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Index (FWI) System, a complicated set of multivariate 

indices that characterizes the risk of wildfire, are then cal-

culated and verified against observed values. Third, MBCn 

is used to correct biases in the spatial dependence structure 

of CanRCM4 precipitation fields. Results are compared 

against a univariate quantile mapping algorithm, which 

neglects the dependence between variables, and two multi-

variate bias correction algorithms, each of which corrects a 

different form of inter-variable correlation structure. MBCn 

outperforms these alternatives, often by a large margin, 

particularly for annual maxima of the FWI distribution and 

spatiotemporal autocorrelation of precipitation fields.

Keywords Quantile mapping · Multivariate · Bias 

correction · Post-processing · Model output statistics · 

Climate model · Fire weather · Precipitation

1 Introduction

Planning for long-term climate change relies on plausible 

projections of the future climate. Similarly, climate-sen-

sitive decisions on shorter time horizons rely on accurate 

seasonal-interannual and decadal climate forecasts. Global 

and regional climate models, which are based on our physi-

cal understanding of the climate system, therefore play a 

key role in climate impacts and adaptation and climate pre-

diction studies. However, despite continued improvements 

in the representation of physical processes, systematic 

errors remain in climate models.

For practical reasons, users often find it necessary to 

remove climate model biases before outputs are incor-

porated into their particular applications. Methods used 

to post-process climate model outputs may be based on 

either perfect prognosis or model output statistics (MOS) 

Abstract Most bias correction algorithms used in clima-

tology, for example quantile mapping, are applied to uni-

variate time series. They neglect the dependence between 

different variables. Those that are multivariate often correct 

only limited measures of joint dependence, such as Pearson 

or Spearman rank correlation. Here, an image processing 

technique designed to transfer colour information from one 

image to another—the N-dimensional probability density 

function transform—is adapted for use as a multivariate 

bias correction algorithm (MBCn) for climate model pro-

jections/predictions of multiple climate variables. MBCn 

is a multivariate generalization of quantile mapping that 

transfers all aspects of an observed continuous multivariate 

distribution to the corresponding multivariate distribution 

of variables from a climate model. When applied to climate 

model projections, changes in quantiles of each variable 

between the historical and projection period are also pre-

served. The MBCn algorithm is demonstrated on three case 

studies. First, the method is applied to an image processing 

example with characteristics that mimic a climate projec-

tion problem. Second, MBCn is used to correct a suite of 

3-hourly surface meteorological variables from the Cana-

dian Centre for Climate Modelling and Analysis Regional 

Climate Model (CanRCM4) across a North American 

domain. Components of the Canadian Forest Fire Weather 
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approaches (Maraun et al. 2010). In the former, biases are 

removed via a statistical model that accounts for synchro-

nous relationships between a target variable of interest in a 

reference dataset and one or more observed variables that 

can be simulated by the climate model. In the latter, rela-

tionships (either synchronous or asynchronous) are drawn 

directly between the target variable and simulated climate 

model variables. In a climate modelling context, where 

free-running model simulations and observations are not 

synchronized in time, MOS techniques for bias correction 

are typically asynchronous, i.e., between distributional sta-

tistics of a variable such as the mean, variance, or quan-

tiles. Biases are taken to refer specifically to systematic 

differences in such distributional properties between model 

simulated outputs and those estimated from the reference 

dataset.

Considerable effort has been expended developing these 

types of bias correction algorithms (Michelangeli et  al. 

2009; Li et al. 2010; Hempel et al. 2013), evaluating their 

performance (Piani et al. 2010; Gudmundsson et al. 2012; 

Chen et al. 2013), and determining their limitations (Ehret 

et  al. 2012; Eden et  al. 2012; Maraun 2013; Maraun and 

Widmann 2015; Chen et al. 2015). A recent critical review 

is offered by Maraun (2016). One of the most popular 

asynchronous bias correction methods in climatology is 

quantile mapping, a univariate technique that maps quan-

tiles of a source distribution to quantiles of a target distri-

bution. Quantile mapping (and most other bias correction 

methods) have typically been applied to individual vari-

ables in turn, neglecting the dependence that exists between 

variables (Wilcke et  al. 2013). For example, if a climate 

model has a warm bias in high quantiles of surface tem-

perature and a wet bias in low quantiles of precipitation, 

these biases would be corrected separately. Because model 

biases in inter-variable relationships are ignored by univari-

ate techniques, biases in dependence structure that remain 

following univariate bias correction can affect subsequent 

analyses that make use of multiple variables (Rocheta et al. 

2014). This includes, for instance, hydrological model sim-

ulations and calculations of atmospheric moisture fluxes, 

multivariate drought indices, and fire weather indices.

As an alternative to univariate methods, multivariate 

bias correction algorithms have been introduced by Bürger 

et  al. (2011), Vrac and Friederichs (2015), Mehrotra and 

Sharma (2016), and Cannon (2016), among others. While 

these methods correct biases in multiple variables simulta-

neously, they either take into account only a limited meas-

ure of the full multivariate dependence structure, for exam-

ple as represented by the Pearson correlation (Bürger et al. 

2011; Mehrotra and Sharma 2016; Cannon 2016) or Spear-

man rank correlation (Cannon 2016), or they make strong 

stationarity assumptions about the temporal sequencing 

of the climate model variables (e.g., by simply replicating 

observed historical rank ordering as in the empirical cop-

ulabias correction (EC-BC) method by Vrac and Fried-

erichs 2015). In contrast to univariate techniques, many 

multivariate techniques are iterative, for example repeat-

edly applying univariate quantile mapping and multivariate 

transformations (Cannon 2016)—and thus the question of 

convergence arises. Theoretical proofs of convergence may 

not be available. Arguably, a direct multivariate extension 

of quantile mapping would map one multivariate distri-

bution to another in its entirety, with proven convergence 

properties, while keeping as much of the underlying cli-

mate model’s temporal sequencing intact.

Is it possible to transfer all aspects of one multivariate 

distribution to another in this way? In the field of image 

processing and computer vision, Pitié et  al. (2005, 2007) 

developed a method, which they refer to as the N-dimen-

sional probability density function transform (N-pdft), for 

transferring colour information (e.g., red, green, and blue, 

RGB, colour channels) from one image to another with the 

goal of recolouring a target image to match the “feel” of a 

source image. To the best of the author’s knowledge, the 

N-pdft algorithm has not been explored outside of this con-

text. When viewed more generally, the algorithm is a true 

multivariate version of quantile mapping that is proven to 

converge when the target distribution is multivariate nor-

mal (Pitié et al. 2007). Because the transformation is invert-

ible, any continuous multivariate distribution can thus be 

mapped to another using the multivariate normal distri-

bution as an intermediary. However, empirical evidence 

suggests that the use of an intermediate multivariate nor-

mal distribution is unnecessary and that direct mapping 

between distributions is possible via the N-pdft algorithm.

In the context of climate simulations rather than image 

processing, if one replaces (and expands) the colour chan-

nels with climate variables, for example multiple weather 

elements from one or more spatial locations, then the same 

basic method should be an effective multivariate bias cor-

rection algorithm. In a climate modelling context, modifi-

cations are, however, necessary, especially when dealing 

with corrections not just between historical periods (i.e., 

between two images), but also to future climate projec-

tions or predictions where the range of variables may lie 

outside the historical range. In this case, it may be desirable 

to also preserve the climate change signal of the underly-

ing climate model in the projection period, subject to bias 

correction of the historical period. As one example, trend-

preservation is a fundamental property of the bias corrected 

climate model outputs provided in the Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP) (Hempel et  al. 

2013). The question of whether or not trends should be pre-

served is discussed in depth by Maraun (2016), who con-

cludes that “In case one has trust in the simulated change, 

one should employ a trend preserving bias correction.” If 
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the underlying simulated trends from the climate model are 

thought to be implausible, for example because of biases 

in large-scale circulation or local feedback processes, then 

this should be communicated explicitly along with the 

bias correction results. Alternatively, other methods may 

be required. If trends are to be preserved, univariate meth-

ods such as equidistant/equiratio quantile matching and 

quantile delta mapping algorithms have been proposed (Li 

et al. 2010; Wang and Chen 2014; Cannon et al. 2015). As 

pointed out by Cannon et al. (2015), the “goal then would 

be to avoid artificial deterioration of trends that arise sim-

ply as a statistical artifact of quantile mapping or related 

methods”. This feature has been incorporated into the 

correlation-based multivariate methods proposed by Can-

non (2016). In this paper, the N-pdft algorithm is similarly 

extended for use with climate model projections.

Specifically, a version of the N-pdft algorithm tailored 

for climate models, referred to as MBCn, is introduced and 

illustrated using three examples spanning a range of dimen-

sions from 3 to 25. First, MBCn is applied to a simple three 

dimensional problem inspired by the original image process-

ing examples of Pitié et al. (2005, 2007). In addition to com-

parisons of distributional properties and error statistics, the 

computational demand of MBCn is compared against uni-

variate quantile mapping. Second, MBCn is applied to seven 

variables from the Canadian Centre for Climate Modelling 

and Analysis Regional Climate Model (CanRCM4) (Sci-

nocca et  al. 2016)—3-hourly surface temperature, pressure, 

specific humidity, wind speed, incoming shortwave radia-

tion, incoming longwave radiation, and precipitation—with 

a subset of corrected variables then used to calculate com-

ponents of the Canadian Forest Fire Weather Index (FWI) 

system (Van  Wagner and Forest 1987). The FWI has been 

adopted globally as a general index for the risk of wildfire. 

Calculations depend, in a nonlinear fashion, on current and 

past values of multiple weather elements. Simulated variables 

used to calculate the FWI are often bias corrected first, but 

without taking into account the dependence between vari-

ables (e.g., via quantile mapping in Lehtonen et al. 2016 or 

the delta method with variance inflation in Amatulli et  al. 

2013). Given that FWI is a multivariate index, it is possible 

that improvements in simulated FWI can be gained by apply-

ing a truly multivariate bias correction method like MBCn, 

which adjusts the full multivariate distribution of the weather 

elements. To determine the added value of MBCn, results are 

compared against the two multivariate bias correction meth-

ods from Cannon (2016), namely MBCp, which corrects 

Pearson correlation dependence structure, and MBCr, which 

corrects Spearman correlation dependence structure. In the 

third and final example, MBCn is used to correct biases in 

the spatial dependence structure of CanRCM4 precipitation 

fields. In this case, simulated precipitation amounts over 25 

grid points are corrected simultaneously, with the ultimate 

goal being the use of MBCn to both bias correct and down-

scale precipitation.

2  N‑pdft algorithm

The N-pdft algorithm maps from a continuous N-dimensional 

multivariate source distribution to a continuous target distri-

bution of the same dimension (Pitié et al. 2005, 2007). In the 

original application, the two multivariate distributions repre-

sent RGB colour channels from two images. The multivari-

ate source distribution is corrected by iteratively applying a 

random orthogonal rotation to the datasets followed by quan-

tile mapping of the rotated marginal distributions. Tradition-

ally, quantile mapping operates on the marginal distributions 

of a dataset without considering the dependence between 

variables. In the N-pdft algorithm, the additional rotation step 

provides linear combinations of the original variables—rather 

than each original variable separately—to the univariate 

quantile mapping bias correction. When these two steps are 

combined in sequence and repeated, correction of the multi-

variate distribution becomes possible. In brief, the algorithm 

consists of three steps: (a) apply an orthogonal rotation to the 

source and target data; (b) correct the marginal distributions 

of the rotated source data via empirical quantile mapping; 

and (c) apply the inverse rotation to the resulting data. These 

three steps are repeated, iteratively, until the multivariate dis-

tribution matches the target distribution, i.e., the corrected 

source and target colour channel histograms—marginal and 

joint—are the same. The algorithm is proven to converge 

with random rotation matrices and a multivariate Gaussian 

target (Pitié et  al. 2007), which means that any distribution 

can be mapped to another by using the multivariate Gaussian 

as a pivot. However, Pitié et  al. (2005, 2007) show empiri-

cally that the intermediate Gaussian is unnecessary and that 

direct mapping between arbitrary continuous distributions is 

possible. Details are provided by Pitié et al. (2005, 2007).

The N-pdft algorithm starts with an I × N matrix of source 

data �
S
 and a corresponding matrix of target data �

T
 where 

the N variables in both are arranged as columns. Without loss 

of generality, assume that these variables are each standard-

ized to have zero mean and unit standard deviation. In step 

(a) of the jth iteration of the N-pdft algorithm, denoted by 

the superscript [j], construct an N × N uniformly distributed 

random orthogonal rotation matrix �[j], for example via QR 

decomposition of normally distributed random values (Mez-

zadri 2007). Rotate the source and target data

In step (b), use univariate quantile mapping to map each 

of the n of N empirical cumulative distribution functions 

(CDFs) F̃
(n)[j]

S
 to the corresponding empirical CDFs F̃

(n)[j]

T
,  

(1)
�̃

[j]

S
=�

[j]

S
�

[j]

�̃
[j]

T
=�

[j]

T
�

[j]
.
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which are associated with, respectively, the vectors of 

source values �̃
(n)[j]

S
and target values �̃

(n)[j]

T
. Correction of 

x̃
(n)[j]

S
(i), the ith of I source values, by quantile mapping is 

given by

where x̂
[n][j]

S
(i) is the corrected source value. In step (c) 

apply the inverse rotation matrix to yield source values for 

the next iteration j + 1

The target data are carried forward to the next iteration 

unchanged �
[j+1]

T
= �

[j]

T
. Repeat steps (a) to (c) until the 

source distribution converges to the target distribution. As 

noted above, a proof of convergence is provided by Pitié 

et al. (2007).

Convergence to the target multivariate distribution is 

measured in the remainder of this paper using the energy 

distance (Székely and Rizzo 2004, 2013). The (squared) 

energy distance is a measure of statistical discrepancy 

between two multivariate distributions, defined between 

N-dimensional independent random vectors � and � with 

CDFs F and G, respectively, as

where E denotes the expected value, ‖.‖ is the Euclidean 

norm, and �′ and �′ and independent and identically dis-

tributed copies of � and �. D(F, G) equals zero only when 

F equals G. Calculation details are given in Rizzo and 

Székely (2016).

3  MBCn algorithm

Three datasets are involved when bias correction algo-

rithms are applied to climate model data: historical obser-

vations (i.e., �
T
); historical climate model simulations (i.e., 

�
S
); and, additionally, climate model projections/predic-

tions �
P
, which will, at least in part, typically lie outside 

the historical time period. Bias corrected values of �
P
 are 

of primary interest. In the N-pdft algorithm, when quan-

tile mapping (Eq.  2) is applied to each modelled variable 

within the historical period (i.e., P = S), the bias corrected 

values will, by definition, have the same marginal distribu-

tion as the observed historical values; the quantile mapping 

transfer function relies exclusively on the historical CDFs. 

Difficulties can aries when quantile mapping is applied 

to projected/predicted data that lie outside the range of 

the historical simulations. Some method of extrapolation 

must be used to handle these cases. Because colour chan-

nels have fixed lower/upper bounds (zero intensity to full 

intensity), extrapolation is less of an issue when the N-pdft 

(2)x̂
(n)[j]

S
(i) = F̃

(n)[j]−1

T

(

F̃
(n)[j]

S

(

x̃
(n)[j]

S
(i)

))

(3)�
[j+1]

S
= �̂

[j]

S
�

[j]−1

.

(4)D
2(F, G) = 2E‖� − �‖ − E‖� − �

�‖ − E‖� − �
�‖ ≥ 0

algorithm is applied to multiple source images in an image 

processing context. However, the same will not be true of 

climate model simulations with a strong climate change 

signal, for instance centennial climate projections or dec-

adal climate predictions.

As a remedy, methods like equidistant/equiratio quantile 

matching (Li et al. 2010; Wang and Chen 2014) make addi-

tional use of the simulated climate model CDF F
P
 in the 

projection/prediction period. Cannon et al. (2015) showed 

these methods to be a quantile mapping form of the “delta 

change method” (Olsson et  al. 2009), whereby projected/

predicted changes in the simulated quantiles are preserved 

following quantile-by-quantile bias correction. As a con-

sequence, extrapolation is integral to the transformation. 

Because of this link, Cannon et  al. (2015) refer to this 

general approach as quantile delta mapping (QDM). The 

QDM transfer function that preserves absolute changes in 

quantiles (e.g., for an interval variable such as temperature 

measured on the Celsius scale) is given by

with the corresponding transfer function that preserves 

relative changes in quantiles (e.g., for a ratio variable with 

an absolute zero such as precipitation) obtained simply by 

replacing the addition/subtraction operators with multipli-

cation/division operators.

The MBCn algorithm extends the N-pdft algorithm by 

replacing quantile mapping with QDM and working explic-

itly with the �
S
, �

P
, and �

T
 datasets. In step (a), rotate the 

source, projection/prediction, and target datasets

In step (b), apply the absolute change form of QDM (Eq. 5) 

to each variable in �̃
[j]

S
 and �̃

[j]

P
 using the corresponding var-

iable in �̃
[j]

T
 as the target, yielding �̂

[j]

S
 and �̂

[j]

P
. In step (c), 

rotate back

Repeat steps (a)–(c) until the multivariate distribution of 

�
[j+1]

S
 matches �

T
.

The ratio property of variables like precipitation is lost 

during the rotation in step (a). Hence, the ratio version of 

QDM cannot be used in step (b) and it is not possible to 

take advantage of its trend preserving property. More gen-

erally, repeated iterations may lead to corruption of the 

model-projected trend for both interval and ratio variables. 

(5)
Δ(i) = x

P
(i) − F

−1

S
(F

P
(x

P
(i)))

x̂
P
(i) = F

−1

T
(F

P
(x

P
(i))) + Δ(i)

(6)

�̃
[j]

S
= �

[j]

S
�

[j]

�̃
[j]

P
= �

[j]

P
�

[j]

�̃
[j]

T
= �

[j]

T
�

[j]
.

(7)

�
[j+1]

S
= �̂

[j]

S
�

[j]−1

�
[j+1]

P
= �̂

[j]

P
�

[j]−1

�
[j+1]

T
= �

[j]

T
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To restore the appropriate trends to �
[j+1]

P
, an extra step is 

added to the MBCn algorithm.

In step (d), apply the appropriate absolute/ratio version 

of QDM to each variable of the original �
P
 dataset using 

�
T
 and �

S
 as historical baseline data, yielding �̂

P
; finally, 

replace quantiles of each column of the �
[j+1]

P
 matrix from 

step (c) with those from columns of �̂
P
 obtained in the 

application of QDM from step (d). In short, elements of 

each column of �̂
P
 are ordered according to the ordinal 

ranks of the corresponding elements of each column of 

�
[j+1]

P
. (Note: the reordering operation is a fundamental part 

of the EC-BC method of Vrac and Friederichs (2015) and 

is also used in the MBCp and MBCr algorithms by Cannon 

(2016).) This maintains the preservation of trends in �̂
P
 by 

QDM and the rank dependence structure of �
[j+1]

P
.

4  Image processing example

An image recolouring example is used here to demonstrate 

the MBCn algorithm. This is in the spirit of the image 

recolouring applications of the N-pdft algorithm by Pitié 

et al. (2005, 2007), but the experimental design is crafted 

to mimic characteristics of a climate projection problem. 

Trivariate data are RGB colour channels from two images. 

In this case, the 428 × 300 pixel image in Fig.  1a repre-

sents historical observations �
T
 and the two halves of the 

428 × 600 pixel image in Fig. 1b represent, on the left side, 

historical �
S
 and, on the right side, projected �

P
 outputs 

from a climate model. The total number of pixels in each 

image/image half is roughly the same as the number of 3-h 

time steps in a 50-year climate model simulation. Note that 

the content of �
T
 and �

S
 is similar—both are landscape 

paintings of trees—but the colour palette and brightness of 

the two images differ substantially. �
P
 is broadly similar to 

�
S
, but with a different mix of foreground and background 

elements. The goal is to recolour (or, in a climate model-

ling context, bias correct) �
S
 and �

P
 using �

T
 as the target 

image (or historical observations).

Because MBCn preserves changes in quantiles and RGB 

colour intensities are bounded between 0–1, it is possible 

that corrections to �
P
 will lead to values outside of these 

bounds. Following Demidenko (2006), data on the unit 

interval are therefore first mapped onto the real line using 

the logit(x) = log(
x

1−x

) transformation. In a climate mod-

elling context, the same transformation could be used for 

bounded variables like cloud cover or relative humidity. 

Transformed values are corrected and then inverse trans-

formed prior to plotting.

Correcting each colour channel separately using QDM, 

i.e., without taking into account the dependence between 

colour channels, leads to the image halves shown in 

Fig. 1  Images representing a historical target observations; b global 

climate model (GCM) historical source (left) and future projections 

(right); c QDM historical (left) and projected corrections (right); and 

d MBCn historical (left) and projected corrections (right) following 

30 iterations
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Fig.  1c. The overall character of the corrected image 

halves, notably the brightness, is now more similar to the 

target image, but the recolouring has not been fully suc-

cessful. For instance, note the presence of yellow/orange 

tones in the corrected image halves that are absent from 

the target image (Fig.  1a). After applying the MBCn 

algorithm, the overall structure, brightness, and colour 

palette of the corrected image halves (Fig. 1d) is consist-

ent with the target. This can be seen more clearly in 

Fig.  2, which shows marginal histograms and pairwise 

bivariate histograms of the observed historical target, 

GCM historical source, QDM historical, and MBCn 

historical RGB channels. After correction by QDM or 

MBCn, the marginal distributions in the historical period 

are, by construction, identical to the target image mar-

ginal distributions. MBCn further corrects the historical 

dependence between the image channels such that the full 

multivariate distribution matches the target.1 In the pro-

1 In comparison to the EC-BC method by Vrac and Friederichs 

(2015), which also corrects the full multivariate distribution within 

the calibration sample, MBCn preserves much of the underlying con-

tent of the climate model within the projection period. EC-BC repeats 

the climate model’s rank sequencing from the calibration period to 

the projection period, i.e., the left half of Fig. 1d is, aside from small 

changes in brightness/colour, duplicated in the right half of the image 

(Figure S1).

Fig. 2  Logit transformed RGB channel marginal histograms (diago-

nal panels), pairwise bivariate histograms (lower triangle panels), 

and pairwise scatterplots with best fit local regression lines (upper 

triangle panels) for the a observed historical target, b GCM histori-

cal source, c QDM historical, and d MBCn historical (30 iterations) 

associated with the images in Fig. 1
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jection period, MBCn also applies QDM’s quantile 

change preserving property on the marginal distributions. 

The bias corrected dependence structure in the projection 

period—how the ordinal ranks from the climate model 

are adjusted—depends both on the N-pdft algorithm cor-

rections to the historical dependence structure and also 

the underlying changes in the climate model dependence 

structure.

MBCn is an iterative algorithm whose convergence 

depends, in part, on the application of a sequence of ran-

dom rotation matrices. Speed of convergence to the target 

multivariate distribution is shown here using the energy 

distance. Figure  3 shows energy distances with respect 

to the target image for 50 iterations of MBCn, as well as 

values for the uncorrected source image and after cor-

rection by QDM. To assess the influence of the random 

rotation matrices, MBCn results are shown for 30 differ-

ent trials of the algorithm. Convergence occurs relatively 

quickly, with energy distances reduced, on average, by an 

order of magnitude relative to QDM (and three orders of 

magnitude relative to the uncorrected source image) after 

10 iterations of the MBCn algorithm. The influence of 

the random rotations is suppressed after ∼30 iterations, 

with all 30 trials converging to the same energy distance 

after this point.

5  Canadian Fire Weather Index example

In this section, the MBCn algorithm is applied to a real-

world climate modelling application, namely calcula-

tion of Canadian Forest Fire Weather Index (FWI) system 

components based on simulated outputs from the Can-

RCM4 regional climate model. Studies have relied on the 

FWI to assess future changes in fire risk based on global 

and regional climate model outputs (Flannigan et al. 2009; 

Amatulli et  al. 2013; Lehtonen et  al. 2016). In addition, 

medium range to seasonal predictions of the FWI have also 

been issued based on numerical weather and climate pre-

diction models (Anderson et al. 2007; Pappenberger et al. 

2013). The FWI is the ultimate index in the FWI system, 

which is made up of FWI and its five component indices, 

each representing a different aspect of fuel moisture or 

fire behaviour (Fig. 4). As stated by Van Wagner and For-

est (1987), the Fine Fuel Moisture Code (FFMC), Duff 

Moisture Code (DMC), and Drought code (DC) represent, 

respectively, moisture contents of “litter and other cured 

fine fuels”, “loosely compacted decomposing organic mat-

ter”, and “a deep layer of compact organic matter”, while 

the Initial Spread Index (ISI) and Buildup Index (BUI) rep-

resent, respectively, the “rate of spread alone without the 

influence of variable quantities of fuel” and “the total fuel 

available to the spreading fire”. As shown in Fig. 4, these 

five indices, which are updated on a daily basis using local 

temperatures, relative humidities, wind speeds, and 24-h 

precipitation amounts (all at 12:00 LST), contribute to the 

final FWI. Following Amatulli et  al. (2013), FWI system 

calculations are initialized at the start of each calendar year 

and are integrated forward through to the end of the year. 

Although FWI is of primary interest, values of the other 

component indices will also be used to gauge the perfor-

mance of MBCn relative to three benchmark bias correc-

tion algorithms. Specifically, results are compared against 

univariate QDM, as well as the two multivariate methods 

introduced by Cannon (2016): MBCp, which corrects Pear-

son correlation dependence structure, and MBCr, which 

corrects Spearman correlation dependence structure.

As pointed out by Maraun (2016), evaluation of bias cor-

rection algorithms purely in terms of distributional proper-

ties (e.g., as corrected with asynchronous MOS techniques) 

is typically “not sufficient to identify artificial skill and 

unskillful bias correction”. For verification, the experimen-

tal setup is thus chosen so that the series of simulated and 

observed variables are synchronous in time, in this case by 

using a reanalysis-driven regional climate model. Improve-

ments can be investigated by comparing bias corrected time 

series directly against observations using standard forecast 

verification statistics. To this end, dynamically downscaled 

outputs over a North American spatial domain are obtained 

from the CanRCM4 regional climate model (Scinocca et al. 
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Fig. 3  Values of the energy distance taken with respect to the target 

image distribution (rescaled so that the uncorrected source image 

has a value of one) following each iteration of 30 trials of the MBCn 

algorithm (red dashed lines; mean in black), as well as values for the 

uncorrected source image (blue circle) and QDM correction of the 

marginal distributions (green circle). The vertical axis is shown in 
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2016). The CanRCM4 historical evaluation run, which cov-

ers the 1989–2009 period, relies on lateral boundary con-

ditions provided by the ERA-Interim reanalysis (Dee et al. 

2011) and employs interior spectral nudging to constrain 

large scales to respect the reanalysis driving fields.

Three hourly CanRCM4 outputs of precipitation, sur-

face temperature, pressure, specific humidity, wind speed, 

incoming shortwave radiation, and incoming longwave 

radiation on a 0.44-deg model grid are mapped onto a 

regular 0.5-deg grid following the CORDEX NAM-44i 

domain specification (Christensen et  al. 2014). Only land 

grid points are retained for analysis. This set of variables 

is sufficient to support a wide variety of climate impacts 

and adaptation studies, including simulating elements of 

the terrestrial water cycle by distributed hydrological mod-

els (Weedon et al. 2014) and calculating climate extremes 

indices (Zhang et  al. 2011), multivariate drought indices 

(Vicente-Serrano et al. 2010), and fire weather indices like 

FWI (Van Wagner and Forest 1987). Following Haddeland 

et  al. (2012), bias correction algorithms are applied to all 

seven variables, notwithstanding whether or not the index 

of interest, in this case FWI, requires the full set. This is 

consistent with a general purpose application of climate 

model post-processing to support multiple end users.

The 3-hourly 0.5-deg WATCH Forcing Dataset applied 

to ERA-Interim (WFDEI) (Weedon et al. 2014) is used as 

the observational target for the bias correction algorithms. 

A major assumption, which is shared by all methods, is that 

the underlying observational reference provides an accurate 

representation of the true historical climate. Observational 

uncertainty is, however, a reality and no gridded observa-

tional dataset is perfect. For example, Rust et  al. (2015) 

found discontinuities in WFDEI daily temperatures across 

month boundaries that resulted from a climatological cor-

rection to match Climatic Research Unit monthly tem-

peratures. Despite such artifacts, recent work by Essou 

et  al. (2016) concluded that the WFDEI dataset serves as 

a reasonable proxy to observed surface temperature and 

precipitation and can be reliably used as a forcing dataset 

for hydrological modelling purposes. Given that the focus 

of this study is on internal consistency of bias corrected 

variables relative to the WFDEI target, irrespective of its 

potential shortcomings, alternative reference datasets are 

not considered.

Bias corrections are applied separately to the central cal-

endar month of sliding three month windows for each grid 

point in the NAM-44i domain. The final QDM corrections 

used in each algorithm treat precipitation, specific humid-

ity, wind speed, and solar radiation components as ratio 

variables and temperature (in degrees Celsius) and pressure 

as interval variables. For precipitation, following Cannon 

et al. (2015) and Vrac et al. (2016), dry days are treated as 

censored values below a trace amount (0.05 mm). Exact 

zeros are replaced with non-zero uniform random values 

below the trace threshold prior to bias correction; values 

below the threshold after bias correction are set to zero. 

When applying MBCn, the same sequence of random rota-

tion matrices is used at each grid point; taking into account 

Fig. 4  Flowchart showing 

components of the Canadian 

Forest Fire Weather Index 

System after, (Van Wagner and 

Forest 1987)
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convergence properties (e.g., Fig.  3) and computational 

constraints, the algorithm is terminated after 20 iterations.

The 1989–1999 portion of the record is first used for cal-

ibration and the 2000–2009 portion is used as the projec-

tion period for out-of-sample verification; the two portions 

are then swapped, in a two-fold cross-validation design, so 

that each is used in turn both for calibration and for veri-

fication. The calibration sample thus provides the histori-

cal observational target �
T
 and raw climate model simu-

lation �
S
 datasets, whereas the out-of-sample verification 

period supplies the climate model projection �
P
 dataset. 

As noted earlier, the CanRCM4 simulation is forced by the 

ERA-Interim reanalysis, which means that WATCH Forc-

ing observations are available in the verification period for 

calculation of model performance statistics for the bias cor-

rected projections.

FWI requires values of 24-h accumulated precipitation, 

surface temperature, relative humidity, and wind speed. 

This subset of four variables is calculated from the full set 

of seven (i) raw CanRCM4 outputs as well as bias corrected 

outputs from (ii) univariate QDM; (iii) MBCp, which addi-

tionally corrects Pearson correlation dependence structure, 

and (iv) MBCr, which additionally corrects Spearman rank 

correlation dependence structure; and finally (v) MBCn, 

which corrects the full multivariate distribution. Note that 

the marginal distributions of the seven bias corrected vari-

ables are identical for QDM, MBCp, MBCr, and MBCn; 

only the dependence between variables differs. In all cases, 

Fig. 5  July mean FWI (1989–

2009) based on a WFDEI 

observations; subsequent panels 

show differences between b 

raw CanRCM4 outputs and 

observed values; c QDM and 

observed values; d MBCp and 

observed values; e MBCr and 

observed values; and f MBCn 

and observed values. For b–f, a 

value of zero indicates perfect 

match with observations. All 

bias corrected results are based 

on cross-validation



40 A. J. Cannon 

1 3

3-hourly values are interpolated to 12:00 LST and FWI is 

calculated using software by Wang et al. (2013).

Climatological mean values of FWI during July, when 

fire risk is typically highest, are shown in Fig. 5. In obser-

vations, peak FWI values are found over the southwestern 

United States (US), with high values extending into the 

central US. The spatial extent of maxima in CanRCM4 is 

broadly similar, but with a trough of low values between 

the southwestern US and central US that is absent from 

observations. In addition, peak values are considerably 

lower than observed. Spatial patterns of FWI in QDM, 

MBCp, MBCr, and MBCn are improved relative to Can-

RCM4, as are peak values in QDM, MBCp, and MBCn. 

The representation of peak values by MBCr, however, is 

worse than QDM, which does not consider inter-variable 

relationships, or MBCp, which considers Pearson rather 

than Spearman rank correlations between variables. As 

pointed out by Cannon (2016), the Pearson and Spearman 

rank correlations are not guaranteed to fully specify the 

dependence structure of real-world multivariate datasets; 

in practice, each may better describe different aspects of a 

given dataset. Do these results hold for the other compo-

nents of the FWI system? Spatial pattern correlations and 

standard deviations of climatological mean July FWI and 

the five FWI component indices are summarized in the 

Taylor diagram shown in Fig. 6. Spatial correlations with 

observations for CanRCM4 tend to lie between ∼0.8 and 

0.9 with spatial standard deviations between 50 and 160% 

of observed values. Spatial correlations improve for the 

bias correction algorithms, with largest improvements (in 

order) for MBCr, QDM, MBCp, and finally MBCn, which 

exceeds 0.98 for all indices. MBCr exhibits the largest 

differences in spatial variability relative to observations, 

with smaller ranges seen for QDM and MBCp; values for 

MBCn are very tightly clustered around the observed value 

(85–105%).

Results reported in Figs.  5 and 6 are for the July 

monthly mean. To illustrate performance for the most 

extreme conditions, climatological values of the annual 

maximum daily FWI are shown in Fig. 7. A slightly dif-

ferent picture emerges for extreme fire risk. In this case, 

results for CanRCM4 are similar to those for July mean 

values, but those for QDM, MBCp, and MBCr are dif-

ferent. In particular, univariate QDM and MBCp, both of 

which exhibited close correspondence with observations 

for July mean conditions, now perform worse than MBCr, 

which was the worst method above for the July mean. 

On the other hand, MBCn, which performed best for 

Fig. 6  Taylor diagram showing 

spatial pattern correlations and 

standard deviations of cross-val-

idated climatological mean July 

FWI, BUI, DC, DMC, FFMC, 

and ISI based on CanRCM4, 

QDM, MBCp, MBCr, and 

MBCn outputs. Observational 

reference values are 1989–2009 

WFDEI climatologies scaled to 

have unit standard deviation

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

C
orrelation

m

m
m

m

m
c

c
cc

c

i

ii
i i

b

bb
b

b

d

ddd d

f

ff
f

f

b

d

c

m

f

i

BUI

DC

DMC

FFMC

FWI

ISI

●

●

●

●

●

QDM

MBCp

MBCr

MBCn

CanRCM4



41Multivariate quantile mapping bias correction: an N‑dimensional probability density function…

1 3

July mean conditions, also performs best here for annual 

maxima. The change in performance for QDM, MBCp, 

and MBCr, but not MBCn, suggests that correcting the 

multivariate distribution of the four weather variables—

rather than neglecting it (QDM) or only correcting either 

Pearson (MBCp) or Spearman rank (MBCr) correlation 

structure—may be needed to simulate the entire distribu-

tion of daily FWI values.

Results reported to this point have been for climatologi-

cal values. Because the CanRCM4 evaluation run is forced 

at the boundaries by ERA-Interim and uses spectral nudging, 

direct comparison with the observed WFDEI time series is 

also possible. Mean absolute error (MAE) and mean absolute 

log10 accuracy ratio (LAR) statistics with respect to observa-

tions are calculated for time series of July mean and annual 

maximum daily FWI are each grid point over the North 

American domain

where FWI(i) and F̂WI(i) are, respectively, observed and 

modelled values of FWI in the ith of I out-of-sample veri-

fication years. The LAR statistic is a symmetric measure 

of relative accuracy (e.g., modelled values that differ from 

observations by a factor of 1/10 or 10 are both assigned 

(8)MAE =
1

I

I∑

i=1

|F̂WI(i) − FWI(i)|

(9)LAR =
1

I

I∑

i=1

|
|
|
|
|
|

log10

(
F̂WI(i)

FWI(i)

)|||
|||

Fig. 7  As in Fig. 5, but 

for annual maximum FWI 

(1989–2009). For b–f, a value 

of zero indicates perfect match 

with observations. All bias 

corrected results are based on 

cross-validation
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LAR = 1). Finally, temporal correlations between observed 

and modelled monthly mean FWI time series are calculated 

at each grid point. To summarize, MAE and LAR statistics 

are calculated for each bias correction method, averaged 

over the domain (weighted by grid cell area), and expressed 

as skill scores (MAESS and LARSS) relative to the raw 

CanRCM4 outputs; positive skill score values indicate 

improved performance relative to CanRCM4, with values 

equal to one corresponding to perfect skill (no error with 

respect to observations). For correlations, values are first 

converted to z-scores using the Fisher transformation, aver-

aged, and then transformed back to correlation units (Sil-

ver and Dunlap 1987). Results are shown in Fig. 8. MBCn 

performs best for the MAE, LAR, and correlation statis-

tics. MBCn, with a mean value over the four skill scores 

of +0.57 (versus +0.39 for MBCr, +0.38 for MBCp, and 

+0.37 for QDM), outperforms the other three bias correc-

tion methods by a substantial margin. Similarly, the domain 

mean correlation is highest for MBCn (+0.77), followed by 

QDM and MBCp (+0.75), MBCr (+0.69), and CanRCM4 

(+0.60). For QDM, MBCp, and MBCr, contrasting perfor-

mance statistics for July mean and annual maximum FWI, 

reported earlier for the climatological values, are also evi-

dent in the MAE and LAR statistics.

For reference, the spatial distribution of one of the per-

formance statistics, LAR of the annual maximum daily 

FWI, is shown in Fig.  9 for CanRCM4, QDM, MBCr, 

and MBCn. Values for MBCp are similar to those for 

QDM and are omitted. For CanRCM4, the largest abso-

lute relative errors are located over the North American 

Cordillera, in particular western Canada, with secondary 

maxima extending eastward across the middle of Canada. 

Improvements in relative error with respect to CanRCM4 

for the bias correction methods follow the same spatial 

pattern. In terms of land area, QDM, MBCr, and MBCn 

perform better than CanRCM4 over 75, 87, and 96% of 

the domain respectively. Summaries for the full suite of 

performance statistics are shown in Fig.  10. MBCn per-

forms better than CanRCM4 over more of the domain 

(>91% for all statistics) than any of the other methods.

6  Spatial precipitation example

Section 5 deals with bias correction of climate model out-

puts, on a grid point by grid point basis, using observa-

tional data at the same resolution as the reference. Biases in 

spatial relationships, i.e, between different grid points, are 

Fig. 8  Cross-validated domain 

mean LAR and MAE skill 

scores relative to CanRCM4 

for bias corrected time series of 

July mean and annual maximum 

FWI, as well as cross-validated 

domain mean temporal correla-

tions between bias corrected 

and observed monthly mean 

FWI time series (the black 

dashed line shows the domain 

mean CanRCM4 correlation)
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Fig. 9  a Cross-validated 

LAR statistic with respect to 

WFDEI observations of annual 

maximum FWI for a raw 

CanRCM4 outputs. Differences 

in LAR between raw CanRCM4 

outputs and b QDM, c MBCr, 

and d MBCn; negative values 

indicate better performance than 

CanRCM4

Fig. 10  Area-weighted percent-

ages of grid points exhibiting 

improved cross-validation 

performance with respect to 

CanRCM4 for bias corrected 

time series of July mean, annual 

maximum FWI, and monthly 

mean FWI
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thus not considered. In this section, the ability of multivari-

ate bias correction techniques to correct biases in spatial 

(and, as a side effect, temporal) dependence is assessed.

While bias correction algorithms are designed to be 

applied to climate model and observed fields at similar 

scales (Maraun 2013), algorithms have also been used to 

simultaneously bias correct and downscale from coarse cli-

mate model outputs to finer observed scales. For example, 

Abatzoglou and Brown (2012), Stoner et al. (2013), Ahmed 

et al. (2013) each applied quantile mapping to daily climate 

model data that had been interpolated to a high-resolution 

observational grid. However, Maraun (2013) and Gutmann 

et  al. (2014) demonstrated that this approach—applying a 

univariate bias correction algorithm to interpolated cli-

mate data at individual grid points—can lead to fields with 

unrealistic spatial structure, especially if the variable being 

downscaled operates on spatial scales that are substantially 

finer than the climate model grid. This is particularly true 

for precipitation. The fine-scale bias corrected fields will 

inherit their spatial coherence from the coarser resolution 

climate model fields. For example, consider a situation 

where convective precipitation is triggered at a coarse-scale 

climate model grid point. When univariate quantile map-

ping is used to bias correct data that have been interpolated 

from the coarse-scale to fine-scale points within this grid 

cell, large precipitation amounts will be present over the 

grid cell in its entirety. In reality, observed convective pre-

cipitation would be spatially intermittent, only occurring 

over a fraction of the grid cell area. After univariate bias 

correction, marginal distributions at each fine-scale grid 

point will, by design, match observed distributions, but 

areal statistics, for example areal means or measures of spa-

tial autocorrelation, will be biased.

One possible solution to this problem involves separa-

tion of the downscaling and bias correction operations, 

as done in the bias corrected constructed analogue with 

quantile mapping reordering (BCCAQ) algorithm by Wer-

ner and Cannon (2016), in which a constructed analogue 

downscaling algorithm (instead of simple interpolation) 

precedes the application of QDM at each grid point. Alter-

natively, with a multivariate bias correction algorithm, like 

MBCn, spatial points can be treated as additional variables. 

Then, by accounting for the multivariate dependence struc-

ture, joint correction of multiple grid points should lead to 

bias corrected fields with realistic spatial structure. In this 

case, a separate downscaling algorithm may be unneces-

sary. To test this hypothesis, the MBCn algorithm is used 

to simultaneously bias correct and downscale simulated 

precipitation fields for each meteorological season (DJF, 

MAM, JJA, and SON). Given the importance of correctly 

characterizing precipitation variability (e.g., in applications 

like hydrological modelling), as well as the overall dif-

ficulty in simulating spatial and temporal intermittency of 

precipitation (Maraun et al. 2010), the focus here is exclu-

sively on bias correction of 3-h precipitation outputs from 

CanRCM4.

Following Maraun (2013), sub-grid variability over 

a single coarse-scale grid cell is used for illustrative pur-

poses. Observed WFDEI precipitation outputs are extracted 

over a 5 × 5 window of grid points centred on 96.75◦W 

and 44.25◦N, which is close to the middle of the NAM-44i 

domain (near Lincoln, Nebraska). As the focus is on cor-

rection of spatial relationships (i.e., downscaling), Can-

RCM4 outputs over the region are degraded spatially so 

that they are representative of a downscaling rather than 

pure bias correction application. Following Dixon et  al. 

(2016), simulated precipitation outputs are “coarsened” 

by spatially aggregating from the 0.5-deg NAM-44i grid 

to a coarser 2.5-deg grid and are then interpolated back 

onto the 0.5-deg grid. Spatial aggregation induces a fun-

damental mismatch in spatial scales between the model 

and observational fields. Furthermore, given the interrela-

tion between spatial and temporal scales, this also leads to 

biases in temporal autocorrelation. In all cases, the first half 

of the record is used for calibration and the second half is 

used as for out-of-sample verification; all reported statis-

tics are from the verification period. Results from MBCn 

are compared with those from univariate QDM (e.g., as in 

Abatzoglou and Brown 2012, Stoner et  al. 2013; Ahmed 

et  al. 2013), as well as MBCp, and MBCr. For the three 

multivariate algorithms, all 25 grid points are corrected 

simultaneously, whereas QDM is applied to each grid point 

in turn. Results are first illustrated for the summer season 

(JJA), when precipitation extremes are dominated by con-

vective precipitation events with short length scales. Sum-

mary statistics for the remaining seasons are then tabulated 

for sake of completeness.

For summer, Fig.  11a shows quantile-quantile plots 

between observed areal mean precipitation amounts over the 

5 × 5 grid points and the corresponding areal means from 

CanRCM4, QDM, MBCp, MBCr, and MBCn. As expected, 

areally-averaged precipitation amounts during summer for the 

coarse-scale climate model (coarsened CanRCM4) are biased 

low relative to fine-scale observations, especially for the larg-

est quantiles. Values for MBCr are similar to those from the 

coarsened CanRCM4 outputs; correcting Spearman correla-

tion does not lead to improvements in sub-grid scale spatial 

variability. As illustrated by Maraun (2013), univariate quan-

tile mapping (QDM) inflates areal precipitation amounts, 

leading to a large positive bias for the largest quantiles. This 

is consistent with the “convective precipitation” situation 

outlined above. MBCp, which corrects the Pearson correla-

tion between grid points, leads to an improved distribution 

of areal means, but still shows a small positive bias. This is 

removed by MBCn, which exhibits the closest correspond-

ence with observed values. Figure 11b shows distributions of 
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Moran’s I, a measure of the spatial autocorrelation of a grid-

ded field, over the series 5 × 5 grid observed and modelled 

fields. Moran’s I for a single field is given by

where N is the number of grid points, x is the variable of 

interest, x̄ is the mean of x over the grid, and wij is a binary 

indicator that characterizes neighbourhood structure. In this 

case, all grid points within the 5 × 5 domain are consid-

ered to be neighbours. Values of I typically range from −1 

(negative autocorrelation) to +1 (positive autocorrelation), 

with values near 0 indicating a random spatial pattern. 

Coarsened CanRCM4 outputs are more spatially coherent 

(median I = 0.38) than the WFDEI observations (median 

I = 0.18). Univariate QDM maintains this unrealistic spa-

tial coherence (median I = 0.33), which is consistent with 

results reported by Gutmann et  al. (2014). Conversely, 

MBCr leads to precipitation fields that are less coherent 

than observed (median I = 0.07). Both MBCp (median 

I = 0.26) and MBCn (median I = 0.18) provide a more 

realistic simulation of spatial dependence, but the overall 

correspondence is better for MBCn throughout the distri-

bution. While biases in spatial dependence are strongest in 

summer, a similar pattern of results is evident in the other 

seasons.

Table  1 shows seasonal values of the Kolmogo-

rov–Smirnov statistic, the maximum difference between 

(10)I =
N

∑N

i=1

∑N

j=1
wij

∑N

i=1

∑N

j=1
wij(xi − x̄)(xj − x̄)

∑N

i=1
(xi − x̄)2

two CDFs, for each of the modelled distributions of I 

compared with the observed distribution. In three out of 

the four seasons, MBCn performs best and MBCp second 

best, with ranks reversed for autumn. Poorer performance 

by MBCn in autumn is likely due to sampling variability; 

in the calibration sample, MBCn outperforms MBCp by 

a similar amount—Kolmogorov-Smirnov statistic of 0.06 

versus 0.19—as MBCp outperforms MBCn in the verifi-

cation period (0.07 versus 0.15).

Spatial and temporal scales for a meteorological field 

like precipitation are intrinsically linked (Eskridge et  al. 

1997). Does correcting spatial coherence lead to an atten-

dant improvement in temporal dependence? To measure 

discrepancies in temporal sequencing, values of autocor-

relation at lags 1 to 8 (3- to 24-h) are calculated for each 

of the observed and modelled areal mean precipitation 

time series in each season. Values, summarized as mean 

Fig. 11  a Quantile-quantile plots between observed areal mean 

WFDEI precipitation amounts and areal mean (coarsened) Can-

RCM4 (black), QDM (blue), MBCp (red), MBCr (pink), and MBCn 

(orange) precipitation amounts. Best fit lines are shown for reference. 

b Distributions of Moran’s I spatial autocorrelation coefficients for 

the WFDEI observations, interpolated CanRCM4 outputs, and QDM, 

MBCp, MBCr, and MBCn bias correction algorithms. From left to 

right, vertical lines indicate 1st, 25th, 50th, 75th and 99th percentiles 

of each distribution. Time steps with no precipitation anywhere in the 

area are omitted. All statistics are based on data from summer sea-

sons in the out-of-sample period

Table 1  Kolmogorov–Smirnov statistics between observed and mod-

elled distributions of Moran’s I for each season in the out-of-sample 

verification period

The best performing method in each season is underlined

Method/season CanRCM4 QDM MBCr MBCp MBCn

DJF 0.55 0.34 0.50 0.13 0.07

MAM 0.56 0.32 0.55 0.11 0.07

JJA 0.61 0.41 0.51 0.20 0.08

SON 0.48 0.30 0.57 0.07 0.15
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absolute errors (MAE) over all lags, are shown in Table 2. 

Aside from autumn, where the coarsened CanRCM4 series 

starts out by reproducing the observed autocorrelation 

function well, MBCn performs best in all seasons.

7  Discussion

While construction of the N-pdft algorithm by Pitié et  al. 

(2005, 2007) was originally motivated by an N = 3 dimen-

sional image processing problem with I ≫ N, the formal 

proof of convergence in the calibration sample is inde-

pendent of N. In the examples given in Sects.  4 to 6, the 

number of cases I (i.e., pixels or time steps) is also substan-

tially larger than the number of variables N. From a prac-

tical standpoint, applying the MBCn algorithm to higher 

dimensional problems leads to two potential problems. 

First, the number of iterations required to converge to the 

target distribution in the historical calibration period may 

be large, leading to unacceptably high computational cost. 

In general, speed of convergence will depend strongly on 

the characteristics of a given dataset and hence it is diffi-

cult to provide general estimates of computational demand. 

Second, if N is sufficiently large relative to I, then overfit-

ting—fitting to noise in the historical calibration sample—

is a very real possibility. In this case, convergence to the 

historical multivariate distribution may lead to spurious 

results in the projection period. The issue of overfitting has 

been raised for univariate quantile mapping, and is exacer-

bated when dealing with multivariate bias correction prob-

lems. As pointed out by IPCC (2015, pg. 22):

There is a trade-off between robustness and num-

ber of parameters in a [bias correction] BC method: 

the projections obtained from the BC data would be 

more credible when using simple methods (i.e., based 

on a parsimonious number of parameters). Results 

obtained using non-parametric BC methods such as 

quantile mapping often appear successful because 

of overfitting. However, when observed and simu-

lated distributions are fundamentally different, such 

BC methods may create overconfidence in the final 

results. 2D or higher-D corrections may do better at 

maintaining inter-variable links, but hinge on suffi-

cient data availability to populate higher-dimensional 

histograms.

While these issues are not a specific focus of this paper, 

they are important and worthy of general discussion before 

final conclusions are given.

To address the first problem, speed of convergence, 

Pitié et al. (2005, 2007) suggest replacing the sequence of 

random orthogonal rotation matrices with a deterministic 

selection that instead maximizes the distance between rota-

tion axis sets. As rotation axes are likely to be less corre-

lated in higher dimensions, improvements gained through 

optimization of the rotation matrices will, however, be 

greatest for small N. For deterministic versus random rota-

tions, Pitié et al. (2007) found average speed improvements 

of 2.15 and 1.5 times, respectively, for N = 2 and N = 3. 

For larger N, this is unlikely to offer large gains in compu-

tational efficiency. However, because the N-pdft algorithm 

and, by extension, MBCn, relies on repeated applications 

of univariate quantile mapping, another option would be 

to use the most efficient form of quantile mapping during 

each iteration (e.g., based on interpolation between a small 

number of empirical quantiles). For MBCn, which applies 

a reordering operation after the last iteration (i.e., step d in 

Sect.  3), a more sophisticated univariate version of QDM 

could then be applied just once to get the final values per 

rank.

To help avoid overfitting for high dimensional problems 

(or more generally whenever N is large relative to I), early 

stopping (Morgan and Bourlard 1990; Prechelt 1998)—an 

implicit form of regularization commonly used in itera-

tively-trained machine learning methods—may be effective 

for MBCn. Early stopping involves terminating calibration 

of a learning algorithm, in this case MBCn, prior to con-

vergence on the calibration sample. Instead, performance 

is measured on a separate set of validation data and the 

algorithm is stopped when performance on this held-out 

sample, for example as measured using the energy distance 

(Eq.  4), is maximized. The objective thus is not to maxi-

mize calibration performance, but rather an estimate of the 

out-of-sample generalization performance. As a side bene-

fit, by limiting the number of iterations, early stopping will 

also tend to reduce the overall computational burden of the 

MBCn algorithm.

8  Conclusion

MBCn, a modification of the N-pdft algorithm used in com-

puter vision and image processing (Pitié et al. 2005, 2007), 

Table 2  MAE between observed and modelled autocorrelation coef-

ficients for areal mean precipitation series, averaged over lags 1 to 8, 

for each season in the out-of-sample verification period

The best performing method in each season is underlined

Method/season CanRCM4 QDM MBCr MBCp MBCn

DJF 0.10 0.06 0.10 0.07 0.06

MAM 0.03 0.03 0.04 0.04 0.02

JJA 0.04 0.04 0.08 0.05 0.03

SON 0.01 0.02 0.02 0.04 0.02
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is developed as a multivariate bias correction algorithm for 

climate model simulations of multiple variables. The result 

is a multivariate generalization of quantile mapping that 

transfers all statistical characteristics of an observed con-

tinuous multivariate distribution to the corresponding mul-

tivariate distribution of simulated variables. Unlike other 

multivariate bias correction algorithms, for example meth-

ods by Bürger et  al. (2011), Vrac and Friederichs (2015), 

Mehrotra and Sharma (2016), and Cannon (2016), MBCn 

is not restricted to correcting a specified measure of joint 

dependence, such as Pearson or Spearman rank correlation, 

nor does it make strong stationarity assumptions about cli-

mate model temporal sequencing. The underlying N-pdft 

algorithm also has proven convergence properties (Pitié 

et al. 2007).

The method is first illustrated using an image recolour-

ing example motivated by Pitié et al. (2005, 2007). When 

modified to mimic a traditional climate simulation experi-

ment, image processing provides an effective way to visual-

ize and gain both a qualitative feel for and quantitatively 

assess the performance of a multivariate bias correction 

algorithm. As shown in Fig. 3, one drawback of MBCn is 

its computational complexity, requiring several iterations 

to converge to the observed multivariate distribution. For 

image recolouring, a 3 dimensional dataset, it is ∼20–30 

times more expensive than quantile mapping, which is 

equivalent to ∼2–10 times more expensive than the MBCp 

and MCBCr algorithms from Cannon (2016). Suggestions 

for improving the speed of convergence and, for higher 

dimension problems, avoiding overfitting, are discussed in 

Sect. 7.

Despite its higher computational cost, the MBCn 

method can be applied in a real-world climate model post-

processing context. In this regard, MBCn is demonstrated 

by correcting biases in multiple climate variables from 

CanRCM4 over a North American domain and then cal-

culating components of the Canadian Fire Weather Index 

(FWI) system. Results are compared with those from uni-

variate quantile mapping and the MBCp and MBCr algo-

rithms. Only MBCn is able to reproduce both observed 

annual maximum and July mean values of the FWI. Finally, 

MBCn is used to simultaneously bias correct and down-

scale CanRCM4 precipitation series. Overall, spatiotem-

poral statistics from MBCn match observed values more 

closely than the other methods. Hence, it may be feasible to 

use MBCn directly in downscaling applications, a practice 

that has been questioned for univariate quantile mapping 

(Maraun 2013; Gutmann et al. 2014).

One potential avenue for additional research is the 

explicit correction of multiple time scales. For example, 

Mehrotra and Sharma (2016) corrected lag 1 autocorrela-

tion statistics at daily, monthly, quarterly, and annual time 

scales. With MBCn, one could decompose a given time 

series into different time scales, for example using a mul-

tiresolution wavelet analysis or Kolmogorov–Zurbenko fil-

tering (Eskridge et  al. 1997), simultaneously bias correct 

the partitioned time series, and then reconstruct the original 

series. The basic approach can easily be extended to both 

space and time dimensions of multiple variables. This is 

left for future work.

Finally, an R package (R Core Team 2015) implement-

ing the MBCn algorithm is available for download from 

https://CRAN.R-project.org/package=MBC.
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