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Abstract 

Polynomial-basis response surface method has some shortcomings for truss structures in structural optimization, 

concluding the low fitting accuracy and the great computational effort. Based on the theory of approximation, a 

response surface method based on Multivariate Rational Function basis (MRRSM) is proposed. In order to further 

reduce the computational workload of MRRSM, focusing on the law between the cross-sectional area and the nodal 

displacements of truss structure, a conjecture that the determinant of the stiffness matrix and the corresponding 

elements of adjoint matrix involved in displacement determination are polynomials with the same order as their 

respective matrices, each term of which is the product of cross-sectional areas, is proposed. The conjecture is proved 

theoretically for statically determinate truss structure, and is shown corrected by a large number of statically indeter-

minate truss structures. The theoretical analysis and a large number of numerical examples show that MRRSM has a 

high fitting accuracy and less computational effort. Efficiency of the structural optimization of truss structures would 

be enhanced.
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1 Introduction
�e response surface methodology (RSM) explores the 

relationships between several explanatory variables and 

one or more response variables. �e method was intro-

duced by Box and Wilson in 1951. �e main idea of RSM 

is to use a sequence of designed experiments to obtain an 

optimal response. Box and Wilson suggest using a sec-

ond-degree polynomial model to do this [1].

Because response surface methodology can establish 

the unknown function between design variables and 

response variables, it has been widely applied to optimi-

zation. Choon-Man Jang and Ka-Ram Choi [2] carried 

out the optimization of the blower impeller by using the 

response surface method (RSM). Heng Jiang et al. [3] car-

ried out a dynamic and static multi-objective optimiza-

tion of a vertical machining center based on response 

surface method. Quadratic polynomials are employed 

to construct response surface (RS) model, which reflects 

the relationship between design inputs and structural 

response outputs, according to the response outputs of 

these samples obtained by analyzing the dynamic and 

static characteristics of the machining centre at these 

samples with the software ANSYS. In the field of vehicle 

optimization, RSM also get a widely application [4–6]. 

Chun-Lin Wang et  al. [7] carried out a variable curva-

ture blade of fire pump based on experimental design 

theory and response surface approximation. Dong-Sheng 

Jia et al. [8] established the mass function of impeller of 

water valve-controlled hydrodynamic coupling with RSM 

and optimized the impeller key structural parameters. 

Response surface method is applied in the field of robust 

optimization design [9, 10]. Reliability analysis has an 

improvement based on response surface method [11, 12].

Generally speaking, in the mathematical models of 

structural optimization, the objective function is the 

explicit function of the design variables and the con-

straint function is the implicit function of the design 
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variables. �is characteristic is also the important dif-

ference between the structure optimization problem 

and the mathematical program problem and it greatly 

increases the complexity of the structure optimization 

problem [13]. In order to solve this problem, the implicit 

function must be made explicit and the response surface 

methodology, is the most commonly used method [14]. 

Hong-Wu et al. [15] used response surface methodology 

to establish the function expressions of deflection and 

structural weight,and optimized the truss structure. Roux 

et  al. [16] carried out RS-based optimization of truss 

structures and concluded that RS accuracy depends on 

the range of the design area and the form of the explicit 

function. Zhang et  al. [17] establish a fitted regression 

model for the dynamic transmission error(DTE) fluctua-

tions to quantify the relationship between modification 

amounts and DTE fluctuations by using response surface 

method.

In order to increase the accuracy and efficiency, Fan, 

et al. [18] derived a criterion for judging the existence of 

cross terms and proposed an adaptive response surface 

method. Houten et  al. [19] considered fifth-order poly-

nomials to check if higher-order polynomials improved 

RSM accuracy. Venter et  al. [20] solved plate optimiza-

tion problems using higher order RS approximations.

Sui and his collaborators [21–25] developed the cen-

tral point accurate response surface method where the 

response value at the center point of the approximate 

model is equal to the true response value. �is method 

was successfully applied to optimization of membrane 

structures, 2D-continuum structures, plate and shell 

structures subject to frequency constraints, and mul-

tidisciplinary optimization. Using the property of the 

Kreisselmerier-Steinhauser function, RS approximation 

was built with function derivation, Taylor expansion near 

experimental points and numerical iteration, trying to 

minimize the largest difference between response func-

tion values and true response values.

In the finite element displacement method, the nodal 

displacement is the basic unknown quantity. �e stress, 

dynamic response and so on can be derived from the 

displacement, so this paper is devoted to discuss the 

response surface of truss node displacement, its research 

method and results can be easily extended to other 

types of structures. It should be noted that the analytical 

form of polynomial-basis response surface approxima-

tion is often very different from the functions describ-

ing the actual displacement field. As this may result in 

low quality approximation, it is important to assess the 

real analytical form of the displacement field. �is study 

will show that the nodal displacement field determined 

by finite element method for truss structures can be 

expressed as multivariate rational functions. In view of 

this, a response surface methodology based on multivari-

ate rational functions will be developed. It will be illus-

trated that the determinant of the stiffness matrix and the 

corresponding elements of adjoint matrix involved in dis-

placement determination are polynomials depending on 

cross-sectional areas, with the same order as their respec-

tive matrices, each term of which is the product of cross-

sectional areas. �e validity of the proposed approach is 

verified for many design examples of statically determi-

nate and statically indeterminate truss structures.

2  Polynomial-basis Response Surface 
Approximation for Nodal Displacement of Truss 
Structures

2.1  Polynomial-basis RSM

�e commonly used forms of polynomial-basis response 

surface methodology are as follows.

Linear form

separable quadratic form

and the complete quadratic form (containing cross terms)

where ỹ is the response function to be constructed, and β 

are the unknown RS coefficients.

2.2  RSM Evaluation Standards

�e most commonly used parameters used to evalu-

ate accuracy of response surface approximation are as 

follows.

�e multiple fitting coefficient

and the modified multiple fitting coefficient

where δ is the sum of the square of the difference between 

the true response value and the response estimated value; 

γ is the sum of the square of the difference between the 

response estimated value and the response mean value; 

m is the total number of experimental points; and k is the 

number of unknown parameters:

(1)ỹ = β0 +

k∑

i=1

βixi,

(2)ỹ = β0 +

k∑

i=1

βixi +

k∑

i=1

βiix
2
i ,

(3)ỹ = β0 +

k∑

i=1

βixi +

k∑

i=1

βiix
2
i +

k−1∑

i=1

k∑

j=i+1

βijxixj ,

(4)R
2

= 1 −

δ

γ
,

(5)R
2
adj = 1 −

(

m − 1

m − k

)

δ

γ
,
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R2 can reflect the extent to which the response sur-

face matches the data given. It ranges from 0 to 1, and 

the closer it is to 1, the smaller the influence of various 

errors.

For the approximation accuracy of check points, the 

most commonly used parameters are as follows.

�e maximum relative error

minimum relative error

average relative error

where S is the total number of check points. �e relative 

error is ζr =

∣

∣δr − δ′

r

∣

∣

/

δ′

r × 100%, δr′ is the true response 

value of the rth check ponit, δr is the response estimated 

value of the rth check point.

2.3  Evaluation of Polynomial-Basis RSM Accuracy

In the following, fitting accuracy of polynomial-

basis RS method is analyzed for some simple truss 

structures. �e cross-sectional area of the truss 

structure is selected as the design variable. �e cross-

sectional area ranges from 0.01  m2 to 0.05  m2, and 

all cross sections are circular. �e elastic modu-

lus is E  =  2.1  ×  1011 Pa, and Poisson’s ratio is 0.3. 

�e nodal displacement is taken as the structural 

response. �e value of the ith design variable of design 

points PD is APD,i ∈ {0.01, 0.02, 0.03, 0.04, 0.05} and the 

value of the ith design variable of check points  PE is 

APE,i ∈ {0.015, 0.025, 0.035, 0.045}.

Example 1: Planar 2-bar Truss Structure �e first 

example is the very simple two-bar truss structure shown 

in Figure 1.

�e given length of bar 1 is 2 l, and the length of bar 2 

is 
√

5l. Let l = 1 m.

(1)  Analytic expression of nodal displacement

 Using the analytic method of structural mechanics, 

the displacement of node A along the force F direc-

tion is as follows:

(6)γ = Y
T
Y −

(

m
∑

i=1

yi

)2

/m.

(7)ζmax = max{ ζr |r = 1, 2, · · · , S} ,

(8)ζmin = min{ ζr |r = 1, 2, · · · , S} ,

(9)ζavg =

∑
M

r=1 ζr

S
,

  

(2)  Nodal displacement computed with polynomial-

basis RSM

 Trial values of cross-sectional areas are given in input 

to Eq. (10) to determine the displacement of node A 

in the direction of applied force. Design points form 

the matrix X while the corresponding displacements 

form the response matrix Y. �e RS coefficient vector 

β is determined for various types of polynomial-basis 

approximation of displacement δF.

Linear form:

Separable quadratic form:

Complete quadratic form:

�e solving accuracy of polynomial-basis response sur-

face method and the selection of the response surface 

forms are shown in Table 1.

(10)

δF =
8F

EA1

+
5
√
5F

EA2

= 1.0 × 10
−7 ×

(

0.380 952 381
1

A1

+ 0.532 397 138
1

A2

)

,

(11)

ỹ = 9.240 1 × 10
−6

− 7.047 6 × 10
−5A1 − 9.849 3 × 10

−5A2.

(12)

ỹ = 1.373 1 × 10
−5

− 2.310 2 × 10
−4A1

− 3.228 6 × 10
−4A2

+ 0.002 7A2

1 + 0.003 7A2

2.

(13)

ỹ = 1.373 1 × 10
−5

− 2.310 2 × 10
−4A1

− 3.228 6 × 10
−4A2

+ 0.002 7A2

1 + 0.003 7A2

2 − 8.456 8 × 10
−18A1A2.

1 

2 

A 

B 

C 

l 

2l
F=1 kN 

Figure 1 Schematics of the planar 2-bar truss structure
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Using the MATLAB software, the surface comparison 

figure of the analytic value and the response surface esti-

mated value and relative error surface figure of the check 

points are shown in Figure 2.

�e accuracy of these RS models is evaluated in Table 1 

by means of the performance indicators described in Sec-

tion 2.2. Figure 2 compares the variation of nodal displace-

ment over the design space determined from the analytical 

expression (10) or by means of the three RS models. In par-

ticular, the MATLAB plots show the displacement map and 

the relative error map. �e following conclusions can be 

drawn from the results obtained for this example.

(1) �e analytical form of the polynomial-basis RS is com-

pletely different from the analytic solution (10) which 

depends on the inverse of cross-sectional areas.

(2) �e coefficients of the linear RS model are small. �e 

quadratic RS models are much more accurate than the 

linear RS model although relative errors at check points 

remain rather high. Adding cross-terms in the quad-

ratic model does not yield substantial improvements.

Example 2: Planar 8-bar Truss Structure In order to 

check the validity of the above analysis for more compli-

cated structures, the statically determinate planar 8-bar 

truss structure shown in Figure  3 was considered. �e 

length of all bars is 2  m, except for bars 6 and 8 which 

are 2
√

2 m long. Loads and kinematic constraints for this 

structure are shown in Figure 3.

�e analytical solution for the displacement of node C 

along the direction of applied force F is as follows:

(14)

δy =
8F

EA1

+
2F

EA2

+
2F

EA3

+
2F

EA5

+
4
√
2F

EA6

+
2F

EA7

+
4
√
2F

EA8

= 1.0 × 10
−7 ×

[

0.380952381
1

A1

+ 0.09523809524

×
(

1

A2

+
1

A3

+
1

A5

+
1

A7

)

+ 0.269340119 ×
(

1

A6

+
1

A8

)]

Polynomial-basis response surface approximations of 

displacement give the following results.

Linear form:

Separable quadratic form:

For the sake of brevity, the expression of complete quad-

ratic RS is not reported in the article. Performance indi-

cators for these RS models are listed in Table  2. �e 

quadratic RS models are again much more accurate than 

the linear RS model but relative errors at check points 

remain rather high, thus not satisfying the requirements 

on overall accuracy. Adding cross-terms in the quadratic 

model again does not yield substantial improvements. 

As expected, the analytical form of nodal displacement 

(14) is completely different from the expressions of RS 

models.

Since the two truss examples refer to statically deter-

minate structures, a statically indeterminate structure is 

now analyzed to draw more general conclusions.

Example 3: Planar 6-bar Truss Structure Figure  4 

shows the schematic of a statically indeterminate 6-bar 

truss structure, in which l is the length and l = 1 m. �e 

displacement to be computed is that of node B along the 

direction of applied force F.

�e accuracy of linear, separable quadratic and full 

quadratic RS models is listed in Table 3.

�e data listed in the table lead to similar conclusions 

as in the case of statically determinate structures. How-

ever, introducing cross-terms in the quadratic RS model 

(15)

ỹ = 1.315 81 × 10
−5

− 1.0 × 10
−5

× (7.047 6A1 + 1.761 9

× (A2 + A3 + A5 + A7) + 4.982 8 × (A6 + A8)).

(16)

ỹ = 1.955 2 × 10
−5

− 1.0 × 10
−4

× (2.310 2A1 + 5.775 5

× (A2 + A3 + A5 + A7) + 1.633 4 × (A6 + A8))

+ 0.002 7 × A2

1 + 6.689 3 × 10
−4

× (A2

2 + A2

3 + A2

5 + A2

7)

+ 0.001 9 × (A2

6 + A2

8).

Table 1 Accuracy of linear, separable and complete quadratic RS models for the 2-bar truss structure problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 0.7962 0.9727 0.9713

Modified multiple fitting coefficient R2adj 0.7962 0.9727 0.9713

Maximum relative error ζmax/% 37.29 15.56 15.56

Minimum relative error ζmin/% 10.13 6.56 6.56

Average relative error ζavg/% 23.56 11.59 11.59
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Figure 2 Evaluation of RS approximation accuracy for the 2-bar structure problem. a Linear RS model. b Separable quadratic RS model. c Full 

quadratic RS model
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now yields a more clear improvement over separable 

quadratic RS model.

�e above examples demonstrate that nodal displace-

ments of both statically determinate and indeterminate 

truss structures are multivariate rational functions of 

cross-sectional areas. �is model is totally different from 

the analytical form of polynomial-basis response surfaces 

which cannot hence describe correctly the nodal dis-

placement field of truss structures.

2.4  Evaluation of the Accuracy of Polynomial-Basis RSM 

with Reciprocal Variables

�e displacement of a certain node in a given direction 

computed using Mohr’s theorem can be expressed as

where Nj is the internal force of jth element under the 

action of true load, Nj
0 is the internal force of the jth ele-

ment under the action of unit force with the computed 

displacement direction, lj is the element length, and M is 

the number of elements.

Let xj = 1
/

Aj, consequently, Eq. (17) can be expressed 

as

(17)δi =

M∑

j=1

N 0
j Njlj

EAj
,

(18)δi =

n∑

j=1

N 0

j Njlj

E
xj .

�e most commonly used RS approximation func-

tion of nodal displacements of truss structures can be 

obtained by taking the reciprocal variables xj as design 

variables and substituting them into Eqs. (1), (2) and (3).

In order to analyze the accuracy of the polynomial-

basis response surface method with reciprocal variables, 

the accuracy analysis is carried out by reusing Example 

1‒3 as the examples.

Example 4: Planar 2-bar Truss Structure For the 2-bar 

truss structure studied in Example 1, the computing 

accuracy of polynomial-basis RSM with reciprocal vari-

ables is listed in Table 4.

Example 5: Planar 8-bar Truss Structure For the planar 

8-bar truss structure studied in Example 2, accuracy of 

polynomial-basis RSM with reciprocal variables is listed 

in Table 5.

Example 6: Planar 6-bar Truss Structure For the planar 

6-bar truss structure studied in Example 3, accuracy of 

polynomial-basis RSM with reciprocal variables is listed 

in Table 6.

�e following conclusions can be drawn from the 

results of the above these examples.

4 

2 

3 7 6 

1 

5 

8 

D 

E F 

A B 

C 

l 

l l 

F=1kN

Figure 3 Schematics of the planar 8-bar truss structure

Table 2 Accuracy of linear, separable and complete quadratic RS models for the 8-bar truss structure problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 0.8132 0.9773 0.9773

Modified multiple fitting coefficient R2adj 0.8132 0.9773 0.9773

Maximum relative error ζmax/% 37.292 15.563 15.563

Minimum relative error ζmin/% 0.039 6 2.292 × 10−4 2.292 × 10−4

Average relative error ζavg/ % 16.096 4.747 4.747

1 

5 

2 

6 

B 

D C 

3 

4 

A 

l

l

F=1kN 

Figure 4 Schematics of the planar 6-bar truss structure
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(1)   For the statically determinate structure, the evalua-

tion coefficients are very good. �e all relative errors 

are less than  10−10, therefore the approximation 

accuracy is very high. �is is mainly because the pol-

ynomial-basis RSM with reciprocal variables equa-

tion have a high consistency in the form with the 

analytic solution, and the response surface equation 

reflects the true relationship between displacement 

and design variables.

(2)  For the statically indeterminate structure, the approx-

imation accuracy is very low. �is is mainly because 

internal forces are changing as the changes of design 

variables, and these changes don’t be reflected in 

RSM equation, which lead to the difference in the 

form between RSM approximation with reciprocal 

variables and analytic solution. In order to improve 

the approximation accuracy, a new method of high 

accuracy response surface should be developed.

Table 3 Accuracy of linear, separable and complete quadratic RS models for the 6-bar truss structure problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 0.8026 0.8991 0.9996

Modified multiple fitting coefficient R2adj 0.8026 0.8990 0.9996

Maximum relative error ζmax/% 28.68 22.66 14.43

Minimum relative error ζmin/% 2.76 3.98 5.01

Average relative error ζavg/% 18.93 11.82 8.96

Table 4 Accuracy of linear, separable and complete quadratic reciprocal variables RSM models for the 2-bar truss struc-

ture problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 1 1 1

Modified multiple fitting coefficient R2adj 1 1 1

Maximum relative error ζmax/% 5.78 × 10−14 1.68 × 10−12 1.13 × 10−12

Minimum relative error ζmin/% 1.14 × 10−14 1.09 × 10−12 5.22 × 10−13

Average relative error ζavg/% 3.38 × 10−14 1.40 × 10−12 8.21 × 10−13

Table 5 Accuracy of linear, separable and complete quadratic reciprocal variables RS models for the 8-bar truss structure 

problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 1 1 1

Modified multiple fitting coefficient R2adj 1 1 1

Maximum relative error ζmax/% 2.76 × 10−11 2.70 × 10−9 4.72 × 10−11

Minimum relative error ζmin/% 9.90 × 10−12 4.15 × 10−14 5.23 × 10−13

Average relative error ζavg/% 1.90 × 10−11 6.70 × 10−10 2.10 × 10−11

Table 6 Accuracy of linear, separable and complete quadratic reciprocal variables RS models for the 6-bar truss structure 

problem

Evaluation standards Linear form Separable quadratic form Complete quadratic form

Multiple fitting coefficient R2 0.897 0.908 0.998

Modified multiple fitting coefficient R2adj 0.897 0.908 0.998

Maximum relative error ζmax/% 23.194 27 5.967

Minimum relative error ζmin/% 7.07 × 10−4 3.36 × 10−3 3.167 × 10−4

Average relative error ζavg/% 5.096 4.065 1.024
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3  Determination of Nodal Displacements of Truss 
Structures

According to the finite element method theory, the bal-

ance equation is as

�e displacement equation is as

Where the inverse matrix can be obtained by the formula 

as

According to the theory of determinants, the n-order 

determinant is a number firmed by n2 elements of aij.

where τ (j1j2 · · · jn) is the inverted sequence number of 

natural numbers 1,2,…,n, and 
∑

j1···jn
 is the sum of all per-

mutations of natural numbers 1,2,…,n.

Since elements aij of stiffness matrix include products 

of linear terms corresponding to cross-sectional areas, 

the determinant can be simplified as

where f(An) is an n-order polynomial of cross-sectional 

area variables A, and n is the order of the stiffness matrix, 

equal to the DOF of the structure system.

Elements of the adjoint matrix adjK are polynomials 

gij(A
n−1) which are one order lower than the determi-

nant of the stiffness matrix. �us, the form of the adjoint 

matrix is

Combining all of the above formulas, it can be obtained 

the equation to analytically determine nodal displace-

ments of truss structures:

Consequently, the displacement of a certain node in a 

given direction can be expressed as

(19)K δ = F .

(20)δ = K
−1

F.

(21)K
−1 =

adjK

|K|
.

(22)

|K| =

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n
a21 a22 · · · a2n
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

j1···jn

(−1)τ(j1j2···jn)a1j1a2j2 · · · an jn ,

(23)|K| = f (An),

(24)adjK =







g11(A
n−1) · · · g1n(A

n−1)

...
...

gn1(A
n−1) · · · gnn(A

n−1)






.

(25)δ = K
−1

F =
adj K

|K|
F.

4  Conjecture about the Determinant Expression 
of Stiffness Matrix and Elements of Adjoint 
Matrix

�e previous derivation indicate that the determinant of the 

stiffness matrix of the truss structure and the elements of 

adjoint matrix involved in the determination of nodal dis-

placements are respectively n-order and (n–1)-order poly-

nomials. Stiffness matrix determinant is an algebraic sum 

including n! terms each of which is the product of n factors 

belonging to different rows and columns. �e sign of each 

term depends on the corresponding inverted sequence 

number. �erefore, there are at least n! coefficients. Simi-

larly, determinants of adjoint matrix elements are algebraic 

sums of (n–1)! terms each of which corresponds to the 

product of (n–1) factors belonging to different rows and 

different columns. �e adjoint matrix is an n-order square 

matrix. Equation (26) implies that 2n! function evaluations 

must be done. However, if matrix order changes, the num-

ber of coefficients also will change in a factorial way. Hence, 

if the equation order gets large, too many combinations 

should be considered. Variable linking and relationships 

between cross-sectional area variables may greatly reduce 

computational complexity of combinations and multivari-

ate rational function response surfaces can be built based 

on these relationships. �e above mentioned relationships 

will be illustrated by the following examples.

(1)   For the 2-bar truss structure considered in Example 

1, displacement of node A in the direction of applied 

load F has the following analytical expression:

 

where,

 

(2)   For the statically indeterminate 6-bar truss structure 

considered in Example 3, the analytical expression for 

the nodal displacement of node B along the direction 

of applied force F is as follows:

 

(26)δi =
1

|K|

n∑

j=1

gij(A
n−1)Fj =

1

f (An)

n∑

j=1

gij(A
n−1)Fj .

(27)δAF =
1

|K|

n∑

j=1

g1j(A
n−1)Fj =

1

f (A2)
g12(A)F ,

f (A2) =
E2

50l2

√
5A1A2, g12(A) =

E

l

(

A1

2
+

4
√
5A2

25

)

(28)
δBF =

1

|K|

n∑

j=1

g1j(A
n−1)Fj =

1

f (A5)
g33(A

4)F ,
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where

�e following conjecture can be made from the previ-

ous relationships. �e determinant of stiffness matrix 

and the adjoint matrix term entailed in the determination 

of a certain nodal displacement are polynomials of the 

same order as the corresponding matrices. Each term of 

these polynomials is the product of first power terms cor-

responding to cross-sectional areas.

where i 1 �= i2 �= i3 �= · · · �= i(n − 1) �= in.

�e number of DOF n is the same as the order 

of stiffness matrix; m is the number of design vari-

ables. An are the possible combinations of cross-

sectional areas Ai selected from the set of m design 

variables; m1 is the number of these combinations, 

namely, m1 = C
n
m = m!

/

[(m − n)!n!]. Similarly, An−1 

are other possible combinations of cross-sectional areas 

Ai; m2 is the number of these combinations, namely, 

m2 = C
n−1
m = m!

/

[(m − n + 1)! · (n − 1)!]; α and β are 

unknown coefficients to be determined.

�e number of terms included in matrix stiffness deter-

minant decreases from n! to m!
/

[(m − n)!n!]; while the 

number of terms in the corresponding adjoint matrix 

decreases from (n-1)! to m!
/

[(m − n + 1)! · (n − 1)!] , 

thus reducing the computational cost of the fitting 

process.

Let′s now consider a statically determinate structure 

with m bars and n DOFs. Since there are no redun-

dant bars, it holds m  =  n. Hence, in Eq.  (29), it holds 

m1 = C
n
m = C

n
n = 1, m2 = C

n−1
m = C

n−1
n = n and the 

equation simplifies to

f (A5) =
E5

16l5
(2A1A2A3A5A6 + 2A1A2A4A5A6 + A1A3A4A5A6

+ A2A3A4A5A6 + 4
√
2A1A2A3A4A5 + 4

√
2A1A2A3A4A6),

g33(A
4) =

E4

16l4
(16A1A2A3A4 + 4

√
2A1A2A3A6 + 4

√
2A1A2A4A6

+ 4
√
2A1A3A4A5 + 2A1A3A5A6 + 2A1A4A5A6

+ 4
√
2A2A3A4A5 + 2A2A3A5A6 + 2A2A4A5A6).

(29)



























f (An) =

m1
�

i=1

αiAi1Ai2 · · ·Ain,

g(An−1) =

m2
�

i=1

βiAi1Ai2 · · ·Ai(n−1),

(30)











f (An) = b0A1A2 · · ·An,

gij(A
n−1) = a1A1A2 · · ·An−1 + a2A1A3 · · ·An + · · ·+

aiA1Ai · · ·An + · · · + anA2A3 · · ·An.

By substituting Eq. (30) into Eq. (26), it follows

where Cj = an−j+1/b0.

For statically determinate structures, if the external 

force P is known, internal forces Nj developed in each 

bar are constant. If the generalized displacement δi in 

the direction i is computed using Mohr’s theorem, a unit 

generalized force Ni
0 is applied in the direction i and the 

corresponding internal forces Nj in each bar also are con-

stant. Element lengths lj and cross-sectional areas Aj are 

constant values as well. �erefore, nodal displacements 

of a truss structure can be expressed as

where the constant C is equal to Cj = NjN
0

j lj

/

E.

�e consistency of Eqs.  (31) and (32) proves that it 

may be reasonable to approximate nodal displacements 

of statically determinate truss structures with multivari-

ate rational response surfaces. �e following examples 

will prove the validity of this conclusion also for statically 

indeterminate trusses.

Example 7: Planar 10-bar Truss Structure For the pla-

nar 10-bar truss structure shown in Figure 5, the general 

form of the determinant of the stiffness matrix is for this 

structure is as follows:

�e corresponding adjoint matrix element involved in 

the determination of the displacement of node C in the 

direction of applied load F is as follows:

(31)δi =
C1

A1

+
C2

A2

+ · · · +
Cn

An
=

n∑

j=1

Cj

Aj
,

(32)δi =

n∑

j=1

NjN
0
j lj

EAj
=

n∑

j=1

Cj

Aj
,

(33)

f (An) =
E8

l8
(8A1A10A2A3A4A5A6A8

+ 8A1A10A2A3A4A5A7A9

+ A1A10A2A3A4A6A7A9 + · · ·

+ βAaAbAcAdAeAf AgAh + · · · ).

(34)

g67(A
n−1) =

E7

l7
(8A1A10A2A3A4A5A7

+ 8A1A10A2A3A4A5A9

+ 8A1A10A2A3A4A8A7 + · · ·

+ αAaAbAcAdAeAf Ag + · · · ).



Page 10 of 14Chai et al. Chin. J. Mech. Eng.  (2018) 31:1 

where {a, b, c, d, e, f, g, h} ∈  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 

α and β are the unknown coefficients of the products of 

design variable Ai, and a ≠ b ≠ c ≠ d ≠ e ≠ f ≠ g ≠ h.

Example 8: Spatial 18-bar Truss Structure For the spa-

tial 18-bar truss structure shown in Figure 6, determinant 

of stiffness matrix is as follows:

�e corresponding adjoint matrix element involved in 

the determination of the displacement of node A in the 

direction of applied load F is as follows:

where {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r} ∈ {1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}, α and β are 

the unknown coefficients of the products of design vari-

able Ai, and a ≠ b ≠ c ≠ d ≠ e ≠ f ≠ g ≠ h ≠ i ≠ j ≠ k ≠ 

l ≠ m ≠ n ≠ o ≠ p ≠ q ≠ r.

Other examples not documented in this article for 

the sake of brevity confirm the validity of the conjecture 

made on the mutual relationship between the stiffness 

matrix of the truss structure and adjoint matrix elements.

(35)

f (An) =
E12

l12
(2175A1A2A17A18A5A9A11A12A15A16A13A14

+ 76
√
2A1A17A18A4A5A9A10A12A15A16A11A14

+ 128
√
2A1A3A6A8A2A9A10A4A11A12A15A16 + · · ·

+ αAaAbAcAdAeAf AgAhAiAjAkAl + · · · + · · · ).

(36)

g12(A
n−1) =

E11

l11
(4096

√
2A1A3A6A2A7A17A5A10A11A12A15

+ 2048A1A3A6A2A7A5A4A11A16A13A14

+ 768A1A3A6A17A18A5A4A9A10A13A16

+ 6144
√
2A1A3A2A7A17A18A5A9A10A11A16+ · · ·

+ αAaAbAcAdAeAf AgAhAiAjAk + · · · ),

5  Multivariate Rational Response Surface 
Approximation of Truss Nodal Displacements

Response surface approximation of truss nodal displace-

ments can be built as follows:

where αi and β
′

ij are the RS fitting coefficients to be 

determined with β
′

ij = βijFj; m1 and m2, respectively, are 

the number of terms included in polynomials f(An) and 

gij(A
n−1).

Suitable design points are defined including the cross-

sectional areas of the M bars forming the truss. For the 

generic design “C”, it holds Ak = Ak
C with k = 1, 2,…, M.

After the displacement δi
C corresponding to design 

points is determined from finite element analysis, 

Eq. (37) is rewritten as follows:

or

(37)

δi =
1

f (An)

∑n

j=1
gij(A

n−1)Fj

=

∑n
j=1 (

∑m2

i=1
βijAi1Ai2 · · ·Ain−1)Fj∑m1

i=1
αiAi1Ai2 · · ·Ain

=

∑
Fj �=0

∑m2

i=1
β

′

ijAi1Ai2 · · ·Ain−1

∑m1

i=1
αiAi1Ai2 · · ·Ain

,

(38)

δCi

(

m1
∑

i=1

αiA
C
i1
AC
i2 · · ·AC

in

)

=

n
∑

Fj �=0

m2
∑

i=1

β
′

ijA
C
i1
AC
i2 · · ·AC

i(n−1),

(39)

δCi

(

m1
∑

i=1

αiA
C
i1
AC
i2 · · ·AC

in

)

−

n
∑

Fj �=0

m2
∑

i=1

β
′

ijA
C
i1
AC
i2 · · ·AC

i(n−1) = 0.

4 

2 

3 
8 

6 

1 

5 

7 

D E F 

A B 

9 

10 

C 

l 

l l 

F=1kN 

Figure 5 Schematics of the planar 10-bar truss structure
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Figure 6 Schematics of the Spatial 18-bar truss structure
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�e above expression is a homogeneous equation. Since 

the ratio between numerator and denominator in Eq. (37) 

stays the same if both terms are multiplied by the same 

quantity, RS model coefficients can be normalized with 

respect to any fitting coefficient. In order to keep general-

ity, let us set α1 = 1 and rewrite Eq. (39) as follows:

Selecting M design points (M ≥ m1 + Km2, where K is 

the number of loads Fj that are not equal to zero), a sys-

tem of M linear equations in the unknown coefficients αi 

and β
′

ij is obtained:

�e determination of these coefficients by solving this 

system can be done in two ways.

(1) If M  > m1  + Km2, the number of design points is 

larger than the number of unknown coefficients. 

Solving accuracy is maximized by using the least 

square method.

(2) If M  = m1  + Km2, the number of design points is 

equal to the number of unknown coefficients and 

classical linear algebraic solvers can be utilized.

According to best uniform approximation theory, qual-

ity of RS approximation improves as the fitting model 

resembles the real structural response. Since the multi-

variate rational RS model developed in this study repro-

duces the actual analytical model behind determination 

of nodal displacements of truss structures, the present 

model can give results very close to the real structural 

response of a truss structure.

(40)

n
∑

Fj �=0

m2
∑

i=1

β
′

ijA
C
i1
AC
i2 · · ·AC

in−1

− δCi

(

m1
∑

i=2

αiA
C
i1
AC
i2 · · ·AC

in

)

= δCi A
C
i1.

(41)











































































n
�

Fj �=0

m2
�

i=1

β
′

ijA
C1

i1
A
C1

i2 · · ·A
C1

i(n−1) − δ
C1

i

�

m1
�

i=2

αiA
C1

i1
A
C1

i2 · · ·A
C1

in

�

= δ
C1

i A
C1

i1 ,

n
�

Fj �=0

m2
�

i=1

β
′

ijA
C2

i1
A
C2

i2 · · ·A
C2

i(n−1) − δ
C2

i

�

m1
�

i=2

αiA
C2

i1
A
C2

i2 · · ·A
C2

in

�

= δ
C2

i A
C2

i1 ,

.

.

.

n
�

Fj �=0

m2
�

i=1

β
′

ijA
CM
i1

A
CM
i2 · · ·A

CM
i(n−1) − δ

CM
i

�

m1
�

i=2

αiA
CM
i1

A
CM
i2 · · ·A

CM
in

�

= δ
CM
i A

CM
i1 .

6  Verification of Multivariate Rational RS Model 
for Truss Displacement Approximation

�e accuracy of the multivariate rational response sur-

face approximation model developed in this study is 

verified in some design examples. �e cross-sectional 

area of truss elements is selected as the design variable 

which can range between 0.01 and 0.05 m2; cross sections 

of all elements are supposed to be circular. �e Young’s 

modulus is 2.1  ×  1011  Pa while Poisson’s ratio is 0.3. 

Node displacement is taken as the structural response to 

be approximated. Value of design variables selected for 

design points  PD is APD,i ∈ {0.01, 0.02, 0.03, 0.04, 0.05} 

while value of design variables selected for check points 

 PE is APE,i ∈ {0.015, 0.025, 0.035, 0.045}.

Example 9: Planar 2-bar Truss Structure For the truss 

studied in Example 1, accuracy of multivariate rational 

RS model is evaluated in Table  7. Figure  7(a) compares 

the displacement maps corresponding to the true struc-

tural response and the approximate model. �e relative 

errors on nodal displacements evaluated at check points 

are shown in Figure 7(b).

Example 10: Planar 6-bar Truss Structure �e struc-

tural layout, kinematic constraints and loads are the same 

as for Example 3. Table 8 lists the values of performance 

indicators for the multivariate rational RS model.

Example 11: Planar 12-bar Truss Structure �e pla-

nar truss shown in Figure 8 is a statically indeterminate 

structure constrained by fixed-hinged supports around 

the edge. �ere are only two degrees of freedom for this 

design example. Performance indicators for the multi-

variate rational RS model, evaluated with respect to the 

solution provided by the commercial finite element soft-

ware ANSYS, are listed in Table 9.

Example 12: Monolithic Tower For the monolithic 

tower schematized in Figure 9, the lateral load P2 simu-

lates the action of the wind while the vertical load P1 

simulates the weight of the tower body and other concen-

trated loads. Two loading conditions are considered: (i) 

P1 = 0, P2 = 1 kN; (ii) P1 = 1 kN, P2 = 1 kN. �e displace-

ment to be computed is the lateral displacement of node 

A and B respectively. Performance indicators for the mul-

tivariate rational RS model, evaluated with respect to the 

solution provided by the commercial finite element soft-

ware ANSYS, are listed in Table 10.



Page 12 of 14Chai et al. Chin. J. Mech. Eng.  (2018) 31:1 

Example 13: Secondary Mirror Supporting Struc-

ture �e secondary mirror supporting structure sche-

matized in Figure  10 is a highly lightweight triangular 

structure in which six supporting bars form a closed bar 

system in an end to end way between the primary and 

secondary mirror plates. �e weight of the objects on the 

top of the supporting structure is equivalent to the con-

centrated loads on the three top nodes (see Figure  10). 

�e displacement to be computed is the vertical displace-

ment of node A. Performance indicators for the multi-

variate rational RS model, evaluated with respect to the 

solution provided by the commercial finite element soft-

ware ANSYS, are listed in Table 11.

It can be seen that relative error between response 

results obtained by multivariate rational RS approxima-

tion and ANSYS is very small for all design examples. 

Evaluation coefficients are always very high, thus satis-

fying engineering requirements. �e same conclusion 

holds true for both statically determinate and indetermi-

nate truss structures.

Table 7 Accuracy of multivariate rational RS model for the 

2-bar truss structure problem

Evaluation standards Node A

Multiple fitting coefficient R2 1

Modified multiple fitting coefficient R2adj 1

Maximum relative error ζmax/% 6.58 × 10−14

Minimum relative error ζmin/% 1.15 × 10−14

Average relative error ζavg/% 2.05 × 10−14

Figure 7 Evaluation of multivariate rational RS approximation accu-

racy for the 2-bar structure problem. a Comparison of displacement 

map for exact solution and RSM approximation. b Displacement error 

map at check points

Table 8 Accuracy of multivariate rational RS model for the 

6-bar truss structure problem

Evaluation standards Node B

Multiple fitting coefficient R2 1

Modified multiple fitting coefficient R2adj 1

Maximum relative error ζmax/% 3.63 × 10−4

Minimum relative error ζmin/% 1.51 × 10−7

Average relative error ζavg/% 7.46 × 10−5

P 

A 

Figure 8 Schematics of the planar 12-bar truss structure
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7  Conclusions
(1) �e polynomial-basis response surface approxi-

mation is different from the real function between 

cross-sectional area and nodal displacement, rela-

tive error ranging from 4.747% to 23.56% which 

does not meet the engineering requirement.

(2) Polynomial-basis RSM with reciprocal variables has 

a great improvement on the statically determinate 

structure, with relative errors less than  10−10. How-

ever, for the statically indeterminate structure, the 

approximation accuracy is still low.

(3) Relationship between the nodal displacement and 

the cross-sectional area is derived, following the 

conjecture about the determinant expression of 

stiffness matrix and elements of adjoint matrix.

(4) On the basis of previous conjecture, multivariate 

rational response surface approximation of truss 

nodal displacements is established. �e fitting 

accuracy of both statically determinate structure 

and statically indeterminate structure is greatly 

improved, with relative errors less than  10−3.

Table 9 Accuracy of multivariate rational RS model for the 

12-bar truss structure problem

Evaluation standards Node A

Multiple fitting coefficient R2 1

Modified multiple fitting coefficient R2adj 1

Maximum relative error ζmax/% 2.03 × 10−3

Minimum relative error ζmin/% 1.54 × 10−9

Average relative error ζavg/% 1.67 × 10−4

A 

B 

P2 

P2 

P2 

P1 P1 

Figure 9 Schematics of the monolithic tower

Table 10 Accuracy of multivariate rational RS model for the monolithic tower problem

Evaluation standards Condition 1 Condition 2

Node A Node B Node A Node B

Multiple fitting coefficient R2 1 1 1 1

Modified multiple fitting coefficient R2adj 1 1 1 1

Maximum relative error ζmax/% 3.67 × 10−4 3.63 × 10−2 4.83 × 10−3 7.08 × 10−3

Minimum relative error ζmin/% 2.10 × 10−3 7.30 × 10−8 7.65 × 10−8 2.76 × 10−8

Average relative error ζavg/% 5.58 × 10−4 2.45 × 10−3 6.72 × 10−4 5.18 × 10−4

Figure 10 Schematics of the secondary mirror supporting structure

Table 11 Accuracy of multivariate rational RS model 

for the secondary mirror supporting structure problem

Evaluation standards Node A

Multiple fitting coefficient R2 1

Modified multiple fitting coefficient R2adj 1

Maximum relative error ζmax/% 1.24 × 10−4

Minimum relative error ζmin/% 7.37 × 10−6

Average relative error ζavg/% 4.48 × 10−5
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