∈D(M) f(M−1 ·+M−1s) ∈ Vj .

Remark. Since f is periodic, in conditions (MR4) and (MR5) we can consider only the
digits of the matrix M j instead of all n ∈ Zd. So, these conditions can be replaced by
(MR4′) dim{f ∈ Vj : Sjrf = λrf for all r ∈ D(M j)} ≤ 1 for any {λr}r∈D(Mj);
(MR5′) f ∈ Vj ⇐⇒ Sjrf ∈ Vj for all n ∈ D(M j).

Definition 6. Let Vj be a PMRA in X . A sequence {ϕj}∞j=0 of functions ϕj ∈ Vj is
called a scaling sequence if {Sjnϕj}n∈D(Mj) is a basis for the space Vj .

Theorem 7. Functions ϕj ∈ X , j ∈ Z+, constitute a scaling sequence for a PMRA of
X if and only if

(Φ1) ϕ̂0(k) = 0 for all k 6= 0;
(Φ2) for each j ∈ Z+ and each n ∈ Zd , there exists k ≡ n (mod M∗j) such that

ϕ̂j(k) 6= 0;
(Φ3) for each k ∈ Zd , there exists j ∈ Z+ such that ϕ̂j(k) 6= 0;
(Φ4) for each j ∈ N and every n ∈ Zd , there exists µjn such that ϕ̂j−1(k) = µjnϕ̂j(k)

for all k ≡ n (mod M∗j);
(Φ5) for each j ∈ Z+ and every n ∈ Zd , there exists γjn 6= 0 such that γjnϕ̂j(k) =

ϕ̂j+1(M∗k) for all k ≡ n (mod M∗j).

We preface the proof of the theorem with a series of auxiliary statements.

Lemma 8. Suppose that Vj ⊂ X , j ∈ Z+, and that the axioms (MR1), (MR2), (MR3),
(MR5), and (MR6) of Definition 5 are fulfilled; then V0 = {const}.

Proof. By (MR3), the space V0 is one-dimensional. Let f ∈ V0, and let ‖f‖ 6= 0. We
show that f̂(0) 6= 0. Suppose that f̂(0) = 0. We introduce the following operator A:
Af =

∑
s∈D(M) f(M−1 ·+M−1s), and set g = Af . By Lemma 1,

ĝ(0) =
∑

s∈D(M)

∫
Td
f(M−1x+M−1s) dx

= m
∑

s∈D(M)

∫
M−1Td+M−1s

f(z) dz = m

∫
Td
f(z) dz

= mf̂(0).

If g0 ∈ Vj , then g1 := Ag0 ∈ Vj−1, . . . , gj := Agj−1 ∈ V0. If ĝj(0) 6= 0, then this
contradicts the fact that V0 is one-dimensional, because f̂(0) = 0. If ĝ0(0) = 0, then the
mean value of any function in Vj is zero, which contradicts (MR2).

Now we assume that f̂(n) 6= 0 for some n 6= 0. Set f1 := Af . Since f ∈ V0, we
have f ∈ V1 by (MR1). Consequently, f1 ∈ V0 by (MR6b). Since V0 is one-dimensional,
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f1 = λf . This implies that f̂1(n) = λf̂(n). However, λ = m because f̂1(0) = mf̂(0). On
the other hand, a direct computation with the use of Lemma 1 yields

f̂1(n) =
∑

s∈D(M)

∫
Td
f(M−1x+M−1s)e2πi(x,n) dx

= m
∑

s∈D(M)

∫
M−1Td+M−1s

f(z)e2πi(Mz−s,n) dz = m

∫
Td
f(z)e2πi(Mz,n) dz

= mf̂(M∗n).

Therefore,
f̂(n) = f̂(M∗n) = · · · = f̂(M l∗n) = · · · .

Recalling that the Fourier coefficients of f ∈ X tend to zero as the absolute value of their
indices tends to infinity, and taking (3) into account, we arrive at a contradiction. �

On the space X , we define operators ωjn, j ∈ Z+, n ∈ Zd, by recursion:

ω0
nf := f,

ωj+1
n f(x) :=

1
m

∑
s∈D(M)

e−2πi(M−j−1s,n)ωjnf(x+M−j−1s).

Lemma 9. Suppose that Vj ⊂ X , j ∈ Z+, and that the axiom (MR5) of Definition 5 is
fulfilled. If f ∈ Vj0 , then ωjnf ∈ Vj0 for all j = 0, . . . , j0 and all n ∈ Zd, and

(5) ωjnf ∼
∑
m∈Zd

f̂(M∗jm+ n)e2πi(M∗jm+n,·),

i.e., ω̂jnf(k) = f̂(k) if k ≡ n (mod M∗j), and ω̂jnf(k) = 0 if k 6≡ n (mod M∗j).

Proof. We proceed by induction on j. The assertion for j = 0 is obvious. Suppose that
ωjnf ∈ Vj0 for 0 ≤ j < j0, and that (5) is true for all n ∈ Zd. From (MR5) it follows
that ωjnf(· + M−j−1s) = ωjnf(· + M−j0M j0−j−1s) ∈ Vj0 . This implies the relation
ωj+1
n f ∈ Vj0 . Next, we have

ω̂j+1
n f(k) =

1
m

∫
Td

∑
s∈D(M)

e−2πi(M−j−1s,n)ωjnf(x+M−j−1s)e−2πi(x,k) dx

=
1
m

∑
s∈D(M)

e−2πi(M−j−1s,n)

∫
Td
ωjnf(t)e−2πi(t−M−j−1s,k) dt

=
1
m

∑
s∈D(M)

e−2πi(M−j−1s,n−k)ω̂jnf(k).

If k ≡ n (mod M∗j+1), then, obviously, the sum on the right is equal to m, whence

ω̂j+1
n f(k) = ω̂jnf(k). If k 6≡ n (mod M∗j+1) and n ≡ k (mod M∗j), i.e., n− k = M∗j l,

where the vector l is not congruent to zero modulo M∗, then, by Lemma 2, the same
sum is equal to zero. Finally, if k 6≡ n (mod M∗j), then, by the induction hypothesis,

ω̂jnf(k) = 0, whence ω̂j+1
n f(k) = 0. �

Lemma 10. If Vj is a PMRA of X , then each space Vj possesses a basis {vjn}n∈D(M∗j)

with the following properties:
(V1) v̂jn(k) = 0 for all k 6≡ n (mod M∗j);
(V2) if v̂jn(k) 6= 0, then v̂jn(`) = v̂j+1

n (`) for all ` ≡ k (mod M∗j+1);
(V3) v̂jn(k) = v̂j+1

M∗n(M∗k) for all k ∈ Zd.
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For convenience, we set v̂jl := v̂jn if l ≡ n (mod M j).

Proof. We use induction on j. The case of j = 0 is obvious because all integral vectors
are congruent to each other if j = 0. Suppose that in the spaces Vj with j = 0, . . . , j0
there exist bases satisfying (V1), (V2), and (V3). We introduce the spaces V (n)

j :=
{f ∈ Vj : f̂(k) = 0 for all k 6≡ n (mod M∗j)}. If F ∈ Vj , then

F =
∑

n∈D(M∗j)

ωjnF =
∑

n∈D(M∗j)

Fn, Fn ∈ V (n)
j .

This means that Vj =
∑
n∈D(M∗j) V

(n)
j . Therefore,

(6) mj = dimVj ≤
∑

n∈D(M∗j)

dimV
(n)
j .

We find the dimension of V (n)
j . If f ∈ V (n)

j , then

f(x) ∼
∑
m∈Zd

f̂(M∗jm+ n)e2πi(M∗jm+n,x).

Applying the shift operator, we get

(Sjpf)(x) ∼
∑
m∈Zd

f̂(M∗jm+ n)e2πi(M∗jm+n,x+M−jp) ∼ e2πi(n,M−jp)f(x),

i.e., Sjpf(x) = e2πi(n,M−jp)f(x) for all p ∈ Zd. Using (MR4) and (6), we deduce that
dimV

(n)
j = 1.

We construct the basis {vj0+1
n }. If v̂j0k (k) 6= 0, we set vj0+1

k := ωj0+1
k vj0k . Properties

(V1) and (V2) are valid by Lemma 9. We check (V3). If k ≡ 0 (mod M∗) and n ≡ k

(mod M∗j0+1), then

v̂j0+1
k (n) = v̂j0k (n) = v̂j0−1

M∗−1k
(M∗−1n) = v̂j0

M∗−1k
(M∗−1n)

by the induction hypothesis. Thus, we have defined the basis functions with the indices
k for which there exists n ≡ k (mod M∗j0+1) such that v̂j0k (n) 6= 0. Now, suppose that
v̂j0k (n) = 0 for all n ≡ k (mod M∗j0+1) and k ≡ 0 (mod M∗). In this case we set
vj0+1
k (x) := vj0

M∗−1k
(Mx). Using Lemma 1, we obtain

v̂j0+1
k (n) =

∫
Td
vj0+1
k (x)e−2πi(x,n) dx =

∫
Td
vj0
M∗−1k

(Mx)e−2πi(x,n) dx

=
∑

s∈D(M)

∫
M−1Td+M−1s

vj0
M∗−1k

(Mx)e−2πi(x,n) dx

=
1
m

∑
s∈D(M)

∫
Td+s

vj0
M∗−1k

(t)e−2πi(t,M∗−1n) dt

= v̂j0
M∗−1k

(M∗−1n).

Clearly, property (V3) is fulfilled, and property (V1) is valid by the induction hypothesis.
Finally, let v̂j0k (n) = 0 for all n ≡ k (mod M∗j0+1) and k 6≡ 0 (mod M∗). In this case,
as vj0+1

k we can use any nonzero element of the space V (k)
j0+1. Then property (V1) follows

from the definition of V (k)
j0+1, and no verification is required for (V2) and (V3). �
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Remark. If only the axioms (MR1), (MR3), (MR4), and MR5 of Definition 5 are fulfilled
for a sequence of subspaces Vj ⊂ X , j ∈ Z+, then, in each Vj , there exists a basis
{vjn}n∈D(M∗j) satisfying conditions (V1) and (V2). This can be proved by the same
method, by using an arbitrary nonzero element of V0 as v0

0 , and an arbitrary nonzero
element of V kj0+1 as vj0+1

k in the case where v̂j0k (n) = 0 for all n ≡ k (mod M∗j0+1) and
k ≡ 0 (mod M∗).

Lemma 11. If in each space Vj ⊂ X , j ∈ Z+, there exists a basis {vjn}n∈D(M∗j) satisfying
condition (V1) of Lemma 10, then the axiom (MR4) of Definition 5 is fulfilled.

Proof. In view of the remark to Definition 5, it suffices to verify (MR4′). For r ∈ D(M j),
let f be an eigenvector of the operator Sjr , i.e., Sjrf = λrf , and let f =

∑
n∈D(M∗j) α

j
nv

j
n.

By condition (V1), the operator Sjr acts on vjn as multiplication by e2πi(M∗−jn,r). Ap-
plying Sjr to the function f , we get

Sjrf(x) =
∑

n∈D(M∗j)

αjnS
j
nv

j
n(x) =

∑
n∈D(M∗j)

αjne
2πi(M∗−jn,r)vjn(x).

Since f is an eigenvector of Sjr , we have

0 = Sjrf(x)− λrf(x) =
∑

n∈D(M∗j)

αjn[e2πi(M∗−jn,r) − λr]vjn(x).

It follows that αjn[e2πi(M∗−jn,r)−λr] = 0 for all n ∈ D(M∗j), because the vjn are linearly
independent. Suppose that αjn0

6= 0 and αjn1
6= 0 for two different numbers n0 6= n1.

Subtracting, we get

(e2πi(M∗−jn0,r) − λr)− (e2πi(M∗−jn1,r) − λr) = 0,

or e2πi(M∗−j(n0−n1),r) = 1. Now, let f be an eigenvector of all operators Sjr , r ∈ D(M j).
Summing the above identities over all r, we obtain

(7)
∑

r∈D(Mj)

e2πi(M∗−j(n0−n1),r) = mj .

On the other hand, since n0 is not congruent to n1 modulo M∗j , Lemma 2 yields

(8)
∑

r∈D(M∗j)

e2πi(M∗−j(n0−n1),r) = 0,

which contradicts (7). Thus, αjn may differ from zero only if n = n0, so that f is
proportional to vjn0

. Moreover, from the above arguments it follows that

(9) λr = e2πi(M∗−jn0,r), r ∈ D(M j).

Let g =
∑

n β
j
nv

j
n be another eigenvector of all operators Sjr , r ∈ D(M j). For this

vector, again, only one of the βjn differs from zero. Suppose that βjn1
6= 0, n1 6= n0.

As in (9), we have λr = e2πi(M∗−jn1,r), r ∈ D(M j). Combining this with (9), we get
e2πi(M∗−j(n0−n1),r) = 1 for any r ∈ D(M j). Summing these relations over all r, we obtain
(7), which contradicts (8). Therefore, g is also proportional to vjn0

, and the dimension of
the subspace of all such functions does not exceed 1. �
Proposition 12. Let Vj be a PMRA of X. A sequence {ϕj}∞j=0 ⊂ X is a scaling
sequence if and only if

(10) ϕj =
∑

n∈D(M∗j)

αjnv
j
n, αjn 6= 0 for all n ∈ D(M∗j),

where {vjn}n∈D(M∗j) is the basis for Vj defined in Lemma 10.
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Proof. The “only if ” part. Let {ϕj}∞j=0 be a scaling sequence, and let αjn, n ∈ D(M∗j),
be the coefficients of the expansion of ϕj in the basis {vjn}n∈D(M∗j). Applying the shift
operator Sjr , r ∈ D(M j), to ϕj , we obtain

(11) Sjrϕj =
∑

n∈D(M∗j)

αjne
2πi(M∗−jn,r)vjn.

Suppose that αjn0
= 0 for some n0; then

Vj = span{Sjrϕj , r ∈ D(M j)} = span{vjn, n ∈ D(M∗j), n 6= n0},

which contradicts the minimality of the basis {vjn}n∈D(M∗j).
The “if ” part. Let ϕj be defined by formula (10). As above, we have

Sjrϕj =
∑

n∈D(M∗j)

αjne
2πi(M∗−jn,r)vjn, r ∈ D(M j).

We view this as a system of equations with the unknowns αjnv
j
n. By Corollary 3, the

matrix of this system is unitary (up to a factor). Since the functions αjnv
j
n constitute

a basis, and any unitary transformation takes a basis to a basis, the functions Sjrϕj ,
r ∈ D(M j), constitute a basis for the space Vj . �

Corollary 13. If {ϕj}∞j=0 is a scaling sequence, then ωjnϕj = αjnv
j
n, where αjn 6= 0.

This statement follows from (5) and the fact that dimV
(n)
j = 1 (the V

(n)
j are the

spaces defined in Lemma 10).

Corollary 14. In any PMRA there exists a scaling sequence.

For the proof it suffices to set αjn = 1 in (10).

Proof of Theorem 7. The “only if ” part. Property (Φ1) follows from Lemma 8. To prove

(Φ2) we use Corollary 13. The relation ωjnϕj = αjnv
j
n implies that ϕ̂j(k) = ω̂jkϕj(k) =

αjnv̂
j
n(k) for any k ≡ n (mod M∗j). The existence of k ≡ n (mod M∗j) such that

v̂jn(k) 6= 0 follows from the relations vjn 6≡ 0 (because vjn is a basis vector) and v̂jn(`) = 0
for all ` 6≡ n (mod M∗j). Since αjn 6= 0, we get ϕ̂j(k) 6= 0. Property (Φ3) will be proved
by contradiction. Assume that ϕ̂j(k) = 0 for all j ∈ Z+. This means that none of the
functions ϕj involves the harmonic e2πi(k,x). In this case the same is true for the shifts
Sjkϕj , i.e., the inner product 〈f, e2πi(k,x)〉 is equal to zero for any f ∈

⋃∞
j=0 Vj , which

contradicts the completeness of the union of the spaces Vj (the axiom (MR4)). For the
proof of (Φ4), we take an arbitrary n ∈ Zd. First, we analyze the case where there
exists k ≡ n (mod M∗j) such that ϕ̂j−1(k) 6= 0. By Corollary 13, ωjnϕj = αjnv

j
n and

ωjnϕj−1 = ωjnω
j−1
n ϕj−1 = αj−1

n ωjnv
j−1
n , αjn, α

j−1
n 6= 0. Therefore, by property (V2) in

Lemma 10,

ϕ̂j−1(`) =
αj−1
n

αjn
ϕ̂j(`)

for all ` ≡ n (mod M∗j). It remains to set µjn = αj−1
n /αjn. If ϕ̂j−1(k) = 0 for any k ≡ n

(mod M∗j), we set µjn = 0. For the proof of (Φ5), again we use Corollary 13. If k ≡ n

(mod M∗j), then

ϕ̂j+1(M∗k) = ̂ωj+1
M∗nϕj+1(M∗k) = αj+1

M∗nv̂
j+1
M∗n(M∗k),
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where αj+1
M∗n 6= 0. On the other hand, ϕ̂j(n) = αjkv̂

j
n(k), αjn 6= 0. Therefore, by property

(V3) in Lemma 10, we get

ϕ̂j+1(M∗k) =
αj+1
M∗n

αjn
ϕ̂j(k).

It remains to set γjn = αj+1
M∗n/α

j
n.

The “if ” part. Suppose that the functions ϕj ∈ X satisfy (Φ1)–(Φ5). Setting Vj =
span{Sjnϕj , n ∈ D(M j)}, we show that {Vj}∞j=0 is a PMRA of X and {ϕj}j∈Z+ is a
scaling sequence. First, we check (MR5). Let f ∈ Vj ; then f =

∑
k∈D(Mj) αkS

j
kϕj .

Applying the shift operator Sjp, p ∈ D(M j), we obtain

(12) Sjpf =
∑

k∈D(Mj)

αkS
j
pS

j
kϕj .

The periodicity of f implies that SjpSjnf = Sjrf , where r ∈ D(M j), r ≡ (p+n) (mod M j).
Substituting this in (12), we get Sjpf ∈ Vj by the definition of Vj . If Sjpf ∈ Vj , then,
as has already been proved, f = Sj−pS

j
pf ∈ Vj . Now we prove (MR3). By analogy with

(11), we use Lemma 9 to obtain

(13) Sjrϕj =
∑

n∈D(M∗j)

e2πi(M∗−jn,r)ωjnϕj .

It follows that Vj = span{ωjnϕj , n ∈ D(M∗j)}. We show that the functions ωjnϕj ,
n ∈ D(M∗j), constitute a basis for Vj . Suppose that these functions are linearly
dependent. In this case there exist numbers αk, k ∈ D(M∗j), αk0 6= 0, such that∑

k∈D(M∗j) αkω
j
kϕj = 0. By Lemma 9, this implies that ω̂jnϕj(k) = ϕ̂j(k) = 0 for all

k ≡ k0 (mod M∗j), which contradicts (Φ2). For the proof of (MR3), it remains to note
that the number of the functions ωjnϕj is equal to mj . Since the number of the functions
Sjnϕj , n ∈ D(M j), is also equal to mj , we have also proved that {Sjnϕj}n∈D(Mj) is a basis
for the space Vj . For the proof of (MR1), we must check that f ∈ Vj implies f ∈ Vj+1. It
suffices to consider only the basis functions ωjnϕj , n ∈ D(M∗j). Lemmas 9 and 4 imply
the relation

(14) ωjnϕj =
∑

p∈D(M∗)

ωj+1
n+M∗jp

ωjnϕj .

Using (Φ4) and Lemma 9, and the fact that the sequence µj+1
n is M∗j+1-periodic with

respect to the lower index, we obtain

ωj+1
n+M∗jp

ωjnϕj

∼
∑
k∈Zd

ω̂jnϕj(M∗
j+1k + n+M∗jp)e2πi(M∗j+1k+n+M∗jp,x)

=
∑
k∈Zd

ϕ̂j(M∗
j+1k + n+M∗jp)e2πi(M∗j+1k+n+M∗jp,x)

=
∑
k∈Zd

µj+1
M∗j+1k+n+M∗jp

ϕ̂j+1(M∗j+1k + n+M∗jp)e2πi(M∗j+1k+n+M∗jp,x)

= µj+1
n+M∗jp

∑
k∈Zd

ϕ̂j+1(M∗j+1k + n+M∗jp)e2πi(M∗j+1k+n+M∗jp,x)

∼ µj+1
n+M∗jp

ωj+1
n+M∗jp

ϕj+1.
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It follows that

(15) ωjnϕj =
∑

p∈D(M∗)

µj+1
n+M∗jp

ωj+1
n+M∗jp

ϕj+1.

It remains to observe that, by Lemma 9, ωj+1
n+M∗jp

ϕj+1 ∈ Vj+1.
Before passing to the proof of the remaining properties, we show that Vj contains a

basis satisfying the conditions listed in Lemma 10. By recursion on j, we introduce the
following numbers αjn, j ∈ Z+, n ∈ D(M∗j): α0

0 := 1;
if µjn 6= 0, then αjn := αj−1

n /µjn;
if µjn = 0, then n ≡ 0 (mod M∗), αjn := αj−1

M∗−1n
γj−1
M∗−1n

;
if µjn = 0, n 6≡ 0 (mod M∗), then αjn := 1. Clearly, αjn 6= 0 by construction. We

put vjn = ωjnϕj/α
j
n. As has already been shown, the ωjnϕj constitute a basis for Vj .

Therefore, {vjn}n∈D(M∗j) is also a basis, and it is not difficult to check that properties
(V1)–(V3) of Lemma 10 are fulfilled. Property (MR4) follows from Lemma 11. To prove
(MR6), it suffices to show that this property is fulfilled for the functions {vjn}n∈D(M∗j).
Using Lemma 9 and (V3), we see that

vjn(Mx) ∼
∑
k∈Zd

v̂jn(k)e2πi(k,Mx) =
∑
k∈Zd

v̂j+1
M∗n(M∗k)e2πi(M∗k,x)

=
∑

l∈Zd,l≡0 (modM∗)

v̂j+1
M∗n(l)e2πi(l,x)

∼ vj+1
M∗n(x).

For the proof of (MR6a), it remains to note that vj+1
M∗n ∈ Vj+1. We check (MR6b). First,

we consider the case where n ≡ 0 (mod M∗). By (V3), we get∑
k∈D(M)

vj+1
n (M−1x+M−1k) =

∑
k∈D(M)

vj
M∗−1n

(x+ k) ∈ Vj .

Now, let n 6≡ 0 (mod M∗). Then∑
k∈D(M)

vj+1
n (M−1x+M−1k)

∼
∑
l∈Zd

∑
k∈D(M)

v̂j+1
n (M∗j+1l + n)e2πi(M∗j+1l+n,M−1x+M−1k)

=
∑
l∈Zd

v̂j+1
n (M∗j+1l + n)e2πi(M∗j+1l+n,M−1x)

∑
k∈D(M)

e2πi(M∗j l+M∗−1n,k).

But the last sum is equal to zero by Lemma 2, and so (MR6b) is fulfilled. It remains to
prove (MR2). Since the trigonometric polynomials are dense in X , it suffices to check
that any trigonometric polynomial can be approximated by functions in

⋃∞
j=0 Vj . It

suffices to check this for an individual harmonic. Let fr(x) = e2πi(r,x), r 6= 0. From
(Φ3) it follows that there exists j0 with ϕ̂j0(r) 6= 0. Since ϕ̂j(r) 6= 0 by (Φ4), we have
v̂jr(r) 6= 0 for all j ≥ j0. We define the functions hj for j ≥ j0 by

hj(x) := 1− vjr(x)
v̂jr(r)

e−2πi(r,x).

Then

ĥj(n) = δn0 −
v̂jr(r − n)
v̂jr(r)

, n ∈ Zd.
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Thus, ĥj(n) 6= 0 only if n ≡ 0 (mod M∗j), n 6= 0. Hence, ĥj(n) = 0 for all n ∈
M∗j(−1, 1)d. We select a subsequence of embedded parallelepipeds M∗jk(−1, 1)d. By
(1), there exists n0 such that ‖M∗−n0‖ ≤ 1/2. Setting jk+1 = jk + n0, we obtain
‖M∗jk+1x‖ ≥ 2‖M∗jkx‖ for any x ∈ Rd. For sufficiently large k, in each parallelepiped
M∗jk(−1, 1)d we can inscribe a cube Kjk with center at the origin, with edges parallel
to the coordinate axes, and with integral side length ak that monotonically increases
to infinity as k increases. For convenience, in the sequel we shall write Kj for this
subsequence. As has already been noted, ĥj(n) = 0 for all integral n in Kj . Consequently,
the partial sums over Kj of the Fourier series of hj are equal to zero. Therefore, the
corresponding Fejér means σKj (hj) over these cubes are also equal to zero. We need the
following identity for j ≥ j0:

(16) hj(x) = mj0−j
∑

n∈D(Mj−j0 )

hj0(x+M−jn).

For the proof, we apply Lemma 9 to rearrange the right-hand side:

mj0−j
∑

n∈D(Mj−j0 )

hj0(x +M−jn)

= mj0−j
∑

n∈D(Mj−j0 )

[
1− vj0r (x+M−jn)

v̂j0r (r)
e−2πi(r,x+M−jn)

]
∼ −m

j0−j

v̂j0r (r)

∑
n∈D(Mj−j0 )

e−2πi(r,x+M−jn)
∑
l∈Zd,
l 6=0

v̂j0r (M∗j0 l + r)e2πi(M∗j0 l+r,x+M−jn)

= −m
j0−j

v̂j0r (r)

∑
l∈Zd,
l 6=0

v̂j0r (M∗j0 l + r)e2πi(M∗j0 l,x)
∑

n∈D(Mj−j0 )

e−2πi(M∗(j0−j)l,n).

By Lemma 2, the inner sum on the right is equal to mj−j0 if l ≡ 0 (mod M j−j0 ), and is
equal to zero otherwise. This means that in the outer sum only the terms with indices
l ≡ 0 (mod M j−j0) are nonzero. This sum can be rewritten as

−m
j0−j

v̂j0r (r)

∑
k∈Zd,k 6=0

v̂j0r (M∗jk + r)e2πi(M∗jk+r,x)e−2πi(r,x) ∼ 1− vjr(x)
v̂j0r (r)

e−2πi(r,x).

Since, by (V2), v̂j0r (r) = v̂jr(r) for j ≥ j0, and v̂j0r (r) 6= 0, we arrive at (16). Now, (16)
and the linearity of the Fejér means yield

‖hj‖ = ‖hj − σKj (hj)‖

=
∥∥∥mj0−j

∑
n∈D(Mj−j0 )

[hj0(x+M−jn)− σKj (hj0)(x+M−jn)]
∥∥∥

≤ mj0−j
∑

n∈D(Mj−j0 )

‖hj0(x+M−jn)− σKj (hj0)(x +M−jn)‖

= mj0−j
∑

n∈D(Mj−j0 )

‖hj0 − σKj (hj0)‖.

The last-written expression tends to zero as j →∞, because the Fejér means of a function
in X converge to that function in norm (see, e.g., [23, Chapter 17, §1]). Thus, we have
proved that

lim
j→∞

∥∥∥∥fr(x)− vjr(x)
v̂jr(r)

∥∥∥∥ = lim
j→∞

‖hj(x)‖ = 0,
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i.e., fr is approximated by the functions vjr(x)/v̂jr(r) ∈ Vj . �

From the proof of the theorem and the remark to Lemma 10, it is clear that if we
exclude the axiom (MR6) from the definition of a PMRA, then a scaling sequence will
be characterized by properties (Φ2)–(Φ4). This means that the following statement is
true.

Theorem 15. Let ϕj ∈ X , j ∈ Z+, and let Vj = span{Sjnϕj , n ∈ D(M∗j)}. The axioms
(MR1)–(MR5) of Definition 5 are fulfilled for a collection of spaces {Vj}∞j=0 if and only
if the functions ϕj satisfy conditions Φ2–Φ4 of Theorem 7.

A wide class of PMRAs of L2(Td) can be constructed by the following standard
method. A scaling sequence is obtained by periodization of a function ϕ ∈ L2(Rd)
by the formulas

(17) ϕj(x) =
∑
k∈Zd

ϕ(M jx+M jk)

(we say that such a PMRA is generated by the function ϕ). Let ϕ ∈ L2(Rd) be a scaling
function of a nonperiodic MRA, i.e., the following conditions are fulfilled:

(i) there exist positive constants A,B such that

A ≤
∑
m∈Zd

|ϕ̂(ξ +m)|2 < B for a.e. ξ ∈ Rd;

(ii) there exists a function m0 ∈ L2(Td) such that

ϕ̂(M∗ξ) = m0(ξ)ϕ̂(ξ) for a.e. ξ ∈ Rd;

(iii) the function ϕ̂ is continuous at zero and ϕ̂(0) 6= 0. If, moreover, we assume that
ϕ decays sufficiently fast at infinity, for example,

ϕ(x) = O

(
1

(1 + |x|)d+ε

)
, ε > 0

(which is usually the case for the known MRA), then ϕj ∈ L2(Td), and, by the Poisson
summation formula,

ϕj(x) = m−j
∑
m∈Z

ϕ̂(M∗−jm)e2πi(m,x).

We check that the ϕj satisfy conditions (Φ1)–(Φ5) of Theorem 7. To prove (Φ1), we
observe that, by (ii) and (iii), m0(n) = m0(0) = 1 for all n ∈ Zd. Therefore, if ϕ̂j(k) =
m−jϕ̂(M∗−jk) 6= 0 for some k ∈ Zd, k 6= 0, then ϕ̂j(M∗`k) = ϕ̂j(k) 6= 0 for all
` ∈ Z+, which cannot be true for a function in L2(Td). Properties (Φ2) and (Φ3)
follow (respectively) from (i) and (iii). It is not difficult to check Φ4) and (Φ5) if we set
µjk = m0(M∗−j−1k), γjk = m.

In [19], a condition was found under which a PMRA in Lp(T1) or C(T1) is generated by
an integrable function. However, a PMRA can be generated by a nonintegrable function.
For instance, the function

(18) ϕ(x) =
sinπx
πx

is scaling; though ϕ 6∈ L(R), periodization of ϕ is possible because the series (17) con-
verges in the principal value sense. Petukhov [24] found a PMRA that is not generated
by a function (in the above sense). In fact, the existence of a generating function have
not yet been investigated adequately even in the one-dimensional case.
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§4. Wavelet spaces

In this section, we follow a standard idea of constructing wavelet bases, in order to
determine the wavelet spaces and the functions whose shifts constitute bases in these
spaces. In the orthogonal case (which may occur only if X = L2(Td)), the wavelet space
is the orthogonal projection of the space Vj+1 with kernel Vj . In the biorthogonal case
we deal with two multiresolution analyses. The space Vj+1 of one of them is projected
orthogonally relative to the corresponding component Ṽj of the other.

We shall consider pairs of PMRA with the first component {Xj}∞j=0 in Lp(Td), 1 ≤
p ≤ ∞ (C(Td) for p =∞) and the second component {Ṽj}∞j=0 in Lq(Td), 1/p+ 1/q = 1
(C(Td) for p = 1). Such a pair is called a (p, q)-pair.

Proposition 16. Let {Vj}∞j=0 and {Ṽj}∞j=0 form a (p, q)-pair, and let ϕ ∈ Vj , ϕ̃ ∈ Ṽj .
The systems of functions {Sjnϕ}n∈D(Mj) and {Sjkϕ̃}k∈D(Mj) are biorthonormal if and
only if

(19) 〈ωjrϕ, ωjrϕ̃〉 = m−j

for all r ∈ Zd

Proof. By Lemma 9, we have

〈Sjnϕ, S
j
kϕ̃〉 =

〈 ∑
r∈D(M∗j)

e2πi(M∗−jr,n)ωjrϕ,
∑

s∈D(M∗j)

e2πi(M∗−js,k)ωjsϕ̃

〉
=

∑
r∈D(M∗j)

l
∑

s∈D(M∗j)

e2πi(M∗−jr,n)e−2πi(M∗−js,k)〈ωjrϕ, ωjsϕ̃〉.

Since the spectra of the functions ωjrϕ and ωjsϕ̃ are disjoint for r 6= s, the corresponding
terms in the latter sum are equal to zero. Thus,

(20) 〈Sjnϕ, S
j
kϕ̃〉 =

∑
r∈D(M∗j)

e2πi(M∗−jr,n−k)cr,

where cr := 〈ωjrϕ, ωjrϕ̃〉. This and Lemma 2 ensure the “if” part. Now we assume
that {Sjnϕj}n∈D(Mj) and {Sjkϕ̃j}k∈D(Mj) are biorthonormal systems. We regard identi-
ties (20) with a fixed n ∈ D(M j) for all k ∈ D(M j) as a system of equations with the
unknowns cr. By Corollary 3, the solution cp = m−j , p ∈ D(M∗j), is unique. It remains
to note that cp = cp+M∗j , i.e., cp = m−j for all p ∈ Zd. �

Corollary 17. Suppose that {Vj}∞j=0 and {Ṽj}∞j=0 form a (p, q)-pair with scaling se-
quences {ϕj}∞j=0 and {ϕ̃j}∞j=0, respectively, and let µjn and µ̃jk be the factors occurring
in property (Φ4) in Theorem 7. If the systems {Sjnϕj}n∈D(Mj) and {Sjkϕ̃j}n∈D(Mj) are
biorthogonal, then

(21)
∑

k∈D(M∗)

µj
p+M∗j−1k

µ̃j
p+M∗j−1k

= m

for all p ∈ Zd and all j ∈ Z+.
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Proof. As in (15), we have

m−j+1 = 〈ωj−1
p ϕj−1, ω

j−1
p ϕ̃j−1〉

=
〈 ∑
k∈D(M∗)

µj
p+M∗j−1k

ωj
p+M∗j−1k

ϕj−1,
∑

l∈D(M∗)

µ̃j
p+M∗j−1l

ωj
p+M∗j−1l

ϕ̃j−1

〉
=

∑
k∈D(M∗)

µj
p+M∗j−1k

µ̃j
p+M∗j−1k

〈ωj
p+M∗j−1k

ϕj , ω
j
p+M∗j−1k

ϕ̃j〉

= m−j
∑

k∈D(M∗)

µj
p+M∗j−1k

µ̃j
p+M∗j−1k

,

and it remains to multiply both sides of this identity by mj . �

Now we begin the construction of wavelet spaces and bases. First, we treat the or-
thogonal case. Let {Vj}∞j=0 be a PMRA of L2(Td), with a scaling sequence {ϕj}∞j=0

that generates the orthonormal shift bases {Sjnϕj}n∈D(Mj) for the spaces Vj . We re-
strict ourselves to the case where all µjk (the factors in property (Φ4) in Theorem 7) are
real. Our goal is to find functions ψ(ν), ν = 1, . . . ,m − 1, in the space Vj+1 such that
the corresponding systems {Sjnψ

(ν)
j }n∈D(Mj) are orthonormal and orthogonal to Vj , and

complement {Sjnϕj}n∈D(Mj) to a basis for the space Vj+1. For this we need to complete
a matrix up to a unitary one starting with its first row. Suppose that real numbers
a00, . . . , a0m (the first row of a future unitary matrix A) satisfy the condition

(22)
m∑
r=1

a2
0r = 1.

If a00 = 1 and a01, . . . , a0m = 0, we define A as the unit matrix. If a00 6= 1, then the
remaining elements of A are given by the Householder transformation:

(23) alk = akl = − a0ka0l

1− a00
, k 6= l, akk = 1− a2

0k

1− a00
.

We fix j ∈ Z+ and n ∈ D(M∗j). Let sk, k = 0, . . . ,m − 1, be an enumeration of
the set D(M∗). We put a0k = µj+1

n+M∗jsk
/
√
m, k = 0, . . . ,m− 1. By Corollary 17, these

numbers satisfy (22); therefore, we can complete this row up to a unitary matrix A.
Set αν,j

n+M∗jsk
=
√
maνk. If n runs over the entire set D(M∗j), then, by Lemma 4, the

vectors n+M∗jsk, k = 0, . . . ,m−1, run over the entire set D(M∗j+1), i.e., the numbers
αν,js are well defined for all s ∈ D(M∗j+1). We extend this sequence (with respect
to the subindex) to Zd by setting αν,jl = αν,js for all l ≡ s (mod M∗j+1). For each
ν = 1, . . . ,m − 1, we introduce the wavelet functions ψ(ν) via their Fourier coefficients
ψ̂

(ν)
j (l) = αν,js ϕ̂j+1(l), l ∈ Zd, and define the wavelet spaces to be

W
(ν)
j := span{Sjnψ

(ν)
j , n ∈ D(M j)}.

Theorem 18. Let {Vj} be a PMRA of L2(Td) with a scaling sequence {ϕj}, and let
Sjnϕj , n ∈ D(M j), be an orthonormal system for any j ∈ Z+. Then

Vj+1 = Vj ⊕W (1)
j ⊕ · · · ⊕W (m−1)

j , j ∈ Z+,

and {Sjnψ
(ν)
j }n∈D(Mj) is an orthonormal basis for the space W (ν)

j , ν = 1, . . . ,m− 1.

The proof of this theorem will be presented in a more general situation (Theorem 19).
Now we consider the biorthogonal case. Let a (p, q)-pair satisfy the assumptions of

Corollary 17. To construct the wavelet functions, we need to supplement two suitable
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rows up to two mutually inverse matrices. Let numbers a00, . . . , a0m−1 and ã00, . . . , ã0m−1

(the first rows of the future matrices A and Ã, respectively) be such that

(24)
m−1∑
r=0

a0rã0r = 1.

First we assume that a00 = ã00 6= 1. In this case, for k, l = 1, . . . ,m− 1, the remaining
elements can be defined as follows:

al0 = ã0l, alk = δlk −
ã0la0k

1− a00
,(25)

ãl0 = a0l, ãlk = δlk −
a0lã0k

1− a00
.(26)

It is easy to check that

(27) AÃ∗ = Em.

Now we assume that a00ã00 6= 0. Consider the numbers a′0k = Ca0k, ã′0k = ã0k/C,
k = 0, . . . ,m − 1, where C is chosen in such a way that a′00 = ã′00 6= 1. It suffices to

set C =
√
ã00/a00 and to choose a complex value of the square root for which a′00 6= 1.

Since the new rows satisfy all the requirements of the preceding case, we can complete
these rows up to matrices A′ and Ã′ such that A′Ã′∗ = Em. After replacing the first
rows in these matrices by the initial ones, we obtain the required matrices A and Ã.
Finally, suppose that a00ã00 = 0. From (24) it follows that there exists r0 such that
a0r0 ã0r0 6= 0. Interchanging a0r0 with a00 and ã0r0 with ã00, we return to the preceding
case. Supplementing the new rows up to mutually inverse matrices and interchanging
the 0th and r0th columns again, we obtain the required matrices A and Ã.

Fix j ∈ Z+ and n ∈ D(M∗j). As above, let sk, k = 0, . . . ,m− 1, be an enumeration
of the set D(M∗). We put a0k = µj+1

n+M∗jsk
/
√
m, ã0k = µ̃j+1

n+M∗jsk
/
√
m, k = 0, . . . ,m−1.

By Corollary 17, these numbers satisfy (24); therefore, we can complete these rows up
to matrices A and Ã satisfying (27). Let αν,j

n+M∗jsk
=
√
maνk, α̃ν,j

n+M∗jsk
=
√
mãνk.

From (27) it follows that
m−1∑
k=0

αν,j
n+M∗jsk

µ̃j+1
n+M∗jsk

= 0,
m−1∑
k=0

α̃ν,j
n+M∗jsk

µj+1
n+M∗jsk

= 0, ν = 1, . . . ,m− 1,(28)

m−1∑
k=0

αl,j
n+M∗jsk

α̃p,j
n+M∗jsk

= mδνl, l, ν = 1, . . . ,m− 1.(29)

If n runs over the entire set D(M∗j), then, by Lemma 4, the vectors n + M∗jsk, k =
0, . . . ,m − 1, run over the entire set D(M∗j+1), i.e., the numbers αν,js , α̃ν,js are well
defined for all s ∈ D(M∗j+1). We extend these sequences (with respect to the subindex)
to Zd by setting αν,jl = αν,js and α̃ν,jl = α̃ν,js for all l ≡ s (mod M∗j+1). For each ν =
1, . . . ,m− 1, we introduce the wavelet functions ψ(ν), ψ̃(ν) via their Fourier coefficients

ψ̂
(ν)
j (l) = αν,js ϕ̂j+1(l), ̂̃ψ(ν)

j (l) = α̃ν,js
̂̃ϕj+1(l), l ∈ Zd, and define the wavelet spaces to be

W
(ν)
j := span{Sjnψ

(ν)
j , n ∈ D(M j)},

W̃
(ν)
j := span{Sjnψ̃

(ν)
j , n ∈ D(M j)}.

Observe that the orthogonal wavelets can be constructed by the general method de-
scribed, but this is more complicated.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MULTIVARIATE PERIODIC WAVELETS 181

Theorem 19. Suppose {Vj}∞j=0 and {Ṽj}∞j=0 form a (p, q)-pair with scaling sequences
{ϕj}∞j=0 and {ϕ̃j}∞j=0 (respectively) such that {Sjnϕj}n∈D(Mj) and {Sjkϕ̃j}n∈D(Mj) are
biorthonormal systems. Then:

1) W (ν)
j ⊂ Vj+1, ν = 1, . . . ,m− 1;

2) for f ∈ Vj+1 we have f = f0 +
∑m−1
ν=1 fν , where f0 ∈ Vj , fν ∈W (ν)

j ;

3) W (ν)
j ⊥ Ṽj, W̃ (ν)

j ⊥ Vj , ν = 1, . . . ,m− 1;

4) W (ν)
j ⊥ W̃ (κ)

j for ν 6= κ, ν, κ = 1, . . . ,m− 1;

5) (Sjnψ
(ν)
j , Sjkψ̃

(ν)
j ) = δnk, ν = 1, . . . ,m− 1, n, k ∈ D(M j).

Proof. For fixed n and j, from (15) it follows that

(30) ωjnϕj(x) =
∑

l∈D(M∗)

µj+1
n+M∗j lω

j+1
n+M∗j lϕj+1(x).

Similarly,

(31) ωjnψ
(ν)
j (x) =

∑
l∈D(M∗)

αν,jn+M∗j lω
j+1
n+M∗j lϕj+1(x), ν = 1, . . . ,m− 1.

We regard (30), (31) as a system of m equations with m unknowns {ωj+1
n+M∗j lϕj+1},

l ∈ D(M∗). By the construction of the numbers {aνk}, the matrix of this system
has an inverse. Consequently, its determinant is nonzero. Therefore, the unknowns
ωj+1
n+M∗j l

ϕj+1 can be expressed via ωjnϕj ∈ Vj and ωjnψ
(ν)
j ∈ W (ν)

j , which implies 1). On
the other hand, as in (13), we have

Sjrψ
(ν)
j =

∑
n∈D(M∗j)

e2πi(M∗−jn,r)ωjnψ
(ν)
j , ν = 1, . . . ,m− 1.

Using Corollary 3, we see that each ωjnψ
(ν)
j can be expressed via Sjrψ

(ν)
j , r ∈ D(M j).

For the proof of 2), it remains to note that {ωj+1
n+M∗jlϕj+1} is a basis of the space Vj+1.

Moreover, since the functions ωjnψ
(ν)
j , n ∈ D(M∗j), are linearly independent, the above

arguments and property (MR3) in Definition 5 show that dimW
(ν)
j = mj , i.e., both

systems {ωjnψ
(ν)
j }n∈D(M∗j) and {Sjrψ

(ν)
j }r∈D(Mj) are bases of W (ν)

j . For the proof of 3),
it suffices to check that the basis functions of the space Ṽj are orthogonal to the basis
functions of the space W (ν)

j , ν = 1, . . . ,m− 1. Using (28) and Proposition 16, we obtain

〈ωjnψ
(ν)
j , ωjkϕ̃j〉

=
〈 ∑
l∈D(M∗)

αν,j
n+M∗j l

ωj+1
n+M∗j l

ϕj+1,
∑

k∈D(M∗)

µ̃j+1
n+M∗jk

ωj+1
n+M∗jk

ϕ̃j+1

〉
=

∑
l∈D(M∗)

αν,j
n+M∗j l

µ̃j+1
n+M∗j l

〈ωj+1
n+M∗j l

ϕj+1, ω
j+1
n+M∗j l

ϕ̃j+1〉

= m−j−1
∑

l∈D(M∗)

αν,j
n+M∗j l

µ̃j+1
n+M∗j l

= 0.

In a similar way, invoking (29), we obtain

〈ωjnψ
(ν)
j , ωjnψ̃

(κ)
j 〉 = m−j−1

∑
l∈D(M∗)

αν,j
n+M∗j l

α̃κ,j
n+M∗j l

= m−jδνκ.

This yields 4). Applying Proposition 16, we obtain 5). �
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§5. Kotel
′
nikov–Shannon wavelets

We construct an example of a PMRA of L2(T2) with a scaling sequence formed by
trigonometric polynomials with minimal possible symmetric spectra. A one-dimensional
analog is the well-known Kotel′nikov–Shannon PMRA for which the sequence of Dirichlet
kernels serves as a scaling sequence, and the generating function is given by (18). For the
first time, expansions with respect to the one-dimensional Kotel′nikov–Shannon system
were used for transmission of continuous information by communication channels.

We take the matrix M =
(

2 −1
2 1

)
as the scale factor. Observing that m = 4, M∗ =(

2 2
−1 1

)
, and M∗−1 = 1

4

(
1 −2
1 2

)
, we fix the set D(M∗) formed by the vectors s0 = ( 0

0 ),
s1 =

(−1
0

)
, s2 =

(
0
−1

)
, and s3 =

(−1
−1

)
. Let Ωj denote the parallelogram M∗j [−1, 1]2

without vertices. We set aj := M∗j ( 0
1 ) and bj := M∗j

(
0
−1

)
. Let ϕj be the function

with the Fourier coefficients defined as follows: ϕ̂0(k) := δk0 for all k ∈ Z2, and for j ∈ N,

(32) ϕ̂j(k) :=


2−j if k ∈ Ωj−1 \ {aj−1, bj−1},
2−j−1/2 if k = aj−1 or k = bj−1,

0 if k 6∈ Ωj−1.

To show that this sequence is scaling, we need the following lemma.

Lemma 20. The number of integral points in Ωj is equal to 4j+1 + 1, all integral points
in Ωj except the point aj are in different cosets of M∗j+1, and aj is congruent to bj
modulo M∗j+1.

Proof. First, we show that no integral point lies on the midlines of the parallelogram
Ωj except for the boundary points and zero. The midlines of Ωj are the segments that
join the point M∗j ( 0

1 ) with M∗j
(

0
−1

)
and the point M∗j ( 1

0 ) with M∗j
(−1

0

)
. These

segments pass through the origin and are symmetric with respect to the origin. Therefore,
it suffices to prove the claim for the half-segments. We consider one of the half-segments
(the argument is similar for the other one), i.e., we show, that no integral point lies on
the interval

(
0,M∗j ( 1

0 )
)
. Set

( xj
yj

)
:= M∗j ( 1

0 ) = M∗
( xj−1
yj−1

)
. For all j > 0, the first

coordinate of this vector is even, and the second is odd. Hence, a multiple of 2 cannot
be a common divisor of xj and yj . From the formulas

xj−1 =
xj − 2yj

4
, yj−1 =

xj + 2yj
4

it is clear that if xj and yj have an odd common divisor, then xj−1 and yj−1 have the
same common divisor. However, x0 = 1 and y0 = 0 are coprime. Consequently, by
induction, xj and yj are coprime for any j ∈ Z+. For j fixed, we represent the segments(
0,M∗j ( 1

0 )
)

in the parametric form
{
x=txj
y=tyj , where t ∈ (0, 1). Suppose that an integral

point (x0, y0) belongs to this segment, i.e., there exists t0 ∈ (0, 1) such that x0 = t0xj ,
y0 = t0yj , where x0, y0, xj , yj ∈ Z. Then t0 cannot be irrational. Nor can t0 be rational,
because if t0 = p/q, then xj and yj are divisible by q and are not coprime, which is
impossible.

We note that the set of integral points in M∗jT2 can be taken as a set of digits
D(M∗j), because, for any two elements of M∗jT2 ∩Z2, their difference M∗jr1 −M∗jr2,
where r1, r2 ∈ T2, can be congruent to zero modulo M∗j only if r1 and r2 coincide.
However, the number of integral vectors in M∗jT2 is equal to mj , i.e., coincides with
the cardinality of D(M∗j). Since no integral point lies on the midlines of Ωj except the
boundary points and the point zero, the number of integral points in Ωj is four times
the number of integral inner points in M∗jT2 (there are 4j − 1 of them, because the
digit corresponding to the zero coset is excluded from M∗j [0, 1)2), plus the number of
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Figure 1. The inner and the outer parallelograms correspond to Ω1

and Ω2, respectively.

boundary points, plus 1 (the zero point). The number of boundary points is 4, because
the endpoints of the midlines are integral, the vertices do not belong to Ωj , and, since
each edge differs from the corresponding midline by an integral shift, there are no other
integral points on the boundary. Thus, the number of integral points in Ωj is equal to
4(4j − 1) + 1 + 4 = 4j+1 + 1.

Now we check that all points in Ωj except aj belong to different cosets of the matrix

M∗j+1, and aj ≡ bj (mod M∗j+1). By Lemma 1, the set
⋃3
k=0

(
M∗−1[0, 1)2 +M∗−1sk

)
is congruent to [0, 1)2 modulo Z2. However, since

3⋃
k=0

(M∗−1[0, 1)2 +M∗−1sk) =
3⋃

k=0

(
M∗−1([0, 1)2 + sk)

)
= M∗−1[−1, 1)2,

we see that M∗−1[−1, 1)2 is congruent to [0, 1)2 modulo Z2. Fixing j ∈ Z+ and apply-
ing the operator M∗j+1, we conclude that the set M∗j [−1, 1)2 is congruent to the set
M∗j+1[0, 1)2 modulo M∗j+1. Since all integral points in M∗j+1[0, 1)2 belong to different
cosets of the matrix M∗j+1, all integral points in M∗j [−1, 1)2 also belong to different
cosets of M∗j+1.

In Figure 1 the following regions are depicted: M∗[−1, 1]2 (the inner parallelogram),
M∗2[−1, 1]2 (the outer parallelogram) and M∗2[0, 1]2 (the bold-face parallelogram). The
integral points in the set Ω1 are marked with small dots, and the points marked with
heavy dots are those belonging to M∗2[0, 1]2 but not to Ω1, i.e., the points congruent
modulo M∗2 to points in M∗1[−1, 1]2. Splitting the large parallelogram into four small
ones (see Figure 1) and shifting them to the position of the right upper one, we see that
the points that coincide after this translation are congruent to each other modulo M∗4.
Also, we see that the points a1 and b1 are congruent modulo M∗4, and the points marked
by X’s (respectively, by O’s) are also congruent. The set of integral points in M∗j [−1, 1)2

differs from the corresponding set Ωj in the following way: Ωj does not contain the points
M∗j

(−1
−1

)
, but contains the points M∗j ( 1

0 ) and aj = M∗j ( 0
1 ). It remains to observe

that M∗j
(−1
−1

)
≡M∗j ( 1

0 ) modM∗j+1 and aj ≡ bj modM∗j+1. �
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We prove that the sequence {ϕj}∞j=0 defined by (32) satisfies the assumptions of The-
orem 19. Property (Φ1) follows from the definition, and (Φ2) is implied by Lemma 20.
Property (Φ3) follows from the fact that the absolute value of the eigenvalues of M is
equal to 2, so the corresponding operator, applied many times, provides dilation in all
directions (see the Introduction).

To check (Φ4), we find µjk from the condition ϕ̂j(k) = µj+1
k ϕ̂j+1(k). Note that Ωj

is strictly contained in Ωj+1 for any j ∈ Z+, and all points of the boundary of Ωj are
inner points of Ωj+1. For j = 0, the embedding in question is obvious. For greater j’s,
applying the operator M∗j to Ω0 ⊂ Ω1, we use the fact that, since the map M∗j is
nonsingular, it preserves the required properties of the embedding. Taking all integral
points in Ωj except the point aj for the role of the set D(M∗j+1), for k ∈ D(M∗j+1) we
find the numbers µj+1

k : µj+1
k = 2 if k ∈ Ωj−1\{aj−1, bj−1}; µj+1

k =
√

2 if k = aj−1 or
k = bj−1, and µj+1

k = 0 if k 6∈ Ωj−1. It is easily seen that the M∗j+1-periodic extension
of µj+1

k with respect to the subindex is a sequence satisfying (Φ4). We can take γjk = 1/2
for the role of the factors occurring in (Φ5). It is clear that γjkϕ̂j(n) = ϕ̂j+1(M∗n) for
all j ∈ Z+, k ∈ Z2, and n ≡ k (mod M∗j).

Thus, the sequence of functions {ϕj}∞j=0 satisfies all conditions required by Theorem 7.
Hence, this sequence is scaling, and the functions ϕj are trigonometric polynomials with
minimal possible symmetric spectra. It is easy to check that

(33) ‖ωjrϕj‖2 =
∑
l∈Zd
|ϕ̂j(M∗j l + r)|2 = 4−j .

By Proposition 16, the system of functions {Sjnϕ}n∈D(Mj) is orthonormal.
Now we begin to construct the wavelet sequences. Fixing j ∈ Z+ we take the set

Ωj−1\{aj−1} as D(M∗j) . As above, D(M∗) consists of s0, s1, s2, and s3. Let n ∈
D(M∗j). If n 6= bj−1, then µj+1

n+M∗js0
= 2, and µj+1

n+M∗jsk
= 0 for k = 1, 2, 3, because

the vectors n+ M∗jsk do not belong to Ωj−1 and, moreover, are not congruent to any
elements of Ωj−1 modulo M∗j+1. The corresponding unitary (4× 4)-matrix is diagonal
with 2’s on the diagonal. If n = bj−1, then µj+1

n+M∗jsk
=
√

2 for k = 0, 3 (the vector
bj−1 + M∗js3 is congruent to aj−1 modulo M∗j+1, which can readily be checked), and
µj+1
n+M∗jsk

= 0 for k = 1, 2, because the vectors n + M∗jsk, k = 1, 2, do not belong to
Ωj−1 and are not congruent to any elements of Ωj−1 modulo M∗j+1. The corresponding
unitary matrix looks like this: 

√
2/2 0 0

√
2/2

0 1 0 0
0 0 1 0√
2/2 0 0 −

√
2/2

.
By Lemma 4, the vectors n+M∗jsk with sk ∈ D(M∗) and n ∈ D(M∗j) run over the set

D(M∗j+1). Therefore, it suffices to find the Fourier coefficients of the wavelet functions
for all integral vectors l that are congruent to the vectors n+M∗jsk modulo M∗j+1:

ψ̂
(1)
j (l) :=



2−j if l ≡ n+M∗js1 (modM∗j+1),
n ∈ D(M∗j), l ∈ Ωj\{aj, bj},

2−j−1/2 if l ≡ n+M∗js1 (modM∗j+1),
n ∈ D(M∗j), l = aj , l = bj,

0 otherwise;

(34)
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Figure 2. The spectrum of the function ψ
(1)
2 is marked by dots; at all

points marked by heavy dots, the value of ψ̂(1)
2 is equal to 2−2.

ψ̂
(2)
j (l) :=



2−j if l ≡ n+M∗js2 (modM∗j+1),
n ∈ D(M∗j), l ∈ Ωj\{aj, bj},

2−j−1/2 if l ≡ n+M∗js2 (modM∗j+1),
n ∈ D(M∗j), l = aj , l = bj,

0 otherwise;

(35)

ψ̂
(3)
j (l) :=



2−j if l ≡ n+M∗js3 (modM∗j+1),
n ∈ D(M∗j), n 6= bj−1, l ∈ Ωj\{aj, bj},

2−j−1/2 if l ≡ n+M∗js3 (modM∗j+1),
n ∈ D(M∗j), n 6= bj−1, l = aj, l = bj ,

2−j−1/2 if l ≡ bj−1 (modM∗j+1),
l ∈ Ωj\{aj, bj},

−2−j−1/2 if l ≡ aj−1 (modM∗j+1),
l ∈ Ωj\{aj, bj},

0 otherwise.

(36)

The following regions are depicted in Figure 2: Ω2 is the large parallelogram, and Ω1

shifted by M∗s1 is the small parallelogram. The entire spectrum of ψ(1) is located in the
three separated regions inside the large parallelogram; these regions form a set congruent
to the small parallelogram modulo M∗2. In a similar way, the spectra of ψ(2) and ψ(3)

are depicted in Figures 3 and 4, respectively.

§6. Wavelet expansion of functions

We fix a (p, q)-pair satisfying the assumptions of Theorem 19. By that theorem, the
following systems of wavelet functions are biorthonormal:

{Sjrψ
(ν)
j , j ∈ Z+, r ∈ D(M j), ν = 1, . . . ,m− 1},

{Sjr ψ̃
(ν)
j , j ∈ Z+, r ∈ D(M j), ν = 1, . . . ,m− 1}.
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Figure 3. The spectrum of the function ψ
(2)
2 is marked by dots; at all

points marked by heavy dots except for the point b2 = (−6, 1), the value
of ψ̂(2)

2 is equal to 2−2, and ψ̂(2)
2 (b2) = 2−5/2.
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Figure 4. The spectrum of the function ψ
(3)
2 is marked by dots; at

all points marked by heavy dots except for the points a1 = (2, 1) and
b1 = (−2,−1), the value of ψ̂(3)

2 is equal to 2−2, and ψ̂
(3)
2 (b1) = 2−5/2.

For f ∈ Lp(Td), we can consider the corresponding Fourier expansions

(37) 〈f, ϕ̃0〉ϕ0 +
∞∑
j=0

m−1∑
ν=1

∑
r∈D(Mj)

〈f, Sjr ψ̃
(ν)
j 〉Sjrψ

(ν)
j .

Enumerating the sets of digits D(M j) = {rl}m
j−1

l=0 in an arbitrary way, we denote the
partial sums of the above series by sn(f); by the convergence of the series (3.7) we mean
that of the sequence sn(f).
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Theorem 21. Suppose that {Vj}∞j=0 and {Ṽj}∞j=0 form an (∞, 1)-pair with scaling se-
quences {ϕj}∞j=0 and {ϕ̃j}∞j=0 such that the systems {Sjnϕj}n∈D(Mj) and {Sjkϕ̃j}n∈D(Mj)

are biorthonormal. Let {ψ(ν)
j }∞j=0 and {ψ̃(ν)

j }∞j=0, ν = 1, . . . ,m− 1, be the corresponding
sequences of wavelet functions. If

(38) sup
j
‖ϕ̃j‖1, sup

j,ν
‖ψ̃(ν)

j ‖1 <∞,

and there exists a monotone decreasing function K defined on [0,∞) and such that

(39)
∫
Rd
K(|x|) dx <∞

and

(40) |ϕj(x)|, |ψ(ν)
j (x)| ≤ K(|M jx|)

for all x ∈ Td, then for every f ∈ C(Td) the series (37) converges to f uniformly, and
for every g ∈ L(Td) the series

(41) 〈f, ϕ0〉ϕ̃0 +
∞∑
j=0

m−1∑
ν=1

∑
r∈D(Mj)

〈f, Sjrψ
(ν)
j 〉Sjr ψ̃

(ν)
j

converges to g in the norm of L(Td).

Proof. Let N = κmj + n, j ∈ Z+, κ = 1, . . . ,m− 2, n = 0, . . . ,mj − 1; then the partial
sum sN (f, x) of the series (37) can be written as

sN (f) = 〈f, ϕ̃0〉ϕ0 +
j−1∑
i=0

m−1∑
ν=1

∑
r∈D(Mi)

〈f, Sirψ̃
(ν)
i 〉Sirψ

(ν)
i

+
κ∑
ν=1

∑
r∈D(Mj)

〈f, Sjr ψ̃
(ν)
j 〉Sjrψ

(ν)
j +

n∑
l=0

〈f, Sjrlψ̃
κ+1
j 〉Sjrlψ

κ+1
j

= s
(0)
N (f) +

κ∑
ν=1

s
(ν)
N (f) + s

(κ+1)
N (f).

(42)

Since s1
N is a projection onto the space Vj , the sum s

(0)
N (f) on the right can be reexpanded

with respect to the shifts of the function ϕj :

(43) s
(0)
N (f) =

∑
r∈D(Mj)

〈f, Sjr ϕ̃j〉Sjrϕj .

Using (38), we obtain

|s(0)
N (f, x)| =

∣∣∣∣ ∫
Td
f(t)

mj−1∑
l=0

ϕ̃j(t+M−jrl)ϕj(x+M−jrl) dt
∣∣∣∣

≤ ‖f‖∞‖ϕ̃j‖1
mj−1∑
l=0

|ϕj(x+M−jrl)|.

We put

gj(t) =

{
ϕj(M−jt) if t ∈M jTd,
0 if t 6∈M jTd.

Clearly,

(44) |gj(x)| ≤ K(|x|)
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and

(45) ϕj(x) =
∑
k∈Zd

gj(M jx+M jk)

for all x ∈ Rd. Relations (44) and (45) yield

mj−1∑
l=0

|ϕj(x+M−jrl)| ≤
mj−1∑
l=0

∑
k∈Zd

K(|M jx+M jk + rl|) =
∑
k∈Zd

K(|M jx+ k|).

The monotonicity of K and relation (39) imply the uniform boundedness of the last
sum. Thus, we have proved that, for ν = 0, the operators s(ν)

N , which take C(Td) to
C(Td), are uniformly bounded in norm. The uniform boundedness of the operators s(ν)

N

for ν = 1, . . . ,m− 1 can be proved in a similar way. Therefore,

(46) ‖sN (f)‖ ≤ C,

where C is an absolute constant.
By property (MR2) in Definition 5, for any ε > 0 there exists F ∈ Vj0 such that

‖f − F‖∞ < ε.

By Theorem 19, we have sN (F ) = F for N ≥ mj0 . Therefore, by (46),

|f − sN (f)| = |f − F − sN(f − F )| ≤ (C + 1)‖f − F‖ ≤ (C + 1)ε.

This proves the first statement of the theorem. The second statement can be proved
similarly; when estimating the sums s(ν)

N (f), we must interchange the roles of ϕj , ψ
(ν)
j ,

x and ϕ̃j , ψ̃j , t, respectively.
�

Theorem 22. Suppose that {Vj}∞j=0 and {Ṽj}∞j=0 form a (p, q)-pair with scaling se-
quences {ϕj}∞j=0 and {ϕ̃j}∞j=0 such that the systems {Sjnϕj}n∈D(Mj) and {Sjkϕ̃j}n∈D(Mj)

are biorthonormal. Let {ψ(ν)
j }∞j=0 and {ψ̃(ν)

j }∞j=0, ν = 1, . . . ,m− 1, be the corresponding
sequences of wavelet functions. If there exists a monotone decreasing function K defined
on [0,∞), satisfying (39), and such that

(47) |ϕj(x)|, |ψ(ν)
j (x)|, |m−jϕ̃j(x)|, |m−jψ̃(ν)

j (x)| ≤ K(|M jx|)

for all x ∈ Rd, then for every f ∈ Lp(Td) the series (37) converges to f at each Lebesgue
point for f .

Lemma 23 ([20, Lemma 2.7]). Let K be a nonnegative monotone decreasing function
defined on [0,∞) and satisfying (39). Then there exists a constant C depending only on
the dimension d of the space and such that

(48)
∑
k∈Zd

K(|x+ k|)K(|y + k|) ≤ CK
(
|x− y|

5

)
for all x, y ∈ Rd.

Proof of Theorem 22. Let x be a Lebesgue point of f , and let N = κmj + n, j ∈ Z+,
κ = 1, . . . ,m − 2, n = 0, . . . ,mj − 1. Since the space V0 consists of constants only, we
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have sN (h, x) = h if h ≡ const. Using (42) and (43), we obtain

f(x)− sN (f, x)

=
∫
Td

(f(x)− f(x+ t))
∑

r∈D(Mj)

Sjr ϕ̃j(x+ t)〉Sjrϕj(x) dt

+
κ∑
ν=1

∫
Td

(f(x) − f(x+ t))
∑

r∈D(Mj)

Sjr ψ̃
(ν)
j (x+ t)Sjrψ

(ν)
j (x) dt

+
∫
Td

(f(x) − f(x+ t))
n∑
l=0

Sjrlψ̃
κ+1
j (x+ t)Sjrlψ

κ+1
j (x) dt

= I0 +
κ∑
ν=1

Iν + Iκ+1.

(49)

Applying (45), (44) and the similar relations for ϕ̃j , we get

I0 ≤ mj

∫
Td
|f(x)− f(x+ t)|

×
∑

r∈D(Mj)

∑
`∈Zd

K
(
M j(x+ t) +M j`+ r

) ∑
k∈Zd

K
(
M jx+M jk + r

)
dt

= mj

∫
Rd
|f(x)− f(x+ t)|

∑
k∈Zd

K(M j(x+ t) + k)K
(
M jx+ k

)
dt.

From Lemma 23 it follows that

I0 ≤ Cmj

∫
Rd
|f(x)− f(x+ t)|K

(
M jt

5

)
dt.

Combining this with a minor modification of Theorem 1.8 in [25], we see that

I0 −−−→
j→∞

0.

For ν = 1, . . . ,m− 1, the relation
I2 −−−→

j→∞
0

can be proved in a similar way. Recalling (49), we get

lim
N→∞

sN (f, x) = f(x).

�
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