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MULTTVARIATE REARRANGEMENTS AND BANACH FUNCTION
SPACES WrrH MIXED NORMS

BY

A. P. BLOZINSKI

Abstract. Multivariate nonincreasing rearrangement and averaging functions are
defined for functions defined over product spaces. An investigation is made of
Banach function spaces with mixed norms and using multivariate rearrangements.
Particular emphasis is given to the L(P, Q; •) spaces. These are Banach function
spaces which are in terms of mixed norms, multivariate rearrangements and the
Lorentz L(p, g) spaces. Embedding theorems are given for the various function
spaces. Several well-known theorems are extended to the L(P, Q; *) spaces. Prin-
cipal among these are the Strong Type (Riesz-Thorin) Interpolation Theorem and
the Convolution (Young's inequality) Theorem.

1. Introduction.
1.1. Let f(x), x = (x,, . . . , xn) be a measurable function on a totally a-finite

product space (B, ¡i) = ( X B,-, X ft,). Consider complex valued measurable func-
tions f(x) which are finite almost everywhere and which, for some a > 0, Xa[o) =
H{x: \f(x)\ > a) is finite. The nonincreasing rearrangement of f(x) on (0, oo) is
given by f*(u) = inf{a: \a[o) < u], u > 0. Since many operations with functions
defined on product spaces are iterative, C. J. Neugebauer suggested that it should
be possible to obtain multivariate rearrangements by such a process. We make our
definition in §2. As defined, the function f*(t), t = (f,, . . . , tn), t¡ > 0, / =
1, . . . , n, will be a rearrangement of the function f(x) which is nonincreasing in
each of the variables t,. The method of definition is iterative and consistent with the
one variable method. The function f*(t) is shown to enjoy the same basic properties
of its one dimensional counterpart f*(u), u > 0. The functions f(x) and f*(t) are
shown to be equimeasurable with respect to their product measures. This in turn
leads to a basic inequality relating the functions/*(/), / = (r,, . . . , t„), and f*(u),
u > 0. Importantly, a method is obtained for putting the terms of multivariate
simple functions in decreasing order.

The mixed norm spaces Lp were introduced by Benedek and Panzone [1].
Banach function spaces were introduced by Luxemburg [12] and Banach function
spaces which are rearrangement invariant by Luxemburg [13]. In §3, we construct
the Banach function spaces with mixed norm which are appropriate to multivariate
rearrangements. Comparisons are made between these spaces and Banach function
spaces with mixed norms in the ordinary sense (of [1]). The basic properties of the
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150 A. P. BLOZINSKI

various mixed norm spaces are established. In a final result of the section, the
various mixed norm spaces are placed in context as intermediate between the
tensor projective cross product of their underlying function spaces and the space of
bounded integral operators between Banach function spaces.

The Lorentz L(p, q) spaces were introduced by G. G. Lorentz. In [11], where
R. A. Hunt collects his interpolation theorems, the L(p, q) spaces are investigated
in some detail. In some respects the Lorentz L(p, q) spaces play a central role in
the study of Banach function spaces. Oftentimes, the methods used to investigate
the L(p, q) spaces are useful for obtaining results for more generalized Banach
function spaces. And results for the L(p, q) spaces often have natural analogues in
the more generalized settings. The remainder of the paper is devoted to an
investigation of multivariate versions of the L(p, q) spaces. These are the Lorentz
L(P, Q) and L(P, Q; *) spaces. The former are mixed norm spaces in the ordinary
sense (of [1], using L(p, q) spaces). The latter are mixed norm spaces using
multivariate rearrangements and the L(p, q) spaces. In §4 the results of §§2 and 3
are applied to define and investigate these particular spaces. Containment relation-
ships are provided for the L(P, Q), L(p, q) and L(P, Q; *) spaces.

§5 contains the applications and main results. These consist of several well-
known theorems which are extended to the L(P, Q; *) spaces. In these regards and
as a main result, the Strong Type (Riesz-Thorin) Interpolation Theorem [11] is
extended to the L(P, Q;*) spaces. The proof is made possible by the use of
rearrangable simple functions, which are introduced in the paper, and use of the
corresponding L(p, q) proof given in Hunt [11]. Included also are extensions of the
Convolution Theorem [16] and the Theorem on Fractional Integration [16].

Banach function spaces with mixed norm have been of continuing interest to
several authors. Though much has been written on the subject, the use of multi-
variate rearrangements in the study of such spaces and our unified treatment are
apparently new. In these regards we should mention the works of C. Ballester de
Pereyra [7] and D. L. Fernandez [8]. In [8] Fernandez introduces the L(P, Q; *)
spaces using the Peetre AT-functional and for a main result extends an L(P, Q)
Marcinkiewicz type interpolation theorem of de Pereyra. Their interpolation theo-
rems are in terms of four endpoint conditions (for dimension n = 2). The Riesz-
Thorin Theorem mentioned above is of the sort in [1] where only two endpoint
conditions are used. In this respect the two sets of results are noninclusive of each
other. Also, some basic results for the L(P, Q) and L(P, Q; *) spaces are presented
in [8]. However, due to certain assumptions that the author makes, the proofs there
are not always complete.

Beyond use of the above mentioned references [1], [11]—[13], the presentation
presupposes only a knowledge of basic measure theory [9].

2. Preliminaries.
2.1. Averaging operators. We begin by extending some standard definitions and

known facts about rearrangements of functions of one variable to the multivariate
case. For the sake of simplicity, this will be done first for the case of two variables.
Let B, and B2 be nonnegative, separable, a-finite measure spaces with measures /x
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and p respectively. The spaces B, and B2 are assumed to be either nonatomic or
purely atomic with each of the atoms having equal measure. The functions f(x, y)
are complex valued and defined on the product space (B, X B2, ju X v); see [9]. It
will often be convenient to suppress mention of a particular underlying measure.
This will particularly be true whenever a given measure fi (or v) is replaced by
Lebesgue measure dm on (0, oo). When this occurs it will be clear from the context.
With this in mind we will often put (i(E) = \E\ and d¡i = dx (similarly for the
measures v, dm and the product measures). If |T| > s, s > 0,and the set E depends
on the parameter s, we put E = Es. If in addition a second parameter is involved in
the indexing of E, say t, E will be written E = E(s; t).

The distribution function of f(x,y) in the first variable and on (0, oo) is defined by

Xf(a,y) = /n{x EB,: \f(x,y)\ > a),        a > 0.

The nonnegative nonincreasing rearrangement of f(x, y) in the first variable is
defined by

f*(s,y) = inf{a > 0: Xf(a,y) < s),        s > 0.

The averaging function of f(x,y) in the first variable is defined by

fr(s,y) = sup
E

where E = E(s : y), E c B,, \E\ > s. For future reference, note that the sets E
depend both ons,j > 0, and the alternate variable >\

Some important properties of these functions are contained in our first lemma.

Lemma 2.1. Let E c B, be a measurable set; then
I- iE\Kx>y)\ dx < fl0E}P(s,y) ds, with equality if E = B,.
n. iE\fU,y)g(x,y)\ dx < J^r(s,y)g*(s,y) ds.
III. r(s,y) = [r(-,y)]*(s,y)and\A-o,y) = \r(,y)(o,y).
IV. Put \f = \A[a,y) and \r = Xr(.y)(a,y); then Á^(s,y) = \(s,y) = f*(s,y),

a.e.

After obtaining a rearrangement of f(x, y) with respect to the first variable, the
new function f*(s,y), by holdings fixed, can then be rearranged with respect to the
second variable y. Doing this we obtain the function

r(s,t) = [r(s,-)]*(t),    s>o,t>o,
which is the nonnegative nonincreasing rearrangement of f(x,y) in the first
variable followed by its rearrangement with respect to the second variable.
Throughout 0 < s, t, u, v < oo, x G B,; y G B2. Use of these variables with
functions will be as with the functions (f(x, y), f*(s, y), f*(s, t)) given above.

The order in which the rearrangement is taken is fundamental, because in
general a different function is obtained if the order of rearrangement is reversed.
This can be seen by considering the example f(x, y) = "2fj C(i,j)xE(¡¡)(x,y),whexe
E(i,j) = [/ - 1, 0 x [/• - 1,/) and C(l, 1) = 1, C(l, 2) = 4, C(l, 3) = 3, C(2, 1) -
5, C(2, 2) = 2, C(2, 3) = 6. Here, the easiest way to obtain the rearrangement

hlJ*"-™dx
w
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152 A. P. BLOZINSKI

functions for f(x,y) is to form the matrix array (C(i,j)). Rearrangement with
respect to a given variable then corresponds to putting the entries of a given
column or row in descending order.

Associated with a function f(x,y) are two basic multivariate averaging operators

¿(*> 0-[/,(».-)],(')    and   f?*{s, 0-{^/'j[Vr(w> batido}* ',

where/,(i, f) = /(j, /) and/**(*, f) = /**(s, r); * > 0, í > 0.
The basic properties of the rearrangement function and the various averaging

operators are contained in the next

Lemma 2.2. I./*,/,/"* are nonincreasing functions in s and t, s > 0, t > 0.
II. If \f(x,y)\ < \g(x,y)\,thenr < g*Jr < gr and ft* < g** ■_
in./' < /, </",/„< l^ndf** < f**, 0 < r, < r2 < oo, (/ + g), < / + g„

i < r < oo «k/ (/ + g); < /; + g;, o < /• < 1.
IV. (/ + g)*0, + í2, f, + /2) < /*(>„ /,) + g*(s2, Í2).

Proof. Parts I and II follow directly from the one dimensional proofs and
iteration. Part III also follows directly, except careful use is required of the notation
and definitions. This is especially the case with respect to use of the underlying sets
E used in defining the averaging functions/. For part IV, the one dimensional case
implies (/ + g)*(s, + s2, y) < f*(su y) + g*(s2, y). Therefore,

(/+ *)•(*, + s2, /, + fj) < [f*(sv O + g*(s2r )]*('. + h\
After repeating the above steps, the proof follows.

We remark that in practice the functions f* and ft* are most convenient for
defining norms (quasi-norms) on function spaces and working with norm type
inequalities. In particular, the function/** is especially suited for applications of
the Hardy inequalities; see [4], [11]. The operator / is useful because it avoids
difficulties which occur when the underlying measures are atomic and leads to a
metric or a norm (a triangle inequality is satisfied) on the various function which
will be considered. For some purposes fr is more closely related to the function
f(x, y) than are the functions/* and/**. Moreover,

tsf(s, t) a K(t; K(s;f(s,y))),    where K(u; f) = inf(||/,||L, + u\\f2\\L.)

is the classical Peetre Ä-functional [4]. This shows that fr(s, t) is useful for
investigating and possibly obtaining multivariate versions of some of the known
classical operators. For instance, see [4] or Lemma 5.2.

Lemma 2.3. If f(x,y) and fk(x,y), k = 1, 2, . . . , are positive functions such that
fkVpointwise, thenft\ft, (fk)rtfr and (fk)**'[ft*,pointwise a.e.

Proof. The monotonicity of the measure ft implies that, for a > 0,
Xj(a,y)'\XA[a,y) as k tends to infinity. Repeating the procedure with Lebesgue
measure on [0, oo) and still keepings fixed, A, (s,y)"\Xx (s,y) as k tends to infinity.
By Lemma 2.1.IV, ft(s, y)']f*(s, y) pointwise a.e. Finally, by holding s fixed and
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repeating the procedure with respect to the second variable y, the conclusion
follows for rearrangement functions.

The proof for the averaging functions follows by monotonicity and a straightfor-
ward application of Fatou's lemma. This completes the proof.

A function f(x) defined over a measure space (B, u) is equimeasurable with a
function g(x) defined over a measure space (T, w) if Xa[o) = Xg(a), a > 0, where
Xf(o) = n{x: \f(x)\ > a] and Xg(a) = u{z: \g(z)\ > a). In this sense a function
f(x,y) and its rearrangement functions f*(s, y) and/*(s, /) are equimeasurable with
respect to their product measures. M. Milman suggested the shortened proof of the
following.

Theorem 2.4. I. Let g — ft(s,y) and ft(s, t) be rearrangement functions for the
function f(x,y). If a > 0 and

K(°) = !{(*.*) G[0, oo) X 22:g(s,y)>a}\,

Xf(a) = \{(x,y) EÖ.X B2: \f(x,y)\ > a}\,

Xr(a) = \{(s, t) G[0, oo) X [0, oo):/*(j, t) > a}\,

then Xa[o) = Xg(a) = Xr(a).
II. Moreover,

jP*(A,0<(¿/Jf/"(«)*}    r>        0<r<oo,

where ft(u), u > 0, is the one-dimensional rearrangement of the function f(x,y).

Proof. For the proof of I it is enough to show that Xa[cs) = Xg(a). Put E =
{(x,y): \f(x,y)\ > a) and E* = {(s,y): g(s,y) > a}. Foxy in B2 put Ey = {x G
B,: (x,y) G E) and E* = {s G [0, oo): (s,y) G E*}, By Lemma 2.1.III, n(Ey) =
m(E*), where m is Lebesgue measure on [0, oo). We have

(M X v)(E) = f v(Ey) dy=\  m(Ey*) dy = (m X v)(E*).

Part II. The corresponding single variable statement of Lemma 2.1.1 implies

Part I above implies that [/*(-,-)]*(") =/*(")> « > 0, since two functions which
are equimeasurable have the same rearrangement function on [0, oo). This proves
the theorem.

2.2. Simple functions. By an ordinary simple function we mean a function f(x, y)
which can be put in the form

N

J\x,y) =  2   CkXEk(x,y),
k-l

where the coefficients are complex valued, x^ is the characteristic function of the
set E, the sets Ek are disjoint, measurable and contained in a common rectangle /
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of finite measure (here / is of the form E X F, where E c B,, F c B2 and
\E\ < oo, \F\ < oo).

By a rectangular simple function is meant an ordinary simple function which can
be written in the form

N,M

f(x,y) =   2    C(i,J)xEl(x)xFj(y)>
■y-i

where E¡ c B,, |£;.| < oo, Fj c B2, |f}| < oo, i = 1, . . ., A/,/ = 1, . . . , M.
For rectangular simple functions some of the coefficients may equal zero. The

sets over which these functions are defined are assumed to have coordinate
projections which are nonoverlapping. They may be viewed as disjoint rectangles in
B, X B2.

It is not hard to show, see [9]: given a measurable function f(x, y) defined on
product space B] X B2, then there is a sequence of ordinary simple functions
fk(x,y) for which fk -»/and |/A|t|/| pointwise. Here then, Lemma 2.3 applies.

As for rectangular simple functions, let f(x,y) = 2 CkxE be an ordinary simple
function. By the properties of the product space B, X B2, [9, pp. 137-140]

OO 00

Ek =  P! E(k,j),        E(k,j) =  (J E(k,j,p),        k=l,...,N,

where each E(k,j,p) is a rectangle and / d E(k,j,p). By working with sets of the
form E(k, J, P) = n/=t U'_i E(k,j,p) and using the ring properties of the
collection of rectangles in B, X B2, it is a straightforward process to construct a
sequence of rectangular simple functions /„ such that f„^>f pointwise a.e. This can
be done in such a way that the functions /,, / are uniformly bounded on the
rectangle /. This discussion shows that rectangular simple functions are useful in
context with those function spaces where a Lebesgue dominated convergence
theorem holds.

If f(x, y) = 2 CkxE is an ordinary simple function with its coefficients re-
arranged so that \C{\ > \C2\ > ■ • ■  > \CN\, then

/*(«)- 2 IQM«),    ">o,
k=\

where ££ is the interval fâz\\E,\, 2*_i|£,|), k = 2, . . . , N, and E* = [0, |£,|). A
corresponding multivariate representation requires a definition and a little more
effort.

Definition 2.5. By a rearrangeable simple function we mean a rectangular simple
function f(x, y)for which

I. The values \C(i, i)\ are all nonzero and distinct.
II. \Ej\ = a, \Fj\ = ß, some a > 0, ß > 0 and for each i,j.
The assumptions of Definition 2.5 are reasonable. The measure spaces consid-

ered are nonnegative, separable and a-finite. They are assumed to be either
nonatomic or purely atomic with each of the atoms having equal measure. If the
spaces B, and B2 are purely atomic then condition II is already satisfied. For the
nonatomic case and without loss of generality assume that both B, and B2 are
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nonatomic. Let/(x, y) be a rectangular simple function all of whose underlying sets
have rational measure. There are a fixed number of corresponding underlying sets
from the measure spaces (B,, 11) and (B2, v). These can be subdivided into a finite
number of sets with all of the subsets of B, having equal measure and similarly for
the subsets of B2. This done, such a function/(jc, v) can then be expanded so that
the resulting function is again a rectangular simple function which satisfies condi-
tion II of Definition 2.5. In those instances where duplications occur with the
coefficients it is possible to approximate the coefficients with coefficients uniformly
close to the given coefficients but all of distinct nonzero absolute value. This
includes those case where C(i, j) = 0. The result is a rearrangeable simple function.
By working with expanding rectangles having sides with rational measure, any
rectangular simple function can then be obtained as a pointwise limit of a sequence
of such functions (and with the uniformity properties obtained earlier with conver-
gence between the ordinary and rectangular simple functions).

Requiring that the coefficients of rearrangeable simple functions be distinct and
nonzero could be omitted. The advantages of these restrictions are purely of a
technical nature and lead to the rather nice form of the representation Theorem 2.6
which follows. They allow the coefficients and underlying sets to be easily traced
and uniquely indexed. This facilitates any computations made with these functions.
Beyond this, the uniqueness property will be required for the proof of one of our
main results, Theorem 5.1.

Though we do not consider the topic here it is useful to note that Theorem 2.6
shows that rearrangement simple functions lend themselves naturally to a study of
rearrangements and multi-indexed sequence spaces. We state our theorem.

Theorem 2.6. Let f(x, y) be a rearrangeable simple function as in Definition 2.5,
then

f{x, y)-e> •***">   t   K(n,m)xB(n,m)(x,y)
n,m = 1

where B(n, m) = {(x, y): \f(x, y)\ = K(n, m)} is exactly one of the sets of the form
E¡ X Fj, G B, X B2, 1 < i < N, 1 < j < M, without repetitions or omissions. Corre-
spondingly K(n, m) = C(i,j). The coefficients K(n, m) are positive and decreasing for
increasing choices of either of the indices n, m, where n = 1, . . ., N, m = I, . . . , M.
Moreover,

N,M
/*(■*> t) =    2    K(n, m)xB.(n,m)(s, 0*

/i,m= 1

where B*(n, m) = [a(n - 1), an) X [ ß(m - 1), ßm).

Proof. Let/(jc, y) be a rearrangeable simple function; then

f(x,y) = S( 2 \C(i,j)\xEl(x)yFj(y).

For a given choice of y, exactly one of the characteristic functions Xp{y), F = FJt is
nonzero. After rearranging and putting the terms in decreasing order we obtain
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\f(x,y)\ = 2^_, K(n,j)xE(njy(x), where E(n,j) = £,,, some /', Ï = 1, . . . , N, with
each set E¡ appearing exactly once in the rearrangement. E(n,j) depends upon
which of the terms x>(>0 ^ 0, F = Fj. The relation between n and Ï is determined
by a permutation of the numbers (1, . . . , N) and is indexed by the indices j,
1 < j < M. It is not difficult to see

r(s,y) =   2    Kin'iïXs-inA^XFjiy)'
nj= 1

where E*(n,j) is the interval [a(n - 1), an).
The function /*(i, v) has the same basic form as the function f(x, y), with the

intervals [a(n — 1), an) playing the role of the sets E¡ and the variable s replacing
the variable x. The same construction can then be repeated with the function
ft(s,y) and with respect to the variable v. Since ft(s, t) = [ft(s,-)]*(t), the func-
tions ft(s, t) and ft(s, y) in rearranged form, their coefficients, underlying sets and
indices are related to each other similarly as are the functions f(x, y) and ft(s, y).
Moreover, because the process is iterative, the rearrangement of the terms of
ft(s,y) are reflected in kind by a rearrangement of the terms of f(x,y). Following
on these remarks the proof can be completed in a straightforward fashion.

3. Banach function spaces and mixed norms.
3.1. Banach function spaces. The purpose of this section is to use multivariate

rearrangement and averaging functions to define Banach function spaces with
mixed norm. In order to do this it is necessary to begin with a short discussion of
Banach function spaces. These spaces were introduced by Luxemburg [12], [13].
The presentation is drawn directly from these references.

We consider normed (quasi-normed) function spaces X = A^B, u) with norm
(quasi-norm) \\f\\x, for functions f(x) which are measurable. The measure space
(fl, a) is either nonatomic or discrete (purely atomic with a countable number of
atoms of equal measure) and the function space X is rearrangment invariant. That
is, if f(x) is equimeasurable with g(x), then \\f\\x is equivalent to \\g\\x. Such a
space is a Banach function space (with Fatou norm) if:

I. I/I < | g| a.e. x, g G *, implies/ G X and \\f\\x < \\g\\x.
II. xE e X whenever xE is tne characteristic function of a set of finite measure

(if B is a product space we require E g I, for some rectangle / of finite measure).
III./ G X implies/is locally integrable (fx¡ G X if B is a product space).
IV. If 0 < /J/pointwise, then H/J^II/IIa- as k -> oo.
These spaces are norm complete. A Banach function space has absolutely

continuous norm if for each / G X and every sequence of measurable sets Ek for
which Ekl<b, then ll/x^H* —> 0, E = Ek, as k tends to infinity. This condition
implies that a Lebesgue dominated convergence theorem holds. Namely, if fk —*f
pointwise a.e. and |/t| < |g| for some g in X, then \\fk — f\\x -* 0, as k -» oo. It
follows from the discussion in §2 that the simple functions are dense in such
spaces.

Luxemburg [13] showed that for each rearrangement invariant Banach function
space (as described here) there exists a corresponding rearrangement invariant
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Banach function space X(*) defined for all real valued Lebesgue measurable
functions on the interval (0, /x(B)) with the property \\f\\x = ||/*||a-(.). For conveni-
ence and when there is not danger of ambiguity we will sometimes put ||/*||jr =
11/* 11 *•(,). Hexeft(s) represents the one variable rearrangement of the function/(x).

Let/(x) be a measurable function. The first and second associated norms of f(x)
are defined by

\\f\\x. = supí/|/g|¿«: ||g\\x< l}, (3.1)

\\f\\x.. = sup{f\jg\du: || g\\x,< l} (3.2)

with A" and X" being the corresponding function spaces of all measurable/(x) with
finite norm. These spaces are also rearrangement invariant Banach function spaces.
Moreover,

f\fg\du<\\f\\x\\g\\x,   (Holder's inequality), (3.3)

\\f\\x, = sup{ f™ft(s)g*(s) ds: \\g\\x < l), (3.4)

\\f\\x„ = sup{ f™ft(s)g*(s) ds: \\g\\x, < l). (3.5)

If |B| is finite then L°° c X c L\ continuously. X' is a closed subspace of X*,
the Banach dual of the space X. If X has absolutely continuous norm, then
X' = X*. A deep result of Lorentz and Luxemburg [13] is that \\f\\x- = \\f\\x-

By using the properties of X and its associated spaces it is not hard to show that
a Minkowski integral inequality holds. Namely, if f(x,y) G X for each y and
II/('».v)!!* G Lr,0 < r < 1, where Lr is classical Lebesgue space, then

II ll/ll^ll* < II ll/IUL- (3.6)
We remark that some well-known examples to which these discussions apply are:

the classical Lp spaces, the Orlicz classes A^, C) [21], the Lorentz-Zygmund
spaces //"(Log L)a [2], the Lorentz Aa(X) spaces [19] and the Lorentz L(p, q)
spaces [11]. For certain choices of say the underlying Young's function, fundamen-
tal function or certain choices of the indices, several of these function spaces satisfy
Hardy type inequalities. In these cases,

\\n\x< wsrwx < c\\f*\\x- (3-7)
for some r, 0 < r < oo (may choose 0 < r < 1) and some constant C independent
of the function f(x).

3.2. Mixed norm spaces. Let X = X(QV ri) and Y = Y(Sl2, v) be rearrangement
invariant Banach function spaces with corresponding Luxemburg representations
X(*) and Y(*). As before, let f(x, y) be a measurable function defined on the
product space (B, X B2, n X v). The mixed norm (quasi-norm) space Y[X], in the
sense of Benedek and Panzone [1], is:

Y[x] = if- 11/11 n*] = II \\Ä;y)\\x\\r< °°}- (3-8)
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Using Luxemburg representations,

ll/llr[x, = ll(ll/*(-,>')llx(.))*(Olly(.)-
We denote the space Y[X] (*) by

y[x](*) = {/ H/Hnxx.) = H/*(* Ollmi = II H/"(s> OH*.)!!*« < °°}-
(3.9)

Using iteration and the remarks made so far it is not difficult to verify that both
Y[X] and y[A"](») are Banach function spaces, though not necessarily rearrange-
ment invariant. We omit the details. Moreover, if X and Y have absolutely
continuous norms, then so do the spaces Y[X] and yfA'K*). Since these spaces in
turn satisfy the Lebesgue Dominated Convergence Theorem, it follows that the
ordinary, rectangular and rearrangeable simple functions are dense in such spaces.

If X and Y satisfy the Hardy inequalities, then Lemma 2.2.III, (3.6) and (3.7)
imply

\\r\\nxi < WfrWnx] < lUTfliw < C\\f*\\nxi, (3.10)
some r, 0 < r < oo (may choose 0 < r < 1) and some constant C independent of
the function f(x, y).

The corresponding associated spaces of Y[X] and y[A"](*) are denoted by
(Y[X])', (Y[X])" and (Y[X](*))', (Y[X](*))" respectively. The associated spaces of
X and Y with mixed norm are defined to be Y'[X'], Y"[X"] and Y'[X'](*),
Y"[X "](*).

For two functions f(x, y) and g(x, y), Lemma 2.1.II and Theorem 2.4.II imply

00       oo

ff\f(x,y)g(x,y)\dxdy<J   f    ft(s, t) g*(s, t) ds dt

< T ft(u) g*(u) du, (3.11)
•'n

where ft(u) and g*(u) are the one variable rearrangements of/and g. This in turn
readily leads to a wealth of relationships between X, Y and the various associated
spaces defined above. For the sake of brevity we only list four of the most
important.

Theorem 3.12. l.(Y[X])' = Y'[X'].
II. (Y[X](*))'= Y'[X'](*).

If X and Y have absolutely continuous norms, then
lll.(Y[X])' = (Y[X])* = Y*[X*].
IV. (Y[X](*))' = (Y[X](*))* = Y*[X*](*)

where X* and Y* are the Banach dual spaces of X and Y respectively.

Proof. The proof of III and IV follow immediately from I, II and the previous
discussions. We prove II; the proof of I is similar. Inclusion of r"[A"](*) follows
easily by (3.11) and successive applications of Holder's inequality. For the reverse
inclusions let f(x,y) G (Y[X](*))' and let / = /, X /2 be a rectangle in B, X B2
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\\(fx,)*\\xMv = sup ('"''sup [lI'l(fXins, t) g(s, t) ds h(t) dt,

with finite measure; then

sup I
/0        g   Jo

where ||g*(-, OII*(.) < I> 11^*11 ym < I and whose support is contained in the
rectangle [0, |/,|) X [0, |/2|). For each e > 0 there exist measurable functions g(s, t)
and h(t) as above so that the quantity on the right is majorized by

i'72' f I7,l(/X,)*(*, t)g*(s, t)h*(t) dsdt+ (l'2leh*(t) dt + e.

Since || g*(s, t)h*(t)\\ Y[X^.) < 1'tms is majorized by
^.00 ^.00

sup /     /    (fxi)*(s, t)k(s, t)dsdt + e\\h*X[o, \i,\)\\L< + e.
k •'o   Jo

Since Ly(#)(0, |/2|) c L\0, \I2\), this is majorized by

W(fXi)*\\iY[x]Y + eK \\h* II r(.y
This in turn is less than or equal to H/'lljy^])' + e-^ + e, where the constant K
depends only on Y and the rectangle /. By letting e —» 0 followed by letting
/fB, X B2 on the left, we obtain \\ft\\ y\x\ < II/'IIîkia'])'. This completes the proof.

3.3. Inclusions. Let X and Y be rearrangement invariant Banach function spaces.
Let A" be the first associated space of X. If X has absolutely continuous norm then
X' = X*. A natural context for the spaces Y[X] and y[Ar](*) are as intermediate
spaces between the function space I(X', Y) consisting of kernels of integral
operators which are bounded from X' to Y and the function space X ®y Y, which
is the completion of the algebraic tensor product of X and Y in the greatest cross
norm y. For a more detailed treatment of integral operators and tensor products
see [14], [17], [18]. The statement of this is formally given in

Theorem 3.13. With continuous embeddings,
I. X ®y Y C Y[X] G I(X', Y).
II. X <8>y Y G Y[X\(*) c I(X', Y).

Proof. We prove only II; the proof of I is well known and done similarly. Recall
that if k(x,y) G I(X', Y), then an operator Tk: X' -» Y is defined by

Tkf(y)= [ k(x,y)f(x)dx,     /er.

The norm of the operator is || Tk\\ which is the supremum of al values || T,J\\ Y for
which    ||/|jx.   = HJHIjrw  <   1-      For   such    a   function   /(*),    \\TJ\\r  =
||/B k(x, y)f(x) dx\\ Y. Lemma 2.1.II and (3.2) imply this is majorized in order by

Il f °° k*(s,y)ft(s) ds     = sup f   f°°k*(s,y)ft(s)dsg(y) dy.
\\Jo y       s  Ja2Jo

<  SUp  r Ck*(S, t)ft(s)g*(t) ds dt,
g  Jo   Jo

where \\g\\x, = \\g*\\x. < I. Since \\ft(s)g*(t)\\Yw.) < !» Holder's inequality im-
plies || TiJW y < ||Ai*|| Y[xy,,y This proves the second inclusion.
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For the first inclusion, let h(x, y) be a function which can be represented by a
terminating sum of the form h(x,y) = 2 fk(x)gk(y), for which H/iH^g, Y =
inf 211/-1|^ Uglily is finite, where the infimum is over all such representations for
h(x,y). It is not difficult to see that for each such representation, h(s, t) <
2Ä(j)&(0 and \\h\\ Y[XKt) < 2||/JA.(.)||gt|| n,y If the Hardy inequalities hold for
X and Y, then \\h*\\ Y[X] < C\\h\\x^Y. This implies Y[X](*) 3 X <8>y Y.

If X and Y are rearrangement invariant Banach function spaces defined on
[0, oo) and Y[X] is rearrangement invariant, it is immediate that Y[X] = Y[X](*).
In the next section we show for certain function spaces X, Y where Y[X] is not
necessarily rearrangement invariant that containment relationships can exist be-
tween Y[X] and Y[X](*). Moreover, if X = L"[0, oo), 1 < p < oo, and Y =
L°°[0, oo),  then using Theorem 4.5  and an example of the form f(x, y) = y,
0 < xyp < 1 and zero otherwise, shows that containment can be proper.

Remark. The results obtained so far carry through to product spaces of dimen-
sion n, n > 2.  If (B, ri) = ( X "_, B„ X "_, ju,,) is such a  space,  then let f(x),
x = (jc„ . . . , x„), be a complex valued measurabe function defined on (B, u). By
iteration we define the nonnegative, nonincreasing rearrangement of f(x), up to k,
1 < k < n and in the order (1, . . . , A;), to be

/*(/„ ...,tk,xk+v...,x„)=[--- [/*0,,-)]*(<2>') • • • ]*('*> **"+i. • • • > xn),

where r, > 0; i = I, . . . , k, and ft(t) = ft(tx, . . . , tn). The averaging operators
fr(tv . . . , tk, xk+l, . . ., xn) and/(0 are defined similarly. The averaging operators
ft* are also defined naturally. And explicitly

/"(') -[(< •   •   '   '«)"' P '   •   •    i''^M" ■■■^n)dul,..., duV/r.
Jo Jo

The natural order of indexing (I, . . . , k) was picked above. This will be
sufficient for our purposes. Continuing, let A", be rearrangement invariant Banach
function spaces defined on the measure spaces (B,, fi¡) and with corresponding
Luxemburg representations A,(*); /,...,«. The mixed norm space X and the space
X(*) are defined in the natural way by putting X = Xn[ ■ ■ ■ [A'2[A"1]] • • • ] and
A» = X„l ■ • • [A-2[A-,]] • • • ](*).

Throughout the rest of our discussions we will assume that the results of §§2 and
3 have been extended to the multivariate case n, n > 2. Doing this is a straightfor-
ward process and for the most part simple induction suffices. Verification of the
details is left to the discretion of the reader.

4. Lorentz spaces L(P, Q; *).
4.1. The remainder of the paper will be devoted to a discussion of the Lorentz

L(p, q) spaces and mixed norms. These function spaces are one of the main topics
of the paper and a main application of the ideas presented so far. Let f(x),
x = (xv . . . , xn), be measurable and finite a.e. and let/*(i), / = (r,, ...,/„) be its
nonincreasing rearrangement. Let L(px, <?,), . . . , L(pn, qn) be Lorentz L(p, q)
spaces with quasi-norms || g*\\*q-; see [11]. The Lorentz mixed norm space L(P, Q)
and the Lorentz space L(P, Q: *) are defined by
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L(P,Q) = L(pn,q„)[ ■ ■ ■ [L(p2,q2)[L(pl,ql)]] ■ ■ ■  ],

L(P, Q; *) = L(pn, qn)[ ■ ■ ■ [L(P2, q2)[L(px, qx)]] ■ ■ ' ](*)

respectively, where P = (px, . . . ,p„), Q = (qx, . . . , q„) and the quasi-norms are
denoted by ||/||*,e = \\f\\*UP,Q)and \\ft\\*PQ = ||/*|| V,C;.)-

Throughout the paper the letters P, Q, . . . , R will denote «-tuples, n > 1,
P = (px, . . . ,pn), . . . , R = (r,, . . . , /•„). Moreover, if $(/>, 9, . . . , r) is a relation
among numbers, 5>(R, Q, . . . , R) will mean $(/>,-, <?,, . . . , r¡) holds for each i =
1, . . . , n. An example is: if p' = p/(p — 1) is the conjugate value foxp > 1, then
P'(P — 1) is the n-tuple whose components are the conjugate values of the
components of P.

In previous sections the discussions were presented primarily in terms of the
/i-dimensional case n = 1 or n = 2. Here, for the sake of future reference and
because it is no more difficult, the discussions will be in the context of dimension n,
n > 1. Also, in subsequent sections we present our main results and some of their
applications. These will be given for L(P, Q; *) spaces. For this reason the
discussions will be restricted primarily to these function spaces. The reader should
note however, in view of the previous discussions in §§2 and 3, that several of the
statements of this particular section carry over in a straightforward fashion to the
L(P, Q) spaces.

Following directly in the discussions of §3 and the known properties of the
L(p, q) spaces: If 1 < p < 00, 1 < Q < 00, then L(P, Q; *) with quasi-norm
||/*||*e is a Banach function space. Here it is required: if/?, = 1 some /', then q¡ = 1
or if Pi = 00 some /', then q¡, = 00, / = 1, . . ., n. Those spaces where 1 < p < 00,
1 < Q < 00, have absolutely continuous norm, which implies L(P, Q; *) =
L(P', Q'; *), where \/P + \/P' = 1 and 1/(2 + l/Q' = 1. In addition, the set of
ordinary, rectangular and rearrangeable simple functions are dense for this particu-
lar choice of indices. If q¡ = 00, some /, / = 1, . . . , n, then as with the one-dimen-
sional case L(p, q), the dual of L(P, Q; *) cannot be expected to be L(P', Q'; *)
and the collection of simple functions do not form a dense subset.

Holder's inequality takes the form

f\f(x)g(x)\ dx< r ■ ■ ■ /">(/„..., tn)g*(tx, ...,o dtx ■ ■ ■ dtn
J JQ J0

< ll/*llîellS*llî'G.. (4.1)
It is worth mentioning that, as in [11], it is possible to consider L(P, Q; *) spaces

for 0 < P < 00, 0 < Q < oo. Choose r, 0 < r < 1, where r < P, r < Q, then it can
be shown that d(f, g) = \\(f — g)r||*g defines a metric on L(P, Q; *). Moreover,
Lemma 2.2.Ill, Minkowski's integral inequality and the Hardy inequalities [11]
imply

\\r\\pQ < U\\%a < \\ft*\\*PQ < c\\ft\\*PQ, (4.2)
where C is independent of the function/. Completeness with respect to the metric
and density of the simple functions, 0<R<oo,0<o<oo can be shown to
follow.
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Lorentz L(P, Q; *) spaces with different indices are related in some special case.
if o < öi < Qi < °°,tnen

L(P, Qx; .) c L(P, Q2; *),   with \\ft\\*PQ2 < C\\ft\\*PQi, (4.3)
where C depends only on the indices. If for each i, /t,(ß,) < oo, 0 < Px < P2 < oo,
0 < Qx, Q2 < oo, then

L(P2, Q2; *) G L(PX, Qx; *),    with \\ft\\*P¡Qt < C\\ft\\\02, (4.4)
where C depends only on the indices and the measure space B. If /i, = oo, then
(4.4) can be modified in the obvious way by requiring that the /th components of
Px and P2 be equal and that the /th component of Q2 be less than or equal to the
/th component of Qx. Both (4.3) and (4.4) can easily be verified by using iteration
and the one variable proofs given in [11]. The details are omitted.

The spaces most closely related to the L(P, Q; *) spaces are the Lorentz L(p, q)
spaces and the Lorentz mixed norm spaces L(P, Q). The following theorem
provides containment relationships between these various function spaces.

Theorem 4.5. I. // P = (Px, . . . ,Pn), Q = (qx, . . . , qn); 1 < P < oo, 1 < Q <
oo and

max    {<?,}<   min  {/>,},        \/P + \/P' = 1, \/Q + l/Q' = 1,
l<i'<n—1 2<j<n

then L(P, Q; *) c L(P, Q) and L(P', Q') c L(P\ Q'; *).
II. LetP = (p, . . . ,p), Q = (q, . . . , q) and Q = (q, oo, . . . , oo). Then L(p, q)

G L(P, Q; *). If (B, fi) is Euclidean n-space with Lebesgue measure and if p ¥= q,
q ¥= oo, then L(P, Q; *) ^ L(p, q) and neither space contains the other.

III. If Pi = q¡ = p; i = 1, . . . , n, so that P = Q = (p, . . . ,p), then L" = Lp(*)
= L(p,p) and Lp = Lp(*) = L(P, P; *) = L(P, P) with equality of the norms
(quasi-norms).

Proof. We prove the left inclusion of part I first and do it by majorization of
norms. The proof is by induction on the number of variables. Since L(P, Q; *) =
L(p, q), if P = p, Q = q, the case for n = 1 is obvious. Suppose continuous
inclusion has been shown for « — \,n > 2. Then

ll/llw.e) < C|| || • • • \\ft(tx, ...,/„_„ x„)||*i?, • • • ||£_,,,_,||*L(P^
where C depends only on P and Q. Put

F(t2, ...,tn_x, xn) = \\ft(-, t2,..., tn_x, x„)\\*¡q¡.

Again by the hypothesis and after noting the function F is already nonincreasing in
the variables t2, . . . , tn_,, the last term is majorized by

en--- itiif'O*...,oh;ji•• • ii£,„.
Consider the function F*,

F*(t2, ...,/„)< sup JË7\IEF^2' ' " ' ' '"-" ■*")''***"
where the supremum is over all sets E = E(tn; t2, . . . , t„_x), \E\ > tn. Put r•«■ q,:

iA
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then Fubini's theorem and Lemma 2.1 imply F* is majorized by

W'
Tj""\\n-,t2,...,un)\\*;tqydun

n    0

If r > 1, it is not difficult to show that

ft*(u) < 2u'1/r f" v-1/r'ft(v) dv,       0 < u < oo, \/r + \/r' = 1.

This implies the last expression is majorized accordingly with r = qx. After sub-
sisting back followed by successive uses of Minkowski's integral inequality,

l«*e) < C|K'/'/'" tf/'w- *• \\ft(-,un)I*    • • • II* du II*   .'P\1i uPn-i1„-i        n"P„1„

Since r = qx <pn the conclusion follows by Hardy's inequality [11].
The inclusion on the right in part I follows by a simple duality argument which

makes use of Holder's inequality and the inclusion on the left. We omit the details.
Part II. By Theorem 2.4,

/**(') <

With a change of variables,

(tn---txr r-'"" f*r(u) du
\/r

ii/**(-,'2, • • •, on;, < (>„ • • • 'jV-'^ii./roiiw
This implies ||/**(-, . . . , -)\\*Pq < \\ft*(-)\\pq and L(p, q) G L(P, Q; *). The sec-
ond statement of part II follows directly from a lemma given by Cwikel [6]. The
result there was given for L(P, Q) spaces. But since his constructions were in terms
of multivariate nonincreasing functions, the examples apply equally well to the
L(P, Q; *) spaces.

The second equality on the right of part III can be easily verified by repeated use
of Fubini's theorem and Lemma 2.1.1 in comparing norms. The other equalities are
equally easy to verify. Again, we omit the details. This completes the proof of the
theorem.

5. Applications.
5.1. An interpolation theorem. In this section we extend the Strong Type (Riesz-

Thorin) Theorem to the L(P, Q; *) spaces. See [11]. The theorem will be given for
a sublinear operator T which maps measurable functions on an «-dimensional
measure space X B, into measurable functions on an w-dimensional measure space
X T. An operator T is sublinear if whenever 7/ and Tg are defined and c is a
constant, then T(f + g) and T(cf) axe defined with

\Hf+g)\< \Tf\ + \Tg\    and    \T(cf)\ < \c\ \Tf\.
Theorem 5.1. // T is a sublinear operator and \\(Tf)*\\*P,Q, < Cj\\ft\\*PQ,j = 0, 1,

then

\\(Tf)*\\*P.Q, <CC0'-'Cf||/*||îe
where \/P = (1 - 0)/P0 + 9/Px, \/P' = (1 - 9)/P¿ + 0/P¡, \/Q =
(1 - 9)/Q0 + 9/Qx, \/Q' = (1 - 9)/Q¿ + 9/Q[, 0 < 9 < 1.
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The lengthy proof is deferred to the Appendix 5.4.
5.2. Convolution of functions. Let B = R" be Euclidean «-space with Lebesgue

measure. The ordinary convolution of two measurable functions/and g defined on
R" is given by (/* g)(y) = fR-f(x)g(y - x) dx, whenever the integrals exist and
are finite. The authors of [16], [3] and several others have written extensively on
operators which are generalizations of ordinary convolution. For the purposes of
this paper the discussion is restricted to ordinary convolution. The next lemma
extends the basic convolution lemma [16] to the L(P, Q; *) spaces.

Lemma 5.2. Ifh(y) = (/ * g)(y), then
— r°° z*00 -
«(')</     •••  J   f(u)g(u)du,

where u = (ux, . . . , un), du = dux • • • dun.

Proof. It is sufficient to consider the case n = 2. The case for n > 2 follows by
induction. Fix tx > 0, t2 > 0 and let E c R, E = E(tx; Vj), \E\ > tx; then

-¡"FT Í f*g(yi'y2)dyx < f TFT f r l/(^i, ^2)^(^1 ~yi,x2 -y2)\dxxdyxdx2.
\tL\ JE JR \tL\ JEJR

By taking supremums first on the right and then on the left,

h{tx,y2) < j I j f(xx, x2)g(--xx,y2 - x2) dxx |(r,,>>2) dx2.

By the one variable proof [16],

< f Í   /("i> x2)g(ux,y2 - x2) dux dx2.
JRJtl

The proof is completed by using Fubini's theorem and repeating the procedure
above with respect to the second variable.

The convolution theorem is as follows.

Theorem 5.3. If h = f * g, f G L(PX, Qx; *) and g G L(P2, Q2; *), where 2 >
\/Px + \/P2 > 1, 1 < Px, P2 < 00, then h G L(R, S; *), where l/R + 1 = 1/R,
+ \/P2andS > 1 is such that 1/ß, + l/£?2 > 1/S. Moreover,

\\h*\\*Rs <C\\ft\\*iQ¡\\g*\\*P2Qi,

where C depends only on the indices.

Proof. As before, it is sufficient to prove the case n = 2. By Lemmas 2.2.III and
5.2, h*(tx, t2) < /£ /*/**(«„ u2)g**(ux, u2)dux du2. By Minkowski's integral in-
equality

ll^O.yiU < ¡"ICft*(ux,u2)g(ux,u2)dux *
Jh   IK(.)

By the one variable proof [16],

< f°°\\r*(-,u2)\\Puqjg**(-,u2)\\Pi2qndu,

Here, Px = (pxx,p2X), P2 = CPn.^)* ßi = (an> «21). Ô2 = (ln> In)- The Pr°of is

du2

*2-
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completed by repeating the same procedure with respect to the second variable.
5.3. Fractional integration. Let B = R". We consider convolution of functions

with a kernel of the form

K(x)=t^,       0<a<n,
\x\

where |jc| = (x2 + • • • + x2)i/2, Kna is a constant depending only on n and a. For
the given choice of a choose any P = (px, . . . ,pn), 1 <pt < oo, 1 < / < n, for
which a = 2 a,, a, = l/p[, \/p[ + l/p¡ = 1. From the inequality \x¡\ <
(x2 + ■ ■ ■ + x2)l/2, 1 < / < n, it is not difficult to show that

1                1                          1-=-<-.
2 l/p, I v |l//>, .  .   .   Iv- |l//>„\x\~-'-        X xS

This implies the kernel Ka(x) is in L(P, oo; *) for a = n — 2 1//»,-. We remark that
in the L(/>, <?) version [16], the kernel is shown to be in L(p, oo), where p =
n/(n — a). This is analogous to our special case/?, = • • • = pn = n/(n — a).

For a function f(x) the ordinary fractional integral/, of order a for the function/
is the ordinary convolution of / with a kernel of the form Ka(x) (i.e., fa =
/ * Ka). Using the Convolution Theorem 5.3 and following the statements given
above, the L(P, Q; *) analogue of the fractional integration theorem take the
following form.

Theorem 5.4. Iff G L(P, Q; *) on R" and fa is its ordinary fractional integral of
order a where 0 < A < \/P, A = (a,, . . . , a„), 2 a, = a, then fa G L(R, Q; *)
where

I. 1/R = \/P - A
II. 1/R = 1/R - a/n, if R = (r, . . . , r), P = (p, . . . ,p).

5.4. Appendex. For the proof of Theorem 5.1 we use the ideas given in Hunt [11].
The key to the multivariate version is the use of rearrangeable simple functions to
establish the lemma below. The lemma itself is a generalization of the first part of
Hunt's proof. Once proof of the lemma is accomplished, the remainder of the proof
proceeds as in [11] with only some minor modifications.

Lemma 5.5. Suppose that f(x), x = (xx, x2), is a rearrangeable simple function; then
f can be written in the form

f(x) = e'^^(G0(x)y-"(Gx(X))9,

where   G,, / = 0, 1,   is   a   nonnegative   simple  function   such   that   \\G*\\*q <
c(\\ft\\PQr/q\j = o, i.

Proof.  Setting our notation:  P = (p^pj,  P' = (p'^p'J,  Q = (qx, qj,  Q' =
(<7Í> q'2\ Pj = (Py,Pv), Pj = (p\pP'2j), Qj = (?u> 9yX Qj = (<7iy> l'i^ j - 0, 1. Let
0 < r < {R}, where R is one of the indices given above. Let t = (/,, ij) and put

4>v(tù = í,/*xf/*~*/w,
Py = ft*{tr/<hj,        F2J = \\ft*(-, t2)\\*;;qi,

where * = q2/q2J - qx/qXj; i = 0, 1;/ = 0, 1.
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Let ft, = (FXJ)(F2J)(<j>XJ(tx))(^2J(t2)); j = 0, 1. We have ft*(t) = (h0(t))l-\hx(t))e.
A direct computation and (4.2) implies

\\h\\P¡Qj < C(\\ft\\*PQ)^q\       j = 0,1.

If Sk(t) = [/£ /" /cr(r,, r2) ¿A, iA2]'A, then by the device of interchanging orders
of integration it is not difficult to show that/*(r) < Sft*(t). By Holder's inequality
ft(t) < (Sho(t))l~0(Shx(t))e. After use of Minkowski's integral unequality to set up
the integrals in proper order the Hardy inequalities [11] imply ||S«y||*,ß. < C||A7||*,a
< C(\\ft\\PQ)q2/q2J, j = 0, 1, where C may be different in each inequality. The
symbol C will be used generically to represent constants which depend only on the
indices.

The functions G}, 7 = 0, 1, are obtained by choosing values smaller than S'A.,
/ = 0, 1. This is accomplished as follows. By Theorem 2.6

N,M

ft{t) =    2     Kn, m)xB.(n,m)(t),
n,m = 1

where B*(n, m) = [a(n — 1), an) X [ß(m — 1), ßm). For a given t,ft(t) = k(n, m)
uniquely    for    some    n,    m.    Since    Shj(t)    is    continuous,    k(n, m)  <
(Sh0(an, ßm))y-\Shx(an, ßm))0. Define

G0(X) = 2 Sh0(an, ßm)xB(n,m)(x),

^ ,  s      ^       (X(n, m))i/9 .  ,

(Sh0(n, m)f
This implies / = (G0)l~~e(Gx)e. Note that each term in Gx is majorized by

Shx(an, ßm). Put Gx(x) = 2 SA,(an, ßm)xBi„tm)(x); dien Gx(x) < Gx(x) and Gf(t)
< G*(t). By construction, the functions G0(A') and G,(x) are rearrangeable simple
functions and as written are in rearranged form. Term by term the underlying sets,
associated coefficients and how they are ordered matches up with that for the
function f(x). This implies

Go(') = 2 Sh0(an, ßm)xB.(n,m)(t)

and similarly for Gf(t). Moreover, by continuity of the defining integrals we have
G*(t) < SA0(0 and Gf(t) < Shx(t). This proves the lemma.

Proof of Theorem 5.1. We prove the case n = m = 2. Let Gj,j = 0, 1, be as in
Lemma 5.5. Put

F(x,Z) = e'a^»[G0(x)]1-z[G1(x)]z,

Z complex, 0 < R(Z) < 1, x «■ (xx, x2). This expression compares to that given in
Hunt [11, p. 267]. By working primarily with averaging operators of the type/, the
reader should have little difficulty in making use of the subsequent steps given
there in order to obtain the result \\(Tf)*\\*P.Q, < CC^'cf \\ft\\*PQ; where/is any
rearrangeable simple function. We omit the details.

For any function / G L(P; Q; *), find a sequence of rearrangeable simple
functions fk converging to / in metric (see §2.2) and do the following. Let AN c T
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be of the form AN = AXN X A2N, where \AiN\ < oo, / = 1, 2, and ANîT. The result
above implies that T maps rearrangeable simple functions in L(P, Q; *) into
measurable functions in L(P', Q'; *, AN), which is a complete space. If necessary
by passing to a subsequence we obtain ||/*||*>e —> ||/*||*e and \Tfk\ -> \Tf\ point-
wise a.e..y in AN. By Fatou's lemma.

\\(Tf)r\\W < liminf||(r/,)**||*,e,.
This implies \\(Tf)*\\*P,Q, < CC^9Cf \\ft\\*PQ. After letting AN\T the proof is com-
plete for the case n = m = 2.

In the steps above it was not explicitly shown that convergence in metric gives
the existence of a subsequence which converges pointwise almost everywhere. It
follows from (4.4) that the function space in question is contained in Lr(An),
r < P'. This implies almost everywhere pointwise convergence of a subsequence.

For the case of dimension n > 2, m > 1, the proof is obtained by extending the
definitions for the simple functions along with Theorem 2.6 and adapting the proof
above to the «-dimensional context, n > 2. The process, though tedious, is
straightforward. The details are left to the discretion of the reader.
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