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Abstract: Multivariate quantiles have been defined by a number of researchers

and can be estimated by different methods. However, little work can be found in

the literature about Bayesian estimation of joint quantiles of multivariate random

variables. In this paper we present a multivariate quantile function model and

propose a Bayesian method to estimate the model parameters. The methodology

developed here enables us to estimate the multivariate quantile surfaces and the

joint probability without direct use of the joint probability distribution or density

functions of the random variables of interest. Furthermore, simulation studies and

applications of the methodology to bivariate economics data sets show that the

method works well both theoretically and practically.
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1. Introduction

Quantiles play an important role in statistical analysis of many areas such

as economics, finance, and coastal engineering. The problem is often to estimate

the quantiles of a variable conditional on the values of other variables.

There have been several approaches to quantile functions for multivariate

distributions. The simplest defines a quantile vector as one that has the marginal

classical quantiles as its components, but this does not take account correlations

between the components of the vectors of observations (Chakraborty (2001)).

Substantive extensions are based on ordering multivariate observations, for

example, Eddy (1985); Brown and Hettmansperger (1987, 1989); Oja (1983);

Donoho and Gasko (1992); He and Wang (1997); Liu, Parelius, and Singh (1999);

Zuo and Serfling (2000); Serfling (2002). The definition of multivariate quan-

tile proposed by Chaudhuri (1996) is a generalization of what was proposed by

Koenker and Bassett (1978) in one dimension. See also Salibian-Barrera and

Wei (2008) and Wei (2008). Gilchrist (2000) defined bivariate quantiles differ-

ently, and we find these ideas practically appealing. In this paper, we generalize

Gilchrist’s (2000) bivariate quantile function definition.

In the literature, different methods have been developed to estimate quan-

tiles, for example, Koenker and D’Orey (1987, 1994); Yu and Moyeed (2001);
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Cai (2007); Cai and Stander (2008); Kottas and Gelfand (2001); Dunson, Wat-
son and Taylor (2003); Schennach (2005). We develop an MCMC approach to
estimating multivariate quantiles. Compared with other approaches to multi-
variate quantile estimation, the proposed approach can deal more broadly with
multivariate data, for example, when the Box-Cox transformations fail to trans-
form the data into multivariate Gaussian. We can construct proper multivariate
quantile function models, see Section 2.1, so that the relationship between the
random variables can be explored through joint quantiles. Furthermore, our ap-
proach enables us to study extremes by using all the available data, not just the
maximum/minimum values of large groups or exceedances above/below a proper
threshold value as required by the traditional extreme value analysis. This is of
importance in practice.

The arrangement of the paper is as follows. In Section 2, we introduce the
model and develop the Bayesian methodology for estimating the model param-
eters. A simulation study is carried out in Section 3. In Section 4, we apply
the methodology developed here to the daily closing prices of major European
stock indices during 1991-1998, and compare our approach with that proposed
by Wei (2008) for this data set. Finally, some comments and further discussions
are given in Section 5.

2. The Methodology

2.1. Multivariate models

We extend the bivariate quantile function of Gilchrist (2000) to general cases.
A random vector X = (X1, . . . , Xm1

) has a distribution that can be defined
through quantile functions Qxk

(τ, r1, . . . , rm1−1) with

xk = Qxk
(τ, r1, . . . , rm1−1), k = 1, . . . ,m1, (2.1)

where (τ, r1, . . . , rm1−1) is in the unit space Ωu = {(τ, r1, . . . , rm1−1) | 0 ≤ τ, rk ≤
1, k = 1, . . . ,m1−1}, and the Qxk

(τ, r1, . . . , rm1−1) (k = 1, . . . ,m1) are such that,
for any (τ, r1, . . . , rm1

) ∈ Ωu, there exists (x1, . . . , xm1
) ∈ Rm1

1 . Accordingly, a
random sample (x1, . . . , xm1

) can be easily obtained by taking (τ, r1, . . . , rm1−1)
as a random sample of (U,U1, . . . , Um1−1), uniformly distributed in the unit space
Ωu. Similar to the bivariate case, for given values τ0 and rk0, k = 1, . . . ,m1 − 1,
we have

τ0r10 · · · rm1−1 0 = P (U ≤ τ0, U1 ≤ r10, . . . , Um1−1 ≤ rm1−1 0)

= P ((x1, . . . , xm1
) ∈ Aτ0r10···rm1−1 0

),

where the region Aτ0r10···rm1−1 0
contains all possible values of (x1, . . . , xm1

) corre-
sponding to those τ and rk such that τ ≤ τ0, rk ≤ rk0 and k = 1, . . . ,m1 − 1. Par-
ticularly, if rk0 = 1 for k = 1, . . . ,m1−1, then τ0 = P (U ≤ τ0) = P ((x1, . . . , xm1

) ∈
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Aτ0), where Aτ0 does not depend on rk for k = 1, . . . ,m1 − 1. The boundary of

Aτ0 is called the τ0th quantile surface of X. We can define the rk0th quantile

surface of X for k = 1, . . . ,m1 − 1 in the same way. The relationship between

different quantile surfaces needs further investigation. In the rest of the paper,

we assume that X is an m1-dimensional continuous random variable.

In practice, for a given data set we need to estimate the τth quantile surface

of X, i.e. the boundary of Aτ . One way to achieve this is to find a continuous

function, say h(X), and a one-dimensional quantile function, say Q(τ) for 0 ≤
τ ≤ 1, such that Q−1(h(X)) = U ∼ U(0, 1), where Q−1 is the inverse function of

Q. So τ = P (U ≤ τ) = P (Q−1(h(X)) ≤ τ) = P (h(X) ≤ Q(τ)). Therefore, the

boundary of Aτ = {x | h(x) ≤ Q(τ)} can be determined by h(x) = Q(τ). Now

the functions h and Q may contain parameters η and γ that can be estimated

from the given data. Note that x = (x1, . . . , xm1
). Therefore,

h(x1, . . . , xm1
, η) = Q(τ, γ) (2.2)

defines a statistical model with β = (η, γ) as the model parameter vector. We

refer to model (2.2) as a multivariate quantile function model.

Some remarks follow.

(a) To simplify the notation, we use small letter x to stand for both a realization

of the random variable X and a variable of the h function.

(b) Model (2.2) defines a m1-dimensional parametric joint distribution func-

tion whose τth quantile surface is the boundary of Aτ = {(x1, . . . , xm1
) |

h(x1, . . . , xm1
, η) ≤ Q(τ, γ)}. Thus (2.2) does not necessarily hold for any

m1-dimensional random variable.

(c) Model (2.2) uses a univariate continuous quantile function Q(τ, γ) so that

estimation of the τth quantile surface of X is easier.

(d) If model (2.2) holds and h is a continuous function of x1, . . . , xm1
, then the re-

sulting quantile regions are unions of compact sets and the resulting quantile

surfaces are nested within each other.

(e) Function h describes the basic shape of a quantile surface and one can explore

the form of h for given data. For example, in the two dimensional cases, a

scatter plot may be suggestive.

(f) Q describes the distribution of the random component of the model. Its

construction is very flexible since one-dimensional quantile functions have

some good properties. For example, they can be added and, under certain

conditions, multiplied to form new quantile functions; proper transformations

of quantile functions of simple distributions can result in quantile functions

of complex distributions. These properties enable us to obtain a model for

a distribution by combining simple component models. The consequence of
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this quantile function modelling flexibility is that we can produce models

in practice that are appropriate for a whole distribution including the tails.

Working in this way with model (2.2) is much more appealing and intuitive

than working with distribution functions.

Different h and Q lead to different fitted models. Gilchrist (2000) described

several methods that can be used to identify the best fitted model for a given

data set. Here we consider a special form of h given by

m1
∑

k=1

(

xk −
k−1
∑

j=0

akk−j−1xk−j−1

)2
= Q(τ, γ), (2.3)

where x0 = 1 and Q(τ, γ) is a non-negative one-dimensional quantile function.

The model parameters are γ = (γ1, . . . , γm2
) and η = (a10, a20, a21, . . . , am1 0, . . .,

am1 m1−1). Note that (2.3) is also restrictive. However, such a model is suitable

for clustered data and has the estimated quantile surfaces sharing the same shape

but differing in scale. We find the model to be useful in practice.

2.2. MCMC method

Let f(u, γ) be the probability density function corresponding to the quantile

function Q(τ, γ), let x = {(x1i, . . . , xm1i), i = 1, . . . , n} be a set of indepen-

dent samples of size n, and let ui =
∑m1

k=1

(

xki −
∑k−1

j=0 akk−j−1xk−j−1 i

)2
, i =

1, . . . , n. Then it follows from (2.3) that the likelihood of u = (u1, . . . , un) is

given by L(u | β) = f(u1, γ) · · · f(un, γ). We write this as L(x | β). It is seen

that each ui depends on η and each ui corresponds to a value τi such that

ui = Q(τi, γ). (2.4)

So τi depends on β implicitly and the likelihood can be further written as

L(x | β) = fτ (τ1, β)fτ (τ2, β) · · · fτ (τn, β),

where fτ (τi, β) = f(Q(τi, γ), γ).

Theorem 1. For any 0 ≤ τ ≤ 1, we have that fτ (τ, β) = (∂Q(τ, γ)/∂τ)−1.

Proof. If u = Q(τ, γ), then τ = F (u, γ), where F is the inverse function of Q.

It follows from (∂u/∂τ)(∂τ/∂u) = 1 that the result holds.

Therefore, once Q(τ, γ) is known, the likelihood can be calculated. However,

it is important to remember that τi is determined by (2.4). In general cases, a

numerical method is required to find τi; here we use the Newton-Raphson method

as it is good enough for our purposes.
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Table 2.1. A General Random walk sampler for multivariate quantile func-
tion models

Sample

η′ ∼ g1(η
′) such that η′ ∈ Ω1 and γ′ ∼ g2(γ

′) such that γ′ ∈ Ω2

Solve

∑m1

k=1

(

xki −
∑k−1

j=0
a′

kjxk−j−1 i

)2

= Q(τ ′

i ,γ
′) for τ ′

i, i = 1, . . . , n.

Sample p ∼ U(0, 1). If p ≤ min{ABC, 1}, accept β′.

If π(β) = π(η)π(γ) is a prior distribution of the parameters, the posterior
distribution of β is π(β | x) ∝ L(x | β)π(β) = L(x | β)π(η)π(γ).

Suppose the posterior distribution of β is well defined on Ω = Ω1 × Ω2,
where η ∈ Ω1 and γ ∈ Ω2. It would be difficult to design a Gibbs sampler to
estimate β in this case because τi depends on β only implicitly, hence the full
conditional distributions are not available. We propose a random walk sampler
for the parameter estimation. Specifically, let β be the current parameter value
and τi, i = 1, . . . , n, the corresponding probabilities associated with β. Let β′ be
the proposed value and τ ′

i the associated probabilities. Then a general random
walk MCMC sampler for multivariate quantile function models can be as given
in Table 2.1 with

A =
π(β′ | x)

π(β | x)
=

L(x | β′)π(η′)π(γ′)

L(x | β)π(η)π(γ)
, B =

q(η′ → η)

q(η → η′)
, C =

q(γ′ → γ)

q(γ → γ′)
,

where q(a′ → a) is the transition probability density function of a given a′, and
g1 and g2 are the probability density functions from which the proposal β′ is
obtained.

Theorem 2. In Table 2.1, let g1(η
′) =

∏m1

k=1

∏k−1
j=0(2πσ2

akj
)−1/2 exp{−(a′kj −

akj)
2/(2σ2

akj
)}, and g2(γ

′) =
∏m2

ℓ=1(2πσ2
γℓ

)−1/2 exp{−(γ′
ℓ − γℓ)

2/(2σ2
γℓ

)} , where

η′ ∈ Ω1, γ ′ ∈ Ω2 and σakj
, σγℓ

are given values. Then

B =

∫

Ω1

∏m1

k=1

∏k−1
j=0(

√
2πσakj

)−1 exp{−(a′kj − akj)
2/(2σ2

akj
)}da′kj

∫

Ω1

∏m1

k=1

∏k−1
j=0(

√
2πσakj

)−1 exp{−(akj − a′kj)
2/(2σ2

akj
)}dakj

,

C =

∫

Ω2

∏m2

ℓ=1(
√

2πσγℓ
)−1 exp{−(γℓ

′ − γℓ)
2/(2σ2

γℓ
)}dγ′

ℓ
∫

Ω2

∏m2

ℓ=1(
√

2πσγℓ
)−1 exp{−(γℓ − γℓ

′)2(2σ2
γℓ

)}dγℓ

.

Proof. The above choice of g1(η
′) means that the proposals a′kj , k = 1, . . . ,m1,

j = 0, . . . , k−1, are obtained from N(akj , σ
2
akj

) independently such that η′ ∈ Ω1.
Therefore it follows from

q(η′ → η) =

∏m1

k=1

∏k−1
j=0(2πσ2

akj
)−1/2 exp{−(akj − a′kj)

2/(2σ2
akj

)}
∫

Ω1

∏m1

k=1

∏k−1
j=0(2πσ2

akj
)−1/2 exp{−(akj − a′kj)

2/(2σ2
akj

)}dakj
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that B holds. Finally, C can be derived in the same way.
Note that, generally, the values of B and C can be difficult to calculate

because the shapes of Ω1 and Ω2 can be very complicated in multivariate cases.
We propose to use a simulation method to estimate the values of the integrals
involved in B and C if necessary. For example, to estimate

∫

Ω1

m1
∏

k=1

k−1
∏

j=0

(2πσ2
akj

)−1/2 exp
{

−
(a′kj − akj)

2

2σ2
akj

}

da′kj ,

we simulate av
kj ∼ N(akj , σ

2
akj

), k = 1, . . . ,m1, j = 0, . . . , k−1, for v = 1, . . . ,M1.
Let N1 be the number of the simulated samples such that ηv ∈ Ω1. Then the
integral is estimated by N1/M1.

2.3. Bivariate models

To apply our methodology, we consider the case where m1 = 2 and Q(τ, γ) =
τγ1/(1 − τ)γ2 , γ1 > 0, γ2 > 0, where γ = (γ1, γ2). This quantile function is the
product of a power quantile function and a Pareto quantile function. This special
choice is made since (a) it has few applications in the literature due to the fact
that its inverse function is not available, though it is a natural generalization of
the Pareto distribution that is widely used in extreme value analysis, and (b) it
is able to describe both the main body and the tails of a distribution. Here (2.3)
can be rewritten as

(x2 − a21x1 − a20)
2 + (x1 − a10)

2 = τγ1

(1−τ)γ2
, (2.5)

where 0 < ǫ ≤ τ < 1, and ǫ is a fixed small positive number. This last requirement
does not affect applications because such an ǫ value always exists for a finite data
set. Theoretically, it guarantees that the posterior distribution of the parameters
is well-defined.

Theorem 3. Given (2.5), the likelihood of an independent sample of size n is

L(x | β) =

n
∏

i=1

fτ (τi, γ) =

n
∏

i=1

τ1−γ1

i (1 − τi)
1+γ2

γ1(1 − τi) + γ2τi
, (2.6)

where the τi satisfy

(x2i − a21x1i − a20)
2 + (x1i − a10)

2 = τγ1

i (1 − τi)
−γ2 , i = 1, . . . , n. (2.7)

Furthermore, if

π(η) =

m1
∏

k=1

k−1
∏

j=0

π(akj) =

m1
∏

k=1

k−1
∏

j=0

(2πσ2
kj)

−1/2 e−a2
kj

/(2σ2
kj

),

(2.8)

π(γ) =

2
∏

ℓ=1

π(γℓ) =

2
∏

ℓ=1

λℓγ
−2
ℓ e−λℓ/γℓ ,



QUANTILE FUNCTION MODELS 487

then the posterior distribution of the parameters is given by

π(β | x) ∝
n

∏

i=1

τ1−γ1

i (1 − τi)
1+γ2

γ1(1 − τi) + γ2τi

2
∏

ℓ=1

λℓγ
−2
ℓ e−λℓ/γℓ

2
∏

k=1

k−1
∏

j=0

1√
2πσkj

e−a2
kj

/2σ2
kj ,

(2.9)

and is well-defined on Ω1 × Ω2, where Ω1 = (−∞,∞)3, Ω2 = (0, M ] × (0,∞),

and M is any fixed positive real number.

Proof. It follows from ∂Q(τ, γ)/∂τ = τγ1−1(1 − τ)−γ2−1[γ1(1 − τ) + γ2τ ], and

fτ (τi,γ) = τ1−γ1

i (1− τi)
1+γ2/(γ1(1− τi) + γ2τi) that (2.6) holds, where τi satisfy

(2.7). Therefore, it follows from π(β | x) ∝ L(x | β)π(η)π(γ) that (2.9) holds.

Note that (2.5) is well-defined for any η. Hence Ω1 = (−∞,∞)3. Let

Ω2 = (0,M ] × (0,∞). Since τi satisfies (2.7), we have τi ≥ ǫ, so

∫

Ω1×Ω2

π(β | x)dβ =

∫

Ω1×Ω2

L(x,y | β)π(γ1)π(γ2)
2

∏

k=1

k−1
∏

j=0

π(akj)dakjdγ1dγ2

≤
∫

Ω1×Ω2

(τ1 · · · τn)1−γ1π(γ1)π(γ2)

γn
2 τ1 · · · τn

2
∏

k=1

k−1
∏

j=0

π(akj)dakjdγ1dγ2

≤ 1

ǫnM

∫

Ω1×Ω2

π(γ2)

γn
2

π(γ1)
2

∏

k=1

k−1
∏

j=0

π(akj)dakjdγ2dγ1

≤ 1

ǫnM

∫ ∞

0

λ2

γn+2
2

e−λ2/γ2dγ2 < ∞,

as required. Therefore, the posterior density function is well-defined on Ω1 ×Ω2.

Because M can be arbitrarily large and because the estimate of γ1 is always

finite, the MCMC sampler can be applied to this model with B = 1, and

A =

∏n
i=1

(τ ′

i)
1−γ′

1 (1−τ ′

i)
1+γ′

2

γ′

1
(1−τ ′

i)+γ′

2
τ ′

i

∏n
i=1

τ
1−γ1
i (1−τi)1+γ2

γ1(1−τi)+γ2τi

∏2
ℓ=1

λℓ

(γ′

ℓ
)2

e−λℓ/γ′

ℓ

∏2
ℓ=1

λℓ

γ2
ℓ

e−λℓ/γℓ

∏2
k=1

∏k−1
j=0

1√
2πσkj

e−a′

kj
2/2σ2

kj

∏2
k=1

∏k−1
j=0

1√
2πσkj

e−akj
2/2σ2

kj

,

C =
Φ((M − γ1)/σγ1

) − Φ(−γ1/σγ1
)

Φ((M − γ1
′)/σγ1

) − Φ(−γ1
′/σγ1

)

1 − Φ(−γ2/σγ2
)

1 − Φ(−γ2
′/σγ2

)
,

where the Φ terms containing M can be approximated by 1 if M is large enough.

Note that any proper distributions can be used for π(η) and π(γ1) because

they do not affect the appropriateness of the posterior distribution, but π(γ2)

needs to be chosen carefully such that the resulting posterior distribution is

proper on Ω. Also note that large (small) values of σkj and λℓ indicate weak

(strong) prior information on the parameters. Our experience with the sampler
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Figure 3.1. Scatter plot of the simulated data and the time series plots of
the simulated parameter values.

shows that those values do not play an important role in the convergence of the

method. In our study, we chose them to be large.

3. Simulation Study

The model we considered for simulation is

(x2 − 0.5x1 − 1.2)2 + (x1 − 2.1)2 =
τ1.3

(1 − τ)0.6
. (3.1)

Figure 3.1 shows the scatter plot of a sample of size 1,000 simulated from

(3.1); the simulated data is clustered and with some extreme values. These

features are found in many data sets for which a standard regression model may

not be appropriate.

We applied our methodology to the simulated data in the hope that we would

recover model (3.1). Assuming not much information on the true parameter val-

ues, we randomly chose σkj = 5 for k = 1, 2 and j = 0, 1, and λℓ = 1 for ℓ = 1, 2.

The initial values should be in the support of the posterior distribution, hence

we also rather arbitrarily assigned (a10, a20, a21, γ1, γ2) = (0, 0, 0, 0.776, 1.330) as

the initial values, where γ1 and γ2 were sampled from their prior distributions,
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Figure 3.2. The histograms of the samples collected from the MCMC sam-
pler.

respectively. For other initial values and prior information we obtained similar

results.

We ran the MCMC algorithm 10,000 steps and save the parameter values

every 10 steps. The time series plots of the simulated parameter values are

given in Figure 3.1, they show that the simulated Markov chain converged very

quickly to its equilibrium (posterior) distribution. After burn-in period (we took

the first 1,000 steps), we used the sample means as the estimate of the model

parameters. The fitted model was given by (x2 − 0.486x1 − 1.242)2 + (x1 −
2.086)2 = τ1.232/ (1 − τ)0.643. Figure 3.2 shows the histograms of the collected

samples of the parameters after burn-in, where the solid vertical lines represent

the locations of the sample estimates of the parameters and the dashed vertical

lines the true parameter values; the true parameter values are well within the

posterior marginals.

Figure 3.3 compares the fitted quantile curves (dashed) and the true quantile
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Figure 3.3. The fitted (dashed) and the true (continuous) quantile curves
for the simulation study.

curves (continuous). From inside to outside, the quantile curves correspond to

τ = 0.05, 0.25, 0.5, 0.75, 0.95, 0.995, and 0.9995 respectively. The left panel of

Figure 3.3 also shows the simulated data. All the results show that the fitted

and the true quantile curves are almost the same.

Note that the parameters in this study were estimated under the correct

model. In practice, an initial data exploration may suggest several possible mod-

els for the same data set, and hence we may end up with several competitive

models corresponding to different h and Q functions. Gilchrist (2000) discussed

several model diagnostic methods which can be used to identify the best fit-

ted model for the same data set. We do not show the diagnostic plots for this

simulation study to save space.

4. Applications to Data

We consider the daily closing prices of major European stock indices in the

period of 1991-1998, specifically, the Germany DAX and the Switzerland SMI.

The Germany DAX is the most commonly cited benchmark for measuring the

returns posted by stocks on the Frankfurt Stock Exchange. It is a performance-

based index, which means that any dividends and other events are rolled into

the index’s final calculation. The Switzerland SMI is Switzerland’s key equity

index. It represents about 85% of the free-float capitalization of the Swiss equity

market. The time series plots of the daily closing prices are given in Figure 4.4 (a)

and (b), which show that the time series are not stationary. Let x̃t be the SMI,

and ỹt the DAX. Consider the log returns: x1t = 100 ∗ (log(x̃t+1)− log(x̃t)), and
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Figure 4.4. The time series plots of the daily closing prices of major European
stock indices and the corresponding log returns.

x2t = 100 ∗ (log(ỹt+1) − log(ỹt)), where the factor 100 is for convenience. Figure

4.4 (c) and (d) show the time series plots of the log returns. It appears that the

log return series is stationary but with some extreme values. We further checked

the autocorrelation and partial autocorrelation function plots of the log return

series and found that there is almost no autocorrelation structure remaining in

the return series. In the following we ignore the autocorrelation structure and

concentrate on the relation between the two log returns. The scatter plot of

the log return data is given in Figure 4.5 and shows an obvious positive relation

between the two log returns.

As the data are clustered with many points away from the center of the

cluster, it is not appropriate to fit a linear regression model to the data. The joint

distribution of the two returns would be more appropriate, so we fit a quantile

function model to the data in order to estimate the probability of (x1, x2) falling

in a certain region of interest.

The prior distributions of the parameters are given by (2.8) with σkj = 13,

k = 1, 2, j = 0, . . . , k − 1, and λℓ = 1, ℓ = 1, 2. The chain was run 50,000 steps

and samples were collected every 30 steps. Time series plots of the simulated
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Figure 4.5. Scatter plot of the two log return data and the time series plots
of the simulated parameter values of model (2.5).

parameter values (also see Figure 4.5) indicate that the simulated Markov chain

converges to its equilibrium distribution after 3,000 steps. The fitted model is

(x2 − 0.7370x1 − 0.0001)2 + (x1 − 0.0004)2 = τ1.3908

(1−τ)0.5290 . (4.1)

If the fitted model is good, then we would expect that the points on the plot

of the quantiles of the residuals (x2i − 0.7370x1i − 0.0001)2 + (x1i − 0.0004)2,

i = 1, . . . , n, against the quantiles of the power-Pareto distribution Q(τ, γ) =

τ1.3908/(1 − τ)0.5290 should be roughly along a straight line (Gilchrist (2000)).

This plot is given in Figure 4.6(a), confirming that the fitted model is very good.

The fitted τth quantile curve together with the observed data are shown in

Figure 4.6(b), where τ = 0.995, 0.95, 0.90, 0.75, 0.5, 0.25, and 0.05. To make it

clearer, we also reproduced quantile curves separately in Figure 4.6(c), where

darker curves are the quantile curves, and the lighter curves are the contours ob-

tained by fitting a bivariate normal distribution to the data using R. The fitted

normal distribution has mean vector (0.0818, 0.0652)⊤ and variance-covariance

matrix S = (sij)2×2, where s11 = 0.8552, s12 = s21 = 0.6696, s22 = 1.0605.

Although the plot of the contour curves of the bivariate normal density function
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Figure 4.6. QQ-plot, fitted quantile curves and corresponding 95% credible
intervals.

Table 4.2. Percentage of points which are within each fitted quantile curves

Fitted quantiles 5% 25% 50% 75% 95% 99.5%
Number of points 90 376 828 1306 1737 1853

Percentage 4.84% 20.2% 55.5% 70.3% 93.4% 99.7%

looks similar to that of the quantile curves, they have completely different inter-

pretations. With a τth quantile curve we mean that the probability of the two

log returns falling inside the region defined by the τth quantile curve is τ , while

with a level c contour curve we mean that for any point in the region defined

by the level c contour curve the value of the joint probability density function

is c. Figure 4.6(d) shows a 95% credible interval (dashed curves) for each fitted

quantile curve (solid curve). It is seen that reasonable variations of the fitted

quantile curves are achieved.

Table 4.2 further shows the percentage of the observed points which fall

inside each quantile curve. Clearly the coverage of the fitted quantile curves is

in good agreement with the observed data.

As our approach is different from the quantile regression approach that is
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commonly used, we compared our method with that of Wei (2008). Again, R

was used to obtain reference quantile contours (Wei (2008)) for this data set.

Specially, the R library COBS was used to obtain the constrained smoothing

function. COBS is based on the method developed by He and Ng (1999). In

using it, the main tuning parameter values we used were as follows: the number

of internal knots is 20 chosen by the default method of COBS; the degree of

the splines is 2; the penalty parameter is chosen by a Schwarz-type information

criterion. Figure 4.7 shows the fitted quantile curves by using different methods

for τ = 0.995, 0.95, 0.5, 0.05. It is seen that there is no restriction on the shape

of the fitted reference quantile contours estimated by Wei’s method due to the

non-parametric nature of the method. When τ is not too large or too small, both

methods provide similar results, but when τ goes to extremes, we encountered

problems with Wei’s method. In fact, when τ > 0.995, we failed to obtain

the τth reference quantile contour by using R. On the other hand, unlike Wei’s

method, the performance of the proposed method does depend on the choice of

Q. We have seen that model (2.5) performs very well for this data set, but it may

not be appropriate for normally distributed data or some other data due to the

specific function Q used in the model. Because of these reasons, we suggest using

both methods in practice. Further comparisons between the two approaches are

certainly required in the future.

5. Comments and Conclusions

The proposed multivariate quantile function model provides a flexible way

to study multivariate quantiles, and the Bayesian approach developed here make

it straightforward to estimate the model parameters and to deal with real data

sets.

Different types of quantile function models can be developed by construct-

ing different functions h and Q according to different features in a data set. For

example, if the data consist of several clusters, then a mixture quantile function

model might be considered. The main complexities involved in such a general-

ization are in the appropriateness of the posterior distribution function of the

parameters, but dealing with mixture models via quantile functions is much eas-

ier than that via distribution or density functions. Further research on this issue

will be reported elsewhere.

Finally, Mu and He (2007) studied the effect of power transformations on

conditional quantile modelling under the framework of Koenker (2005). We be-

lieve that power transformations on the variables may also help in constructing

appropriate multivariate quantile function models. Further investigations are

planned.
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Figure 4.7. Fitted quantile curves by using our method (dashed curves) and
fitted reference quantile contours by using Wei’s (2008) method (continuous
curves).
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