
Multivariate skew t mixture models: Applications to
fluorescence-activated cell sorting data

Kui Wang
Department of Mathematics

University of Queensland
St. Lucia, Q4072, Australia

Email: kwang@maths.uq.edu.au

Shu-Kay Ng
School of Medicine

Griffith University (Logan Campus)
Meadowbrook, Q4131, Australia

Email: s.ng@griffith.edu.au

Geoffrey J McLachlan
Department of Mathematics

University of Queensland
St. Lucia, Q4072, Australia

Email: g.mclachlan@uq.edu.au

Abstract—In many applied problems in the context of
pattern recognition, the data often involve highly asymmetric
observations. Normal mixture models tend to overfit when
additional components are included to capture the skewness
of the data. Increased number of pseudo-components could
lead to difficulties and inefficiencies in computations. Also, the
contours of the fitted mixture components may be distorted.
In this paper, we propose to adopt mixtures of multivariate
skew t distributions to handle highly asymmetric data. The
EM algorithm is used to compute the maximum likelihood
estimates of model parameters. The method is illustrated using
a flurorescence-activated cell sorting data.

Keywords-Asymmetric multivariate data; EM algorithm;
fluorescene-activated cell sorting; mixture models; skewed t.

I. INTRODUCTION

Finite mixture models have been extensively developed
and widely applied to density estimation and pattern recog-
nition problems [1], [2], [3], [4]. With this approach to pat-
tern recognition, the observed p-dimensional feature vectors
y1, . . . ,yn are assumed to have come from a mixture of a
finite number, say g, of groups in some unknown proportions
π1, . . . , πg that sum to one. That is, each feature vector yj

is taken to be a realization of the mixture probability density
function (p.d.f.) defined by

f(y;Ψ) =
g∑

i=1

πif(yj ;θi), (1)

where f(yj ;θi) denotes the ith component density with
unknown parameter vector θi (i = 1, . . . , g). The compo-
nent distributions are usually specified to belong to the same
parametric family. Here the vector Ψ of unknown parameters
consists of the mixing proportions π1, . . . , πg−1 and the
elements of the θi known a priori to be distinct. The fitting
of finite mixture models (1) can be obtained by maximum
likelihood via the expectation-maximization (EM) algorithm
of Dempster, Laird, and Rubin [5]; see also [6]. Frequently,
in practice, it is reasonable to consider fitting mixtures of
elliptically symmetric component densities. Within this class
of component densities, the multivariate normal density is

a convenient choice given its computational tractability [1].
In applications where the tails of the normal distribution
are shorter than appropriate or the parameter estimates are
affected by atypical observations (outliers), the fitting of
mixtures of multivariate t-distributions provides a more
robust approach to the fitting of normal mixture models [7].

The t component density with location parameter μi,
positive-definite matrix Σi, and νi degrees of freedom is
given by

tp(yj ;μi,Σi, νi) =

Γ(νi+p
2 )|Σi|−1/2

(πνi)
1
2pΓ(νi

2 ){1 + δ(yj ,μi;Σi)/νi}
1
2 (νi + p)

, (2)

where

δ(yj ,μi;Σi) = (yj − μi)
T Σ−1

i (yj − μi)

denotes the Mahalanobis squared distance between yj and
μi (with Σi as the covariance matrix), and where the
superscript T denotes vector transpose. As νi tends to
infinity, Y j becomes marginally multivariate normal with
mean μi and covariance matrix Σi. Therefore, the parameter
νi can be viewed as a robustness tuning parameter, which
can be inferred from the data by computing its maximum
likelihood estimate. The application of the EM algorithm for
maximum likelihood estimation of a mixture of multivariate
t distributions is described in McLachlan and Peel [1] and
the references therein.

In many applied problems in the context of pattern recog-
nition, the contours of the fitted mixture models based on
symmetric normal or t components are often distorted when
the data involve highly asymmetric observations. In partic-
ular, the normal (or t) mixture model tends to overfit and
produce many spurious clusters when additional components
are required to capture the skewness and asymmetry in the
feature data [8]. Including such spurious and irrelevant com-
ponents may induce computational problems and difficulties
in interpretation of results, which can further lead to invalid



inferences being made. The multivariate skew normal and
skew t distributions have been proposed to fit asymmetric
data in various applied problems [9], [10], [11], [12]. How-
ever, the extension of these multivariate skew distributions to
a mixture model framework is not straightforward because
of the complexity involved in the use of the EM algorithm
to compute the maximum likelihood estimates of the model
parameters. Mixture models of skew distributions have been
therefore limited to univariate data [13], [14]. In this paper,
we consider the extension to mixtures of multivariate skew t
distributions for fitting highly asymmetric multivariate data.
A variant of the EM algorithm is developed to compute
the maximum likelihood estimates of model parameters.
The method is illustrated using a flurorescence-activated cell
sorting data.

The paper is organized as follows: Section II introduces
the multivariate skew t mixture model and describes the EM
algorithm for the iterative computation of maximum likeli-
hood estimates. With multivariate data, singularity problems
may occur with the use of EM algorithm. In Section III,
we develop a “singularity handling” procedure within the
framework of the EM algorithm to handle singularity prob-
lems that may exist in the applications. The estimation of
the degrees of freedom does not exist in closed form. In
Section IV, we consider three different methods and compare
their performances via a simulation study. The application of
the proposed method to a fluorescence-activated cell sorting
dataset is provided in Section V. Section VI ends the paper
with some discussion.

II. MULTIVARIATE SKEW t MIXTURE MODEL

A. Multivariate Skew t Distribution

The multivariate skew t distribution as used here can
be characterized using a particular form of that given by
Sahu, Dey, and Branco [15] for the case of the skew normal
distribution. We let D be a p-dimensional vector of skew
parameters, and suppose that

(
U0

U

)
∼ N

((
μ
0

) (
Ω 0
0 1

)
1
w

)
,

where w ∼ gamma(ν/2, ν/2); see [1]. Then Y = D|U | +
U0 defines a p-dimensional multivariate skew t distribution
with its density function as

f(y;μ,Ω,D, ν) =

2tp(y;μ,Σ, ν)Tp+ν

(
ξ

σ

√
ν + p

ν + δ

)
, (3)

where Σ = Ω + DDT , ξ = DT Σ−1(y − μ), σ2 = (1 −
DT Σ−1D), and δ = (y−μ)T Σ−1(y−μ). Here Tp+ν(·) is
the cumulative distribution function of a univariate (central)
t random variable with degress of freedom (p+ ν).

For the multivariate skew t distribution (3), the mean and
covariance matrix are derived similar to that in [15] as

E(Y ) = μ +
√
ν

π

Γ((ν − 1)/2)
Γ(ν/2)

D

and

cov(Y ) = (Ω+DDT )
ν

ν − 2
− ν

π

[
Γ((ν − 1)/2)

Γ(ν/2)

]2

DDT .

B. EM Algorithm for Multivariate Skew t Mixture Model

With reference to (1), the mixture p.d.f. with multivariate
skew t component densities is given by

f(Y ;Ψ) =
g∑

i=1

πif(y;μi,Ωi,Di, νi), (4)

where f(y;μi,Ωi,Di, νi) is speicifed by (3). The vector of
unknown parameters Ψ is estimated by maximum likelihood
via the EM algorithm. Within the framework of the EM algo-
rithm, the observed feature data vector y = (yT

1 , . . . ,y
T
n )T

is viewed as being incomplete, as the associated component-
label vectors z1, . . . ,zn, are not available [1]. In this frame-
work, where each yj is conceptualized as having arisen from
one of the components of the mixture model (4) being fitted,
zj is a g-dimensional vector with zij = (zj)i = 1 or 0,
according to whether yj did or did not arise from the ith
component (i = 1, . . . , g; j = 1, . . . , n).

In the light of the above characteristics of the skew t
distribution (3), it is convenient to view the observed data
augmented by the zj as still being incomplete and introduce
the additional missing data, u1, . . . , un and w1, . . . , wn. The
complete-data vector is therefore given by

yc = (yT
c1, . . . ,y

T
cn)T ,

where yc1 = (yT
1 ,z

T
1 , u1, w1)T , . . . , and ycn =

(yT
n ,z

T
n , un, wn)T are assumed to be independently and

identically distributed with z1, . . . ,zn being independent
realizations from a multinomial distribution consisting of
one draw on g categories with respective probabilities
π1, . . . , πg . For this specification, the complete-data log
likeihood can be written as

logLc(Ψ) = logLc1(π) + logLc2(θ) + logLc3(ν), (5)

where

logLc1(π) =
g∑

i=1

n∑
j=1

zij log(πi),

logLc2(θ) =
g∑

i=1

n∑
j=1

zij{− 1
2 [p log(2π) + log |Ωi|+

wj(yj − μi − Diuj)T Ω−1
i (yj − μi − Diuj)]},



and

logLc3(ν) =
g∑

i=1

n∑
j=1

zij{− 1
2 [(p−1) log(wj)+wju

2
j ]−

νi

2 [wj − log(νi/2)] − log Γ(νi/2) + (νi/2 − 1) log(wj)}.
In (5), π = (π1, . . . , πg)T , θ = (θT

1 , . . . ,θ
T
g )T , and ν =

(ν1, . . . , νg)T , where θi contains the elements of μi, the
distinct elements of Ωi and Di (i = 1, . . . , g).

The EM algorithm is a broadly applicable approach to the
iterative computation of maximum likelihood estimates [6].
On the (k + 1)th iteration of the EM algorithm, the E-step
computes the conditional expectation of the above complete-
data log likelihood logLc(Ψ) given the observed data and
the current estimates. This involves the calculations of the
following five conditional expectations:

τ
(k)
ij = EΨ(k)(Zij |yj),

e
(k)
1,ij = EΨ(k)(Wj |yj , zij = 1),

e
(k)
2,ij = EΨ(k)(UjWj |yj , zij = 1),

e
(k)
3,ij = EΨ(k)(U2

j Wj |yj , zij = 1),

and
e
(k)
4,ij = EΨ(k)(logWj |yj , zij = 1),

where the expectations are based on the current value Ψ(k)

for Ψ. In particular,

τ
(k)
ij =

π
(k)
i f(yj ;μ

(k)
i ,Ω(k)

i ,D
(k)
i )∑g

h π
(k)
h f(yj ;μ

(k)
h ,Ω(k)

h ,D
(k)
h )

is the posterior probability that the jth feature vector yj

belongs to the ith component of the mixture (4). An outright
partition of feature data into g non-overlapping clusters is
achieved by assigning each feature vector to the component
to which it has the highest estimated posterior probability of
belonging [1]. The other four conditional expectations can
be obtained according to [8].

On the M-step at the (k + 1)th iteration of the EM
algorithm, it follows from (5) that π(k+1), θ(k+1), and
ν(k+1) can be computed independently of each other. The
solutions for π(k+1)

i and θ
(k+1)
i exist in closed form. Only

the update ν(k+1)
i for the degrees of freedom νi need to be

computed iteratively. That is,

π
(k+1)
i =

n∑
j=1

τ
(k)
ij /n, (6)

μ
(k+1)
i =

n∑
j=1

τ
(k)
ij (yje

(k)
1,ij − D

(k)
i e

(k)
2,ij)/

n∑
j=1

(τ (k)
ij e

(k)
1,ij),

(7)

Ω(k+1)
i =

n∑
j=1

τ
(k)
ij {e(k)

1,ij(yj − μ
(k)
i )(yj − μ

(k)
i )T−

e
(k)
2,ijS

(k)
ij S

(k)
ij

T + e
(k)
3,ijD

(k)
i D

(k)
i

T }/
n∑

j=1

τ
(k)
ij , (8)

D
(k+1)
i =

n∑
j=1

τ
(k)
ij e

(k)
2,ij(yj − μ

(k)
i )/

n∑
j=1

τ
(k)
ij e

(k)
3,ij , (9)

and
n∑

j=1

τ
(k)
ij [log(ν(k+1)

i /2) − ψ(ν(k+1)
i /2) + 1]+

n∑
j=1

τ
(k)
ij (e(k)

4,ij − e
(k)
1,ij) = 0, (10)

where in (8), S
(k)
ij = D

(k)
i (yj − μ

(k)
i )T , and ψ(s) =

{∂Γ(s)/∂s}/Γ(s) is the Digamma function in (10).
The E- and M-steps are alternated repeatedly until the

likelihood changes by an arbitrarily small amount in the case
of convergence of the sequence of likelihood values [6].

III. SINGULARITY PROBLEM IN EM ALGORITHM

A singularity problem occurs in a few circumstances with
the use of EM algorithm [6]. In the present study involving
multivariate data, we may encounter a singularity problem
in two occasions when the component-scale matrices are
unconstrained. The first one is known as the collapse cluster
problem, which is present when the feature data are lying
in almost a lower dimensional subspace. For example, in a
two dimensional plane, if some data pile up at its boundary
line and are separated from other feature data. The variance
of this cluster will be singular because the feature data are
in fact one dimensional. The second occasion is the empty
cluster problem, where a component converges to a cluster
containing only a few data points relatively close together.
The variance of this cluster will also tend to be singular. An
example of two-dimensional feature data is given in Fig. 1,
where one of three clusters (say, Cluster A) contains a set
of data points lying on the line y = −4.

To handle the singularity problem, we add a singularity
handling procedure within the framework of the EM algo-
rithm. Before performing the E-step at each EM iteration,
the covariance matrices Ωi are checked for singularity or
being close to singularity (very small determinant). Those
covariance matrices that are singular will be re-defined by
first determining in which coordinates the covariance matrix
is degenerated. The corresponding diagonal elements are
changed to a small pre-defined value ε (say, ε = 0.0001),
and other elements at the same column and row are changed
to zero. The re-definition of a marginal distribution for those
coordinates that lead to degenerated covariance matrix will
give a higher posterior probability belonging to the particular
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Figure 1. An example data from a three-component skew t mixture with
a collapse cluster

cluster. Similarly, the corresponding elements of the skew
parameter vector Di will be set to zero. On the M-step
at each iteration, the singularity handling procedure will
also check whether the expected number of feature data is
less than two in each cluster,

∑n
j=1 τ

(k)
ij , for i = 1, . . . , g.

Clusters containing only a few data points will have their
means and covariance matrices re-defined to be zero vector
and matrix, respectively. The skew parameter vector Di will
set to be a zero vector as well. The empty cluster problem
will therefore be handled by the singularity check on the
next E-step as mentioned above.

With the above three-cluster example (Fig. 1), it is the
second coordinate that leads to degenerated covariance ma-
trix for Cluster A. The singularity handling procedure will
re-define its covariance matrix on the E-step as

(
σ2

1 0
0 0

)
→

(
σ2

1 0
0 ε

)
.

Thus, the data points with its second coordinate value equal
to −4 will have a higher posterior probability belonging to
Cluster A than those points with same first coordinate but
second coordinate not equal to −4. The second element of
D1 will be set to be zero as well.

IV. ESTIMATION OF THE DEGREES OF FREEDOM

As mentioned in Section II (Equation (10)), the updated
estimate of the degrees of freedom νi does not exist in closed
form. Here we consider three methods for its computation.
With the first method (Method 1), an approximation to the
term e

(k)
4,ij on the right-hand-side of (10) is adopted; see

−20 0 20 40
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20
30
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y
Figure 2. A simulated dataset from a three-component skew t mixture

the supplementary information of [8]. Method 2 attempts to
obtain the exact values at each stage of the iterative process,
where the term e

(k)
4,ij is calculated by truncating an infinite

series expansion of it. With Method 3, the default pre-defined
values for the degrees of freedom νi = 4 (i = 1, . . . , g) are
adopted. A simulation study has been conducted to compare
the three methods.

We generate 100 datasets from a three-component skew
t mixture model. For each dataset, there are 1000 two-
dimensional samples, in which 300 samples come from the
first component, 300 from the second, and 400 from the
third. One example dataset is plotted in Fig. 2. With this
simulation study, true parameter values are used as the initial
values. The EM algorithm proceeds until the relative change
of log likelihood is less than 0.0001, or until it reaches the
maximum number of iterations 100, whichever first occurs.
The total computing time, the bias, and mean square errors
(MSEs) for each method are summarised in Table I.

From Table I, it can be observed that Method 2 takes the
longest computing time (more than twelve times of Method
1 and fifteen times of Method 3). Both Methods 1 and 2
overestimate the degrees of freedom νi, and are unbiased in
the estimation of θi (i = 1, 2, 3).

V. AN EXAMPLE

A flurescence-activated cell sorting (FACS) dataset is
used as an illustration. Flurescence-activated cell sorting
machines yield readout on large mixed populations of single
cells, with around n = 5, 000−50, 000 cells from blood sam-
ples of individuals with multiple sclerosis and other diseases.
The flurescence intensities of tagged antibodies are measured



Table I
COMPARISON OF THREE METHODS FOR ESTIMATING THE DEGREES OF

FREEDOM

Method 1 Method 2 Method 3
Bias (MSE) Bias (MSE) Bias (MSE)

1st cluster
μ1 -0.0023 (0.109) -0.0026 (0.111) 0.0066 (0.136)
μ2 -0.0117 (0.132) -0.0125 (0.132) -0.0131 (0.133)
σ11 0.0076 (0.148) 0.0072 (0.148) 0.0023 (0.149)
σ12 -0.0062 (0.110) -0.0060 (0.110) -0.0080 (0.112)
σ22 -0.0064 (0.150) -0.0058 (0.150) -0.0139 (0.135)
D1 0.0024 (0.123) 0.0032 (0.127) -0.0113 (0.157)
D2 0.0093 (0.152) 0.0101 (0.153) 0.0118 (0.151)
ν 0.1785 (0.589) 0.1881 (0.617) NA
π1 -0.0010 (0.007) -0.0010 (0.007) -0.0005 (0.006)

2nd cluster
μ1 -0.0052 (0.119) -0.0059 (0.121) -0.0018 (0.126)
μ2 -0.0095 (0.103) -0.0093 (0.104) -0.0125 (0.116)
σ11 0.0077 (0.163) 0.0081 (0.163) 0.0034 (0.157)
σ12 -0.0068 (0.105) -0.0068 (0.105) -0.0026 (0.102)
σ22 0.0003 (0.132) 0.0003 (0.132) -0.0042 (0.124)
D1 0.0107 (0.150) 0.0114 (0.153) 0.0046 (0.157)
D2 -0.0118 (0.123) -0.0117 (0.127) -0.0066 (0.138)
ν 0.0602 (0.573) 0.0626 (0.577) NA
π1 0.0016 (0.007) 0.0016 (0.007) 0.0010 (0.007)

3rd cluster
μ1 -0.0283 (0.135) -0.0289 (0.135) -0.0281 (0.136)
μ2 0.0139 (0.095) 0.0144 (0.097) 0.0139 (0.109)
σ11 -0.0112 (0.127) -0.0104 (0.125) -0.0133 (0.118)
σ12 0.0171 (0.083) 0.0177 (0.083) 0.0162 (0.084)
σ22 -0.0242 (0.142) -0.0239 (0.142) -0.0272 (0.145)
D1 0.0181 (0.148) 0.0192 (0.148) 0.0168 (0.146)
D2 -0.0206 (0.116) -0.0220 (0.122) -0.0199 (0.133)
ν 0.0917 (0.530) 0.1005 (0.517) NA
π1 -0.0006 (0.006) -0.0006 (0.006) -0.0006 (0.005)

Computing 59.95 seconds 773.8 seconds 49.36 seconds
time

by the scanners and are reported as multi-dimensional points
(in general 4 or 8 colour FACS corresponding to different
markers). The objective here is to cluster the blood cells on
the basis of multivariate FACS data with an attempt to detect
important subpopulations of regulatory cells. However, the
FACS data are also multimodal, asymmetric, and have many
outliers. Thus, the fitting of multivariate normal or t mix-
ture models for the analysis of FACS data often generates
distorted contours and may lead to invalid conclusions.

The dataset was captured using a BD Biosciences FACS
Calibur system [16]. It consists of n = 4952 blood cells
samples stained for 4 markers (CD4, CD56, CD8, and CD3).
The proposed multivariate skew t mixture model is fitted to
the 4-dimensional data with g = 2 to g = 15 components.
Based on the Bayesian information criterion (BIC) for model
selection [1], [17], we identify there are eight clusters of
blood cells. The pairwise two-dimensional contours of the
fitted skew t mixture model are presented in Fig. 3. The
contour lines indicate the asymmetric nature of the FACS
data, such as the cluster indicated by blue coloured dots
in the graph CD56 against CD4, and the cluster indicated
by black coloured dots in the graph CD8 against CD56. In
addition, it can be seen from Fig. 3 that the model fits well
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Figure 3. Two-dimensional contours of the fitted skew t mixture model

to the data. The clusters so formed and their estimated model
parameters may be used to infer various disease signatures
in FACS samples and match corresponding cell populations
across samples that enables quantitative downstream analy-
sis, such as classification and prediction of clinically relevant
phenotypes [8].

VI. DISCUSSION

We have developed mixtures of multivariate skew t dis-
tributions to handle highly asymmetric multivariate data.
A singularity handling procedure has been considered to
solve singularity problems within the framework of the EM
algorithm. We also compare three methods for estimating the
degrees of freedom for the component-t distributions. The
proposed method has been applied to a real flurorescence-
activated cell sorting dataset.

An alternative method has been considered recently to
handle asymmetric data [18]. Their method transforms the
asymmetric data via a Box-Cox transformation to minimize
skewness of the data. Symmetric t distributions are then
adopted to model the transformed data. In contrast, our pro-
posed multivariate skew t mixture approach models directly
the asymmetric populations and hence gets to understand the
distinctive shape and location of each sub-population. These
estimated parameters may further be employed to identify
distinctive features that are relevant to predict disease out-
comes.

Multivariate skew t mixture modelling can be readily
applied to other important pattern recognition problems. For



example, it can offer insights into FACS experiment design
by detecting redundant (i.e. less informative) and discrimi-
native (i.e. more informative) antibody profiles. Applications
of the model can be found in wide areas of scientific fields
where (multivariate) data exhibit a mixture of asymmetric
patterns with atypical observations; see, for example, [9],
[10], [11].

With applications of mixture models, the likelihood equa-
tion will have multiple roots corresponding to local maxima.
The EM algorithm described in Section II.B should be
applied from a wide choice of initial values in any search
for all local maxima [6]. The intent is to choose as the
maximum likelihood estimate of the parameter vector Ψ the
local maximizer corresponding to the largest of the local
maxima located [1]. In practice, consideration has to be
given to the problem of relatively large local maxima that
occur as a consequence of a fitted component having a very
small (but nonzero) generalized variance (the determinant
of the covariance matrix). Such a component corresponds to
a cluster containing a few data points either relatively close
together or almost lying in a lower-dimensional subspace. As
described in Section III, a singularity handling procedure is
required to identify the spurious local maximizers [1].

ACKNOWLEDGMENT

The work was supported by grants from the Australian
Research Council and the University of Queensland, Aus-
tralia.

REFERENCES

[1] G. J. McLachlan and D. Peel, Finite Mixture Models. New
York: Wiley, 2000.

[2] S. K. Ng and G. J. McLachlan, “Speeding up the EM algorithm
for mixture model-based segmentation of magnetic resonance
images,” Pattern Recognition, vol. 37, pp. 1573–1589, 2004.

[3] S. K. Ng, G. J. McLachlan, K. Wang, L. Ben-Tovim Jones, and
S. W. Ng, “A mixture model with random-effects components
for clustering correlated gene-expression profiles,” Bioinfor-
matics, vol. 22, pp. 1745–1752, 2006.

[4] K. Wang, K. K. W. Yau, and A. H. Lee, “A hierarchical
Poisson mixture regression model to analyse maternity length
of hospital stay,” Stat. Med., vol. 21, pp. 3639–3654, 2002.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm (with
discussion),” J. Roy. Stat. Soc. B, vol. 39, pp. 1–38, 1977.

[6] G. J. McLachlan and T. Krishnan, The EM Algorithm and
Extensions, 2nd ed. New Jersey: Wiley, 2008.

[7] G. J. McLachlan and D. Peel, “Robust cluster analysis via
mixtures of multivariate t-distributions,” Lect. Notes Computer
Science, vol. 1451, pp. 658–666, 1998.

[8] S. Pyne, X. Hu, K. Wang, E. Rossin, T.-I. Lin, L. M. Maier,
C. Baecher-Allan, G. J. McLachlan, P. Tamayo, D. A. Hafler,
P. L. De Jager, and J. P. Mesirov, “Automated high-dimensional
flow cytometric data analysis,” Proc. National Acad. Sciences
USA, vol. 106, pp. 8519–8524, 2009.

[9] A. Azzalini and A. Capitanio, “Statistical applications of the
multivariate skew-normal distribution,” J. Roy. Stat. Soc. B,
vol. 61, pp. 579–602, 1999.

[10] A. Azzalini and A. Capitanio, “Distributions generated by
perturbation of symmetry with emphasis on a multivariate skew
t-distribution,” J. Roy. Stat. Soc. B, vol. 65, pp. 367–389, 2003.

[11] A. Azzalini and A. Dalla Valle, “The multivariate skew-
normal distribution,” Biometrika, vol. 83, pp. 715–726, 1996.

[12] A. K. Gupta, “Multivariate skew t-distribution,” Statistics,
vol. 37, pp. 359–363, 2003.

[13] T. I. Lin, J. C. Lee, and W. Hsieh, “Robust mixture modeling
using the skew t distribution,” Stat. Comp., vol. 17, pp. 81–92,
2007.

[14] T. I. Lin, J. C. Lee, and S. Y. Yen, “Finite mixture modeling
using the skew normal distribution,” Stat. Sinica, vol. 17, pp.
909–927, 2007.

[15] S. K. Sahu, D. K. Dey, and M. D. Branco, “A new class of
multivariate skew distributions with applications to Bayesian
regression models,” Canadian J. Stat., vol. 31, pp. 129–150,
2003.

[16] L. M. Maier, D. E. Anderson, P. L. De Jager, L. S. Wicker,
D. A. Hafler, “Allelic variant in CTLA4 alters T cell phospho-
rylation patterns,” Proc. National Acad. Sciences USA, vol.
104, pp. 18607–18612, 2007.

[17] G. Schwarz, “Estimating the dimension of a model,” Ann.
Stat., vol. 6, pp. 461–464, 1978.

[18] K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gating
of flow cytometry data via robust model-based clustering,”
Cytometry A, vol. 73, pp. 321–332, 2008.


