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MULTIVARIATE SADDLEPOINT TAIL PROBABILITY
APPROXIMATIONS1
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Rutgers University

This paper presents a saddlepoint approximation to the cumulative
distribution function of a random vector. The proposed approximation has
accuracy comparable to that of existing expansions valid in two dimensions,
and may be applied to random vectors of arbitrary length, subject only to
the requirement that the distribution approximated either have a density or be
confined to a lattice, and have a cumulant generating function. The result is
derived by directly inverting the multivariate moment generating function.
The result is applied to sufficient statistics from a regression model with
exponential errors, and compared to an existing method in two dimensions.
The result is also applied to multivariate inference from a data set arising
from a case-control study of endometrial cancer.

1. Introduction. This paper will develop saddlepoint approximations to
multivariate tail probabilities for random vectors. The probabilities approximated
are of form P[T ≥ t], for a random vector T, with vector inequalities understood
to hold termwise. These approximations will apply to random vectors whose
joint distributions have multivariate moment generating functions, and will be
used for inference about parameters in a generalized linear model, specifically
in the presence of order restriction. These approximations might also be used to
perform approximate conditional inference of the sort suggested by Pierce and
Peters (1999); this application of the current result is still in progress. These
approximations will be generated by approximating multivariate complex integrals
expressing conditional probabilities in terms of the cumulant generating function
of the underlying distribution. Use of this approximation requires that T have a
tractable cumulant generating function; any sufficient statistic vector associated
with the canonical parameterization of a generalized linear model satisfies this
requirement.

Suppose that a random vector T of length d has a density and a cumulant
generating function K(τ ). The next section will demonstrate that

P[T ≥ t] =
∫ c+iK

c−iK

exp(K(τ ) − τ�t∗)
(2πi)d

∏d
j=1 ρ(τj )

dτ(1)
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for any vector c of positive real numbers in the domain of K , K = ∞, t∗ = t,
and ρ(τ ) = τ , and that a similar relationship holds when T is supported on a
lattice. Here

∫ · · · dτ represents the multiple complex integral with respect to the
components of τ . This paper will present an asymptotic approximation to the right-
hand side of (1).

Daniels (1954) presents approximations to densities; these approximations are
derived by approximating integrals of the form (1) without the factor

∏d
j=1 ρ(τj )

in the denominator. The quantity
∏d

j=1 ρ(τj ) in the denominator of (1) presents
a difficulty, in that as t moves so that one or more components of c approach
zero, standard integral expansions of (1) become inaccurate. Authors including
Skovgaard (1987) and Lugannani and Rice (1980) approached approximation
of similar integrals in which only one factor of the form ρ(τj ) appears in the
denominator of the integrand. In the language of complex variables [Bak and
Newman (1982)], this factor represents a simple pole of the otherwise analytic
integrand, and the authors remove its effect by subtracting off a function with an
identical simple pole at the same location whose integral may be calculated exactly
as an evaluation of a standard normal CDF.

In the general case, with multiple factors in the denominator, no such
simplification exists, because the resulting poles are not simple. Instead, a quantity
will be isolated which will be shown to equal a multivariate normal CDF to relative
error of O(1/n). The remainder of the integral will be shown to have an expansion
as products of normal densities and multivariate normal CDFs.

When T takes values on a unit lattice, (1) also holds, with ρ(τ ) = 2 sinh(τ/2)

and t corrected for continuity. Technical details in approximating (1) in this case
will be the same as in the continuous case.

Section 2 derives integral expressions for the probabilities of interest. Section 3
presents a Taylor expansion of the integrand, an argument demonstrating that
truncation of the series after a few terms incurs an error of size no larger than
O(1/n), a termwise integration of the remainder, and a recursive representation
for the terms that arise. The resulting approximation is a generalization of
the univariate series of Robinson (1982). Section 4 explores the possibility
of generalizing the expansion of Lugannani and Rice (1980) beyond the two-
dimensional result of Wang (1990). Section 5 presents examples of the use of the
series derived in Section 3, and in two dimensions compares the results with those
of Wang (1990).

2. Inversion integrals. In this section I justify the integral relation (1), and
reparameterize the integral into a form that facilitates asymptotic expansion. The
proof is included primarily because it motivates an important regularity condition
on the approximation derived in later sections.

LEMMA. Suppose that T 1, . . . , T d has a cumulant generating function K ,
and is either continuous [i.e., T has a bounded density, in which case ρ(τ ) is set
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to τ , K = ∞, and t = t∗] or confined to an integer lattice [in which case ρ(τ ) is
set to 2 sinh(τ/2), K = π , and t = t∗ + 1

2 1]. Choose c > 0 in the domain of K .
Then relation (1) holds.

PROOF. When T has a density, standard Fourier inversion techniques imply
that for K = ∞,

fT(t) =
∫ c+iK

c−iK
(2πi)−d exp

(
K(τ ) − τj t

j
)
dτ

and ∫ c+i∞
c−i∞

∫
u≥t

∣∣ exp
(
K(τ ) − τju

j
)∣∣dudτ

=
∫ c+i∞

c−i∞

∫
u≥t

| exp(K(τ ))| exp(−cju
j ) dudτ

=
[∫ c+i∞

c−i∞
| exp(K(τ ))|dτ

][∫
u≥t

exp(−cju
j ) du

]
.

Here and below, a product containing the same index as a subscript and as a
superscript denotes summation over that index. Furthermore, superscripts on t

indicate component rather than power, and superscripts on functions denote
differentiation with respect to the corresponding component of the argument.
The first factor above is finite since T has a density, and the second is
exp(cj t

j )/
∏d

j=1 cj . By Fubini’s theorem, the result follows by interchanging
the order of integration with respect to t and with respect to τ , as long as all
components of c are positive. When T is confined to an integer lattice, K = π and
the integration with respect to u is replaced by summation. �

The requirement that c > 0, needed to justify Fubini’s theorem, is important;
because of this requirement, tail probabilities associated with t for which one or
more of the components of τ̂ are negative must be calculated by applying the
approximation to random vectors with some of their components negated, and
differencing.

Consider the special case of the normal distribution. Let N̄(t;�) be the upper
corner probability for a random variable with a multivariate normal distribution,
with mean 0 and variance �. From (1),

N̄(t,�) = 1

(2πi)d

∫ c1+i∞
c1−i∞

· · ·
∫ cd+i∞
cd−i∞

exp(τj�
jkτk/2 − τj t

j ) dτ

/ d∏
j=1

τj ,(2)

for any positive vector c.
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3. Integral expansion. Suppose that T is the mean of n independent
random vectors, each with cumulant generating function K . Then T has as
its cumulant generating function nK(τ/n). Choose a compact subset C of
the range of K ′. Let c = supt∈C τ̂jK

jk(τ̂ )τ̂k. Existence of a bounded density
corresponding to the cumulant generating function K(τ ) − τj t

j − K(τ̂ ) + τ̂j t
j

implies integrability of | exp(K(τ ) − τj t
j − K(τ̂ ) + τ̂j t

j )|; see Kolassa [(1997),
Theorem 2.4.2] for the univariate case. Hence one might choose ε > 0 so that
supt∈C,‖τ−τ̂ (t)‖>ε | exp(K(τ ) − τj t

j )| < exp(−c); here ‖ · ‖ is the sup norm, and
τ̂ (t) is the solution to K ′(τ̂ ) = t. Below the dependence of τ̂ on t is not generally
made explicit.

Hence, using (1),

P[T ≥ t] =
∫ τ̂+iε

τ̂−iε

exp(n[K(τ ) − τj t
j ])

(2πi)d
∏d

j=1 ρ(τj )
dτ + exp

(
n[K(τ̂ ) − τ̂j t

j ])E1,(3)

with |E1| ≤ exp(−nc) for some c > 0. Expand K about τ̂ , to obtain

P[T ≥ t] = exp
(
n[K(τ̂ ) − τ̂j t

j ])
×

{∫ τ̂+iε

τ̂−iε

exp(n[(τj − τ̂j )K
jk(τ̂ )(τk − τ̂k)/2])

(2πi)d
∏d

j=1 ρ(τj )

×
[
1 + n

6
Kklm(τ̂ )(τk − τ̂k)(τl − τ̂l)(τm − τ̂m)

+ n

24
Kjklm(τ †)(τj − τ̂j )(τk − τ̂k)

× (τl − τ̂l)(τm − τ̂m)

+ n2

72
Kjkl(τ †)Kmpq(τ †)(τj − τ̂j )

(4)
× (τk − τ̂k)(τl − τ̂l)

× (τm − τ̂m)(τp − τ̂p)(τq − τ̂q)

]
dτ + E1

}

= exp
(
n[K(τ̂ ) − τ̂j t

j + τ̂jK
jk(τ̂ )τ̂k/2])

×
[∫ τ̂+iε

τ̂−iε

exp(n[τjK
jk(τ̂ )τk/2 − τjK

jk(τ̂ )τ̂k])
(2πi)d

∏d
j=1 ρ(τj )

×
[
1 + n

6
Kklm(τ̂ )(τk − τ̂k)(τl − τ̂l)(τm − τ̂m)

]
dτ

+ exp
(−nτ̂jK

jk(τ̂ )τ̂k/2
)
E2/n

]
,
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for τ † between τ̂ and τ , and

E2 =
∫ τ̂+iε

τ̂−iε

exp(n[(τj − τ̂j )K
jk(τ̂ )(τk − τ̂k)/2])

(2πi)d
∏d

j=1 ρ(τj )

×
[

n

24
Kjklm(τ †)(τj − τ̂j )(τk − τ̂k)(τl − τ̂l)(τm − τ̂m)

+ n2

72
Kjkl(τ †)Kmpq(τ †)(τj − τ̂j )(τk − τ̂k)

× (τl − τ̂l)(τm − τ̂m)(τp − τ̂p)(τq − τ̂q)

]
dτ + E1.

Consider one of the terms constituting Kjklm(τ †)(τj − τ̂j )(τk − τ̂k)(τl − τ̂l) ×
(τm − τ̂m), without including the leading factor n. Let S denote the set of unique
superscripts of Kjklm(τ †). Let

g(τ ) = Kjklm(τ †)
∏
r∈S

(τr − τ̂r )
∏
r∈Sc

τr

/ d∏
r=1

ρ(τr).

Let R be the duplicated superscripts of Kjklm(τ †). For example, if the su-
perscripts are 1, 2, 2 and 3, then S = {1,2,3}, and R = (2), and if the
superscripts are 1, 1, 1 and 2, then S = {1,2}, and R = (1,1). Let G =
supt(	(τ ))∈C,
(τ )∈[−ε,ε]d |g(τ )| < ∞. Choose V such that K ′′(τ ) − V is positive
definite for all t(τ ) ∈ C. Then the error term is bounded by∫ τ̂+iε

τ̂−iε

exp(n[(τj − τ̂j )V
jk(τk − τ̂k)/2])

(2πi)d
G

∏
r∈R

(τr − τ̂r )

/ ∏
r∈Sc

τr dτ .

If V is diagonal, the above integral may be factored into d univariate integrals.
Integrals with respect to components with indices in Sc are bounded; this may be
verified by noting that the integral is equal to the ratio of a normal tail probability
to a normal density and using standard results involving Mills’ ratio or by noting
that

∫ τ̂i+iε

τ̂i−iε
dτi/τi = ∫ ε

−ε τ̂i dτi/(τ
2
i + τ̂ 2

i ). The latter integral may be bounded by
dividing the range of integration into bins of length |τ̂i | starting at zero. The
maximum of the integrand in a bin of form (k|τ̂i |, (k + 1)|τ̂i |] is |τ̂i|/[(1 + k2)τ̂ 2

i ],
and the contribution to the integral from this bin is τ̂ 2

i /[(1 + k2)τ̂ 2
i ]. The negative

portion of the range of integration behaves symmetrically, and so the entire integral
is bounded by 2

∑∞
k=0 1/(1 + k2), a finite constant independent of τ̂i . Each of the

remaining integrals contributes a factor of 1/
√

n, plus an additional factor of 1/
√

n

for each time the index appears in R. There are four of these factors. Hence the
term is of size 1/n2. Taking into account the leading n, the sum of terms of this sort
contributes an error of size 1/n. The terms with six superscripts on K are handled
similarly. This term absorbs exp(n[τ̂jK

jk(τ̂ )τ̂k/2])E1, which has absolute value
less than exp(−nc/2), by our choice of ε. Hence E2 is uniformly of size O(1/n).
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Nonerror terms in expression (4) will be integrated termwise. For r,m ∈ Zd ,
and for � a positive definite matrix, let

I (�, r,m, t, τ̂ ) =
∫ τ̂+i∞
τ̂−i∞

exp(τj�
jkτk/2 − τj δ

jktk)

(2πi)d

d∏
l=1

[τ rl
l (τl − τ̂l)

ml ] dτ .

Here δjk is 1 if j = k and zero otherwise. Temporarily restrict attention to the case
when T1, . . . , Td has a continuous distribution, and hence ρ(τ ) = τ . Let s be the
vector such that sj = −1 for all j . Let

Q(t) = exp
(
n[K(τ̂ ) − τ̂j t

j + τ̂jK
jk(τ̂ )τ̂k/2])

× [
I
(
nK ′′(τ̂ ), s,0, nK ′′(τ̂ )τ̂ , τ̂

)
+ 1

6Kjkl(τ̂ )I
(
nK ′′(τ̂ ), s, ej + ek + el, nK ′′(τ̂ )τ̂ , τ̂

)
/
√

n
]
,

where ej is the vector with every component 0 except for component j , which is 1.
Then

P[T ≥ t] = Q(t) + exp
(
n[K(τ̂ ) − τ̂j t

j ])E2(t)/n for sup
t∈C

|E2(t)| < ∞.(5)

Saddlepoint approximations to densities typically yield an error term that is
relative; that is, the ratio of the true density to the approximation may be expressed
as one plus a negative power of the sample size times a term that is uniformly
bounded as n increases and t varies, at least within a compact set such as C. Many
authors, including Routledge and Tsao (1995), describe such results. Achieving a
uniform relative bound on tail probability approximations is more difficult, even in
one dimension. These approximations are typically of form a(t, n)N̄(

√
nv(t)) +

b(t, n)n(
√

nv(t)), for functions a, b and v; see, for example, Robinson (1982),
Daniels (1987) and Kolassa (1998). The error term typically has a bound of form
n−αCn(

√
nv(t)), for some constant C. Unfortunately, N̄(

√
nv(t))/n(

√
nv(t))

→ 0 as n → ∞, and so uniformity of the relative error fails. The error bound
in Q(t) is of this form; the error is uniformly exponentially small, but not strictly
speaking both relative and uniform.

Evaluation of Q(t) requires evaluation of I (�, r,m, t, τ̂ ) for r a vector of
integers no smaller than −1. For any r,m ∈ Zd , and j ∈ {1, . . . , d},

I (�, r,m, t, τ̂ ) = I (�, r + ej ,m − ej , t, τ̂ ) − τ̂j I (�, r,m − ej , t, τ̂ ).(6)

This recursion may be continued until for each j , mj = 0. Alternatively, one might
expand each of the factors (τj − τ̂j )

mj using the binomial theorem and integrate
termwise. Manipulating (2),

I (�, r,0, t, τ̂ ) =
d∏

j=1

(−1)rj +1 drj +1

(dtj )
rj +1 N̄(t,�).(7)
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The integrals I (�, r,0, t, τ̂ ) will be evaluated by expressing them in closed
form when r takes on only values in {−1,0}, and by providing a recursive
representation for other values of r. For A,B ⊂ F = {1, . . . , d}, and for vector t
of length d and d × d matrix �, let tA be the components of t with indices in A,
let �A the elements of � with row and column indices in A, if any, and �A,B the
elements of � with row indices in A and column indices in B , if any. Let �A,B

be the corresponding entries in �−1. Let A = {j |rj = 0}.
Differentiation of the d dimensional normal tail probability with respect to

components whose indices are in A yields the marginal density for components
in A times the conditional tail probability of components in Ac conditional on
those in A, all evaluated at t, and hence

I (�, r,0, t, τ̂ ) = n(tA,�A)N̄
(
tA

c + (�Ac)−1�Ac,AtA,�Ac
)

(8)
for rj ∈ {0,−1} ∀ j, A = {j |rj = 0}.

If r ∈ Zd such that rl ∈ {−1,0} ∀ l and rj = rk = 0, then

I (�, r + ej ,0, t, τ̂ )

= − d

dtj
I (�, r,0, t, τ̂ )

(9) = [(�A)−1tA]j I (�, r,0, t, τ̂ )

+ ∑
l∈Ac

I (�, r + el ,0, t, τ̂ )
[
(�Ac)−1�Ac,{j }

]
l ,

I (�, r + ej + ek,0, t, τ̂ )

= − d

dtk
I (�, r + ej ,0, t, τ̂ )

(10) = [(�A)−1tA]j I (�, r + ek,0, t, τ̂ ) − (�A)−1
jk I (�, r,0, t, τ̂ )

+ ∑
m∈Ac

I (�, r + em + ek,0, t, τ̂ )
[
(�Ac)−1�Ac,{m}

]
j

and

I (�, r + ej + ek + el ,0, t, τ̂ )

= − d

dtl
I (�, r + ej + ek,0, t, τ̂ )

= (�A)−1
j l I (�, r + ek,0, t, τ̂ )(11)

− [(�A)−1tA]j I (�, r + ek + el,0, t, τ̂ ) + (�A)−1
jk I (�, r + el ,0, t, τ̂ )

− ∑
m∈Ac

I (�, r + em + ek + el,0, t, τ̂ )
[
(�Ac)−1�Ac,{m}

]
j .
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Hence (6) and (8)–(11) allow for the recursive calculation of the quantities in Q(t).
Expanding K about 0 rather than τ̂ causes (4) to be replaced by

Q∗(t) =
∫ +i∞
−i∞

exp(n[τjK
jk(0)tk/2 − τj δ

jkτ̂k])
(2πi)d

∏d
j=1 ρ(τj )

[1 + nKklm(0)τkτlτm]dτ

+ O(1/n),
(12)

=
[
I
(
nK ′′(0), s,0, nt,0

)

+ Kjkl(0)

6
√

n
I
(
nK ′′(0), s + ej + ek + el,0, nt,0

) + O(1/n)

]
.

Here without loss of generality I take K(0) = 0. Expansion (12) is the well-known
Edgeworth expansion for Q∗, and is valid even when K(τ ) exists only for pure
imaginary arguments. It is also valid when T is confined to a unit lattice and
t1, . . . , td is evaluated at continuity corrected points [Kolassa (1989)]. In this case
ρ(τ ) = 2 sinh(τ/2), and linear terms generated by expanding τ/ρ(τ ) are zero. The
counterpart of Q(t) when n(T1, . . . , Td) are supported on a unit lattice is

Q(t) = exp
(
n[K(τ̂ ) − τ̂j t

j ])
×

[
exp

(
nτ̂jK

jk(τ̂ )τ̂k/2
)

×
∫ τ̂+i∞
τ̂−i∞

exp(n[τjK
jk(τ̂ )τk/2 − τjK

jk(τ̂ )τ̂k])
(2πi)d

∏d
j=1[ρ(τ̂j )/τ̂j ]

×
{

1 +
d∑

j=1

[
1

τ̂j

− cosh(τ̂j /2)

2 sinh(τ̂j /2)

]
(τj − τ̂j )

}

× [
1 + nKklm(τ̂ )(τk − τ̂k)(τl − τ̂l)(τm − τ̂m)

]
dτ

]

= exp
(
n[K(τ̂ ) − τ̂j t

j ])(13)

×
d∏

j=1

τ̂j

2 sinh(τ̂j /2)

×
[

exp
(
nτ̂jK

jk(τ̂ )τ̂ /2
)
I
(
nK ′′(τ̂ ), s,0, nK ′′(τ̂ )τ̂ , τ̂

)

+
d∑

j=1

[
1

τ̂j

− cosh(τ̂j /2)

2 sinh(τ̂j /2)

]
I
(
nK ′′(τ̂ ), s, ej , nK ′′(τ̂ )τ̂ , τ̂

)

+ 1

6
Kjkl(τ̂ )I

(
nK ′′(τ̂ ), s, ej + ek + el , nK ′′(τ̂ )τ̂ , τ̂

)
/
√

n

]
.
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The argument justifying (5) was general enough to justify (5) in this case as well.
Note that 1/τ̂ − cosh(τ̂ /2)/2 sinh(τ̂ /2) evaluated at τ̂ = 0 is zero.

Approximation Q(t) holds only when all components of τ̂ are positive. Ap-
proximations for other t may be calculated recursively. Specifically, suppose that
a vector with a negative subscript denotes that vector with the indicated compo-
nent omitted, and suppose that t corresponds to a multivariate saddlepoint τ̂ with
τ̂j < 0. Then let u = (t1, . . . , tj−1,−tj , tj+1, . . . , td) and define U analogously.
Then P[T ≥ t] = P[T−j ≥ t−j ]−P[U ≥ u], and the saddlepoints associated with u
have one fewer negative entry than does τ̂ , and Q(t) may be applied to U and T−j .

The vector τ̂ might be interpreted as the maximum likelihood estimator for τ
when t is embedded in the exponential family with density fT(t) exp(τ�t −
K(τ )). Lugannani and Rice (1980), Skovgaard (1987) and Wang (1990) have
developed approximations built around modifications of signed roots of likelihood
ratio statistics when d ≤ 2; the next section will review the two-dimensional
version for comparison with Q(t) and argue why this approach is infeasible for
higher dimensions.

4. Uniformization. Lugannani and Rice (1980) present an approximation
to P[T ≥ t] in the case d = 1, by reparameterizing the integrand of (1) to make
the argument to the exponent exactly quadratic. The resulting integral has a
simple pole in its integrand, which is removed by a technique known in the
applied mathematics literature on saddlepoint approximation as uniformization.
This resulted in a particularly simple approximation. The approximation avoids
the leading exponential factor in Q(t) and hence is valid regardless of the signs of
components of τ̂ . This section explores the possibility of extending this argument
to higher dimensions, introduces the related expansion of Wang (1990), and
explains why extensions to d > 2 will not be presented.

When d > 1, one might attempt to develop an expansion for P[T ≥ t] by
defining functions w such that

1
2 (w − ŵ)�(w − ŵ) = K(τ ) − τ�t − K(τ̂ ) + τ̂�t,(14)

and changing variables in (3) to find

P[T ≥ t] = (2πi)−d
∫ ŵ1+iε

ŵ1−iε
· · ·

∫ ŵd+iε

ŵd−iε
exp

(
n(w�w/2 − ŵ�w)

)
g(w) dw

(15)

+ O
(
exp(−cn)

)
for g(w) = det dτ

dw/
∏d

j=1 ρ(τj ). The parameterization (14) is specified uniquely
by requiring that wj not depend on τk if k > j , and by requiring that wj be an
increasing function of τj . Kolassa (1997) proved that τ (w) is analytic in w at ŵ.

One might approximate (15) by expanding g(w) as a power series, and
applying (2) termwise to eliminate the effect of poles. Unfortunately, the resulting
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series has terms in components of w of unbounded negative order, making
termwise inversion impossible. In the literature on multiple complex variables,
h(w) is in general not regular in w2, . . . ,wd , because the value of wj making
τj = 0 may depend on w1, . . . ,wj−1; furthermore, this problem generally can not
be repaired using a linear transformation of w. If one defines w̃i(w) to satisfy

τi

(
w1, . . . ,wi−1, w̃i(w)

) = 0,(16)

and approximates w̃j as approximately linear in w when d ≤ 2, one obtains the
approximation

P[T ≥ t] = N̄(
√

nAŵ,AA�)

+
d∑

j=1

N̄
(√

n[ŵ−j − w̃−j (ŵ)])n(
√

nŵj )

(17)

× {
1/

(
ŵj − w̃j (ŵ)

) − σj/τ̂j

}
/
√

n

+ O(1/n),

where the generic element of matrix A is

Aij =



(
ŵi − w̃i(ŵ)

)
/ŵj , if i > j ,

1, if i = j ,
0, if i < j ,

and σi are the diagonal elements of ϒ , for ϒ the lower triangular matrix such
that ϒ�ϒ = K ′′(τ̂ ). Lugannani and Rice (1980) derived this approximation
when d = 1, and Wang (1990) derived this approximation for d = 2, using a
different method of proof. He included an additional term of order O(1/n),
and demonstrated that the error term is of the same order. Call the resulting
approximation W(t). Tedious calculation shows that this approximation is valid
to O(1/n) for d = 2, but the method of proof fails for d > 2. Table 1 describes
the association between notation used by Wang (1990) and the notation in this
manuscript.

TABLE 1
Symbols used in Wang’s paper

Notation of Wang (1990) Notation of the present manuscript

υ0 ŵ1
(u0, t0) τ̂

w(−υ0) = wu|u=0 ŵ2
w(0) = wu0 ŵ2 − w̃2
x1 ŵ2
y1 (ŵ1 − bŵ2)/

√
1 + b2
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5. Examples. Wang (1990) considers a distribution of T = ∑n
j=1 Z�Xi ,

for Xi independent vectors of independent unit exponentials and Z� = (1 1 0
0 1 1

)
. In

this case, K(τ ) = −∑3
j=1 log(1 − zjτ ), for zj row j of Z. Figure 1 presents

a comparison of the behavior of W(t) and Q(t). Both of these approximations
require solution to the saddlepoint equations; these solutions are obtained using
the Newton–Raphson method. Figure 1 presents (|W(t) − P[T ≥ t]|)/(|Q(t) −
P[T ≥ t]| + |W(t) − P[T ≥ t]|), for the distribution of the sum of ten independent
copies of T. In both cases, P[T ≥ t] is estimated using one million Monte Carlo
samples. Calculations are performed in FORTRAN, using the IMSL subroutines
for matrix manipulation and random number generation. I applied a mild loess
smoother to the Monte Carlo approximation, and then plotted contours of the ratio
of the absolute value of error in Q(t) to the sum of the absolute errors of W(t)
and Q(t). Neither Q(t) nor W(t) is clearly superior in this example.

Stokes, Davis and Koch (1995) present data on 63 case-control pairs of women
with endometrial cancer. They seek to explain the occurrence of endometrial
cancer on various explanatory variables, among them the presence of three risk
factors, gall bladder disease, hypertension and nonestrogen drug use. They model

FIG. 1. Contours of the ratio of the absolute value of error in Q(t) to the sum of the absolute
errors of W(t) and Q(t). Example of correlated 
 variables. Calculations are for lower quadrant
probabilities, generated by applying Q(t) to −T.
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TABLE 2
Differences between cases and controls for endometrial cancer data

Gall bladder disease −1 −1 −1 0 0 0 0 0 0 1 1 1 1 1 1 1
Hypertension −1 0 1 −1 −1 0 0 1 1 −1 −1 0 0 0 1 1
Nonestrogen drug use 0 −1 0 −1 0 0 1 0 1 0 1 −1 0 1 0 1
Number of pairs 1 1 1 2 6 14 10 12 4 3 1 1 4 1 1 1

the probability of endometrial cancer πj using logistic regression: πj = exp(θ0 +∑3
i=1 θiWij )/(1+exp(θ0 +∑3

i=1 θiWij )), where W1j , W2j and W3j are indicators
for gall bladder disease, hypertension and nonestrogen drug use in individual j ,
respectively. Their data were obtained from a case-control study, and hence
the independent variable is case-control status and the dependent variables are
presence of the risk factors. Stokes, Davis and Koch (1995) note that the likelihood
for these data is equivalent to that of a logistic regression arising from a prospective
study, in which the units of observation are the matched pairs, the explanatory
variables are those of the case member minus those of the control member, and the
response variable may be taken to be unity. Table 2 contains the number of pairs
with each configuration of differences of the three explanatory variables. Let zj be
the row vector formed by the top three entries in column j of Table 2, let mj be the
bottom entry in column j , and let Z be the matrix whose rows are zj . Let T = Z�1,
for 1 a column vector with as many entries as there are columns in Table 2, whose
entries are all 1. Then K(τ ) = ∑

j mj [log(1 + exp(zjτ )) − log(2)]. Again, the
saddlepoint τ̂ is computed using the Newton–Raphson method.

None of these risk factors is likely to have a protective effect, and so the
alternative hypothesis to θ = 0 is θj ≥ 0 ∀ j and θj > 0 for some j . This test
will be performed by comparing the minimum p-value arising from the three
univariate one-sided conditional tests to its null distribution. The three univariate
one-sided p-values are 0.0175, 0.1885 and 0.0133. The observed critical region is
{t | P[Tj ≥ tj ] ≤ 0.0133 for some j} and, applying (17) for d = 1, is approximated
by T = {t | T1 ≥ 10 or T2 ≥ 10 or T3 ≥ 13}. Using Boole’s law, P [T ] = 0.01709.
By comparison, 10,000,000 independent draws from the distribution of T yields
the 95% confidence interval P [T ] ∈ (0.01702,0.01718).

Acknowledgments. The author thanks Larry Shepp, Richard Gundy, Ovidiu
Costin, Yodit Seifu, two anonymous referees, and an anonymous Associate Editor
for helpful suggestions.

REFERENCES

BAK, J. and NEWMAN, D. J. (1982). Complex Analysis. Springer, New York.
DANIELS, H. E. (1954). Saddlepoint approximations in statistics. Ann. Math. Statist. 25 631–650.
DANIELS, H. E. (1987). Tail probability approximations. Internat. Statist. Rev. 55 37–46.



286 J. E. KOLASSA

KOLASSA, J. E. (1989). Topics in series approximations to distribution functions. Ph.D. dissertation,
Univ. Chicago.

KOLASSA, J. E. (1997). Infinite parameter estimates in logistic regression, with application to
approximate conditional inference. Scand. J. Statist. 24 523–530.

KOLASSA, J. E. (1998). Uniformity of double saddlepoint conditional probability approximations.
J. Multivariate Anal. 64 66–85.

LUGANNANI, R. and RICE, S. (1980). Saddle point approximation for the distribution of the sum of
independent random variables. Adv. in Appl. Probab. 12 475–490.

PIERCE, D. A. and PETERS, D. (1999). Improving on exact tests by approximate conditioning.
Biometrika 86 265–277.

ROBINSON, J. (1982). Saddlepoint approximations for permutation tests and confidence intervals.
J. Roy. Statist. Soc. Ser. B 44 91–101.

ROUTLEDGE, R. and TSAO, M. (1995). Uniform validity of saddlepoint expansion on compact sets.
Canad. J. Statist. 23 425–431.

SKOVGAARD, I. M. (1987). Saddlepoint expansions for conditional distributions. J. Appl. Probab.
24 875–887.

STOKES, M. E., DAVIS, C. S. and KOCH, G. G. (1995). Categorical Data Analysis Using the SAS
System. SAS Institute, Cary, NC.

WANG, S. (1990). Saddlepoint approximations for bivariate distributions. J. Appl. Probab. 27 586–
597.

DEPARTMENT OF STATISTICS

RUTGERS UNIVERSITY

HILL CENTER, BUSCH CAMPUS

110 FRELINGHUYSEN ROAD

PISCATAWAY, NEW JERSEY 08854-8019
E-MAIL: kolassa@stat.rutgers.edu


