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Abstract. Most of the hydrological and hydraulic studies

refer to the notion of a return period to quantify design

variables. When dealing with multiple design variables, the

well-known univariate statistical analysis is no longer satis-

factory, and several issues challenge the practitioner. How

should one incorporate the dependence between variables?

How should a multivariate return period be defined and ap-

plied in order to yield a proper design event? In this study

an overview of the state of the art for estimating multivari-

ate design events is given and the different approaches are

compared. The construction of multivariate distribution func-

tions is done through the use of copulas, given their practi-

cality in multivariate frequency analyses and their ability to

model numerous types of dependence structures in a flexi-

ble way. A synthetic case study is used to generate a large

data set of simulated discharges that is used for illustrat-

ing the effect of different modelling choices on the design

events. Based on different uni- and multivariate approaches,

the design hydrograph characteristics of a 3-D phenomenon

composed of annual maximum peak discharge, its volume,

and duration are derived. These approaches are based on

regression analysis, bivariate conditional distributions, bi-

variate joint distributions and Kendall distribution functions,

highlighting theoretical and practical issues of multivariate

frequency analysis. Also an ensemble-based approach is pre-

sented. For a given design return period, the approach chosen

clearly affects the calculated design event, and much atten-

tion should be given to the choice of the approach used as

this depends on the real-world problem at hand.

1 Introduction

A very important objective of hydrological studies is to pro-

vide design variables for diverse engineering projects. Re-

cently, there has been an increasing interest in, and need for,

simultaneously considering multiple design variables, which

are likely to be associated with each other. In hydrology

and hydraulics, several applications including sewer systems,

dams and flood risk mapping require the selection of storm

or hydrograph attributes with a predefined return period.

Standard hydrological design approaches are mostly based

on well-established univariate frequency analysis methods.

Notwithstanding this, approaches to describe hydrological

phenomena involving multiple variables have recently been

proposed, aiding the practitioners in estimating multivariate
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return periods. In the literature, as will be described later on,

several approaches have evolved over the years. However, it

is not clear how these compare to each other and which one

is appropriate for a given application.

Recent developments in statistical hydrology have shown

the great potential of copulas for the construction of mul-

tivariate cumulative distribution functions (CDFs) and for

carrying out a multivariate frequency analysis (Favre et al.,

2004; Salvadori, 2004; Salvadori and De Michele, 2004,

2007; Salvadori et al., 2007; Genest and Favre, 2007;

Salvadori et al., 2011; Vandenberghe et al., 2011). Copulas

are functions that combine several univariate marginal cumu-

lative distribution functions into their joint cumulative distri-

bution function. As such, copulas describe the dependence

structure between random variables and allow for the calcu-

lation of joint probabilities, independently of the marginal

behaviour of the involved variables. For more theoretical

details, we refer to Sklar (1959) and Nelsen (2006). Sev-

eral studies have been dedicated to the frequency analysis

of multivariate hydrological phenomena such as storms and

floods, often within the context of design. However, limited

applications have been developed with more than two vari-

ables (Vandenberghe et al., 2010; Pinya et al., 2009; Kao

and Govindaraju, 2008, 2007; Genest et al., 2007; Serinaldi

and Grimaldi, 2007; Zhang and Singh, 2007; Grimaldi and

Serinaldi, 2006a,b). For a complete and continuously up-

dated list of papers about copula applications in hydrology

see the website of the International Commission on Statisti-

cal Hydrology of International Association of Hydrological

Sciences1.

Multivariate frequency analysis is becoming more and

more widespread and several papers provide insight into gen-

eralizations of the univariate case and into new definitions of

the multivariate return period (see e.g. Salvadori et al., 2011;

Salvadori and De Michele, 2004; Shiau, 2003; Yue and Ras-

mussen, 2002). Since some of the proposed approaches are in

contradiction and others are introduced within specific con-

texts, there exists a need to clarify the definitions provided so

far and to highlight their differences. This study is devoted

to this issue and compares a set of different approaches on a

large simulated data set, allowing illustration of the implica-

tions of different modelling choices.

In this paper the construction of multivariate distribu-

tion functions based on vine copulas (also referred to as

pair-copulas by Aas et al., 2009) is first briefly intro-

duced (Sect. 2.2), followed by an overview of several ap-

proaches commonly used to estimate multivariate design

events based upon different definitions of joint return peri-

ods (JRP) (Sect. 3). Subsequently, a synthetic case study ad-

dressing the selection of a design hydrograph is presented,

which will serve as a test case for evaluating the different ap-

proaches. Section 4 provides all details on the practical con-

text of this case study. Then, in Sect. 5, extreme discharge

1Available at www.stahy.org.

events are selected and their most important variables such

as annual maximum peak discharge, its volume, and duration

are analysed, as they form the basis of the analysis. Section 6

deals with evaluating the performance and differences be-

tween the investigated approaches in quantifying design hy-

drograph characteristics and highlights important issues for

practitioners concerned with multivariate frequency analyses

in hydrology. Finally, conclusions are drawn in Sect. 7.

2 Constructing multivariate copulas

2.1 Choice of construction method

Most of the copula-based research in hydrology addresses

the application of 2-D copulas, for which several fitting and

evaluation criteria are becoming more and more widespread.

In contrast, the use of multidimensional copulas remains a

more challenging task. Only a few hydrological studies ad-

dress this issue and almost always face severe (practical)

drawbacks of the available high-dimensional copula families.

Most work has been done in the trivariate analysis of rain-

fall (Zhang and Singh, 2007; Kao and Govindaraju, 2008;

Salvadori and De Michele, 2006; Grimaldi and Serinaldi,

2006b), floods (Serinaldi and Grimaldi, 2007; Genest et al.,

2007) and droughts (Kao and Govindaraju, 2010; Song and

Singh, 2010; Wong et al., 2010).

Recently, a flexible construction method for high-

dimensional copulas, based on the mixing of (conditional)

2-D copulas, has been introduced and has been shown to

have a large potential for hydrological applications. In the

literature, this construction is known as the vine copula (or

pair-copula) construction (Kurowicka and Cooke, 2007; Aas

et al., 2009; Aas and Berg, 2009; Hobæk Haff et al., 2010).

The underlying theory for the vine copula construction is de-

scribed in Bedford and Cooke (2001, 2002). This construc-

tion method originates from work presented by Joe (1997) on

which also the method of conditional mixtures, as applied by

De Michele et al. (2007), is based. In this paper the vine cop-

ula method will be used to construct the 3-D copula for peak

discharge Qp, duration D, and volume Vp. The construction

and fitting is discussed in the next section.

2.2 Construction of a 3-D vine copula

In this paper the focus will be on a 3-D vine copula joining

the three marginal distributions of three random variables:

X, Y and Z. In general, the approach can be extended to

any number of dimensions, although limitations may be in-

troduced by the computational power and available data. In

the following, we assume that the samples of all three vari-

ables have each been transformed using the following rank

order transformation S in order to obtain the marginal empir-

ical distribution functions:

S(x) :=
rank(x)

n + 1
,
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where n denotes the number of observations for the given

variable. We denote the transformed variables by U , V and

W so that all three variables are now approximately uni-

formly distributed on [0, 1].

The basic idea of vine copulas is to construct high-

dimensional copulas based on a stagewise mixing of (con-

ditional) bivariate copulas. This corresponds to decomposing

the full density function into a product of low-dimensional

density functions. At the base of the construction all relevant

pairwise dependences are modelled with bivariate copulas. If

all mutual dependences are with respect to the same variable,

the construction is called a canonical vine (C-vine). If all mu-

tual dependences are considered one after the other, i.e. the

first with the second one, the third with the fourth one, etc.,

this is called a D-vine. C- and D-vines are special cases of

regular vines, the latter being all possible pairwise decompo-

sitions. In the 3-D case there is no difference between a C- or

a D-vine; only the ordering of variables can be changed.

Figure 1 illustrates the construction of a 3-D vine cop-

ula. In the first tree, three variables – U , V , W – are given,

and their pairwise dependences are captured by the bivariate

copulas CUV and CVW. These bivariate copulas can be con-

ditioned under the variable V through partial differentiation

(Aas et al., 2009). This conditioning is indicated by dashed

arrows in Fig. 1 and results in the conditional cumulative dis-

tribution functions FU|V and FW|V (see Eq. 1).

FU|V(u|v) =
∂CUV(u,v)

∂v
, FW|V(w|v) =

∂CVW(v,w)

∂v
(1)

In the second tree, the conditional CDF values are cal-

culated for all triplets (u,v,w) in the sample. These con-

ditioned observations, which are again approximately uni-

formly distributed on [0, 1], are then used to fit another bi-

variate copula CUW|V. The full density function cUVW of the

3-D copula is thus given by

cUVW(u,v,w) = cUW|V

(

FU|V(u|v),FW|V(w|v)
)

·cUV(u,v) · cVW(v,w). (2)

It should be noted that the choice of the conditioning vari-

able (i.e. V ) is not unique, and different choices might lead to

different results. In general, different vine copula decomposi-

tions differently approximate the underlying multivariate dis-

tribution (Hobæk Haff et al., 2010). In this paper the ordering

of variables is based on the two bivariate copulas, CUV and

CVW, that fitted best considering the investigated copula fam-

ilies. The bivariate marginal distribution of CUW is only im-

plicitly modelled through the conditional joint distribution.

Thus, in order to derive the building blocks of the 3-D cop-

ula, three bivariate copulas – CUV, CVW and CUW|V – need

to be fitted. This is done stagewise and one can choose any

of the available methods in the literature. Here, each bivariate

copula is fitted by means of the maximum likelihood method,

considering different copula families. The best fit is deter-

mined by the highest log-likelihood value (see Sect. 5.3).

Fig. 1. Hierarchical nesting of bivariate copulas in the construction

of a 3-D vine copula.

Several goodness-of-fit tests can be considered to vali-

date the fitted bivariate copulas. In this paper the chosen

goodness-of-fit test is the A7 approach appearing in Berg

(2009) and originating from Panchenko (2005). The advan-

tage of this approach is that it estimates the distance between

the two multivariate distribution functions without the need

of any explicit dimension reduction, i.e. it is directly based

on a comparison of observed pseudo-observations and simu-

lated pseudo-observations under the null hypothesis. A sim-

ulation approach is taken to obtain the distribution of this test

statistic under the null hypothesis. The original procedure as

proposed by Berg (2009) is slightly altered in this paper as

the test statistic of the hypothesis is averaged over the same

number of simulations that are conducted during the simula-

tion. A p value estimate is derived from the fraction of test

statistics exceeding this mean test statistic.

Combining the bivariate copulas as in Eq. (2) and substi-

tuting the marginal distribution functions FX, FY and FZ

yields the 3-D distribution function of (X,Y,Z). Let fX,

fY and fZ denote the marginal density functions and define

u := F−1
X (x), v := F−1

Y (y) and w := F−1
Z (z). The full density

function fXYZ of the distribution for any triplet (x,y,z) is

then given by

fXYZ(x,y,z) := cUW|V

(

FU|V(u|v),FW|V(w|v)
)

·cUV(u,v) · cVW(v,w)

·fX(x) · fY (y) · fZ(z).

The estimations in this paper have been done using R (R

Core Team, 2012), a free software environment for statisti-

cal computing, and the package spcopula2 building on the

packages copula (Kojadinovic and Yan, 2010) and CDVine

(Brechmann and Schepsmeier, 2011). The R scripts are avail-

able upon request from the authors. A demo related to this

paper is available in the spcopula package.

2under development, available at R-Forge: http://r-forge.

r-project.org/projects/spcopula
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3 Estimating design events: definitions and methods

In the literature and in practice, several approaches exist for

estimating multivariate design events for a given design re-

turn period. The following sections provide a short overview

of the most popular approaches, focusing on how a multivari-

ate design event for a given return period could be calculated.

In the specific case of multivariate joint return periods (JRP),

typically a set of possible design events is found. In order

to be able to assess the differences among the described ap-

proaches, we select the most probable of all possible design

events. An ensemble-based design approach, in contrast to a

single design event, will also be presented.

It is important to note that we present different classes

of approaches: univariate (Sects. 3.1 and 3.2), bivariate

(Sects. 3.3 and 3.4.1) and trivariate approaches (Sect. 3.4.2).

In all cases, multivariate design events are provided; how-

ever, in the first case the procedure is based on the concept

of a univariate return period, while in the second and third

case the procedure is based on the concept of a bivariate

and trivariate joint return period, respectively. This premise is

pivotal since statistically these classes are incomparable due

to the different intrinsic nature of the return period concepts.

However, it is important to illustrate the differences in design

events that stem from these modelling choices.

3.1 Design events derived from a regression analysis

A first approach is based on a univariate frequency analysis

(denoted by REG). First, the driving variable X, i.e. the vari-

able with a prominent role in the design, is chosen. Then a

design return period TREG is fixed, and given the marginal cu-

mulative distribution of the design variable FX(x), the corre-

sponding design quantile xREG (equal to the design quantile

of the univariate approach xUNI) is sought, based on Eq. (3),

with µT the mean interarrival time (typically given in years).

In the case of annual maxima, µT equals 1 yr. Then, based

on a linear regression of X with the other design variable

Y , the second design value yREG is obtained. This approach

has been applied, among others, by Serinaldi and Grimaldi

(2011):

TREG =
µT

1 − FX (xREG)
⇔ xREG = F−1

X

(

1 −
µT

TREG

)

(3)

and some regression function fREG modelling Y in terms of

X. Thus, yREG := fREG(xREG) is the predicted value based on

the regression model for a given quantile xREG of the inde-

pendent variable X. As previously mentioned, this approach

does not provide an estimate following a joint return period

definition. The motivation behind this approach is to provide

a simple but statistically sound method when one can select

a dominant driving variable in the practical application and

only a small data set is available, hindering a deeper analysis.

3.2 Design events derived from a bivariate conditional

distribution

A second approach (denoted by MAR) consists of con-

ditioning the bivariate cumulative distribution function

(CDF) FXY (x,y) on the univariate marginal design quan-

tile xMAR = xUNI corresponding to the chosen univariate de-

sign return period TUNI. The resulting (univariate) condi-

tional CDF FY |X(y|x = xUNI) can then be used to calculate

the value yMAR for the conditional univariate design return

period TMAR.

Advantage will be taken of the bivariate copula CUV(u,v)

to perform the calculation. With uMAR = FX(xMAR)

and vMAR = FY (yMAR), the procedure can be ex-

pressed as follows. We can rewrite the initial definition

TMAR =
µT

1−FY |X(y|x =xMAR)
in terms of a copula with

U : = FX(X) and V := FY (Y ) as

TMAR =
µT

1 −
∂CUV(u,vMAR)

∂u
|uMAR:=1−

µT
TUNI

=
µT

1 − CV|U=uMAR (vMAR)

⇔ vMAR = C−1
V|U=uMAR

(

1 −
µT

TMAR

)

.

Inverse transformation yields

yMAR = F−1
Y (vMAR) .

It should be noted that this approach does not result in a

real bivariate design event having a joint return period in the

strict sense as well as the afore-described regression based

approach. The bivariate distribution is conditioned for the

quantile of interest to the practitioner (corresponding with

a univariate return period). This conditioned distribution is

then used to obtain the other quantile, again based on the

principles of a univariate return period. Therefore, the two

obtained design quantiles xMAR and yMAR should not be con-

sidered as a real joint design event. Furthermore, one should

keep in mind that the regression approach predicts the ex-

pected value for Y given a certain quantile of X, while the

conditional approach estimates the quantile of Y conditioned

under the quantile of X. Thus, both approaches cannot di-

rectly be compared from a probabilistic point of view, but are

commonly found in the literature and are therefore included.

3.3 Design events derived from a bivariate joint

distribution

Instead of using a conditional CDF, a widely used approach

to calculate a bivariate return period can be followed which

exploits the full bivariate CDF FXY (x,y). This can eas-

ily be expressed by means of a bivariate copula CUV(u,v)

with U := FX(X) and V := FY (Y ) as before. We refer to

this approach as OR as it corresponds to the probability

Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013 www.hydrol-earth-syst-sci.net/17/1281/2013/
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of P [X >x ∨ Y >y] following the notation introduced by

Vandenberghe et al. (2011):

TOR =
µT

1 − FXY (xOR,yOR)

=
µT

1 − CUV (FX (xOR) ,FY (yOR))

=
µT

1 − CUV (uOR,vOR)
.

This approach is in fact an intuitive extension of the defini-

tion of a univariate return period. All couples (u,v) that are

at the same probability level tOR = CUV(u,v) of the copula

will have the same bivariate return period TOR. For a given

design return period, the corresponding level tOR can easily

be calculated, the most likely design point (uOR,vOR) of all

possible events at this level can be obtained by selecting the

point with the largest joint probability density:

(uOR,vOR) = argmax
CUV(u,v)= tOR

fXY

(

F−1
X (u),F−1

Y (v)
)

. (4)

The corresponding design values xOR and yOR are easily cal-

culated through the inverse CDFs:

xOR = F−1
X (uOR) and yOR = F−1

Y (vOR) .

Once the joint density along the level curve is derived, one

may consider different alternative approaches. Instead of the

most likely event, one may calculate the expected value of

the conditional distribution or calculate quantiles for given

probabilities that might lead to a design approach incorpo-

rating more than a single design event. To limit the number

of approaches, we will focus on the most likely event only,

as e.g. used by Salvadori and De Michele (2012).

3.4 Design events derived from a copula’s Kendall

distribution function

Another definition of the bivariate return period is given

by Salvadori and De Michele (2004); Salvadori (2004) and

Salvadori et al. (2007). Recently, the concept of this bivariate

secondary return period was extended to a complete multidi-

mensional setting by Salvadori et al. (2011), called Kendall

return period (denoted by KEN). This return period corre-

sponds to the mean interarrival time of events more critical

than the design event, the so-called super-critical or danger-

ous events. The super-critical events are potential threats to

the structure and will appear more rarely than the given de-

sign return period. This partitioning of the probability distri-

bution into a super-critical and non-critical region is based on

the Kendall distribution function KC. This function is a uni-

variate representation of multivariate information as it is the

CDF of the copula’s level curves: KC(t) = P [C(u,v) ≤ t].

It allows for the calculation of the probability that a random

point (u,v) in the unit square has a smaller (or larger) copula

value than a given critical probability level tKEN. The ability

of the Kendall function to project a multidimensional distri-

bution to a univariate one is similarly exploited by Kao and

Govindaraju (2010) in the context of a joint deficit index for

droughts.

The use of the Kendall distribution function to define the

probability measure for calculating a JRP is advocated by

Salvadori et al. (2011) as it is a theoretically sound multi-

variate approach sharing the notion of a critical layer, defined

through the cumulative distribution function, with the uni-

variate approach. The definition of the return period in both

the univariate and in the multivariate Kendall approach is

characterized by making a distinction between super-critical

and non-critical events based on a critical cumulative prob-

ability level. The only way to extend this to a multivariate

context is by using the Kendall distribution function. Prob-

ability measures that are constructed differently always en-

tail events that will have a joint cumulative distribution func-

tion value that is larger or smaller than the critical proba-

bility level, and thus fail in subdividing the space between

super-critical and non-critical events with respect to the joint

cumulative distribution function. Following this avenue, any

critical probability level tKEN uniquely corresponds to a sub-

division of the space into super-critical and non-critical re-

gions. This is different from the OR case mentioned before,

where in general different choices of critical events from the

same critical probability level tOR subdivide the space dif-

ferently. From a return period point of view, the copula ap-

proach refers to super-critical events where at least one of the

margins is larger than the design event, but the joint cumula-

tive probability may be lower than the designated level yield-

ing a shorter return period. On the other hand, the Kendall-

based approach ensures that all super-critical events have a

longer return period than the limit value, while some non-

critical events might have larger marginal values than any

selected design event.

For any given copula of any dimension, the Kendall distri-

bution function can be calculated either analytically (e.g. for

Archimedean copulas) or estimated numerically, and can

thus be used to calculate the Kendall joint return period. Until

now, only a very limited number of studies actually applied

this kind of return period (e.g. Vandenberghe et al., 2010).

In the following sections, the procedure for the 2-D and 3-D

cases is outlined.

3.4.1 2-D Kendall joint return period

After choosing the design return period TKEN2, the corre-

sponding probability level tKEN2 of the copula can be calcu-

lated by means of the inverse of the 2-D Kendall distribution

function (Eq. 5). In 2-D this corresponds to finding an isoline

on the copula.

www.hydrol-earth-syst-sci.net/17/1281/2013/ Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013



1286 B. Gräler et al.: Multivariate return periods

TKEN2 =
µT

1 − KC (tKEN2)

⇔ KC (tKEN2) = 1 −
µT

TKEN2

⇔ tKEN2 = K−1
C

(

1 −
µT

TKEN2

)

. (5)

When no analytical expression for KC is available, the in-

verse can be calculated numerically based on an extensive

simulation algorithm, described in Salvadori et al. (2011).

Once tKEN2 is known, the most likely design event in the unit

square (uKEN2,vKEN2) is selected on the corresponding iso-

line in an analogous way as described by Eq. (4). Through the

use of the inverse of the marginal CDFs, the corresponding

design event (xKEN2,yKEN2) is found.

3.4.2 3-D Kendall joint return period

In three dimensions the corresponding probability level

tKEN3 should be found again in the same way as in Eq. (5).

To calculate the inverse of the function KC, one might need

to rely on a numerical method as, for instance, described

by Salvadori et al. (2011). However, in contrast to the 2-

D case, the probability level tKEN3 corresponds to an iso-

surface, i.e. all triplets (u,v,w) on this surface have the

same copula value tKEN3. Generally, for a n-dimensional cop-

ula a isohypersurface of dimension n − 1 exists that con-

tains all n-dimensional points with the same copula level

tKENn. A single design event (uKEN3,vKEN3,wKEN3) should

again be selected on this isosurface. Therefore, the point

(uKEN3,vKEN3,wKEN3) with the highest joint likelihood is

selected, yielding the most likely event. In fact, this is the

3-D extension of the approach given in Eq. (4), i.e.:

(uKEN3,vKEN3,wKEN3)

= argmax
CUVW(u,v,w)=tKEN3

fXYZ

(

F−1
X (u),F−1

Y (v),F−1
Z (w)

)

. (6)

3.5 Theoretical comparison of JRP definitions

The above-defined JRPs (TOR and TKEN) do not provide an-

swers to the same problem statement. Therefore, one has to

carefully consider the practical implications of the selected

approach on the probability of interest. Vandenberghe et al.

(2011) mentioned the inequality TOR ≤ TAND, which can be

extended to

TOR ≤ TKEN ≤ TAND, (7)

where TAND refers to the exceedance probability of

P [X > x ∧ Y > y]. The OR, AND and KEN JRPs can, in

terms of 2-D copulas, be graphically interpreted on the unit

square. The different return periods TOR, TKEN2 and TAND

for a fixed design event (u,v) can then, in every case, be ex-

pressed by 1/(1−area(safe events)). This is shown in Fig. 2,

where the areas represented by the different approaches for

Fig. 2. Graphical representation of the different JRP definitions in

terms of a copula (2-D case).

a given design event (u,v) are indicated alongside with the

copula level curve C(u,v). It can be seen that the OR defi-

nition only declares all events in the lower-left rectangle as

safe. The KEN approach declares the top-left and lower-right

curved areas (KEN) as safe as well, and they are added to the

lower-left rectangle, yielding a larger return period for the

same design event (u,v). Lastly, the AND case adds the top-

left and lower-right rectangles, resulting in the largest return

period. Note that these inequalities hold only within the same

dimensionality of a problem.

3.6 Ensembles of design events

From Secs. 3.3 and 3.4 it should be clear that for a design

event characterized by several variables, one has to select

an event out of a range of events which all share the same

JRP. The selection of merely one event sensibly reduces the

amount of information that can be obtained by the multi-

variate approach chosen. Volpi and Fiori (2012) present an

approach to select a subset of the critical level to reflect

the variability within the set of critical events. We follow a

similar path and define a conditional distribution along the

level curve to obtain a sample of the possible design events.

The importance of an ensemble-based approach has already

been stressed by Salvadori et al. (2011). Vandenberghe et al.

(2010) provided a first attempt to benefit from the richness of

an ensemble of critical values in a practical context.

Consider first the bivariate case, in which the JRP ap-

proaches based on copulas (OR, Sect. 3.3) and based on the

Kendall distribution function (KEN2, Sect. 3.4.1) result in

the finding of a contour level tOR and tKEN2 on which all

pairs (u,v) have the same respective JRP. Instead of using

Eq. (4) to select the most likely point, the function fXY over

the t isoline could be used as a univariate weight function out

of which an ensemble of pairs could be sampled. In general,

a rescaling is necessary to ensure that fXY integrates to 1 and

yields a probability density function (PDF) (Salvadori et al.,

2011). Generally, not all pairs (u,v) on the t isoline have the

same likelihood, i.e. pairs on the edges are less likely than

pairs closer to the centre of the isoline. In this way, sampling

according to fXY makes more sense from a practical point
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of view than uniformly sampling over the isoline (as done by

Vandenberghe et al., 2010).

Eventually, one will end up with an ensemble of pairs

(ui,vi) with i ranging from 1 to N , the ensemble size. By

means of the inverse marginal CDFs, these pairs are eas-

ily transformed to real values. This ensemble could then be

used to run simulations from which the variability of specific

design variables (e.g. thickness or height of a dam) can be

assessed. This approach needs additional analysis as it will

yield several design vectors going beyond the standard no-

tion of a single design event. As an example, one could route

an ensemble of 1000 pairs of peak discharge and volume

through a dam model and consider the water height in the

reservoir. Using just one design event only one water height

is obtained. However, using the ensemble, information on the

range and likelihood of possible water heights for the given

design return period is obtained, making it possible to incor-

porate the variability within the design variables stemming

from multiple design events along the critical level.

In the trivariate case (see Sect. 3.4.2) no isoline is obtained

but an isosurface. Similar to the 2-D case, the full weight

function over this isosurface could be rescaled to a bivari-

ate probability density function out of which an ensemble

of triplets could be sampled. The higher the dimensionality

of the design problem, the more advantageous the ensem-

ble approach becomes: in three dimensions more informa-

tion is lost than in two dimensions by selecting just one de-

sign event. The drawback of the ensemble approach is the

increasing need for run time when higher dimensions are

considered.

4 Differences among multivariate design events in the

synthetic design hydrograph application

4.1 Experimental set-up

In order to illustrate differences among estimated design

events by the approaches described in the previous sections, a

simulation experiment is set up and analysed with respect to

the synthetic design hydrograph (SDH) attributes. The SDH

is defined as a hydrograph with an assigned return period

(uni- or multivariate), which can be characterized by random

variables such as the peak discharge Qp, the duration D and

the volume Vp. Specifically, given an observed or simulated

run-off time series from which a set of extreme hydrographs

is selected, one can determine the SDH shape in several ways

(see Serinaldi and Grimaldi, 2011 and references therein). In

a 2-D set-up, two hydrograph parameters (peak discharge and

volume, peak discharge and duration or volume and duration)

should be fixed, while the third one is obtained from the cho-

sen hydrograph shape distribution. In a 3-D set-up the three

characteristic parameters are obtained jointly.

In most common hydrological applications the interest is

in the peak discharge (Qp) and volume (Vp). Consequently,

the 2-D analyses in this paper focus on these variables. How-

ever, as described in Sect. 3, there are several approaches that

lead to the design values for Qp and Vp, including a 3-D ap-

proach. Applying the proposed approaches to the same data

set allows comparison of the different underlying definitions

and implications of the model selection. However, in a prac-

tical context one is typically tied to a specific frequency anal-

ysis that corresponds to the unique design characteristics.

The case study proposed in this paper consists of apply-

ing a continuous simulation model on a small, ungauged

basin for which 500 yr of synthetic direct run-off time se-

ries at a 5 min resolution are simulated. From this series the

500 maximum annual peaks are selected together with their

corresponding hydrograph (identified as the continuous se-

quence of non-zero direct discharge values including the an-

nual peak). Note that as direct discharge is considered, a zero

discharge value does not imply a dry river. Consequently,

500 (Qp,D,Vp) triplets are available to which the described

approaches estimating design events are applied. By consid-

ering a real case study, the obtained differences and hence

the implications of a modelling choice can be evaluated in a

practical context. In order to simulate the 500 yr run-off time

series, the COSMO4SUB model, described in the following

section, is applied.

4.2 The COSMO4SUB framework

The synthetic data set on which the previously described

approaches are applied is obtained through the use of

the COSMO4SUB framework (Grimaldi et al., 2012d,c).

COSMO4SUB is a continuous model which allows the sim-

ulation of synthetic direct run-off time series using mini-

mal input information from rainfall data and digital terrain

support. Specifically, the watershed digital elevation model

(DEM) with a standard resolution used in hydrological mod-

elling, the soil use and type, daily (preferably at least 30 yr

long) and sub-daily (preferably at least 5 yr long) rainfall

observations are the only data necessary to run the model.

COSMO4SUB includes three modules: a rainfall time series

simulator, a rainfall excess scheme and a geomorphological

rainfall–run-off model. Next, the general principles are ex-

plained and in Sect. 5.1 specific details of the calibration are

presented.

The first module is based on a single-site copula-

based daily rainfall generator (Serinaldi, 2009) and on the

continuous-in-scale universal multifractal model (Schertzer

and Lovejoy, 1987) for disaggregating the daily rainfall to

the desired time scale (up to 5 min). The parameters included

in this first module (six for each month for the daily rainfall

simulator and three for the disaggregation model) are cali-

brated on the basis of the available rainfall observations (at

two different scales).

The second module is related to the rainfall excess step.

A new mixed Green–Ampt Curve Number (CN4GA Curve

Number for Green Ampt) procedure was recently proposed
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(Grimaldi et al., 2012b) and included in the present version

of the COSMO4SUB framework. The key concept is to use

the initial abstraction (i.e. all the losses due to initial satura-

tion, filling terrain gaps, interception, etc.) and the total SCS-

CN excess rainfall volume to estimate the effective saturated

hydraulic conductivity and the ponding time of the Green–

Ampt model. Consequently, the CN4GA approach tries to

appropriately distribute the volume estimated by the SCS-

CN method over time. This module is characterized by five

parameters (specified in Sect. 5.1) which are empirically as-

signed using the soil use and soil type map information. In

addition, the event separation time (Ts) is included in this

module since the continuous implementation of the SCS-

CN method requires to fix a no-rain time interval for which

the cumulative gross and excess precipitation can be reset to

zero. As shown in Grimaldi et al. (2012d,c), this parameter

has a limited influence on the final results, and the value can

be arbitrarily assigned in the range of 12–36 h.

The third module allows a continuous convolution of

the rainfall excess to be carried out for obtaining the di-

rect run-off time series through an advanced version of the

width function instantaneous unit hydrograph (WFIUH). The

adopted model, named WFIUH-1par (Grimaldi et al., 2010,

2012a), identifies the watershed IUH through the topographic

information, and needs only one parameter that can be quan-

tified referring to the watershed concentration time (Tc), esti-

mated using empirical equations. Following the application

of the three described modules, a continuous run-off sce-

nario is obtained from which maximum annual hydrographs

in terms of their peak discharge are selected. It is important

to note that the variables duration and volume in the selected

triplets do not necessarily reflect annual maxima.

5 Data and materials

This study is based on simulated data and a statistical model

is fitted to this data set. This way a data set of sufficient size

to compare the various approaches presented in this paper is

obtained.

5.1 Model set-up

In order to provide a realistic scenario that can be

used to evaluate the previously described approaches, the

COSMO4SUB model was applied on the Torbido River, a

small tributary of the Tiber River located in central Italy (wa-

tershed area: 61.67 km2). Basin elevations range from 85 to

625 m, the average slope is 22 %, and the maximum distance

between divide and outlet is 25.8 km. The watershed DEM

at a 20 m spatial resolution was provided by the Italian Ge-

ographic Military Institute (IGMI, 2003), while land cover

was extracted from the CORINE database (EEA, 2000).

Observed rainfall data, useful for calibrating the two-stage

rainfall simulator parameters, are available from the Castel

Cellesi rain gauge station for a period of 49 yr at a daily

time scale, and for a period of 10 yr at a 5 min resolution

(Serinaldi, 2009, 2010). For a description and evaluation of

the 500 yr rainfall synthetic time series, we refer to Grimaldi

et al. (2012c,d).

5.2 Annual extreme discharge events

Once the 500 yr synthetic direct run-off time series is deter-

mined, as described in Sect. 4.1, the 500 maximum annual

peak discharge events are selected and characterized by their

peak discharge Qp, duration D, and volume Vp. For only six

years the model provides zero direct run-off, which is rea-

sonable considering the limited size of the watershed. These

values are excluded in the following analyses.

All approaches rely on the marginal distribution functions

of Qp, D and Vp that need to be fitted in the first place.

As the peak discharge variable consists of annual extreme

values selected from the simulated 500 yr discharge series,

and the other two variables are closely correlated (but not

necessarily annual maxima), the fit of several extreme value

distributions is considered, i.e. the exponential, the Weibull

and the generalized extreme value (GEV) distribution func-

tions. These distributions are, respectively, a one-, two- and

three-parameter distribution, allowing for various degrees of

model complexity. Furthermore, the GEV distribution gen-

erally encompasses three different distributions, namely the

Fréchet, the (reversed) Weibull and Gumbel distributions ei-

ther directly, or through a transformation, as in the case of the

Weibull distribution which corresponds to a reversed Weibull

distribution. These different distribution types each repre-

sent a different kind of tail behaviour, namely a light tail

(Gumbel), a heavy tail (Fréchet) and a bounded upper tail

(Weibull). These behaviours can be separated based on the

shape parameter ξ of the GEV. Furthermore, the Weibull dis-

tribution is fitted separately as well, as it only corresponds

to a GEV distribution after transformation. Finally, most ex-

treme value distributions are of the exponential type, and

cannot deal with an offset, i.e. when the smallest value of

the variable in the CDF is larger than zero. However, as a re-

sult of censoring the zeros, the smallest value of the variables

tends to be significantly higher than zero, leading to poor fits

of the CDF. Therefore, a location parameter has been intro-

duced in the distributions to ensure a proper fit in the tails.

A first test to ascertain the appropriate distribution for the

three marginal variables is to display the empirical CDFs to-

gether with the directly fitted distribution. This is shown in

Fig. 3, in which only the upper tail of the CDF is shown,

i.e. the interval [0.80, 1] as the focus is on the extremes.

It can immediately be seen that not all the distributions fit

these tails equally well. This is corroborated by the Akaike

information criterion (AIC) computed for all different mod-

els, shown in Table 1, as well as the log-likelihood of each

model (not shown). Based on these criteria and Fig. 3, we

select the Weibull distribution for Qp and the exponential
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Table 1. The values of the AIC for the various distributions of the

respective variables.

GEV Exponential Weibull

Qp 5370 5360 5326

D 2610 2646 2928

Vp 14 641 14 599 14 601
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Fig. 3. The various cumulative distribution functions together with

the empirical cumulative distribution function for the three vari-

ables. The best fitting distribution is denoted in the title of each

graph.

distribution for Vp. Seemingly, the GEV provides the overall

best fit for D according to the AIC, despite the poor repre-

sentation of the upper tail (see Fig. 3). As the focal point of

this study is set around a return period of ten years addressing

the top 10 % of the CDF, we chose to select the exponential

distribution because of its better fit in this region. More in-

depth testing through Q-Q plots (not shown here) indicates

that this is indeed a better approximation of the distribution.

Further investigation of additional distribution families and

combinations of these might improve the fit of the marginals,

but is out of scope of this paper. Nevertheless, a good fit of

the marginal distributions is key to the practical application.

Hence, the following models are selected:

– Qp: Weibull (Anderson–Darling p = 0.59),

– D: exponential (Anderson–Darling p = 0.08),

– Vp: exponential (Anderson–Darling p = 0.18).

Here, the Anderson–Darling test was used to determine

whether the samples were significantly different from the fit-

ted distributions. It should be understood that a consistency

in marginal distribution functions across the different ap-

proaches is far more important for comparison reasons than

a perfect fit, considering the underlying data are simulations.

To analyse the association between the variables, which

will be modelled by means of copulas, Kendall’s tau is

Qp
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Fig. 4. Normalized rank scatter plots for all pairs of variables.

Kendall’s tau is 0.85 for (Qp,Vp), 0.42 for (Qp,D) and 0.54 for

(Vp,D).

calculated, and normalized rank scatterplots are evaluated for

each pair of variables (Fig. 4). Evidently, there are strong

positive associations. Also, some ties are present, especially

for D, which have been assigned with their mean rank in the

transformation. The next section deals with the modelling of

these associations.

5.3 Fitting of the 2-D and 3-D copulas

As described in Sect. 2.2, we used maximum likelihood es-

timation to fit a copula from each investigated family for

every pair of variables and selected the best fitting one by

the highest log-likelihood value. The copula families inves-

tigated include Gaussian, Student, Gumbel, Frank, Clayton,

BB1, BB6, BB7, BB8 and the survival copulas of the 4 lat-

ter ones (details on all these families can be found in Nelsen

(2006) and Joe (1997)). Table 2 gives an overview of the pa-

rameters and goodness-of-fit results. The p values are esti-

mated from 1000 iterations each.

The following approaches in the 2-D case make use of the

fitted BB7 copula C13 which models the dependence between

Qp and Vp. It should be noted that this copula is not able to

represent the boundary effect present in the rank scatter plot

(Fig. 4). To the authors’ knowledge, no copula is available

in the literature that would be able to model such a bound-

ary effect. As the BB7 copula family belongs to the class of

Archimedean copulas, its Kendall distribution function can

easily be obtained analytically.

For the 3-D case, the three fitted bivariate copulas C12,

C23 and C13|2 are then composed into the 3-D vine copula

www.hydrol-earth-syst-sci.net/17/1281/2013/ Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013
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Table 2. An overview of the fitted bivariate copulas in the 2-D copula-based and 3-D vine copula-based approach.

Pairs of variables ID τK [−] Copula family Parameters p value

2-D Qp ∼ Vp 13 0.85 BB7 2.24 14.10 0.69

3-D Qp ∼ D 12 0.42 survival BB7 2.05 0.35 0.74

D ∼ Vp 23 0.54 survival BB7 2.25 1.09 0.75

(Qp ∼ Vp)|D 13|2 0.83 Student copula 0.96 2.00 0.66

as given in Eq. (2). For comparison purposes, 3-D copula

fits for the three-parameter Gaussian copula and the one-

parameter Clayton, Frank, and Gumbel copulas have also

been performed. The log-likelihood shows a 10% increase

for the fitted vine copula (1047) with respect to the Gaussian

one (935), while the three one-parameter Archimedean cop-

ulas have far smaller values (432–532). Thus, the vine copula

yields the best fit within this set of copula families in terms

of the log-likelihood. As no closed form exists for the cumu-

lative distribution function of this vine copula, a numerical

evaluation based on a sample of 100 000 points was carried

out in order to be able to calculate the (inverse of the) Kendall

distribution function.

However, the singularity appearing in Fig. 4 for the pair

(Qp,Vp) is neglected in both, the bivariate and the vine cop-

ula (as well as in the other considered copulas). In the bi-

variate case, no copula family with such a limited support

could be found, while the vine copula’s decomposition is

based on the bivariate copulas C12 and C23 addressing the

pair (Qp,Vp) only through the conditional joint distribution.

Thus, all investigated copula families would in general sam-

ple unrealistic point pairs (Qp,Vp) beyond the border appear-

ing in the scatter plot. A discussion on this singularity and its

underlying process can be found in Serinaldi (2013).

6 Results and discussion

6.1 Calculation of single design events

In this section the design values for the SDH with a design

return period of 10 yr are calculated based on the 2-D and

3-D approaches presented in Sect. 3. The triplet (Qp,D,Vp)

is considered for which the following transformations hold

U = FQp

(

Qp

)

,V = FD(D) and W = FVp

(

Vp

)

.

As a reference the univariate case is analysed first.

Based on the inverse of the CDFs FQp , FD and FVp ,

at a probability level of 1 −
µT

TUNI
= 1 − 1

10
= 0.9, the de-

sign values qp,UNI = 174 m3 s−1, vp,UNI = 2.21 × 106 m3 and

dUNI = 16.02 h are obtained. In the following, Table 3 and

Fig. 6 provide a way to compare these and all further es-

timated design events. In order to be able to compare de-

sign events with the data, the simulated pairs (Qp,Vp) are
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Fig. 5. Illustration of the derivation of the design quantiles based on

the regression approach.

visualized as grey dots in Fig. 6 that summarizes all de-

scribed approaches.

First the 2-D case is considered, in which the focus is on

the couple (Qp,Vp). In the regression-based approach (REG,

Sect. 3.1) the starting point is the univariately derived quan-

tile qp,UNI, being usually the driving variable in many hy-

drological applications (see Eq. 3). Based on a regression

between Qp and Vp, as shown in Fig. 5, the design volume

vp,REG is easily estimated as 2.14 × 106 m3. This volume is

lower than the one obtained by a purely univariate analysis

partly due to the different definition based on the expectation

instead of a quantile.

The second 2-D approach is based on the conditional cop-

ula (MAR, Sect. 3.2). The conditioning of the bivariate cop-

ula CUW (denoted as C13 in Sect. 5.3) for uUNI = 0.9 results in

the function CW|U(w,u = 0.9). The value of wMAR = 0.9521

corresponds with a probability level of 0.9. By means of the

inverse F−1
Vp

(wMAR), the design volume vp,MAR is calculated

as 2.92 × 106 m3, which is considerably larger than the for-

mer design volumes.

The true joint return period approaches based on the bi-

variate copula CUW (OR, Sect. 3.3) is the third 2-D ap-

proach. For TOR = 10 yr, the corresponding copula level

tOR equals 0.9, and corresponds to an isoline. Using the

marginal CDFs for Qp and Vp, Eq. (4) can be solved to

find the point (uOR,wOR) with the highest joint likelihood,

i.e. (uOR,wOR) = (0.927, 0.925). Using the inverse CDFs

Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013 www.hydrol-earth-syst-sci.net/17/1281/2013/



B. Gräler et al.: Multivariate return periods 1291

Table 3. Overview of the calculated design event for T = 10 yr, based on several approaches. The values are rounded to address the limited

numerical precision and ease comparison.

Approach Subscr. t KC uT vT wT qp,T dT vp,T

[−] [−] [−] [−] [−] [m3 s−1] [h] [106 m3]

univariate UNI × × 0.9 0.9 0.9 174 16.02 2.21

lin. regr. REG × × 0.9 × 0.892 174 × 2.14

cond. cop. MAR 0.9 × 0.9 × 0.952 174 × 2.92

copula 2-D OR 0.9 × 0.927 × 0.925 192 × 2.49

KC-2D KEN2 0.836 0.9 0.877 × 0.875 161 × 1.99

KC-3D KEN3 0.730 0.9 0.844 0.820 0.851 147 12.90 1.83
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Fig. 6. An overview of the different design values for a design return

period of 10 yr obtained with the different definitions. Note that only

a subset is shown and the data points exceed both axes.

the design event is obtained: (qp,OR,vp,OR) = (192 m3 s−1,

2.49 × 106 m3). Both the design peak discharge Qp and the

volume Vp are larger than what is obtained in the univariate

case.

The last 2-D approach is the one in which the JRP is

calculated using the Kendall distribution function (KEN2,

Sect. 3.4.1). Here, the focus is on the inverse of KC for a

probability level of 0.9: tKEN2 = K−1
C (0.9). The Kendall dis-

tribution function of the bivariate copula CUW, allows cal-

culation of the tKEN2 level corresponding to a cumulative

probability of 0.9, i.e. tKEN2 = 0.836. This level is smaller

than the one obtained in the former copula-based JRP ap-

proach. Again, Eq. (4) can be solved to obtain the most

likely design event (uKEN2,wKEN2) = (0.877, 0.875). Trans-

formation to the real domain by means of the inverse CDFs

results in the design event (qp,KEN2,vp,KEN2) = (161 m3 s−1,

1.99 × 106 m3).

Besides the estimation of 2-D design events, also one ap-

proach for estimating a 3-D design event is presented in

Sect. 3.4.2 together with the fitted 3-D vine copula (see

Sect. 5.3). The 3-D vine copula is used for simulating

100 000 triplets (u,v,w) as a basis for the numerical inver-

sion of the Kendall distribution function. Here, the proba-

bility level of 0.9 corresponds to a tKEN3 level of 0.730 on

the 3-D vine copula. In contrast to the 2-D approaches, the

tKEN3 level corresponds to a surface. Using the marginal

CDFs in combination with Eq. (6), the most likely point

on this surface is found as (uKEN3,vKEN3, wKEN3) = (0.844,

0.820, 0.851). Using the inverse CDFs this results in the de-

sign event (qp,KEN3,dKEN3, vp,KEN3) = (147 m3 s−1, 12.90 h,

1.83 × 106 m3). Note that the Kendall distribution function

is a univariate representation of multivariate information and

that its form is different in the 2-D and 3-D cases.

6.2 Obtaining an ensemble of design events

The preceding analyses resulted in a single design event;

however, as stated in Sect. 3.6, the generation of an ensem-

ble would be preferable. For example, consider the approach

where the JRP is based on the Kendall distribution function

in the 2-D case. The tKEN2 level was found to be 0.836 for a

2-D Kendall-based JRP of 10 yr (see Table 3). Figure 7 shows

this tKEN2 level and the tOR level of 0.9, together with the ear-

lier, identified most likely design events (uKEN2,wKEN2) and

(uOR,wOR) along with a sample of size 500 each. Obviously,

along this contour the occurrence of several other events is

possible. The sampling across these contours according to

the likelihood function results in ensembles of events all

having a copula-based and 2-D Kendall-based JRP equal to

10 yr, respectively. All sampled events clearly lie on a con-

tour, corresponding with the tOR level and tKEN2 level. Ac-

cording to the greyscale, the highest density of design events

is sampled around the most likely realization, whereas less

design events are sampled on the two outer limits of each

contour.

The density of the ensembles across these contours could

be projected (and normalized) on both the Qp and Vp axis,

resulting in univariate PDFs for Qp and Vp underlying the

ensembles. These are shown in Figs. 8 and 9. The most likely

design events are naturally situated at the maximum of these

PDFs. In general, these conditional distributions do not have

to be bounded and extremely large events might possess a

positive likelihood.

These PDFs hold a lot of information on the design events.

For example, 90 % of all design events with a 2-D Kendall-

based JRP equal to 10 yr have a peak discharge in the range

www.hydrol-earth-syst-sci.net/17/1281/2013/ Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013
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Fig. 7. An ensemble of 500 (qp,vp) pairs that all have a copula-

based and 2-D Kendall-based JRP of 10 yr, respectively. The density

of the ensemble is given in greyscale: the brighter the grey, the less

events sampled. The most likely event is also indicated.

of [150 m3 s−1, 238 m3 s−1] and a volume in [183 × 106 m3,

326 × 106 m3]. Note from Fig. 7 that lower volumes occur

together with higher peak discharge values and vice versa. As

briefly mentioned in Sect. 3.6, the ensemble of design events

can also be used to calculate another design variable, such

as the water height in a reservoir, for which again a PDF of

possible design values can easily be obtained. However, this

exercise is beyond the scope of this paper.

6.3 Uncertainty in the design event estimation

In the previous section and Sect. 3.6, we discussed that for

a given return period, different design events can be selected

due to the multivariate nature of the design problem and that

the designer can make use of this variability for parameteriz-

ing hydraulic structures. From the shown analysis, it is also

clear that the presented approaches provide different design

event estimates. Yet, these approaches are also prone to un-

certainty because of the fact that the copula or the model

used to select the design event is fitted to a (small) number

of extreme events in an observed time series. Variations in

the time series might lead to different model parameters and

hence result in alternative design events. The question can

thus be posed whether the different approaches generate sta-

tistically different design events if one accounts for the un-

certainty due to fitting of the probabilistic model. To answer

this question the uncertainty has to be addressed, resulting

in confidence bands. As no closed form exists, a common

approach is to run simulations. In each simulation step, we

sampled 494 pairs (the same number as originally observed

pairs) from our fitted bivariate distribution and re-estimated

the copula and marginal parameters. From the newly ob-

tained probabilistic model, all approaches provided the most

likely design event estimate (resulting in the scattered esti-

mates shown as squares and triangles in Fig. 10). For each ap-

proach, the 0.025-quantile and 0.975-quantile design events

out of all simulated ones are selected in terms of their re-

turn period definition for the null-hypotheses model. These

quantiles describe the border of the 95 % confidence band
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Fig. 8. PDF of Qp in the OR and KEN2D ensembles. The most

likely design discharge values are indicated by vertical lines.
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Fig. 9. PDF of Vp in the OR and KEN2D ensembles. The most

likely design volumes are indicated by vertical lines.

denoted by the corresponding copula t-level curve. The re-

sults are summarized in Fig. 10. As the inner 95 % of points

of each cloud do not intersect between the three approaches,

it is evident that the predicted design events are significantly

different. However, projecting the multivariate design events

to their univariate margins, all confidence intervals intersect

except for the univariate predicted volume and the design

volume based on the conditional copula (MAR). Address-

ing the additional uncertainty of the estimates due to the se-

lection of merely a single design event, the dashed curved

lines in Fig. 10 provide an approximation. They limit the

region where 95 % of the simulated t-level curves fall. En-

sembles of design events would then be drawn along these

level curves. Thus, the copula-based (OR) and the Kendall-

based (KEN2D) approach provide significantly different de-

sign event ensembles.

6.4 Some practical considerations

Table 3, Figs. 6 and 10 clearly demonstrate that the choice of

the estimation approach influences the design event values.

This evidently is something the practitioner should consider

when designing a hydraulic structure, e.g. a dam, based on a

specific design hydrograph, as it directly influences the safety

and the cost of the structure to be built.

With respect to the univariate design quantile qp,UNI, only

the approach using the copula-based JRP provides a larger
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Fig. 10. 500 simulations of different approaches to obtain a single design event with a design return period of 10 yr. Straight line segments

indicate the univariate approaches and curved lines represent the bivariate approaches, with dashed lines approximating the ensemble con-

fidence band estimates for their corresponding point cloud each. The estimated design events are denoted as filled shapes. The open grey

shapes represent the most and least extreme 2.5 % for each approach.

quantile, whereas for the approaches using the Kendall-based

JRP a smaller quantile is found. The other approaches use

the univariate quantile as a starting point, resulting in identi-

cal quantiles. Considering the design quantiles vp,·, the MAR

and OR approaches yield a larger quantile than the univariate

quantile, while the REG and Kendall-based approaches yield

smaller values.

The three true JRP approaches use information of the full

bivariate (copula-based and 2-D Kendall-based approach) or

trivariate (3-D Kendall-based approach) distribution func-

tion. The Kendall-based approaches have the advantage of

using a mathematically consistent way of defining the proba-

bility of extremes or dangerous events relying on the CDF as

in the univariate approach, unlike the JRP approach based

on the copula solely. For a full discussion please refer to

Salvadori et al. (2011). However, there is no universal choice

of an appropriate approach to all real-world problems. The

most important is to address the problem from a probabilis-

tic point of view and to be aware of the practical implications

of the approach chosen (outlined in this paper). It is also ev-

ident, but not necessarily the case, that the more variables

are included (2-D vs. 3-D), the smaller the design quantiles

become. Salvadori and De Michele (2012) discuss this di-

mensionality paradox and provide a theoretical explanation

for it.

Furthermore, the issue of selecting just one design event

out of a range of events all having the same joint return pe-

riod (i.e. on an isoline or isosurface of the copula) could be

seen as a drawback of the multivariate approaches available

in the literature, as the most likely event does not necessarily

correspond to the most severe one for a given hydraulic

structure. However, there is the full potential to set a step

aside from this one-event-design approach to a full ensemble-

based design approach. Therefore, this paper includes an ap-

proach for the generation of a design ensemble. It is clear

that the ensemble approach provides a lot more informa-

tion on the possible outcome of design events. The pro-

posed ensemble-based approach entails the most likely de-

sign event, but furthermore provides a clear idea on the prob-

ability that other events (but all having the same JRP) will

occur. Checking these ensembles against the desired design

of the hydraulic structure will illustrate the real threat to the

structure. It therefore provides a way of assessing some un-

certainty of the design variables associated with the selection

of a single design event. If a single design event is sought,

the pure copula-based approach (Sect. 3.3) has the advantage

of guaranteeing that only a fraction of 1/TOR events exceeds

the margins of any of the possible estimated design events.

It should also be noted that the fitting of the copulas (bi-

variate, trivariate or multivariate) is a very important part

of the design event estimation. If the practitioner is not ac-

quainted with this initial aspect of design studies, it is very

easy to make wrong choices. Naturally, the multidimensional

approaches require a larger data set in order to produce robust

parameter estimates. Thus, the length of the time series and

the amount of missing data have to be considered before an

approach is selected. The authors of this work believe that the

vine copula approach is the way to go for constructing flex-

ible multivariate distribution functions, as it enables use of

more widely spread bivariate copulas as building blocks for
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more complex multivariate distribution functions. Of course,

a good balance between the number of variables considered

and the (numerical) complexity of the vine copula should be

sought, keeping in mind that all this also affects the eventual

design. Further studies are necessary to assess the sensitivity

of the JRP analysis to sample size and sample selection.

In general, the Kendall-based approach can be applied to

any copula and can be used for both large (e.g. floods) and

small (e.g. droughts) extremes. However, one should also be

aware of the fact that the approaches in this study are only

applied to variables that are positively associated and with

a focus on extremes in terms of large values. In all other

cases, adaptations should be made in order to operate in the

right area of the copula. Further applications of the copula-

based and Kendall-based JRP approaches in other case stud-

ies should provide more insight on this in the near future.

Serinaldi (2012) highlighted the potentially misleading no-

tion of return periods, and suggests to report return peri-

ods alongside with annual exceedance probabilities as done

e.g. by Theiling and Burant (2012). This aspect should be

included in further studies as well.

7 Conclusions

The aim of this study was to provide an overview of state-

of-the-art approaches to estimate design events for a given

return period and to discuss their differences in a practical

application. Therefore, a synthetic case study focusing on the

estimation of design parameters for a synthetic design hydro-

graph (SDH) was considered. As they are the most important

SDH variables, the peak discharge Qp, its duration D, and

volume Vp were chosen.

In first instance a review of several approaches yielding

design events available in the recent literature was provided

focusing on how to apply these. As multiple variables were

considered in the different return period approaches, an im-

portant aspect is (the modelling of) the dependence between

variables. In this context the potential and the use of copulas

for the construction of multivariate distribution functions was

stressed and illustrated. On the one hand, a bivariate copula

of (Qp,Vp) was fitted. On the other hand, also the fitting of

the trivariate copula of (Qp,D,Vp) was elaborated in a com-

prehensive way by means of the vine copula approach.

Eventually, design events for a 10 yr joint return pe-

riod were obtained considering a 2-D regression-based, a

2-D conditional copula-based, a 2-D copula-based, a 2-D

Kendall-based, and a 3-D Kendall-based approach. The tra-

ditional 1-D return period definition is considered as a ref-

erence for comparison purposes. Differences in design quan-

tiles were discussed while also the theoretical appropriate-

ness was explained. This paper warns practitioners against

blind use of just one available design event estimation ap-

proach, and stresses the importance of good copula fitting

and the effect on the eventual design event outcome. A

simulation study showed that the investigated approaches

yield statistically different design events. Thus, the predic-

tions are not only different following the theoretical inequal-

ity (Eq. 7), but do withstand the variability due to uncer-

tainties associated with the probabilistic model fitted to the

data. Based on the available literature and the case study

in this paper the copula-based and Kendall-based JRP ap-

proaches are valuable multivariate extensions of the univari-

ate approaches. However, their applicability always depends

on the availability of data and the probabilistic nature of the

actual real-world problem. For constructing multivariate cop-

ulas, the vine copula method is advised.

Further (joint) research efforts should focus on a shift

from one-design-event approaches to ensemble-design-event

approaches, enabling incorporation of the variability in the

design event selection. A first valuable approach to this

ensemble-based design was provided in this paper. The ul-

timate goal should be the elaboration of a useful and un-

derstandable framework for multivariate frequency analyses,

with clear guidelines to practitioners.

From a practical perspective, it is impossible to provide a

general suggestion for an appropriate approach to estimate

multivariate design events applicable to a vast set of design

exercises. Firstly, as previously described, the available ap-

proaches are different from a statistical point of view. Until

now many applications are based on the concept of univariate

return periods, as the concept of multivariate return periods

has a different meaning and is potentially less conservative.

Secondly, the best approach, in our opinion, is related to the

hydraulic structure to be designed. Different design exercises

might be critical to single variables, which should then be

selected as the driving component in the data selection and

in the modelling process. If one is, for example, interested

in the hydrograph volume for designing a reservoir for flood

regulation, it is essential to understand whether there is a pre-

dominant driving variable. Specifically, if the reservoir is reg-

ulated by a levee, the volume design is related to a specific

discharge value. In this case the bivariate conditional distri-

bution could be preferred, since the discharge analysis is per-

formed with a standard univariate approach and the volume

return period is estimated conditioned on the discharge de-

sign value. In similar practical problems, the regression anal-

ysis could be preferred when the data availability does not

justify a richer statistical model application. On the contrary,

for instance, when the analyst is estimating the extension of

flood inundation for which both peak discharge and volume

could play a similar role, a joint return period approach could

be appealing. Indeed, an ensemble of equally rare scenarios

(i.e. having the same return period) could be used to assess

the variability of the obtained flood maps due to the selection

of a single design event. Also in this case, it should be kept

in mind that the univariate n year return period is different to

the bivariate and trivariate n year return period. Even though

it is to be expected that including more variables improves
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the modelling of the process, one should keep in mind the

drastically increasing need of data to fit such models.
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