Multivariate Permutation Tests: With Applications in Biostatistics

Fortunato Pesarin University of Padova, Italy

JOHN WILEY & SONS, LTD

Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

Contents

Pr	reface	· · · · · · · · · · · · · · · · · · ·	V
No	otati	n and Abbreviations	xiii
1	Int	oduction	
	1.1	On Permutation Analysis 1	
	1.2	Conditionality and Exchangeability	5
	1.3	The Permutation Testing Principle	j
	1.4	Permutation Approaches)
	1.5	Randomization and Permutation 10)
	1.6	When Conditioning Is Appropriate	
	1.7	Computational Aspects	j.
	1.8	Basic Notation	1
2	Dis	cussion of a Simple Testing Problem	,
	2.1	A Problem with Paired Observations	,
		2.1.1 Introduction	,
		2.1.2 A Motivating Example	,
		2.1.3 Modelling Responses	ļ
		2.1.4 Symmetry Induced by Exchangeability)
		2.1.5 Further General Aspects	
	2.2	The Student t Paired Solution	
		2.2.1 Paired Normal Data	r
		2.2.2 An Extension	,
	2.3	The Signed Rank Test Solution	,
		2.3.1 Paired Continuous Data	
		2.3.2 Generalized Scores	
	2.4	The McNemar Solution	
		2.4.1 Test on Signs of Differences	
		2.4.2 An Extension	
	2.5	The Permutation Solution	
		2.5.1 General Aspects	

		2.5.2	The Permutation Sample Space	27
	2.6	The C	onditional Monte Carlo Method	28
		2.6.1	A Simulation Algorithm for Inspecting Permutation	
			Sample Spaces	28
		2.6.2	A Routine for Random Permutations	29
		2.6.3	Approximating the Permutation Distribution	30
	2.7	Permu	tation Confidence Interval for δ	31
		2.7.1	Introductory Aspects	31
		2.7.2	An Approximate Solution	32
		2.7.3	A Conditional Monte Carlo Algorithm	33
	2.8	Proble	ms and Exercises	34
3	The	eorv of	Permutation Tests for One-Sample Problems	37
Ű	3.1	Introd	uction	37
	0.1	3.1.1	Basic Concepts	37
		312	On Sufficient Statistics for Symmetric Data	41
	32	Equiva	alence of Permutation Statistics	43
	33	Forma	1 Definition of Permutation Tests	44
	0.0	331	Randomized Permutation Tests	44
		332	Non-randomized Permutation Tests	46
	34	Aroum	pents Related to Permutation Tests	48
	0.1	3 4 1	Ceneral Aspects	48
		349	Arguments for Selecting a Test Statistic T	40
	35	Evamr	ples of One-Sample Problems	52
	3.6	Other	Properties of Permutation Tests	55
	0.0	361	Stochastic Ordering of <i>n</i> -values	55
		362	Conditional and Unconditional Properties	57
		363	Further Unconditional Properties	50
		364	Some Consequences of the Theorems	60
		365	Comments on Power Functions	63
		366	An Algorithm for Evaluating the Conditional Power	64
		367	Permutation Testing for Composite Hypotheses	66
	37	Optim	al Properties	67
	0.1	3.7.1	Introductory Remarks	67
		3.7.2	Further Bemarks	68
	3.8	Proble	ems and Exercises	69
	0.0			
4	Exa	mples	of Univariate Multi-Sample Problems	73
	4.1	Introd	uction	73
		4.1.1	General Aspects	73
		4.1.2	On Permutation Distributions	73
	4.2	Inspec	tion of the Permutation Sample Space	75
		4.2.1	Conditional Monte Carlo Method	75
		4.2.2	An Example	76

5

		4.2.3	Rank Solutions
		4.2.4	A Simple Routine for Random Permutations 81
		4.2.5	Permutation Confidence Interval for δ
		4.2.6	Problems and Exercises
	4.3	Permu	tation One-Way ANOVA
		4.3.1	An Example
		4.3.2	Modelling Responses
		4.3.3	Permutation Solutions
		4.3.4	Problems and Exercises
	4.4	Goodr	ness-of-Fit for Ordered Categorical Variables
		4.4.1	Introduction
		4.4.2	Goodness-of-Fit Tests for Ordered Categorical Variables 90
		4.4.3	A Solution Based on Score Transformations 91
		4.4.4	Typical Goodness-of-Fit Solutions
		4.4.5	Extension to Non-dominance Alternatives and C Groups 93
		4.4.6	Problems and Exercises
	4.5	A Pro	blem with Repeated Observations
		4.5.1	Introduction
		4.5.2	Friedman's Rank Test
		4.5.3	A Permutation Solution
		4.5.4	An Example
		4.5.5	Problems and Exercises
5	The	eory of	f Permutation Tests for Multi-Sample Problems . 101
	5.1	Introd	uction
		5.1.1	Recalling Basic Notions
		5.1.2	Recalling the Non-randomized Version
	5.2	Exam	ples of Multi-Sample Problems
	5.3	Unbia	sedness and Power of Some Multi-Sample Tests 111
		5.3.1	Unbiasedness and Power for Two-Sample Location
			Problems
		5.3.2	Some Corollaries
		5.3.3	Unbiasedness of One-Way ANOVA
	5.4	Some	Asymptotic Properties
	,	5.4.1	Introduction
		5.4.2	Two Basic Theorems
	55	D	tation Central Limit Theorems
	0.0	Permu	
	0.0	Permu 5.5.1	Basic Notions
	0.0	5.5.1 5.5.2	Basic Notions 123 Permutation Central Limit Theorems 124
	5.6	5.5.1 5.5.2 Proble	Basic Notions 123 Permutation Central Limit Theorems 124 ems and Exercises 127
6	5.6 No i	5.5.1 5.5.2 Proble	Basic Notions 123 Permutation Central Limit Theorems 124 ems and Exercises 127 netric Combination Methodology 133
6	5.6 Noi 6.1	5.5.1 5.5.2 Proble nparar Introd	Basic Notions 123 Permutation Central Limit Theorems 124 ems and Exercises 127 netric Combination Methodology 133 uction 133

CONTENTS

		6.1.2	Bibliographic Notes	135
		6.1.3	Main Assumptions and Notation	136
		6.1.4	Some Comments	139
	6.2	The N	Ionparametric Combination Methodology	140
		6.2.1	Assumptions on Partial Tests	140
		6.2.2	Desirable Properties of Combining Functions	141
		6.2.3	A Two-Phase Algorithm for Nonparametric Combination	143
		6.2.4	Some Useful Combining Functions	147
		6.2.5	Four Examples of Nonparametric Combination	155
		6.2.6	Problems and Exercises	163
	6.3	Consis	stency and Unbiasedness of Combined Tests	165
		6.3.1	Consistency	165
		6.3.2	Unbiasedness	166
		6.3.3	A Not Consistent Combining Function	168
		6.3.4	Problems and Exercises	170
	6.4	Some	Further Asymptotic Properties	172
		6.4.1	General Conditions	172
		6.4.2	Further Asymptotic Properties	173
	6.5	Comm	nents on Nonparametric Combination	177
		6.5.1	General Comments	177
		6.5.2	Final Remarks	179
	D		A Normania Classication	101
1	E X8	Introd	s of Nonparametric Combination	101
	7.1	Demos	Autorian Testing with Multiunists Daired Observations	100
	1.2	rerinu 791	Formal Description of Testing Problem	102
		799	An Example	196
		799	A Multiversite Extension of MeNemor's Test	100
		791	A Multivariate Extension of Multivariate Tests with Paired	100
		(.2.4	Observations	101
		795	Problems and Exercises	102
	73	Permu	Itation MANOVA with Mixed Data	103
	1.0	731	A Formal Description	103
		732	An Example with Four Categorical Variables	196
		7.3.3	A Two-Sample Multivariate Test	198
		7.3.4	A Multivariate Extension of Fisher's Exact Probability	
		110/1	Test	201
		7.3.5	A Cross-over Design	202
		7.3.6	Problems and Exercises	204
	7.4	Goodr	ness-of-Fit Tests for Ordered Categorical Variables	206
		7.4.1	Revisiting the Problem	206
		7.4.2	Some Extensions	208
		m 4 0		
		7.4.3	Two Examples	210

CONTENTS

	7.5	A Prol	blem of Isotonic Inference	213
		7.5.1	Introduction	213
		7.5.2	Conditions for Nonparametric Combination	214
		7.5.3	An Application from Genetics	216
		7.5.4	An Example	217
		7.5.5	A Multivariate Extension	217
	7.6	A Prol	blem with Multivariate Homoscedastic Repeated Responses	219
		7.6.1	A Formal Description	219
		7.6.2	An Algorithm for Conditional Simulation	222
		7.6.3	An Example	222
		7.6.4	Problems and Exercises	223
	7.7	Power	Behaviour and Remarks on Restricted Alternatives	224
		7.7.1	Power Behaviour of Combined Tests	224
		7.7.2	Remarks on Restricted Alternatives	226
		7.7.3	A Few Simulation Results	228
Q	Dor	mutot	ion Analysis in Factorial Dosigns	220
0	81	Introd	uction	220
	0.1	811	General Aspects	229
		812	Solutions Based on Residuals	230
	82	Exact	Separate Tests for Replicated 2^2 Factorial Designs	232
	0.2	8.2.1	Separate Sets of Hypotheses	232
		8.2.2	Synchronized Permutations	233
	8.3	Exact	Tests for 2^2 Unbalanced Designs	237
		8.3.1	Weighting Intermediate Statistics for Factor A	237
		8.3.2	Weighting Intermediate Statistics for Factors B and AB	239
		8.3.3	An Extension of Welch's Test for Heteroscedastic Models	239
	8.4	Exact	Tests in $I \times J$ Balanced Designs	241
		8.4.1	Balanced Two-Way Layout	241
		8.4.2	Separate Testing	241
		8.4.3	Some Comments	243
		8.4.4	Multivariate Extension of $I \times J$ Designs	243
		8.4.5	Extension to a Kind of Unbalanced Heteroscedastic Mode	1244
	8.5	Synch	ronized Tests in Replicated 2^k Factorials $\ldots \ldots \ldots$	246
		8.5.1	Extension to 2^k Factorial Designs	246
		8.5.2	Realignments	247
		8.5.3	Construction of Test Statistics	250
	8.6	Gener	al Characterization of Synchronized Tests	255
		8.6.1	Characterizing Synchronized Permutations	255
		8.6.2	Synchronized Permutation Tests for Fractional Designs	
			of Different Resolution	256
	8.7	A Con	nparative Simulation Study	259
		8.7.1	Comparing Solutions in H_0	259
		8.7.2	Power Results	261

.

	8.8	An Ap	plication	262
	8.9	Permu	tation Tests in Unreplicated Factorials	264
		8.9.1	Introduction	264
		8.9.2	Paired Permutation Tests	267
		8.9.3	Paired Permutation Testing Algorithm	268
		8.9.4	A Simulation Study	269
	8.10	Proble	ms and Exercises	271
	8.11	Appen	dices	272
		8.11.1	Sufficient Statistics for Replicated 2^2 Factorial Designs .	272
		8.11.2	A Brief Review of Two-Level Factorial Designs	274
~	-			0=0
9	Per	mutat:	ion Testing with Missing Data	279
	9.1	introd		279
		9.1.1	General Aspects	279
	0.0	9.1.2 ONC	Bibliographic Notes	280
	9.2	On Mi	ssing Data Processes	281
		9.2.1	Introduction	281
		9.2.2	Data Missing Completely at Random	281
	0.0	9.2.3	Data Missing Not at Random	282
	9.3	The Pe	ermutation Approach	282
		9.3.1		282
	0.4	9.3.2	Breaking Down the Hypotheses	284
	9.4	The St	Tructure of Testing Problems	285
		9.4.1	Hypotheses for Non-MAR Models	285
		9.4.2	Hypotheses for MCAR Models	280
	0 5	9.4.3 D	Permutation Structure with Missing values	287
	9.5	Permu	tation Analysis of Missing Values	288
		9.5.1	Partitioning the Permutation Sample Space	288
		9.5.2	Solution for Two-Sample MCAR Problems	290
		9.5.3	Extensions to Multivariate C-sample Problems	292
		9.5.4	Extension to Non-MAR Models	293
	0.0	9.5.5	Some Comments	293
	9.0	An Ex	ample of a Non-MAR Model	290
		9.0.1		290
		9.0.2	The Example	290
	07	9.0.3	The Permutation Solution	297
	9.7	An Ex	The Duckless	299
		9.(.1	Ine Froblem	299
	0.0	9.1.4 Domen	All Example with Fictitious Data	300 201
	A'Q	rower	Denaviour of Some rests with Missing Values	301
		9.8.1 0 0 0	Simulation Deputs and Converte	200
	0.0	9.0.4 Dachl-	Simulation Results and Comments	302
	9.9	r rodie		303

10 The	e Behro	ens–Fisher Permutation Problem	305
10.1	Introd	uction	305
	10.1.1	General Aspects	305
	10.1.2	Bibliographic Notes	306
	10.1.3	Formal Description of the Problem	307
10.2	Param	etric Solutions	308
	10.2.1	Basic Statistics	308
	10.2.2	Known Covariance Matrices	309
	10.2.3	Unknown Proportional Covariance Matrices	309
	10.2.4	Unknown Covariance Matrices	309
10.3	A First	t Approximate Permutation Solution	310
	10.3.1	Approximate Solution Based on Aspin and Welch	
		Statistics	310
	10.3.2	An Example	311
	10.3.3	Extension of Approximate Solution to Multivariate	
		Situations	312
10.4	An Alı	most Exact Permutation Solution	313
	10.4.1	A Univariate Solution by Testing for Symmetry	313
	10.4.2	Combining Two Tests of Symmetry	315
	10.4.3	Asymptotic Behaviour	316
10.5	Extens	sion to $C > 2$ Groups	317
10.6	Multiv	variate Permutation Solutions	318
	10.6.1	Multivariate Solutions for Symmetric Distributions	318
	10.6.2	Three Multivariate Testing Problems	319
10.7	Distrib	outional Behaviour	321
	10.7.1	A Simulation Study in H_0	321
	10.7.2	A Simulation Study in H_1	322
10.8	Permu	tation Testing for Location and Scale Coefficients	324
	10.8.1	An Approximate Solution for Scale Coefficients	324
	10.8.2	Joint Permutation Testing for Location and Scale	
		Coefficients	325
10.9	Proble	ms and Exercises	326
11 Per	mutati	ion Testing for Repeated Measurements	329
11.1	Introd	uction	329
11.2	Model	ling Repeated Measurements	330
	11.2.1	A General Additive Model	330
	11.2.2	The Hypotheses of Interest	332
11.3	Testing	g Solutions	333
	11.3.1	Solutions by the Nonparametric Combination Approach	333
	11.3.2	Analysis of Two-Sample Dominance Problems	335
	11.3.3	An Example from the Literature	335
	11.3.4	Some Power Evaluations	337
11.4	Testing	g for Repeated Measurements with Missing Data	338

CONTENTS

138
38
40
41
43
43
44
45
47
47
48
48
49
50
50
51
52
52
53
55
55
57
58
58
60
61
61
63
65
71
99