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MULTIVARIATE QUANTILES AND MULTIPLE-OUTPUT

REGRESSION QUANTILES: FROM L1 OPTIMIZATION

TO HALFSPACE DEPTH

BY MARC HALLIN1,2, DAVY PAINDAVEINE2,3 AND MIROSLAV ŠIMAN3

Université Libre de Bruxelles

A new multivariate concept of quantile, based on a directional version of
Koenker and Bassett’s traditional regression quantiles, is introduced for mul-
tivariate location and multiple-output regression problems. In their empirical
version, those quantiles can be computed efficiently via linear programming
techniques. Consistency, Bahadur representation and asymptotic normality
results are established. Most importantly, the contours generated by those
quantiles are shown to coincide with the classical halfspace depth contours
associated with the name of Tukey. This relation does not only allow for ef-
ficient depth contour computations by means of parametric linear program-
ming, but also for transferring from the quantile to the depth universe such
asymptotic results as Bahadur representations. Finally, linear programming
duality opens the way to promising developments in depth-related multivari-
ate rank-based inference.

1. Introduction: Multivariate quantiles and statistical depth. In this pa-
per, we propose a definition of multivariate quantiles/multiple-output regression
quantiles enjoying all the probabilistic and analytical properties one is generally
expecting from a quantile, while exhibiting a very strong and fundamental connec-
tion with the concept of halfspace depth. Some of the basic ideas of this definition
were exposed in an unpublished master thesis by Laine [21], quoted in [16]. In this
paper, we carefully revive Laine’s ideas, and systematically develop and prove the
main properties of the concept he introduced.

A huge literature has been devoted to the problem of extending to a multi-
variate setting the fundamental one-dimensional concept of quantile; see, for in-
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stance, [1, 3–7, 10, 15, 19, 34] and [37] or [33] for a recent survey. An equally
huge literature—see [9, 22, 39] and [40] for a comprehensive account—is dealing
with the concept of (location) depth. The philosophies underlying those two con-
cepts at first sight are quite different, and even, to some extent, opposite. While
quantiles resort to analytical characterizations through inverse distribution func-
tions or L1 optimization, depth often derives from more geometric considerations
such as halfspaces, simplices, ellipsoids and projections. Both carry advantages
and some drawbacks. Analytical definitions usually bring in efficient algorithms
and tractable asymptotics. The geometric ones enjoy attractive equivariance prop-
erties and intuitive contents, but their probabilistic study and asymptotics are gen-
erally trickier, while their implementation, as a rule, leads to heavy combinator-
ial algorithms; a highly elegant analytical approach to depth has been proposed
in [24], but does not help much in that respect.

Yet, beyond those sharp methodological differences, quantiles and depth ob-
viously exhibit a close conceptional kinship. In the univariate case, all defini-
tions basically agree that the depth of a point x ∈ R with respect to a prob-
ability distribution P with strictly monotone distribution function F should be
min(F (x),1 − F(x)), so that the only points with depth d are xd := F−1(d) and
x1−d := F−1(1 − d)—the quantiles of orders d and 1 − d , respectively. Starting
with dimension two, no such clear and undisputable relation has been established
so far—how could there be one, by the way, as long as no clear and undisputable
definition of a multivariate quantile has been agreed upon? Bridging the gap be-
tween the two concepts thus would allow for transferring to the depth universe
the analytical and algorithmic tools of the quantile approach, while sorting out
the many candidates for a sound definition of multivariate quantiles. Establishing
a relation between the quantile and depth philosophies in R

k , if at all possible,
therefore is highly desirable.

An important step in that direction has been made very recently in a paper by
Kong and Mizera [20]. Kong and Mizera adopt a very simple and, at first sight,
quite natural projection-based definition of quantiles. In that approach, denoting by
u a point on the unit sphere S k−1, a quantile of order τ ∈ (0,1) is either a real num-
ber qKM;τu ∈ R (q(n)

KM;τu in the empirical case), the point qKM;τu := qKM;τuu ∈ R
k

(resp., q
(n)
KM;τu), or the hyperplane πKM;τu (resp., π

(n)
KM;τu) orthogonal to u at

qKM;τu (resp., q
(n)
KM;τu). The scalar quantity qKM;τu ∈ R is defined as the quantile

of order τ of the univariate distribution obtained by projecting P onto the oriented
straight line with unit vector u, and therefore derives from purely univariate L1
arguments; see Section 4.3 for details. The resulting quantile contours (the col-
lections, for fixed τ , of qKM;τu’s) do not enjoy the properties (independence with
respect to the choice of an origin, affine-equivariance, nestedness, etc.) one is ex-
pecting from a quantile concept. However, somewhat surprisingly, the envelopes
of these contours—namely, the inner regions characterized by the (infinite) fixed-τ
collections of πKM;τu’s (resp., π

(n)
KM;τu’s)—coincide with Tukey’s halfspace depth
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regions, which provides a most interesting, though somewhat indirect, conceptual
bridge between the two concepts.

Our quantiles also are associated with unit vectors u ∈ S k−1, hence also are di-
rectional quantiles. However, instead of projecting onto the straight line defined
by u, we stay in a k-dimensional setting, where u simply indicates the reference
“vertical” direction for a regression quantile construction in the Koenker and Bas-
sett [18] style. As in [18], our quantiles thus are hyperplanes πτu (π (n)

τu in the
empirical case); in contrast with πKM;τu and π

(n)
KM;τu, however, the fixed-u collec-

tions of πτu’s and π
(n)
τu ’s are not collections of parallel hyperplanes all orthogonal

to u. Whereas projection quantiles only involve univariate L1 arguments, ours in-
deed rely on fully k-dimensional L1 optimization. As shown in Section 4, the
inner regions characterized by the fixed-τ collections of πτu’s (resp., π

(n)
τu ’s) also

coincide with Tukey’s halfspace depth regions. Contrary to Kong and Mizera’s,
however, the πτu quantile hyperplanes do enjoy all the desirable properties of a
well-behaved quantile concept. And, in the empirical case, our quantile hyper-
planes and the faces of Tukey’s (polyhedral) depth contours essentially coincide,
in the sense that the latter constitute a (finite) subcollection of the finite collection
of π

(n)
τu ’s, itself a finite subcollection of the infinite collection of π

(n)
KM;τu’s.

From their L1 definitions, the π
(n)
τu ’s and π

(n)
KM;τu’s both inherit a probabilistic

interpretation allowing for tractable asymptotics: consistency, Bahadur representa-
tions and asymptotic normality. From their relation to depth, the resulting contours
acquire a series of nice geometric properties such as convexity, nestedness and
affine-equivariance; and, since empirical Tukey depth contours fully characterize
the empirical distribution (see [35]), our quantile contours (as well as Kong and
Mizera’s) also do. Above all, our quantiles receive the important benefits of linear
programming algorithms, which thereby automatically transfer to depth, hence—
indirectly, though (see [26])—also to the Kong and Mizera concept. Moreover,
both concepts readily generalize to the regression setting, yielding nested polyhe-
dral regions wrapping, up to the classical quantile crossings, a median or deepest
regression hypertube (see [26] for a detailed comparison of our regression quan-
tile hypertubes and those resulting from the Kong and Mizera approach). This
extends to the multiple-output context the celebrated single-output Koenker and
Bassett concept of regression quantiles. Conversely, as indicated in [26] it also
leads to a concept of multiple-output regression halfspace depth; that depth con-
cept, however, has the nature of a point regression depth, hence is distinct from
the Rousseeuw and Hubert regression depth concept (see [29]), which is a hyper-

plane depth concept. A constrained optimization form of the definition of π
(n)
τu

also allows for computing Lagrange multipliers with most interesting statistical
applications. Finally, by resorting to classical linear programming duality, a con-
cept of directional regression rank scores, allowing for multivariate versions of the
methods developed in [12], naturally comes into the picture.
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From an applied perspective, the possibility of computing Tukey depth con-
tours via parametric linear programming is not a small advantage. The complex-
ity of computing the depth of a given point is O(nk−1 logn), with algorithms by
Rousseeuw and Ruts [28] for k = 2 and Rousseeuw and Struyf [31] for general k.
The best known algorithm for computing all depth contours has complexity O(n2)

(see [23]) in dimension k = 2. To the best of our knowledge, no exact imple-
mentable algorithm is available so far for k > 2. Our approach allows for higher
values of k, and we could easily run our algorithms in dimension k = 5, for a few
hundred observations.

The paper is organized as follows. Section 2 introduces the definitions and main
notation to be used throughout. In Section 3, we study the main properties of the
new quantiles: from their directional quantile nature, they inherit subgradient char-
acterizations (Section 3.1), equivariance properties (Section 3.2), and quantile-like
asymptotics—strong consistency, Bahadur representation and asymptotic normal-
ity (Section 3.3). In Section 4, we establish the equivalence of the quantile con-
tours, thus obtained with the more traditional halfspace (or Tukey) depth contours,
as well as their relation to the recent results by Kong and Mizera [20] and Wei [37].
Section 5 is devoted to the computational aspects of our multivariate quantiles,
and Section 6 to their extension to a multiple-output regression context. A brief
application to real data is discussed in Section 7. Section 8 concludes with some
perspectives for future research. Proofs are collected in the Appendix.

2. Definition and notation. Consider the k-variate random vector Z := (Z1,

. . . ,Zk)
′. The multivariate quantiles we are proposing are directional objects—

more precisely, (k − 1)-dimensional hyperplanes indexed by vectors τ ranging
over the open unit ball (deprived of the origin) Bk := {z ∈ R

k : 0 < ‖z‖ < 1} of R
k .

This directional index τ naturally factorizes into τ =: τu, where τ = ‖τ‖ ∈ (0,1)

and u ∈ S k−1 := {z ∈ R
k :‖z‖ = 1}. Denoting by Ŵu an arbitrary k × (k − 1) ma-

trix of unit vectors such that (u
...Ŵu) constitutes an orthonormal basis of R

k , we
define the τ -quantile of Z as the regression τ -quantile hyperplane obtained (in
the traditional Koenker and Bassett [18] sense) when regressing Zu := u′Z on the
marginals of Z⊥

u := Ŵ′
uZ and a constant term: the vector u therefore indicates the

direction of the “vertical” axis in the regression, while Ŵu simply provides an or-
thonormal basis of the vector space orthogonal to u. More precisely, denoting by
x �→ ρτ (x) := x(τ − I[x<0]) the usual τ -quantile check function, we adopt the fol-
lowing definition.

DEFINITION 2.1. The τ -quantile of Z (τ =: τu ∈ Bk) is any element of the
collection �τ of hyperplanes πτ := {z ∈ R

k : u′z = b′
τŴ′

uz + aτ } such that

(aτ ,b′
τ )′ ∈ arg min

(a,b′)′∈Rk

�τ (a,b)

(2.1)
where �τ (a,b) := E[ρτ (Zu − b′Z⊥

u − a)].
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This definition tacitly requires the existence, for Z, of finite first-order moments:
see the comment below. For the sake of notational simplicity, quantiles, here and
in the sequel, are associated with a random vector Z, though they actually are
attributes of Z’s probability distribution P.

Definition 2.1 clearly extends the traditional univariate one. For k = 1, indeed,
hyperplanes of dimension k − 1 are simply points, Bk reduces to (−1,0) ∪ (0,1)

and πτ to a “classical” quantile, of order 1 − ‖τ‖ (τ pointing to the left) or ‖τ‖
(τ pointing to the right). This couple of quantiles constitutes (for k = 1) a quan-

tile contour, indicating that a sensible relation between depth and quantiles should
associate depth contours with contour-valued rather than with point-valued quan-
tiles.

Note that the quantile hyperplanes πτ and the “intercepts” aτ are well defined
in the sense that they only depend on τ , not on the coordinate system associated
with the (arbitrary) choice of Ŵu. However, the “slope” coefficients bτ = bτ (Ŵu)

do depend on Ŵu, a dependence we do not stress in the notation unless really
necessary.

Each quantile hyperplane πτ [each element (aτ ,b′
τ )′ of arg min(a,b′)′∈Rk �τ (a,

b)] characterizes a lower (open) quantile halfspace

H−
τ = H−

τ (aτ ,bτ ) := {z ∈ R
k : u′z < b′

τŴ′
uz + aτ }(2.2)

and an upper (closed) quantile halfspace

H+
τ = H+

τ (aτ ,bτ ) := {z ∈ R
k : u′z ≥ b′

τŴ′
uz + aτ }.(2.3)

As already mentioned, Definition 2.1 requires Z to have finite first-order mo-
ments. Actually, modifying (2.1) into (aτ ,b′

τ )′ ∈ arg min(a,b′)′∈Rk (�τ (a,b) −
�τ (0,0)) has no impact on πτ , while allowing to relax the moment condition on
Zu; finite first-order moments, however, still are required for Z⊥

u . When u ranges
over S k−1—for instance, when defining quantile contours—we need finite first-
order moments for all Z⊥

u ’s, hence for Z itself. For the sake of simplicity, we often
adopt the following assumption in the sequel.

ASSUMPTION (A). The distribution of the random vector Z is absolutely con-
tinuous with respect to the Lebesgue measure on R

k , with a density (f , say) that
has connected support, and admits finite first-order moments.

The minimization problem (2.1) may have multiple solutions, yielding distinct
hyperplanes πτ . This, however, does not occur under Assumption (A), as shown
in the following result, which is a particular case of Theorem 2.1 in [26].

PROPOSITION 2.1. Let Assumption (A) hold. Then, for any τ ∈ Bk , the mini-

mizer (aτ ,b′
τ )′ in (2.1), hence also the resulting quantile hyperplane πτ , is unique.

The family of hyperplanes � = {πτ :τ = τu ∈ Bk} can be considered from two
different points of view. The directional point of view, associated with the fixed-u
subfamilies �u := {πτ :τ = τu, τ ∈ (0,1)} is the one emphasized so far in the



640 M. HALLIN, D. PAINDAVEINE AND M. ŠIMAN

definition, and provides, for each u, the usual interpretation of a collection of re-
gression quantile hyperplanes. Another point of view is associated with the fixed-τ
subfamilies �τ := {πτ :τ = τu,u ∈ S k−1}, which generate quantile contours: this
point of view is developed in Section 4.

Before turning to the empirical version of our quantiles, let us present an alter-
native (but strictly equivalent) definition of our τ -quantiles, based on a constrained

optimization formulation.

DEFINITION 2.2. The τ -quantile of Z (τ =: τu ∈ Bk) is any element of the
collection �τ of hyperplanes πτ := {z ∈ R

k : c′
τ z = aτ } such that

(aτ , c′
τ )′ ∈ arg min

(a,c′)′∈Mu

�c
τ (a, c),(2.4)

where �c
τ (a, c) := E[ρτ (c

′Z − a)] and Mu := {(a, c′)′ ∈ R
k+1 : u′c = 1}.

Clearly, if (aτ ,b′
τ )′ is a minimizer of (2.1), then (aτ , c′

τ )′ := (aτ , (u − Ŵubτ )′)′

minimizes the objective function in (2.4); conversely, for any minimizer (aτ , c′
τ )′

of (2.4), (aτ ,b′
τ )′ := (aτ , (−Ŵ′

ucτ )′)′ minimizes the objective function in (2.1).
The two definitions thus coincide; in particular, the lower and upper quantile half-
spaces {z ∈ R

k : c′
τ z < aτ } and {z ∈ R

k : c′
τ z ≥ aτ } associated with the quantile

hyperplanes of Definition 2.2 coincide with those in (2.2) and (2.3), and therefore,
depending on the context, the notation H±

τ (aτ ,bτ ), H±
τ (aτ , cτ ), or simply H±

τ

will be used indifferently. Definitions 2.1 and 2.2 both have advantages and, in the
sequel, we use them both. Definition 2.1 is preferred in this section since it carries
all the intuitive contents of our concept; the advantages of Definition 2.2, of an
analytical nature, will appear more clearly in Sections 3.1 and 5.

The empirical versions of our quantile hyperplanes and the corresponding lower
and upper quantile halfspaces naturally follow as sample analogs of the population
concepts. To be more specific, let Z(n) := (Z1, . . . ,Zn) be an n-tuple (n > k) of
k-dimensional random vectors: we define the empirical τ -quantile of Z(n) as any
element of the collection �

(n)
τ of hyperplanes π

(n)
τ := {z ∈ R

k : u′z = b
(n)′
τ Ŵ′

uz +
a

(n)
τ } such that (with obvious notation)

(

a(n)
τ ,b(n)′

τ

)′ ∈ arg min
(a,b′)′∈Rk

�(n)
τ (a,b)

(2.5)

with �
(n)
τ (a,b) :=

1

n

n
∑

i=1

ρτ (Ziu − b′Z⊥
iu − a),

or equivalently, of hyperplanes π
(n)
τ := {z ∈ R

k : c
(n)′
τ z = a

(n)
τ } such that

(

a(n)
τ , c(n)′

τ

)′ ∈ arg min
(a,c′)′∈Mu

�c(n)
τ (a, c)

(2.6)

with �
c(n)
τ (a, c) :=

1

n

n
∑

i=1

ρτ (c
′Zi − a)
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FIG. 1. The left plot contains n = 9 (red) points drawn from U([−0.5,0.5]2), the centered bivari-

ate uniform distribution over the unit square, and provides all τ -quantile hyperplanes for τ = 0.2.
These hyperplanes define a polygonal central region (green contour) which, in Section 4, is shown to

coincide with a Tukey depth region. The quantile hyperplanes contributing an edge to the polygonal

central region are shown in magenta; those associated with the four semiaxial directions in black; all

other ones in blue. The right plot provides the same information for n = 499 (invisible) points drawn

from the same population distribution.

(no moment assumption is required here). These empirical quantiles—which for
given u clearly coincide with the Koenker and Bassett [18] hyperplanes in the
coordinate system (u

...Ŵu)—allow for defining, in an obvious way, the empirical
analogs H

(n)−
τ and H

(n)+
τ of the lower and upper quantile halfspaces in (2.2) and

(2.3); see Figures 1 and 2 for an illustration.

FIG. 2. This plot provides six τ -quantile hyperplanes (in black) in the semiaxial directions for

τ = 0.1, computed from n = 49 (red) points drawn from U([−0.5,0.5]3), the centered trivariate

uniform distribution over the unit cube, along with the corresponding central (Tukey depth) region

(in green).
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Of course, empirical distributions are inherently discrete, and empirical τ -
quantiles and halfspaces in general are not uniquely defined. However, the min-
imizers of (2.5) [equivalently, of (2.6)], for given τ , are “close to each other,” in
the sense that the set of minimizers is convex—hence, connected (this readily fol-
lows from the fact that the objective functions are convex); this set is shrinking,
as n → ∞, to a single point which corresponds to the uniquely defined population
quantile, provided that the following assumption is fulfilled (see the asymptotic
results of Section 3.3 for details).

ASSUMPTION (An). The observations Zi , i = 1, . . . , n are i.i.d. with a com-
mon distribution satisfying Assumption (A).

Finally, note that, since the empirical versions of our quantiles, for given u,
are defined as standard single-output quantile regression hyperplanes, they inherit
the linear programming features of the Koenker–Bassett theory. This certainly is
one of the most important and attractive properties of the proposed quantiles; see
Section 5 for details.

3. Multivariate quantiles as directional quantiles. In this section, we de-
scribe the “directional” properties of our quantiles. We first derive and discuss the
subgradient conditions associated with the optimization problems in Definitions
2.1 and 2.2, then state the strong equivariance properties of our empirical quan-
tiles, and finally present some asymptotic results.

3.1. Subgradient conditions. Under Assumption (A), the objective function
�τ appearing in Definition 2.1 is convex and continuously differentiable on R

k .
Therefore, our population τ -quantiles can be equivalently defined as the collection
of hyperplanes associated with the solutions (aτ ,b′

τ )′ of the system of equations

grad(a,b′)′ �τ (a,b) = 0(3.1)

(see Sections 2.2.1 and 2.2.2 in [16]). These hyperplanes thus are characterized by
the relations

0 = (∂a�τ (a,b))(aτ ,b′
τ )′ = P[u′Z < b′

τŴ′
uZ + aτ ] − τ(3.2a)

= P[Z ∈ H−
τ (aτ ,bτ )] − τ,

0 = (gradb �τ (a,b))(aτ ,b′
τ )′ = −τE[Ŵ′

uZ] + E
[

Ŵ′
uZI[Z∈H−

τ (aτ ,bτ )]
]

.(3.2b)

Clearly, relation (3.2a) provides our multivariate τ -quantiles with a natural proba-
bilistic interpretation, as it keeps the probability of their lower halfspaces equal to
τ(= ‖τ‖). As for relation (3.2b), it can be rewritten as

Ŵ′
u

[

1

1 − τ
E

[

ZI[Z∈H+
τ ]

]

−
1

τ
E

[

ZI[Z∈H−
τ ]

]

]

= 0,(3.3)
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which—combined with (3.2a)—shows that the straight line through the proba-
bility mass centers 1

τ
E[ZI[Z∈H−

τ ]] and 1
1−τ

E[ZI[Z∈H+
τ ]] of the lower and upper

τ -quantile halfspaces is parallel to u(:= τ/τ). Note moreover that, quite trivially,

(1 − τ)

(

1

1 − τ
E

[

ZI[Z∈H+
τ ]

]

)

+ τ

(

1

τ
E

[

ZI[Z∈H−
τ ]

]

)

= E[Z],

so that the overall probability mass center also belongs to the same straight line.
Now consider the gradient conditions associated with Definition 2.2, which state

that (aτ , c′
τ , λτ )′ are solutions of the system

grad(a,c′,λ)′ Lτ (a, c, λ) = 0
(3.4)

with Lτ (a, c, λ) := �c
τ (a, c) − λ(u′c − 1)

(the Lagrangian function of the problem). Equivalently [indeed, the only points in
R

k+2 where (a, c′, λ)′ �→ Lτ (a, c, λ) is not continuously differentiable are of the
form (0,0′, λ)′, hence cannot be associated with a minimum of (2.4)], the latter
gradient conditions can be rewritten as

0 = (∂aLτ (a, c, λ))(aτ ,c′
τ ,λτ )′(3.5a)

= P[c′
τ Z < aτ ] − τ = P[Z ∈ H−

τ (aτ , cτ )] − τ,

0 = (gradc Lτ (a, c, λ))(aτ ,c′
τ ,λτ )′ = τE[Z] − E

[

ZI[Z∈H−
τ (aτ ,cτ )]

]

− λτ u,(3.5b)

0 = (∂λLτ (a, c, λ))(aτ ,c′
τ ,λτ )′ = 1 − u′cτ .(3.5c)

For such a constrained optimization problem, gradient conditions in general are
necessary but not sufficient. In this case, however, note that premultiplying both
sides of (3.5b) by Ŵ′

u yields (3.2b), which clearly implies that, disregarding the
Lagrange multiplier λτ and (3.5c) to focus on (the coefficients of) the quantile
hyperplane πτ , the necessary conditions (3.5a) and (3.5b) are no weaker than the
necessary and sufficient ones in (3.2a) and (3.2b), hence are necessary and suffi-
cient, too.

The gradient conditions (3.4) associated with Definition 2.2 are, in a sense,
richer than those (3.1) associated with the original definition of our quantiles,
which is actually one of the main reasons why we also consider that alternative
definition. Indeed, (3.5b), which can be rewritten as

1

1 − τ
E

[

ZI[Z∈H+
τ ]

]

−
1

τ
E

[

ZI[Z∈H−
τ ]

]

=
λτ

τ(1 − τ)
u,(3.6)

is more informative than (3.2b)–(3.3), and clarifies the role of the Lagrange mul-
tiplier λτ . Such a multiplier, which in general only measures the impact of the
boundary constraint [in this case, the constraint (3.5c)], here appears as a func-
tional that is potentially useful for testing (central, elliptical, or spherical) sym-
metry or for measuring directional outlyingness and tail behavior of the distrib-
ution; see Section 8. Moreover, premultiplying (3.5b) with c′

τ yields λτ (c′
τ u) =
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E[(τ − I[c′
τ Z−aτ <0])c

′
τ Z], that is, by using (3.5a) and (3.5c),

λτ = �c
τ (aτ , cτ ),(3.7)

so that λτ is nothing but the minimum achieved in (2.4) [equivalently, in (2.1)].
The sample objective functions �

(n)
τ (a,b) and �

c(n)
τ (a, c) in (2.5) and (2.6) are

not continuously differentiable. They however have directional derivatives in all
directions, which can be used to formulate fixed-u subgradient conditions for the
empirical τ -quantiles, τ = τu. Focusing first on the constrained optimization prob-
lem (2.6), it is easy to show that the coefficients (a

(n)
τ , c

(n)′
τ )′ and the corresponding

Lagrange multiplier λ
(n)
τ of any empirical τ -quantile π

(n)
τ = {z ∈ R

k : c
(n)′
τ z = a

(n)
τ }

must satisfy (letting r
(n)
iτ := c

(n)′
τ Zi − a

(n)
τ , i = 1, . . . , n)

1

n

n
∑

i=1

I[r(n)
iτ <0] ≤ τ ≤

1

n

n
∑

i=1

I[r(n)
iτ ≤0],(3.8a)

−1

n

n
∑

i=1

Z−
i I[r(n)

iτ =0] ≤ τ

[

1

n

n
∑

i=1

Zi

]

−
[

1

n

n
∑

i=1

ZiI[r(n)
iτ <0]

]

− λ(n)
τ u

(3.8b)

≤
1

n

n
∑

i=1

Z+
i I[r(n)

iτ =0] and

0 = 1 − u′c(n)
τ ,(3.8c)

where z+ := (max(z1,0), . . . ,max(zk,0))′ and z− := (−min(z1,0), . . . ,

−min(zk,0))′. These necessary conditions are obtained by imposing that, at
(a

(n)
τ , c

(n)′
τ , λ

(n)
τ )′, directional derivatives in each of the 2(k + 2) semi-axial di-

rections of the (a, c′, λ)′-space be nonnegative for (a, c′)′ and zero for λ.
For n ≫ k, we clearly may interpret (3.8a) and (3.8c) as an approximate version

of their population analogs (3.5a) and (3.5b), roughly with the same consequences
[the condition (3.8c) simply restates our boundary constraint]. More specifically,
(3.8a) indicates that

N

n
≤ τ ≤

N + Z

n
, hence

P

n
≤ 1 − τ ≤

P + Z

n
,(3.9)

where N , P and Z are the numbers of negative, positive and zero values, respec-
tively, in the residual series r

(n)
iτ , i = 1, . . . , n. This implies that, for noninteger

values of nτ , empirical τ -quantile hyperplanes have to go through some of the
Zi’s. Actually, if the data points are in general position [which of course holds
with probability one under Assumption (An)], there exists a sample τ -quantile hy-
perplane π

(n)
τ which fits exactly k observations; (3.9) then holds with Z = k (see

Sections 2.2.1 and 2.2.2 of [16]). Note that the inequalities in (3.8a) and (3.8c)
[hence, also in (3.9)] must be strict if the sample τ -quantile is to be uniquely de-
fined. Finally, as we will see in (5.2) below, the value of λ

(n)
τ , parallel to the popu-

lation case, is the minimal one that can be achieved in (2.6), hence also in (2.5).
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For the unconstrained definition of our empirical quantiles in (2.5), necessary
and sufficient subgradient conditions can be obtained by applying Theorem 2.1
of [16], since (2.5) is nothing but a standard single-output quantile regression opti-
mization problem. Assuming that the data points are in general position and defin-
ing, for any k-tuple of indices h = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ n,

Yu(h) := Z
′(h)u and Xu(h) :=

(

1k

...Z′(h)Ŵu

)

,(3.10)

where Z(h) := (Zi1, . . . ,Zik ) and 1k = (1, . . . ,1)′ ∈ R
k , Koenker’s result, in the

present context, states that (a
(n)
τ ,b

(n)′
τ )′ = (Xu(h))−1

Yu(h) (we just pointed out
that, under such conditions, there always exists a quantile hyperplane fitting ex-
actly k observations) is a solution of (2.5) if and only if

−τ1k ≤ ξ τ (h) ≤ (1 − τ)1k,(3.11)

where

ξ τ (h) := (X′
u(h))−1

∑

i /∈h

(

τ − I[ri<0]
)

(

1
Ŵ′

uZi

)

(3.12)

with ri := u′Zi − b
(n)
τ Ŵ′

uZi − a
(n)
τ . Again, this solution is unique if and only if

the inequalities in (3.11) are strict; see [16]. As for the constrained case, it follows
from the linear programming theory that (a

(n)
τ , c

(n)′
τ )′ are the coefficients of a τ -

quantile hyperplane if and only if (3.11) holds with ri := c
(n)′
τ Zi − a

(n)
τ in (3.12)

(still with a unique solution when the inequalities are strict).
We stress that no conditions (in particular, no moment conditions) are required

here; only, the data points are assumed to be in general position.

3.2. Equivariance properties. For the sake of simplicity, results for population
quantiles here are stated under Assumption (A); more general statements could be
derived, however, by taking into account the possible nonunicity of the resulting τ -
quantiles (see Proposition 2.1). It is then easy to check that, with obvious notation,
the affine-equivariance property

πτMu/‖Mu‖(MZ + d) = Mπτu(Z) + d(3.13)

holds for any invertible k × k matrix M and any vector d ∈ R
k . Since, moreover,

‖τMu‖/‖Mu‖ = ‖τu‖, (3.13) is also compatible with the general equivariance
property advocated by [34] in his Definition 2.1. In particular, for translations,
we have πτu(Z + d) = πτu(Z) + d for any k-vector d, which confirms that our
concept of multivariate quantiles is not localized at any point of the k-dimensional
Euclidean space; this was not so clear in Section 2 since the center of the unit
sphere S k−1 (the origin of R

k) seems to play an important role in their definitions.
This is in sharp contrast with other directional quantile contours that are defined
with respect to some location center, such as those of [20] (under the terminology
quantile biplots) and [37].
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Note that for any τ ∈ (0,1) and any u ∈ S k−1,

π(1−τ)u(Z) = πτ(−u)(Z)(3.14)

with the corresponding upper and lower halfspaces exchanged: intH±
(1−τ)u(Z) =

intH∓
τ(−u)(Z). Clearly, there is no general link between πτ(−u)(Z) and πτu(Z) un-

less the distribution of Z is centrally symmetric with respect to some point θ ∈ R
k .

3.3. Asymptotic results. This section derives, under Assumption (An) above,
strong consistency, asymptotic normality and Bahadur-type representation results
for sample τ -quantiles and related quantities.

Under Assumption (A), the population τ -quantiles (aτ ,b′
τ )′ and (aτ , c′

τ )′ al-
ways are uniquely defined (Proposition 2.1), unlike their sample counterparts
(a

(n)
τ ,b

(n)′
τ )′ and (a

(n)
τ , c

(n)′
τ )′; in the sequel, the latter notation will be used for

arbitrary sequences of solutions to (2.5) and (2.6), respectively.
Strong consistency of our sample τ -quantiles, namely the fact that (a

(n)
τ ,b

(n)′
τ )′

converges to (aτ ,b′
τ )′ almost surely as n → ∞, holds under Assumption (An); this

follows, for example, from [13], Section 2.3. Asymptotic normality and Bahadur-
type representation results, however, require slightly stronger assumptions. Con-
sider the following reinforcement of Assumption (An).

ASSUMPTION (A′
n). The observations Zi , i = 1, . . . , n are i.i.d. with a com-

mon distribution that is absolutely continuous with respect to the Lebesgue mea-
sure on R

k , with a density (f , say) that has a connected support, admits finite
second-order moments and, for some constants C > 0, r > k − 2 and s > 0, satis-
fies

|f (z1) − f (z2)| ≤ C‖z1 − z2‖s

(

1 +
∥

∥

∥

∥

z1 + z2

2

∥

∥

∥

∥

2)−(3+r+s)/2

(3.15)

for all z1, z2 ∈ R
k .

Condition (3.15) is very mild. In particular, for s = 1, it is satisfied by any
continuously differentiable density f for which there exist some constants C > 0,
r > k − 2 and some invertible k × k matrix M such that

sup
‖Mz‖≥R

‖∇f (z)‖ < C(1 + R2)−(r+4)/2

for all R > 0. Hence, Assumption (A′
n) holds, for example, when the Zi ’s are

i.i.d. multinormal or elliptical t with ν > 2 degrees of freedom. Differentiability
however is not required, and (3.15) also holds, for instance, for elliptical densities
proportional to exp(−‖Mz‖) (which are not differentiable at the origin).
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As we show in the Appendix (see the proof of Theorem 3.1), Assumption (A′
n)

implies that the (strictly convex) function (a,b′)′ �→ �τ (a,b) (see Definition 2.1)
is twice differentiable at (aτ ,b′

τ )′, with Hessian matrix

Hτ :=
∫

Rk−1

(

1 x′

x xx′

)

f
(

(aτ + b′
τ x)u + Ŵux

)

dx

= J′
u

(∫

u⊥

(

1 z′

z zz′

)

f
(

(aτ − c′
τ z)u + z

)

dσ(z)

)

Ju =: J′
uHc

τ Ju,

where u⊥ := {z ∈ R
k : u′z = 0} and Ju denotes the (k + 1) × k block-diagonal

matrix with diagonal blocks 1 and Ŵu. Strict convexity implies that Hτ is positive
semidefinite. Since, however, for all τ and w := (v0,v′)′ �= 0,

w′Hτ w =
∫

Rk−1
(v0 + v′x)2f

(

(aτ + b′
τ x)u + Ŵux

)

dx,

Hτ , under Assumption (A′
n), is positive definite for all τ .

Letting ξ i,τ (a,b) := −(τ − I[u′Zi−b′Ŵ′
uZi−a<0])Żi and ξ c

i,τ (a, c) := −(τ −
I[c′Zi−a<0])Żi , where Żi := (1,Z′

i)
′, we have

Vτ := Var[J′
uξ1,τ (aτ ,bτ )]

= J′
u

(

τ(1 − τ) τ (1 − τ)E[Z′]
τ(1 − τ)E[Z] Var

[(

τ − I[Zi∈H−
τ ]

)

Z
]

)

Ju

= J′
u Var[ξ c

1,τ (aτ , cτ )]Ju =: J′
uVc

τ Ju.

We are then ready to state an asymptotic normality and Bahadur-type representa-
tion result for our sample τ -quantile coefficients, which is the main result of this
section.

THEOREM 3.1. Let Assumption (A′
n) hold. Then,

√
n

(

a
(n)
τ − aτ

b
(n)
τ − bτ

)

= − 1√
n

H−1
τ J′

u

n
∑

i=1

ξ i,τ (aτ ,bτ ) + oP(1)(3.16)

L→ Nk(0,H−1
τ Vτ H−1

τ ) as n → ∞.(3.17)

Equivalently, writing Pk for the (k + 1) × (k + 1) diagonal matrix with diagonal

(1,−1, . . . ,−1),

√
n

(

a
(n)
τ − aτ

c
(n)
τ − cτ

)

= −
1√
n

Pk(H
c
τ )−

n
∑

i=1

ξ c
1,τ (aτ , cτ ) + oP(1)(3.18)

L→ Nk+1(0,Pk(H
c
τ )−Vc

τ (Hc
τ )−P′

k),(3.19)
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where (Hc
τ )− denotes the Moore–Penrose pseudoinverse of Hc

τ . Moreover,

√
n
(

λ(n)
τ − λτ

)

=
1√
n

n
∑

i=1

(

ρτ (c
′
τ Zi − aτ ) − λτ

)

+ oP(1)(3.20)

L→ N
(

0,Var[ρτ (c
′
τ Z1 − aτ )]

)

.(3.21)

As ρτ (·) is a nonnegative function, the distribution of
√

n(λ
(n)
τ −λτ ) is likely to

be skewed for finite n [see (3.20)], which can be partly corrected via a normalizing
transformation such as that from [8]. Also, the proof of the above theorem can
be easily generalized to derive the asymptotic distribution of vectors of the form

(a
(n)
τ 1 ,b

(n)′
τ1 , . . . , a

(n)
τJ

,b
(n)′
τJ

)′, J ∈ N0.
Theorem 3.1 of course paves the way to inference about τ -quantiles; in partic-

ular, it allows to build confidence zones for them. Testing linear restrictions on τ -
quantiles coefficients—that is, testing null hypotheses of the form H0 : (aτ ,b′

τ )′ ∈
M(a0,b0,ϒ) := {(a0,b′

0)
′+ϒv : v ∈ R

ℓ} (indexed by some k-vector (a0,b′
0)

′ and
some full-rank k×ℓ matrix ϒ , ℓ < k)—can be achieved in the same way as in [25].
Defining and studying such tests requires a detailed investigation of the asymptotic
behavior of the constrained estimators

(

ã(n)
τ , b̃(n)′

τ

)′ := arg min
(a,b′)′∈M(a0,b0,ϒ)

�(n)
τ (a,b),

which is beyond the scope of this work.

4. Multivariate quantiles as depth contours. Turning to the contour nature
of our multivariate quantiles, we first define the (population and sample) quan-
tile regions and contours that naturally follow from Definitions 2.1 and 2.2 and
their empirical counterparts, and state their basic properties. We then establish the
strong connections between those regions/contours and the classical Tukey half-

space depth regions/contours. Finally, we compare our results with those of Kong
and Mizera [20] (Section 4.3) and Wei [37] (Section 4.4).

4.1. Quantile regions. The proposed quantile regions are obtained by taking,
for some fixed τ(= ‖τ‖), the “upper envelope” of our τ -quantile hyperplanes.
More precisely, for any τ ∈ (0,1), we define our τ -quantile region R(τ) as

R(τ) :=
⋂

u∈S k−1

∩{H+
τu},(4.1)

where ∩{H+
τu} stands for the intersection of the collection {H+

τu} of all (closed)
upper (τu)-quantile halfspaces (2.3); for τ = 0, we simply let R(τ) := R

k . The
corresponding τ -quantile contour then is defined as the boundary ∂R(τ) of R(τ).
At this stage, it is already clear that those τ -quantile regions are closed and convex
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(since they are obtained by intersecting closed halfspaces). As we will see below,
they are also nested: R(τ1) ⊆ R(τ2) if τ1 ≥ τ2.

Empirical quantile regions R(n)(τ ) are obtained by replacing in (4.1) the pop-
ulation quantile halfspaces H+

τu with their sample counterparts H
(n)+
τu , yielding,

parallel to (4.1),

R(n)(τ ) :=
⋂

u∈S k−1

∩
{

H (n)+
τu

}

(4.2)

for any τ ∈ (0,1), with R(n)(0) := R
k . Since they result from intersecting finitely

many closed halfspaces, these empirical quantile regions are closed convex poly-

hedral sets, the faces of which all are part of some quantile hyperplanes of order τ .
Another important property of our empirical regions, which readily follows from
the equivariance properties of Section 3.2, is that, for any invertible k × k matrix
M and any k-vector d, using obvious notation,

R(n)(τ ;MZ1 + d, . . . ,MZn + d) = MR(n)(τ ;Z1, . . . ,Zn) + d.

Similarly, the population regions, in view of (3.13), satisfy the affine-equivariance
property R(τ ;MZ + d) = MR(τ ;Z) + d for any such M and d.

4.2. Connection with halfspace depth regions. Recall that the halfspace or
Tukey depth [36] of z ∈ R

k with respect to the probability distribution P is defined
as HD(z,P) := inf{P[H ] :H is a closed halfspace containing z}. The halfspace
depth region D(τ) of order τ ∈ [0,1] associated with P then collects all points of
the k-dimensional Euclidean space with depth at least τ , that is,

D(τ) = DP(τ ) := {z ∈ R
k : HD(z,P) ≥ τ }.(4.3)

Clearly, D(0) = R
k . Also, it is well known (see Proposition 6 in [30], or the proof

of Theorem 2.11 in [39] for a more general form) that, for any τ > 0,

D(τ) = ∩{H :H is a closed halfspace with P[Z ∈ H ] > 1 − τ }.(4.4)

The empirical version D(n)(τ ) of D(τ), as usual, is obtained by replacing, in (4.3)
and (4.4), the probability measure P with the empirical measure associated with the
observed n-tuple Z1, . . . ,Zn at hand. As shown by the following results, the pop-
ulation halfspace depth regions, under Assumption (A), coincide with the quantile
regions R(τ) defined in (4.1), and so do—almost surely under Assumption (An)—
their empirical counterparts D(n)(τ ), whenever their interior is not empty, with the
empirical quantile regions R(n)(τ ) (see the Appendix for the proofs).

THEOREM 4.1. Under Assumption (A), R(τ) = D(τ) for all τ ∈ [0,1).

THEOREM 4.2. Assume that the n(≥ k + 1) data points are in general posi-

tion. Then, for any ℓ ∈ {1,2, . . . , n− k} such that D(n)( ℓ
n
) has a nonempty interior,

we have that R(n)(τ ) = D(n)( ℓ
n
) for all positive τ in [ ℓ−1

n
, ℓ

n
).
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Theorem 4.1 of course implies that, under Assumption (A), all results on the
halfspace depth regions D(τ) also apply to the R(τ) regions. It follows that the
R(τ)’s are compact; the supremum of all τ ’s such that R(τ) �= ∅ belongs to
[1/(k + 1),1/2], and takes value 1/2 if and only if the distribution of Z is an-

gularly symmetric—in the sense that there exists some k-vector θ such that Z−θ
‖Z−θ‖

and − Z−θ
‖Z−θ‖ share the same distribution (see [30] and [32]). This implies that, un-

der Assumption (A), we also may restrict to τ ∈ [0,1/2]. As for Theorem 4.2, note
that the restriction to halfspace depth regions with nonempty interiors is not really
restrictive, since it only applies to flat deepest regions. Another major consequence
of this relation between halfspace depth and multivariate quantiles is that our sam-
ple multivariate quantiles, just as the traditional univariate ones, completely deter-
mine (under the assumptions of Theorem 4.2) the underlying empirical distribution
Pn—since depth contours do (see [35]). This essentially extends to the population
case as well (see, e.g., Section 8 of [20] for a discussion).

Beyond that, Theorems 4.1 and 4.2, by showing that the halfspace depth regions
coincide with the upper envelope of directional quantile halfspaces, and that the
faces of the polyhedral empirical depth contours are parts of empirical quantile hy-
perplanes, provide depth contours with a straightforward quantile-based interpre-
tation. Above all, Theorem 4.2 brings to the halfspace depth context the extremely
efficient computational features of linear programming. This important issue is
briefly discussed in Section 5; we refer to [27] for details. See Figure 3 for two-
and three-dimensional illustrations.

4.3. Relation with projection quantiles. In this section, we discuss the relation
of our approach to the results of Kong and Mizera [20] on projection quantiles.
These results are somewhat similar to ours, since they also lead to a reconstruction
of Tukey’s halfspace depth contours. As explained in the Introduction, their τ -
quantile is a point in the sample space; denoting by τ �→ qX

τ the traditional quantile
function associated with the univariate random variable X, the τ -quantile qKM;τ =
qKM;τu of a random vector Z (actually, of its distribution) is defined as qu′Z

τ u, with
upper and lower quantile halfspaces

H+
KM;τu := {z ∈ R

k : u′z ≥ u′qKM;τu}(4.5)

and

H−
KM;τu := {z ∈ R

k : u′z < u′qKM;τu},

respectively, and quantile hyperplane πKM;τu := {z ∈ R
k : u′z = u′qKM;τu}. Note

that those hyperplanes, contrary to ours, are orthogonal to u, so that the relation
between u and πKM;τu does not carry any information. Kong and Mizera show that

RKM(τ ) :=
⋂

u∈S k−1

{H+
KM;τu} = D(τ) for any τ(4.6)
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(a)

(b)

(c)

FIG. 3. Tukey contours D(n)(τ ) (in green) obtained for n = 449 from U([−0.5,0.5]k), N (0,1)k ,
and tk1 (the products of k independent uniform, standard Gaussian and Cauchy distributions, re-

spectively), (a) for k = 2 and τ ∈ {0.01,0.05,0.10,0.15,0.20, . . . ,0.45}, and (b) for k = 3 and

τ ∈ {0.05,0.10,0.15,0.20, . . . ,0.40}. For the same n and τ ’s, the Tukey depth contours (in green)
from the mixtures (with obvious notation) 0.2 × N (1.5,1)k + 0.8 × N (−1.5,3)k are provided for

k = 2 and 3 in (c), along with the density contours (in blue) for k = 2. Only the contours falling in

the plotting range are displayed.

and that

R
(n)
KM(τ ) = D(n)

(

ℓ

n

)

for any τ ∈
[

ℓ − 1

n
,
ℓ

n

)

(4.7)
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(see [20] and [26] for different proofs of this latter equality), where R
(n)
KM(τ ) stands

for the empirical version of RKM(τ ), obtained by replacing P with the empirical
measure Pn associated with a sample of size n.

The results in (4.6) and (4.7) at first sight look pretty equivalent to those of The-
orems 4.1 and 4.2, since they also establish a close connection between depth and
directional quantiles—here, the Kong and Mizera ones. That connection in (4.6)
and (4.7), however, is much less exploitable than in Theorems 4.1 and 4.2. It does
provide the faces of the polyhedral empirical depth regions D(n)(τ ) with a neat
and interesting quantile interpretation: each face of D(n)(τ ) indeed is part of the
Kong and Mizera quantile hyperplane π

(n)
KM;τu0

, where u0 stands for the unit vector

orthogonal to that face and pointing to the interior of D(n)(τ ). Unless the depth re-
gion D(n)(τ ) is available from some other source, this is not really helpful, though,
since, contrary to the collection {π (n)

τu }, which is finite, the collection {π (n)
KM;τu}, for

fixed τ , contains infinitely many hyperplanes (one for each u ∈ S k−1). And, since
the definition of the upper envelopes R

(n)
KM(τ ) of halfspaces H

(n)+
KM;τu involves an

infinite number of such H
(n)+
KM;τu’s, (4.7), contrary to Theorem 4.2, does not readily

provide a feasible computation of D(n)(τ ). It is crucial to understand, in that re-
spect, that our quantile halfspaces H

(n)+
τu are piecewise constant functions of u, in

sharp contrast with their Kong and Mizera counterparts H
(n)+
KM;τu: since ∂H

(n)+
KM;τu is

orthogonal to u for any direction u, there are uncountably many such upper half-
spaces in any neighborhood of any fixed direction u, even in the empirical case. To
palliate this, Kong and Mizera [20] propose to sample the unit sphere S k−1, which
leads to approximate envelopes, that only approximately satisfy (4.7). Moreover,
denoting by U a random vector uniformly distributed over S k−1 (independent of
the sample), the probability that the corresponding quantile hyperplane π

(n)
KM;τU

contains some face of the Tukey depth contour of order τ is zero: with probability
one, the proposed approximation, thus, fails to recover any of the faces of the ac-
tual depth contours. And, for a given sample size, the quality of the approximation
deteriorates extremely fast as k increases.

4.4. Relation to Wei’s conditional quantiles. Another definition of multivari-
ate quantiles, which also extends from location to multiple-output regression, has
been proposed by Wei in [37]; see also [38]. Just as Kong and Mizera’s projection
quantiles and ours, Wei’s quantiles are directional quantiles, associated with unit
vectors u ∈ μ+ S k−1; a center μ ∈ R

k here has to be chosen for the unit sphere—a
choice that does have an impact on the final result. Unlike Kong and Mizera’s and
ours, which are characterized globally, Wei’s quantiles, however, are conditional

ones: the quantiles associated with u indeed follow from conditional (on u) outly-
ingness probabilistic characterizations. As a consequence, they are of a local (with
respect to u) nature, and their empirical versions therefore unavoidably involve
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some nonparametric smoothing steps (see Remark 1 on page 399 of [37]). The re-
sulting contours are not convex—hence cannot coincide with depth contours—and
strongly depend on the choice of the centering μ.

5. Computational aspects. Computational issues in this context are crucial,
and we therefore briefly discuss them here. We first restrict to the problem of com-
puting (fixed-u) directional quantiles and related quantities such as the correspond-
ing Lagrange multipliers λ

(n)
τ in (3.8c), then consider the computation of (fixed-τ )

quantile contours.

5.1. Computing directional quantiles. As we have seen in the previous sec-
tions, the constrained formulation (2.4) of the definition of our directional quantiles
is richer than the unconstrained one (2.1), since it introduces Lagrange multipli-
ers, which bear highly relevant information (that can be exploited for statistical
inference; see Section 8). It is therefore natural to focus on the computation of the
sample quantiles (a

(n)
τ , c

(n)′
τ )′ in (2.6) first.

The problem of finding (a
(n)
τ , c

(n)′
τ )′ can be reformulated as the linear pro-

gram (P)

min
(a,c′,r′

+,r′
−)′∈R×Rk×Rn×Rn

τ1′
nr+ + (1 − τ)1′

nr−

subject to

u′c = 1, Z
′
nc − a1n − r+ + r− = 0, r+ ≥ 0, r− ≥ 0,(5.1)

where we set Zn := (Z1, . . . ,Zn) and write r+ := (max(r1,0), . . . ,max(rn,0))′

and r− := (−min(r1,0), . . . ,−min(rn,0))′. Associated with problem (P) is the
dual problem (D)

max
(λD,μ′)′∈R×Rn

λD,

subject to

1′
nμ = 0, λDu + Znμ = 0m, −τ1n ≤ μ ≤ (1 − τ)1n,

where λD and μ are the Lagrange multipliers corresponding to the first and sec-
ond equality constraint in (5.1), respectively. Both (P) and (D) have at least one
feasible solution (and therefore also an optimal one). This dual formulation leads
to a natural multiple-output generalization of the powerful concept of regression
rank scores introduced in [12], allowing for a depth-related form of rank-based in-
ference in this context. This promising line of investigation is not considered here,
and left for future research.

We need not worry about the possible nonunicity of the optimal solutions of (P)
since, as we have seen in Section 3.3, any sequence of such solutions converges
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[under Assumption (An)] to the unique population coefficient vector (aτ , c′
τ )′ al-

most surely as n → ∞. In practice, one could compute (a
(n)
τ , c

(n)′
τ )′ by means of

standard quantile regression of 0n on (1n|Z′
n) with an extra pseudo-observation

consisting of response C and corresponding design row (0,Cu′) for some suffi-
ciently large constant C, which, in the limit, guarantees that the boundary con-
straint u′cτ = 1 is satisfied; see [2] for another application of the same trick.

Now, since λD and λ
(n)
τ are Lagrange multipliers associated with the same con-

straint, the optimal value λD of (D) satisfies

λD = nλ(n)
τ ,

where, in view of (3.8c), λ(n)
τ has a clear meaning. Besides, due to the Strong Dual-

ity Theorem, the optimal values of the objective functions in (P) and (D) coincide.
Therefore, λ

(n)
τ is always unique and one has, with �

c(n)
τ defined in (2.6),

λ(n)
τ = �c(n)

τ

(

a(n)
τ , c(n)

τ

)

> 0(5.2)

(except for the rare case of exact fit where λ
(n)
τ = 0), which holds for all optimal

solutions to (P) and (D). In other words, λ
(n)
τ can be obtained from solving (P) as

a by-product.
Most importantly, (5.2) allows us to focus on computing our τ -quantiles

through the unconstrained problem (2.5) without any loss of generality because
we may simply set λ

(n)
τ = �

(n)
τ (a

(n)
τ ,b

(n)
τ ). This approach is of course advanta-

geous because it falls directly into the realm of quantile regression, as the problem
of finding the sample τ -quantiles in (2.5) can be viewed as looking for standard—
that is, single-output—regression quantiles in the regression of Zu on the marginals
of Z⊥

u and a constant (in the notation of Section 2).
Needless to say, this interpretation has a large number of implications. Above

all, it offers fast, powerful and sophisticated tools for computing sample τ -
quantiles (along with the corresponding Lagrange multiplier λ

(n)
τ ) in any fixed

direction u and possibly for all τ ’s at once, with τ = τu as usual. In particu-
lar, there is an excellent package for advanced quantile regression analysis in R
(see [17]) and the key function for computing quantile regression estimates is also
freely available for MATLAB, for example, from Roger Koenker’s homepage at
http://www.econ.uiuc.edu/~roger/research/rq/rq.html.

5.2. Computing quantile contours. As the previous subsection shows that the
computation of H

(n)+
τu is pretty straightforward, we now turn to the problem of

aggregating, as efficiently as possible, the information associated with the vari-
ous fixed-τ directional quantile halfspaces in order to compute the R(n)(τ ) regions
defined in (4.2). The main issue here lies in the proper identification of the finite
set of upper quantile halfspaces characterizing R(n)(τ ). This can be achieved effi-
ciently, for any given τ �= ℓ

n
, ℓ ∈ {0,1, . . . , n}, via parametric linear programming

http://www.econ.uiuc.edu/~roger/research/rq/rq.html
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techniques. By restricting (here and in Figures 1 to 8) to such τ values, we avoid—
without any loss of generality, in view of Theorem 4.2—the problems related with
possibly multiple solutions of (P) for integer values of nτ .

For any fixed τ �= ℓ
n

, parametric linear programming indeed reveals that, un-
der Assumption (An), R

k almost surely can be segmented into a finite number of
nondegenerate cones Ci(τ ), i = 1,2, . . . ,NC , such that

(

a(n)
τu , c(n)′

τu

)

= (ai, c′
i)/t′iu

λ(n)
τu = λi/t′iu

μ
(n)
j,τu =

⎧

⎨

⎩

v′
ij u/t′iu ∈ [−τ,1 − τ ], if rj = 0,

−τ, if rj > 0,
1 − τ, if rj < 0,

with rj := c′
j Zj −aj , for any u ∈ Ci(τ )∩ S k−1, i = 1,2, . . . ,NC and j = 1, . . . , n;

see [27] for further details. Each cone Ci(τ ) then corresponds to one optimal basis
Bi = Bi,u that uniquely determines constant scalars and vectors λi , ai , ci , vij and
ti and guarantees that t′iu > 0 for any u ∈ Ci(τ ) ∩ S k−1. Consequently, each cone
Ci(τ ) corresponds to exactly one quantile hyperplane, and any statistic Su of the
form

Su = g1(λu, au, cu)/g2(λu, au, cu)

is piecewise constant on the unit sphere whenever g1(λ, a, c) and g2(λ, a, c) are
homogenous functions of the same order. Figure 4 provides such cones for a bi-
variate dataset.

It remains to note that we may investigate all the cones Ci(τ )’s by passing
through them counter-clockwise when k = 2. In general, we can use the breadth-
first search algorithm and always consider all such Ci(τ )’s that are adjacent to a
cone treated in the previous step and have not been considered yet. If Cj (τ ) and
Ci(τ ) are adjacent cones with point uf inside their common face, then Bj,uf

(and
consequently also Bj,u) may be found from the primal feasible basis Bi,uf

by only
a few iterations of the primal simplex algorithm at most.

Moreover, a careful reading of the proof of Theorem 4.2 reveals (see the re-
mark right after the proof) that a single fixed-τ collection of quantile hyperplanes
{π (n)

τu : u ∈ S k−1} typically contains all hyperplanes relevant for the computation
of k consecutive Tukey depth contours. Technical details are provided in [27].
A Matlab implementation of the procedure, which was used to generate all the
illustrations in this paper, is available from the authors.

6. Multiple-output quantile regression. Our approach to multivariate quan-
tiles also allows to define multiple-output regression quantiles enjoying all nice
properties of their classical single-output counterparts.

Consider the multiple-output regression problem in which the m-variate re-
sponse Y := (Y1, . . . , Ym)′ is to be regressed on the vector of regressors X :=
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FIG. 4. The eight cones Ci(0.1) obtained for τ = 0.1 (top left) and 18 cones Ci(0.2) obtained

for τ = 0.2 (bottom left) via parametric linear programming from the same n = 9 points as in Fig-

ure 1, along with the corresponding (color matching) (τ = 0.1)-quantile hyperplanes (top right) and

(τ = 0.2)-quantile hyperplanes (bottom right).

(X1, . . . ,Xp)′, where X1 = 1 a.s. and the other Xj ’s are random. In the sequel,
we let X =: (1,W′)′, so that {(w′,y′)′ : w ∈ R

p−1,y ∈ R
m} = R

p−1 × R
m is the

natural space for considering fitted regression “objects.” Multiple-output regres-
sion quantiles, in that context, can be obtained by applying Definition 2.1 to the
k-dimensional random vector Z := (W′,Y′)′, k = p + m − 1, with the important

restriction that the direction u should be taken in the response space only, that is,
u ∈ S

m−1
p−1 := {0p−1}× S m−1 ⊂ S k−1. This directly yields the following definition.

DEFINITION 6.1. For any τ = τu, with τ ∈ (0,1) and u = (0′
p−1,u′

y)
′ ∈

S
m−1
p−1 , the regression τ -quantile of Y with respect to X = (1,W′)′ is defined as any

element of the collection �τ of hyperplanes πτ := {(w′,y′)′ ∈ R
p+m−1 : u′

yy =
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b′
τŴ′

u(w′,y′)′ + aτ } such that

(aτ ,b′
τ )′ ∈ arg min

(a,b′)′∈Rp+m−1
�τ (a,b),(6.1)

where, denoting by Ŵu an arbitrary (p + m − 1) × (p + m − 2) matrix such that

(u
...Ŵu) is orthogonal, we let �τ (a,b) := E[ρτ (u

′
yY − b′Ŵ′

u(W′,Y′)′ − a)].

Although—similarly as in Definition 2.1—the choice of Ŵu has no impact on
the directional regression quantile πτ , it is here natural to take Ŵu of the form

Ŵu =
(

Ip−1 0

0 Ŵuy

)

,

where Ip−1 denotes the (p − 1)-dimensional identity matrix and the m × (m − 1)

matrix Ŵuy is such that (uy

...Ŵuy) is orthogonal. The directional regression quantiles
in Definition 6.1 then take the form

πτ := {(w′,y′)′ ∈ R
p+m−1 : u′

yy = b′
τyŴ

′
uy

y + b′
τww + aτ }

with bτ = (b′
τw,b′

τy)
′. Clearly, an equivalent definition of multiple-output regres-

sion quantiles can be obtained by extending Definition 2.2 in the same fashion;
see [26].

Now, as in the location case, each quantile hyperplane πτ characterizes a lower
(open) and an upper (closed) regression quantile halfspace defined as

H−
τ := {(w′,y′)′ ∈ R

p+m−1 : u′
yy < b′

τyŴ
′
uy

y + b′
τww + aτ }(6.2)

and

H+
τ := {(w′,y′)′ ∈ R

p+m−1 : u′
yy ≥ b′

τyŴ
′
uy

y + b′
τww + aτ },(6.3)

respectively. Most importantly, for fixed τ(= ‖τ‖) ∈ (0,1), (multiple-output) τ -
quantile regression regions are obtained by taking the “upper envelope” of our
regression τ -quantile hyperplanes. More precisely, for any τ ∈ (0,1), we define
regression τ -quantile regions Rregr(τ ) as

Rregr(τ ) :=
⋂

u∈S
m−1
p−1

∩{H+
τu}(6.4)

[with corresponding regression quantile contours ∂Rregr(τ )], where H+
τu denotes

the (closed) upper regression (τu)-quantile halfspace in (6.3). Unlike the location
quantile regions (p = 1), regression quantile regions (p > 1) may be nonnested—
an m-dimensional form of the familiar regression quantile crossing phenomenon.

Finite-sample versions of all regression concepts above are obtained, similarly
as in the location case (Section 2), as the natural sample analogs of the correspond-
ing population concepts; see Figures 5 and 6 for an illustration. From a numerical
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FIG. 5. Two different views on the regression τ -quantile contours (in green) from n = 9,999 data

points for τ ∈ {0.01,0.05,0.15,0.30,0.45} in a homoscedastic [(Y1, Y2)′ = (X2,X2)′ + (ε1, ε2)′;
left] and a heteroskedastic [(Y1, Y2)′ = (X2,X2)′ +

√
X2(ε1, ε2)′; right] bivariate-output regres-

sion setting, respectively, where X2 ∼ U([0,4]), and ε1 and ε2 are independent centered Gaussian

variables with variances 1 and 9, respectively.

point of view, Section 5.2, with obvious minor changes, still describes how to com-
pute the resulting regression quantile regions R

(n)
regr(τ ), with m and uy substituded

for k and u, respectively.
The Kong and Mizera projection approach also readily generalizes to the

multiple-output regression setting. This issue is briefly addressed in Section 11.3
of [20]; see [26] for a detailed comparison with our approach. As for the condi-
tional quantiles of Wei [37], their regression version shares the same local features
as their location counterpart.

7. A real data application. In order to illustrate the implementability and
data-analytical power of the concepts we are proposing, we now consider a real
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FIG. 6. Various cuts of the regression τ -quantile “hypertube” contours from the same two models

(left and right, respectively) as in Figure 5 with n = 9,999 observations. The top plots provide re-

gression τ -quantile cuts, τ ∈ {0.05,0.10,0.15,0.20, . . . ,0.45}, through 10% (magenta), 30% (blue),
50% (green), 70% (cyan) and 90% (yellow) empirical quantiles of X2; the bottom ones show regres-

sion τ -quantile cuts for the same τ values, and through 25% (blue), 50% (green) and 75% (yellow)
empirical quantiles of Y1. Their centers provide information about trend and their shapes and sizes

shed light on variability.

data example. Since a thorough case study is beyond the scope of this paper, we
only present some very partial results of an investigation of the body girth mea-
surement dataset considered in [14]. That dataset consists of joint measurements
of nine skeletal and twelve body girth dimensions, along with weight, height and
age, in a group of 247 young men and 260 young women, all physically active. We
refer to [14] for details; note, however, that these n = 507 observations cannot be
considered a random sample representative from any well-defined population, so
that the regression quantile contours we are providing below should be taken from
a descriptive/illustrative point of view only.
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For each gender, taking as regressors a constant term and (with notation W ) ei-
ther weight, age, height or the body mass index (defined as BMI:=weight/height2),
we considered all

(9+12
2

)

= 210 possible bivariate output regression models, and
computed the regression tubes for τ = 0.01, 0.03, 0.10, 0.25 and 0.40, respectively.
Three-dimensional pictures of those tubes are not easy to read, and we rather plot,
for each of them, a series of five cuts. These cuts were obtained as the intersections
of the regression tube under study with hyperplanes of the form w = w(p), where
w(p) stands for the (empirical) pth quantile of the covariate W , p = 0.10 (black),
0.30 (blue), 0.50 (green), 0.70 (cyan) and 0.90 (yellow). The results are presented,
for women, Y1 the calf maximal girth, and Y2 the thigh maximal girth, with W the
weight, age, BMI and height, respectively, in Figure 7.

Results look quite different depending on the choice of regressors. Regression
with respect to weight shows a clear positive trend in location (all contours), along
with an increasing dispersion, and an evolution of “principal directions,” yielding
higher variability in calf than in thigh girth for lighter weights (horizontal first
“principal direction”), while heavier weights tend to exhibit the opposite phenom-
enon (vertical first “principal direction”). Quite on the contrary, regression with
respect to age apparently does not reveal any location trend: the inner contours
almost coincide for all age cuts, and “principal directions” (roughly, parallel to the
main bisectors) apparently do not change with age. However, the shapes of outer
contours vary quite significantly with age, indicating an increasing (with age) si-
multaneous variability of both calf and thigh girth largest values. While the results
for BMI look very similar to those for weight, a new phenomenon appears when
height is the regressor, namely a clear regression effect for some contours (the in-
ner ones) but not for the others, so that the asymmetry structure of the conditional
distribution strongly depends on height: the conditional distributions seem much
more asymmetric for low values of height than for the higher ones.

These variations in location, scale, shape and asymmetry structures clearly yield
a much richer and subtle analysis of the impact of weight/age/BMI/height on those
body measurements than any traditional regression method can provide.

8. Final comments. This work presents a new concept of multivariate quan-
tile based on L1 optimization ideas and clarifies the quantile nature of halfspace
depth contours, while providing an extremely efficient way to compute the lat-
ter. The same concept readily allows for an extension of quantile regression to the
multiple-output context, thus paving the way to a multiple-output generalization of
the many tools and techniques that have been based on the standard (single-output)
Koenker and Bassett concept of quantile regression. This final section quickly dis-
cusses several open problems, of high practical relevance, that could now be con-
sidered.

First of all, Section 6 only very briefly indicates how our multivariate quantiles
extend to the context of multiple-output regression; that extension clearly calls
for a more detailed study, covering standard asymptotic issues (limiting distribu-
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FIG. 7. Four empirical regression quantile plots from the body girth measurements dataset (women

subsample; see [14]). The regression models considered are (Y1, Y2)′ = β′(1,W)′ + (ε1, ε2)′, where

Y1 is the calf maximum girth and Y2 the thigh maximum girth, while W stands for weight (top

left), age (top right), BMI index (bottom left) or height (bottom right). The plots are providing, for

τ = 0.01, 0.03, 0.10, 0.25 and 0.40, the cuts of the empirical regression τ -quantile contours, at the

empirical p-quantiles of the regressors, for p = 0.10 (black), 0.30 (blue), 0.50 (green), 0.70 (cyan)
and 0.90 (yellow). Data points are shown in red (the lighter the red color, the higher the regressor

value).

tions, Bahadur representations) as well as robustness aspects (breakdown points
and influence functions). Nonlinear quantile regression problems also should be
addressed via, for instance, local linear methods.

The regression rank score perspectives (associated with linear programming du-
ality) sketched in Section 5.1 also look extremely promising, possibly leading to
the development of a full body of multivariate, depth-related methods of rank-
based inference.

Finally, as mentioned in the Introduction and in Section 3.1, various concepts
introduced in this paper can be quite useful for inference. As an example, note
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FIG. 8. Polar plots of the mappings u ∈ S 1 �→ λ
(n)
τu u/(supv∈S 1 λ

(n)
τv ) (left) and u ∈ S 1 �→

‖c
(n)
τu ‖u/(supv∈S 1 ‖c

(n)
τv ‖) (right), for τ = 0.1, and n = 49,999 points (top) [resp., n = 299 points

(bottom)] drawn from N (0,1)2 (the product of two independent standard Gaussian distributions, in

green), U([−0.5,0.5]2) (the centered bivariate uniform distribution over the unit square, in blue),
and (Exp(1) − 1)2 (the product of two independent standard exponential distributions, in red) pop-

ulations, respectively; see Section 8. The resulting shapes clearly reflect the axes of symmetry of the

underlying distributions.

that the symmetry (central, elliptical or spherical) structure of P is reflected in the
mappings

u �→ λτuu/λ(∞)
τ and u �→ ‖cτu‖u/c(∞)

τ ,

with λ
(∞)
τ := supu∈S k−1 λτu and c

(∞)
τ := supu∈S k−1 ‖cτu‖, as illustrated (with the

corresponding empirical quantities, of course) in Figure 8. A test of the hypothesis
that the density of Z is, for example, spherically symmetric thus could be based on
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[the empirical version T (n) := T (Pn) of] a functional of the form

T (P) :=
∫ 1

0

∫

S k−1
δ

(

λτu

λ
(∞)
τ

,1
)

dσ(u)w(τ) dτ,

where δ(·, ·) denotes some distance (such as that of Cramér–von Mises), w some
positive weight function over (0,1), and σ the uniform measure over S k−1. Deriv-
ing the asymptotic properties of such statistics, however, clearly requires uniform
versions of the asymptotic results in Theorem 3.1.

APPENDIX

PROOF OF THEOREM 3.1. The quantity ηi,τ (a,b) := J′
uξ i,τ (a,b) is a sub-

gradient for (a,b) �→ ρτ (Ziu − b′Z⊥
iu − a) since, for all (a,b′)′, (a0,b′

0)
′ ∈ R

k , we
have that

ρτ (Ziu − b′Z⊥
iu − a) − ρτ (Ziu − b′

0Z⊥
iu − a0) − (a − a0,b′ − b′

0)ηi,τ (a0,b0)

=
(

I[u′Zi−b′
0Ŵ

′
iuZi−a0<0] − I[u′Zi−b′Ŵ′

iuZi−a<0]
)

(u′Zi − b′Ŵ′
iuZi − a) ≥ 0,

irrespective of the value of Zi . Hence, interchanging differentiation and expecta-
tion (which is justified in a standard way) shows that (a,b′)′ �→ �τ (a,b) (see Def-
inition 2.1) satisfies grad�τ (a,b) = grad E[ρτ (Ziu − b′Z⊥

iu − a)] = E[ηi,τ (a,b)];
see (3.2a) and (3.2b). Therefore,

grad�τ (aτ + �a,bτ + 	b) − grad�τ (aτ ,bτ ) − Hτ (�a,	
′
b)′

=
∫

Rk−1

∫ (aτ +�a)+(bτ +	b)′x

aτ +b′
τ x

(

f (zu + Ŵux)

− f
(

(aτ + b′
τ x)u + Ŵux

))

(1,x′)′ dzdx

and Assumption (A′
n) yields that

‖grad�τ (aτ + �a,bτ + 	b) − grad�τ (aτ ,bτ ) − Hτ (�a,	
′
b)′‖

≤ C

∫

Rk−1

∣

∣

∣

∣

∫ (aτ +�a)+(bτ +	b)′x

aτ +b′
τ x

(

|z − (aτ + b′
τ x)|s‖(1,x′)′‖

)

/
((

1 + ‖1/2(z + aτ + b′
τ x)u

+ Ŵux‖2)(3+r+s)/2)

dz

∣

∣

∣

∣

dx

≤ C

∫

Rk−1
|�a + 	′

bx|
|�a + 	′

bx|s‖(1,x′)′‖
‖(1,x′)′‖3+r+s

dx

≤ C‖(�a,	
′
b)′‖1+s

∫

Rk−1
‖(1,x′)′‖−(r+1) dx = o(‖(�a,	

′
b)′‖)
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as ‖(�a,	
′
b)′‖ → 0. This shows that (a,b′)′ �→ �τ (a,b) is twice differentiable

at (aτ ,b′
τ )′ with Hessian matrix Hτ . Since, moreover, Assumption (A′

n) clearly
ensures that E[‖ηi,τ (a,b)‖2] < ∞ for all (a,b′)′ ∈ R

k , Theorem 4 of [25] applies,
which establishes (3.16). Of course, (3.17) results from (3.16) by the multivariate
CLT.

Recall that, under Assumption (A), the unique solution of (2.1) can be written as
(aτ ,b′

τ )′ := (aτ , (−Ŵ′
ucτ )′)′, where (aτ , c′

τ )′ denotes the unique solution of (2.4).

Similarly, any solution (a
(n)
τ ,b

(n)′
τ )′ of (2.5) is related to some solution (a

(n)
τ , c

(n)′
τ )′

of (2.6) via the relation (a
(n)
τ ,b

(n)′
τ )′ = (a

(n)
τ , (−Ŵ′

uc
(n)
τ )′)′. This allows for rewrit-

ing (3.16) as

√
nPkJ′

u

(

a
(n)
τ − aτ

c
(n)
τ − cτ

)

= −
1√
n

H−1
τ J′

u

n
∑

i=1

ξ c
i,τ (aτ , cτ ) + oP(1)(A.1)

as n → ∞. By first premultiplying both sides of (A.1) with PkJu, then using
ŴuŴ′

u = Ik − uu′ [which follows from the orthogonality of (u
...Ŵu)] and u′c(n)

τ =
1 = u′cτ , we obtain

√
n

(

a
(n)
τ − aτ

c
(n)
τ − cτ

)

= −
1√
n

PkJuH−1
τ J′

u

n
∑

i=1

ξ c
i,τ (aτ , cτ ) + oP(1)

as n → ∞. Lemma A.1 below therefore establishes (3.18). Again, the multivariate
CLT then trivially yields (3.19).

Finally, applying Theorem 6 in [25] [more precisely, applying the version (a) of
statement (3.8) in that theorem] with L = Ik and c = (aτ ,b′

τ )′ yields

n�(n)
τ (aτ ,bτ ) − n�(n)

τ

(

a(n)
τ ,b(n)

τ

)

(A.2)

−
1

2n

n
∑

i,j=1

ξ ′
i,τ (aτ ,bτ )JuH−1

τ J′
uξ j,τ (aτ ,bτ ) = oP(1)

as n → ∞. Note that the third term is clearly OP(1) as n → ∞. The result then
follows by dividing both sides of (A.2) by

√
n, and by using the identities λ

(n)
τ =

�
(n)
τ (a

(n)
τ ,b

(n)
τ ) (see the end of Section 5.1) and u′z − b′

τŴ′
uz − aτ = c′

τ z − aτ for
all z ∈ R

k . Since (3.7) entails λτ = E[ρτ (c
′
τ Zi − aτ )], the CLT yields (3.21). �

In order to complete the proof of Theorem 3.1, it is sufficient to establish the
following lemma.

LEMMA A.1. The matrix Gτ := Ju(J′
uHc

τ Ju)−1J′
u is the Moore–Penrose

pseudoinverse of Hc
τ , that is, Gτ is such that (i) Gτ Hc

τ Gτ = Gτ , (ii) Hc
τ Gτ Hc

τ =
Hc

τ , (iii) (Gτ Hc
τ )′ = Gτ Hc

τ and (iv) (Hc
τ Gτ )′ = Hc

τ Gτ .
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PROOF. (i) This directly follows from trivial computations. (ii) Let Ku be
the invertible matrix (Ju

...u̇), where u̇ := (0,u′)′. Clearly, (Hc
τ Gτ Hc

τ − Hc
τ )Ju = 0

and the definition of Hc
τ implies that u̇ belongs to the null space of Hc

τ . Hence,
(Hc

τ Gτ Hc
τ − Hc

τ )Ku = 0, which establishes the result. (iii) and (iv) Since J′
uJu =

Ik , (Gτ Hc
τ − Hc

τ Gτ )Ju = Ju − Hc
τ Ju(J′

uHc
τ Ju)−1 = 0; the last equality follows, as

in the proof of part (ii), by showing that (Ju −Hc
τ Ju(J′

uHc
τ Ju)−1)′Ku = 0. Now, as

we also have that (Gτ Hc
τ −Hc

τ Gτ )u̇ = 0, we conclude that (Gτ Hc
τ −Hc

τ Gτ )Ku =
0, hence that Gτ Hc

τ = Hc
τ Gτ . This establishes (iii) and (iv) since both Hc

τ and Gτ

are symmetric. �

PROOF OF THEOREM 4.1. Under Assumption (A), it directly follows from
(4.4) that, for any τ ∈ (0,1) (note that Theorem 4.1 trivially holds for τ = 0),
D(τ) = ∩{H :H is a closed halfspace with P [Z ∈ H ] ≥ 1 − τ }. Consequently, by
noting that any H+

KM;τu, u ∈ S k−1 [see (4.5)] satisfies P[Z ∈ H+
KM;τu] = 1 − τ

under Assumption (A), it follows from (4.6) that

D(τ) ⊂ ∩{H :H is a closed halfspace with P [Z ∈ H ] = 1 − τ }

⊂
⋂

u∈S k−1

{H+
KM;τu} = D(τ),

which entails that, still under Assumption (A),

D(τ) = ∩{H :H is a closed halfspace with P[Z ∈ H ] = 1 − τ }.(A.3)

Now, since (3.2a) [equivalently, (3.5a)] implies that any closed quantile half-
space H+

τu, u ∈ S k−1, satisfies P[Z ∈ H+
τu] = 1−τ , (A.3) yields that D(τ) ⊂ R(τ).

To show D(τ) ⊃ R(τ), consider an arbitrary closed halfspace H with P[Z ∈ H ] =
1 − τ . Then H = H+

τu, with

u :=
(1/(1 − τ))E[ZI[Z∈H ]] − (1/τ)E[ZI[Z∈Rk\H ]]

‖(1/(1 − τ))E[ZI[Z∈H ]] − (1/τ)E[ZI[Z∈Rk\H ]]‖
,

so that R(τ) ⊂ D(τ); see (3.6) and (A.3) again. �

PROOF OF THEOREM 4.2. We start with some remarks on sample halfspace
depth regions. By (4.4), D(n)( ℓ

n
), for any ℓ ∈ {1,2, . . . , n − k}, coincides with the

intersection of all closed halfspaces containing at least n− ℓ+ 1 observations. Ac-
tually, one can restrict to closed halfspaces containing exactly n − ℓ + 1 observa-
tions (see [9], page 1805). Also, it can be shown (see [11]) that D(n)( ℓ

n
)—provided

that its interior is not the empty set—is bounded by hyperplanes containing at least
k points that span a (k − 1)-dimensional subspace of R

k .
Now, fix ℓ ∈ {1,2, . . . , n − k} such that D(n)( ℓ

n
) has indeed a nonempty inte-

rior. Consider an arbitrary closed halfspace H containing exactly n − ℓ + 1 data
points, among which exactly k (Zi , i ∈ h = {i1, . . . , ik}, say) sit in ∂H—and ac-
tually span ∂H , since the data points are assumed to be in general position. It
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follows from the results stated in the previous paragraph that D(n)( ℓ
n
), under the

assumptions of Theorem 4.2, coincides with the intersection of all such halfspaces.
Letting sτ (n, k, ℓ) := (n − k − ℓ + 1)τ + (ℓ − 1)(τ − 1), define then

u =
TD − sτ (n, k, ℓ)Ton

‖TD − sτ (n, k, ℓ)Ton‖
,(A.4)

where

TD := τ
∑

Zi∈H\∂H

Zi + (τ − 1)
∑

Zi /∈H

Zi and Ton :=
1

k

∑

Zi∈∂H

Zi .

Taking Ŵu as in Definition 2.1, one of course has Ŵ′
uTD = sτ (n, k, ℓ)Ŵ′

uTon.
Hence, writing (ah,b′

h)
′ for the unique solution of

u′Zi − b′Ŵ′
uZi − a = 0, i ∈ h,

we obtain
∑

i∈{1,...,n}\h

(

τ − I[u′Zi−b′
hŴ′

uZi−ah<0]
)

(

1
Ŵ′

uZi

)

= τ
∑

Zi∈H\∂H

(

1
Ŵ′

uZi

)

+ (τ − 1)
∑

Zi /∈H

(

1
Ŵ′

uZi

)

=
(

sτ (n, k, ℓ)

Ŵ′
uTD

)

= sτ (n, k, ℓ)

(

1
Ŵ′

uTon

)

.

Since [see (3.10)]

1

k
X

′
u(h)1k =

(

1
Ŵ′

uTon

)

,

this implies that, with the same notation as in the end of Section 3.1, we have

ξ τu(h) =
sτ (n, k, ℓ)

k
1k,

hence that the subgradient conditions (3.11) are satisfied for any τ ∈ [ ℓ−1
n

, ℓ+k−1
n

].
It follows that, for any such τ , H coincides with the upper quantile halfspace
H

(n)+
τu associated with some π

(n)
τu ∈ �

(n)
τu , where u is as in (A.4), so that

R(n)(τ ) :=
⋂

u∈S k−1

∩
{

H (n)+
τu

}

⊂ D(n)

(

ℓ

n

)

(A.5)

for any positive τ ∈ [ ℓ−1
n

, ℓ
n
); one should indeed avoid the value τ = 0 for which

R(n)(τ ) is not defined as the upper envelope of quantile halfspaces.
Now, fix τ ∈ (0, ℓ

n
). Then, according to (3.9), all upper sample quantile half-

spaces H
(n)+
τu generating R(n)(τ ) contain P + Z ≥ ⌈n(1 − τ)⌉ = n − ⌊nτ⌋ ≥
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n − ℓ + 1 observations. Hence, D(n)( ℓ
n
) ⊂ R(n)(τ ) for any such τ . This, jointly

with (A.5), establishes the result. �

Most interestingly, the proof of Theorem 4.2 actually shows that, for any
τ ∈ (0,1), the set {π (n)

τu : u ∈ S k−1, π
(n)
τu contains k data points} coincides with

the collection of all hyperplanes passing through k observations and cutting off at
most ⌊nτ⌋ and at least ⌈nτ⌉ − k data points. Consequently, as stated at the end of
Section 5.2, the set of τ -quantile hyperplanes in all directions provides enough ma-
terial to compute not only one, but min(k + ηnτ , ⌊nτ⌋ + 1) Tukey depth contours
at a time, where ηx is one if x is an integer and zero otherwise.
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[12] GUTENBRUNNER, C. and JUREČKOVÁ, J. (1992). Regression rank scores and regression quan-
tiles. Ann. Statist. 20 305–330. MR1150346

[13] HABERMAN, S. J. (1989). Concavity and estimation. Ann. Statist. 17 1631–1661. MR1026303
[14] HEINZ, G., PETERSON, L. J., JOHNSON, R. W. and KERK, C. J. (2003). Exploring relation-

ships in body dimensions. J. Statist. Education 11. Available at http://www.amstat.org/
publications/jse/v11n2/datasets.heinz.html.

[15] HETTMANSPERGER, T. P., NYBLOM, J. and OJA, H. (1992). On multivariate notions of sign
and rank. In L1-Statistical Analysis and Related Methods (Neuchâtel, 1992) 267–278.
North-Holland, Amsterdam. MR1214838

[16] KOENKER, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge
Univ. Press, Cambridge. MR2268657

[17] KOENKER, R. (2007). Quantile regression in R: A vignette. Available at http://cran.r-project.
org.

[18] KOENKER, R. and BASSETT, G. J. (1978). Regression quantiles. Econometrica 46 33–50.
MR0474644

[19] KOLTCHINSKII, V. (1997). M-estimation, convexity and quantiles. Ann. Statist. 25 435–477.
MR1439309

[20] KONG, L. and MIZERA, I. (2008). Quantile tomography: Using quantiles with multivariate
data. Preprint.

[21] LAINE, B. (2001). Depth contours as multivariate quantiles: A directional approach. Unpub-
lished Master dissertation (advisor M. Hallin). Univ. Libre de Bruxelles, Brussels.

[22] LIU, R. Y., PARELIUS, J. M. and SINGH, K. (1999). Multivariate analysis by data depth:
Descriptive statistics, graphics and inference. Ann. Statist. 27 783–840. MR1724033

[23] MILLER, K., RAMASWAMI, S., ROUSSEEUW, P., SELLARÈS, T., SOUVAINE, D., STREINU,
I. and STRUYF, A. (2003). Efficient computation of location depth contours by methods
of computational geometry. Stat. Comput. 13 153–162. MR1963331

[24] MIZERA, I. (2002). On depth and deep points: A calculus. Ann. Statist. 30 1681–1736.
MR1969447

[25] NIEMIRO, W. (1992). Asymptotics for M-estimators defined by convex minimization. Ann.

Statist. 20 1514–1533. MR1186263
[26] PAINDAVEINE, D. and ŠIMAN, M. (2009). On directional multiple-output quantile regression.

ECARES Working Paper 2009-011.
[27] PAINDAVEINE, D. and ŠIMAN, M. (2010). Computing multiple-output regression quantile re-

gions. Submitted.
[28] ROUSSEEUW, P. J. and RUTS, I. (1996). Algorithm AS 307: Bivariate location depth. J. Appl.

Stat. 45 516–526.
[29] ROUSSEEUW, P. J. and HUBERT, M. (1999). Regression depth. J. Amer. Statist. Assoc. 94

388–433. With discussion and a reply by the authors and Stefan Van Aelst. MR1702314
[30] ROUSSEEUW, P. J. and RUTS, I. (1999). The depth function of a population distribution.

Metrika 49 213–244. MR1731769
[31] ROUSSEEUW, P. J. and STRUYF, A. (1998). Computing location depth and regression depth in

higher dimensions. Stat. Comput. 8 193–203.
[32] ROUSSEEUW, P. J. and STRUYF, A. (2004). Characterizing angular symmetry and regression

symmetry. J. Statist. Plann. Inference 122 161–173. Contemporary data analysis: Theory
and methods. MR2057920

[33] SERFLING, R. (2002). Quantile functions for multivariate analysis: Approaches and applica-
tions. Statist. Neerlandica 56 214–232. Special issue: Frontier research in theoretical sta-
tistics, 2000 (Eindhoven). MR1916321

[34] SERFLING, R. (2010). Equivariance and invariance properties of multivariate quantile and re-
lated functions, and the role of standardization. J. Nonparametr. Statist., in press.

http://www.ams.org/mathscinet-getitem?mr=1150346
http://www.ams.org/mathscinet-getitem?mr=1026303
http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html
http://www.ams.org/mathscinet-getitem?mr=1214838
http://www.ams.org/mathscinet-getitem?mr=2268657
http://cran.r-project.org
http://www.ams.org/mathscinet-getitem?mr=0474644
http://www.ams.org/mathscinet-getitem?mr=1439309
http://www.ams.org/mathscinet-getitem?mr=1724033
http://www.ams.org/mathscinet-getitem?mr=1963331
http://www.ams.org/mathscinet-getitem?mr=1969447
http://www.ams.org/mathscinet-getitem?mr=1186263
http://www.ams.org/mathscinet-getitem?mr=1702314
http://www.ams.org/mathscinet-getitem?mr=1731769
http://www.ams.org/mathscinet-getitem?mr=2057920
http://www.ams.org/mathscinet-getitem?mr=1916321
http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html
http://cran.r-project.org


MULTIVARIATE QUANTILES AND MULTIPLE-OUTPUT REGRESSION 669

[35] STRUYF, A. and ROUSSEEUW, P. J. (2005). Halfspace depth and regression depth characterize
the empirical distribution. J. Multivariate Anal. 69 135–153. MR1701410

[36] TUKEY, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the Interna-

tional Congress of Mathematicians (Vancouver, B.C., 1974) 2 523–531. Canad. Math.
Congress, Montreal. MR0426989

[37] WEI, Y. (2008). An approach to multivariate covariate-dependent quantile contours with appli-
cation to bivariate conditional growth charts. J. Amer. Statist. Assoc. 103 397–409.

[38] WEI, Y., PERE, A., KOENKER, R. and HE, X. (2005). Quantile regression methods for refer-
ence growth charts. Stat. Med. 25 1369–1382. MR2226792

[39] ZUO, Y. and SERFLING, R. (2000). General notions of statistical depth function. Ann. Statist.

28 461–482. MR1790005
[40] ZUO, Y. and SERFLING, R. (2000). Structural properties and convergence results for contours

of sample statistical depth functions. Ann. Statist. 28 483–499. MR1790006

E.C.A.R.E.S.
UNIVERSITÉ LIBRE DE BRUXELLES

50, AVENUE F.D. ROOSEVELT, CP114
B-1050 BRUXELLES

BELGIUM

E-MAIL: mhallin@ulb.ac.be
dpaindav@ulb.ac.be
Miroslav.Siman@ulb.ac.be

URL: http://homepages.ulb.ac.be/~dpaindav

http://www.ams.org/mathscinet-getitem?mr=1701410
http://www.ams.org/mathscinet-getitem?mr=0426989
http://www.ams.org/mathscinet-getitem?mr=2226792
http://www.ams.org/mathscinet-getitem?mr=1790005
http://www.ams.org/mathscinet-getitem?mr=1790006
mailto:mhallin@ulb.ac.be
mailto:dpaindav@ulb.ac.be
mailto:Miroslav.Siman@ulb.ac.be
http://homepages.ulb.ac.be/~dpaindav

	Introduction: Multivariate quantiles and statistical depth
	Definition and notation
	Multivariate quantiles as directional quantiles
	Subgradient conditions
	Equivariance properties
	Asymptotic results

	Multivariate quantiles as depth contours
	Quantile regions
	Connection with halfspace depth regions
	Relation with projection quantiles
	Relation to Wei's conditional quantiles

	Computational aspects
	Computing directional quantiles
	Computing quantile contours

	Multiple-output quantile regression
	A real data application
	Final comments
	Appendix
	Acknowledgments
	References
	Author's Addresses

