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Summary

We propose a multivariate sparse group lasso variable selection and estimation method for data 

with high-dimensional predictors as well as high-dimensional response variables. The method is 

carried out through a penalized multivariate multiple linear regression model with an arbitrary 

group structure for the regression coefficient matrix. It suits many biology studies well in 

detecting associations between multiple traits and multiple predictors, with each trait and each 

predictor embedded in some biological functioning groups such as genes, pathways or brain 

regions. The method is able to effectively remove unimportant groups as well as unimportant 

individual coefficients within important groups, particularly for large p small n problems, and is 

flexible in handling various complex group structures such as overlapping or nested or multilevel 

hierarchical structures. The method is evaluated through extensive simulations with comparisons 

to the conventional lasso and group lasso methods, and is applied to an eQTL association study.

Keywords

coordinate descent algorithm; eQTL; high-dimensional data; genetic association; oracle 
inequalities; sparsity

1 Introduction

Genomic association studies with a single phenotype have been widely studied. Such 

association studies often encounter high-dimensional predictors with sparsity, i.e., only a 

small number of predictors are associated with the response. To select truly associated 

predictors, it is necessary to use regularization penalties to shrink the coefficients of 

irrelevant predictors to exactly zero. Popular penalties for regression models with a 

univariate response include the lasso (Tibshirani, 1996), the adaptive lasso (Zou, 2006), the 

elastic net (Zou and Hastie, 2005) and the smoothly clipped absolute deviation (Fan and Li, 

2001), among many others.
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An important characteristic of high-dimensional genomic predictors is the intrinsic group 

structures. For example, the DNA markers, also known as single nucleotide polymorphisms 

(SNPs), can often be grouped into genes, and genes can be grouped into biological 

pathways. Such grouping strategies have been applied successfully to genomic studies in 

rare variant detection (Zhou et al., 2010; Biswas and Lin, 2012). For group variable 

selection, Yuan and Lin (2006) proposed the group lasso method for the univariate response 

case. It penalizes the L2 norm of each predictor group and selects important groups in an 

“all-in-all-out” fashion. That is, all the predictors in a group are included or excluded 

simultaneously. However, in real applications, this is rarely the case. Oftentimes, not all the 

variables in an important group are important. For example, a gene associated with a certain 

complex trait does not mean that all the variants within the gene are causal, and a pathway 

that regulates certain gene expressions does not necessarily indicate that all its components 

have regulatory effects. Recent efforts have been made to select both important groups and 

important within-group signals simultaneously. Huang et al. (2009) and Zhou and Zhu 

(2010) adopted a Lγ, 0 < γ < 1, penalty to select important groups while removing 

unimportant variables within them; Zhou et al. (2010) used a penalized logistic regression 

with a mixed L1/L2 penalty to select both common and rare variants in a genome-wide 

association study; and Simon et al. (2013) proposed the sparse group lasso for selecting both 

important groups and within group predictors. However, all the above methods concern a 

univariate response.

Many other genomic data analyses focus on investigating the associations between high 

dimensional response variables and high-dimensional covariates, such as gene-gene 

associations (Park and Hastie, 2008; Zhang et al., 2010), protein-DNA associations 

(Zamdborg and Ma, 2009) and brain fMRI-DNA (or gene) associations (Stein et al., 2010). 

Oftentimes pairwise associations are calculated in such studies. For example, many 

multivariate genome-wide association studies nowadays still look for one association at a 

time between a single marker and a single trait, and then correct for multiple hypothesis 

testing (Dudoit et al., 2003; Stein et al., 2010). However, when both responses and 

predictors are of high dimensions, most of the family-wise type I error controlling 

procedures are usually too conservative and yield poor performance (Stein et al., 2010), and 

oftentimes adjusted analysis considering multiple variables simultaneously is more 

appropriate.

High dimensional responses also have natural group structures very often, for example, 

pathway group structures for gene expression responses and brain functional regions for 

fMRI intensity responses. For multivariate responses, Peng et al. (2010) adopted the mixed 

L1/L2 penalty in an orthonormal setting for identifying hub covariates in a gene regulation 

network; Obozinski et al. (2011) and Bunea et al. (2011) studied joint support union and 

joint rank selections; Lounici et al. (2011) proved oracle inequalities for multitask learning. 

Despite all the efforts, little focus, to our knowledge, has been put on the cases where the 

responses also have a group structure, whereas such cases are commonly encountered in 

biological studies. A possible strategy for multivariate-response analysis is to perform 

covariate selection for one response variable at a time. In such analysis the predictor group 

structure can be considered but the response group structure is overlooked.
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In this article, we propose a regularization method for making a good use of the intrinsic 

biological group structures on both covariates and responses to facilitate a better variable 

selection on multivariate-response and multiple-predictor data by effectively removing 

unimportant blocks of regression coefficients. Both the predictor and response group 

structures, or in general, the block structure of the regression coefficient matrix, are assumed 

known. Information of many biologically confirmed group structures can be achieved from 

publicly available repositories, for example, RefSeq gene files from NCBI Reference 

Sequence Database (http://www.ncbi.nlm.nih.gov/refseq/), KEGG pathway maps from 

Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/), and Brodmann 

brain anatomic region atlas from https://surfer.nmr.mgh.harvard.edu/fswiki/

BrodmannAreaMaps. The proposed method can handle cases where the number of variables 

in either responses or predictors is much greater than the sample size, and complex group 

structures such as overlapping groups where a variable belongs to multiple groups. The 

estimators enjoy finite sample oracle bounds for the prediction error, the estimation error, 

and the estimated sparsity of the regression coefficient matrix. Extensive simulations show 

that the proposed method outperforms competitive regularization methods. We applied the 

proposed method to a yeast gene expression quantitative loci (eQTL) study, where the 

numbers of gene expression responses and genetic marker predictors are both much larger 

than the sample size. The gene expressions are grouped into biological pathways and the 

genetic markers are grouped into genes. We demonstrate by considering both group 

structures that the proposed method generates a much more interpretable and predictive 

eQTL network between the gene expressions and genetic markers, comparing with several 

other commonly used regularized approaches.

2 Multivariate linear model with arbitrary grouping

We consider the multivariate linear model

(1)

where Y = (y1,⋯, yq) ∈ ℝn×q is the response matrix of n samples and q variables, X = 

(x1,⋯, xp) ∈ ℝn×p is the covariate matrix of n samples and p variables, B = (βjk)p×q ∈ ℝp×q 

is the coefficient matrix and W = (w1,⋯, wq) ∈ ℝn×q is the matrix of error terms with each 

wk ~ N(0, ), k = 1,⋯, q. Assume Y and X are centered so that there is no intercept in 

B. We adopt the notational convention that the column vectors of X are indexed by j, the 

column vectors of Y and W are indexed by k, and the samples are indexed by i.

Assume B contains G groups, and each group, denoted as Bg where g ∈ {1,⋯, G}, is a 

subset of two or more elements in B. We denote the group structure by  = {B1,⋯, BG}. We 

use B or Bg to denote either the set of all their elements or the numerical values of all their 

elements, depending on the context, which should not cause any confusion. Figure 1 

illustrates a few examples of group structures, where each highlighted block indicates an 

important group in  and each figure may represent several different group structures. Note 

that the group structures considered in this article are pre-defined by biological functions, 

such as gene or pathways. Also note that the union of all groups in  does not need to 

contain all the elements of B, in other words, some βjk may not belong to any group. We say 
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Bg1 is nested in Bg2 if Bg1 ⊂ Bg2; Bg1 and Bg2 are overlapping if Bg1 ∩ Bg2 is not empty. 

Obviously, nested groups are a special case of overlapping. A group structure with 

overlapping groups is common in biological studies. For example, when grouping genetic 

variants according to genes or pathways, different genes or pathways can overlap.

Though the proposed method works for an arbitrary group structure  on B, in real 

applications, a biologically meaningful group structure on B is usually introduced from the 

group structures of both predictors and responses. Specifically, suppose X has m1 column 

groups and Y has m2 column groups, then they yield m1 ×m2 intersection block groups on B. 

We denote this intersection block group structure by XY, the row block group structure only 

determined by the predictor groups by X, and the nested group structure containing all 

groups in XY and X by XY ∪ X. In the eQTL association study, a nonzero group in XY 

indicates that the corresponding gene group has SNPs associated with expressions in the 

corresponding pathway group. A nonzero group in X indicates that the corresponding gene 

group has an effect on some or all of the expressions.

For an arbitrary group structure  with G groups, let  be the total sum of L2 

norms of every group in , where . The group L2 norm reduces to the 

Frobenius norm ‖A‖2 = {tr(ATA)}1/2 for a matrix group A and to the vector L2 norm ‖a‖2 = 

{aTa}1/2 for a vector group a. Proofs of theoretical results in the following sections are 

provided in the web-based Supplementary Materials.

3 The regularization method and its properties

3.1 The multivariate sparse group lasso

For an arbitrary group structure  on B, to simplify the notation, we denote {g: Bg ∈ } by 

{g ∈ } as long as it does not cause any confusion. For j = 1,…, p and k = 1, …, q, let λjk ≥ 

0 be the adaptive lasso tuning parameter for βjk, with λjk = 0 if βjk is not penalized. Let λg ≥ 

0 be the adaptive tuning parameter for group Bg ∈ , with λg = 0 if group Bg is not 

penalized. We consider the following penalized optimization problem for a general 

regularized multivariate multiple linear regression:

(2)

where the L2 penalty term aims to shrink unimportant groups to zero and the L1 penalty term 

aims to shrink unimportant entries within an important group to zero. We call it the 

multivariate sparse group lasso (MSGLasso). We exclude the trivial case that λg = 0 for all g 

∈  and λjk = 0 for all j, k. To better understand the solution to (2), we develop the following 

theorem for βjk when all other elements in B are fixed.

Theorem 3.1—For an arbitrary group structure  on B, let B ̂ be the solution to (2) and βjk 

be its jk-th element. If for some group Bg0 ∈  with a tuning parameter λg0,
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(3)

then β̂
jk = 0 for every βjk ∈ Bg0. Otherwise, βjk satisfies

(4)

where  with B̂(−j) being the j-th row of B ̂ replaced by zeros, the 

subscript ·k refers to the k-th column of a matrix, and a+ = a if a > 0 and 0 otherwise.

Note that Theorem 3.1 is a general solution form and applies to arbitrary group structures. If 

there is no group structure assigned on B, then  becomes an empty set and (4) reduces to 

the lasso solution; If λjk = 0 for all j, k, then (4) and (3) provide the group lasso solution. It is 

of interest to consider certain special group structures that are intuitive and commonly used 

in many applications. Specifically, we consider model (2) with the following four group 

structures: (I)  = ∅, no group structure assigned on B; (II) X; (III) XY; (IV) XY ∪ X. 

The corresponding optimization problems become

(5)

(6)

(7)

(8)

where |B|1 = ∑jk |βjk| is the L1 norm of B, and ωg1 and ωg2 are some weights, in particular, 

the group sizes. The tuning parameter λjk = λ for all lasso penalties,  if g ∈ X, 

and  if g ∈ XY.

In the remaining of this article, we call (5) the Lasso model, (6) the Lasso+X model, (7) the 

Lasso+XY model, and (8) the Lasso+X+XY model.

Let B ̂
L, B̂LX, B ̂

LXY and B ̂
LXXY be the solutions to (5), (6), (7) and (8), respectively. Their 

corresponding expressions from Theorem 3.1 further reduce to some interesting simpler 

forms under the orthonormal design, in particular, B̂LX and B ̂
LXY are just further shrinkages 

of B̂L, and B̂LXXY is a further shrinkage of either B ̂
LX or B̂LXY. We are also interested in the 
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group lasso cases where λ = 0 in (6), (7) and (8), with their solutions denoted by B̂GX, B̂GXY 

and B ̂
GXXY, respectively. Then the main theorems in Yuan and Lin (2006) and Peng et al. 

(2010) become special cases.

In the eQTL example that we will analyze later, method (5) does not take the advantage of 

knowing the group structure. Method (6) only concerns the predictor group structure, 

therefore can select important gene groups. However, it ignores which pathways those genes 

are associated with. Method (7) considers both predictor and response group structures, 

therefore can select gene-to-pathway association blocks. Method (8) pertains advantages of 

both (6) and (7) and is more robust to misspecified group structures.

3.2 Oracle inequalities

The lasso method has been shown to achieve the oracle bounds for both prediction and 

estimation in the multiple linear regression model, which are the error bounds one would 

obtain if the true model were given, see for example, Bickel et al. (2009). Similar bounds 

also hold for a total of pq regression coefficients in the multivariate multiple linear 

regression model with a multivariate mixed L1/L2 penalty. For notational simplicity, we 

consider the following special case of (2) with λjk = λ for all j, k:

(9)

We follow the method of Bickel et al. (2009). Let J1(B) = {jk : |βjk| ≠ 0} be the index set of 

nonzero elements in B, and J2(B) = {g ∈ , ‖Bg‖2 ≠ 0} be the index set of nonzero groups in 

. Define M1(B) = ∑jk I(βjk ≠ 0) = |J1(B)| and M2(B) = ∑g∈  I(‖Bg‖2 ≠ 0) = |J2(B)|. For any 

matrix ∆ ∈ ℝp×q and any given index set J1 ⊆ {jk : 1 ≤ j ≤ p, 1 ≤ k ≤ q}, denote ∆J1 the 

projection of ∆ on the index set J1, that is the matrix with the same elements of ∆ on 

coordinates J1 and zeros on the complementary coordinates . Also for any group index set 

J2 ⊆ {1,⋯,| |}, denote ∆J2 the set of projection of ∆ on each of {Bg: g ∈ J2}, that is ∆J2 = 

{∆Bg : g ∈ J2}. Denote M1(B) = r and M2(B) = s. We then impose a restricted eigenvalue 

assumption for the multivariate linear regression model with a multivariate mixed L1/L2 

penalty, which leads to the desirable oracle inequalities.

Assumption 3.2—Let J1 ⊆ {jk : 1 ≤ j ≤ p, 1 ≤ k ≤ q} and J2 ⊆ {1,⋯,| |} be any index sets 

that satisfy |J1| ≤ r and |J2| ≤ s. Let ρ̃ = {ρg : g ∈ } be a set of positive numbers. Then for 

any nontrivial matrix ∆ ∈ ℝp×q that satisfies

the following minimums exist and are positive:
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Theorem 3.3—Consider model (9). Let B* be the true coefficient matrix. Assume each 

column of the error matrix, wk, follows a multivariate normal distribution N(0, σkIn), and all 

the diagonal elements of the matrix XTX/n are equal to 1. Suppose M1(B*) = r and M2(B*) 

= s. Let ψmax be the largest eigenvalue of XTX/n, σ = max{σ1,⋯, σq}, λg = ρgλ for g ∈ , ρ 

= min{1, ρg; g ∈ }, c be the maximum number of duplicates of a coefficient in overlapping 

groups in , and

for some constant A > 21/2. Furthermore, assume Assumption 3.2 holds with κ1 = κ1(r, s, ρ̃) 

and κ2 = κ2(r, s, ρ̃). Then with probability at least 1 − (pq)1−A2/2, we have the following 

oracle bounds for the prediction error, the estimation error and the order of sparsity:

The mean square prediction error is bounded by a factor of order λ2 ~ log(pq)/n, the l1 norm 

of the estimation error is bounded by a factor of order , and the estimated order 

of sparsity is bounded by a constant related to Assumption 3.2. These results are similar to 

those in Bickel et al. (2009). Note that Theorem 3.3 will still hold for flexible λjk in (2), as 

long as λjk > 0 for all j, k.

4 The mixed coordinate descent algorithm

Based on Theorem 3.1, the zero groups can be determined according to (3) and the entries in 

a nonzero group can be determined by solving for the fixed point solution of (4) using a 

coordinate descent algorithm. The coordinate algorithm updates each coefficient coordinate 

βjk at a step while fixing all the other coefficients at their current values. Theoretically, the 

coordinate descent algorithm would work if one can solve (4) for β̂jk exactly. Practically, 

since β̂
jk also appears in the term ∑{g∈ : βjk∈Bg, ‖B̂g‖2>0} λg/‖B̂

g‖2 on the right hand side of 

(4), unlike lasso, a closed form solution is usually not available and numerically solving for 

β̂
jk requires iteratively updating (4), which can be time consuming. Here we propose a mixed 
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coordinate descent algorithm, which only updates β̂jk once from  to  according to 

(4) without iteratively solving (4). In particular, the algorithm updates β̂jk by the following.

I. If any of the groups Bg ∈  containing βjk satisfies (3), then the entire group is 

estimated at zero. Otherwise β̂jk will be updated according to one of the situations 

(II)–(IV).

II.
If all the groups containing βjk satisfy  at the current step, where 

 is  with its jkth element replaced by zero, then β̂
jk is updated by

Notice that in this case, (4) becomes a closed form lasso solution.

III.
If all the groups containing βjk satisfy  at the current step and λjk = 0, 

then  is updated by the group lasso formulation

Notice in this case, all the entries in Bg with ‖B ̂
g−(jk)‖2 > 0 will enter as nonzero 

entries, or in other words, the whole group Bg will be selected as an important 

group.

IV. If some but not all groups containing βjk satisfy ‖B ̂
g−(jk)‖2 = 0 at the current step, 

then  belongs to a mixture of the lasso case (for groups with ) 

and the group lasso case (for groups with ), and it is updated as if by 

a mixture of the lasso and the group lasso through

Specifically, the algorithm is given in the following for a fixed set of values of all the tuning 

parameters.

Step 1. Standardize the data such that
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In our numerical examples, we also standardize yk such that  to minimize 

the impact of different scales of variations across yk on the regression coefficients for all 

k ∈ {1,⋯ q}.

Step 2. Set initial values for all β̂
jk and the iteration index m = 1. We use initial values 

 in our numerical examples.

Step 3. For a given pair (j, k), fix βj′k′ at  for all j′ ≠ j or k′ ≠ k. Then update 

 to  by (I) to (IV) accordingly.

Step 4. Repeat Step 3 for all j ∈ {1,⋯, p} and k ∈ {1,⋯, q}, and iterate until ‖B ̂(m) − 

B(̂m−1)‖ reaches a prespecified precision level for some norm ‖·‖. We use infinity norm 

in our numerical examples.

Convergence of different types of coordinate descent algorithms have been studied in the 

literature. Tseng (2001) provided conditions for convergence of cyclic coordinate descent 

algorithm with general separable objective functions. Wu and Lange (2008) proved the 

convergence of greedy coordinate descent algorithm with a L2 loss and the lasso penalty. 

Based on Wu and Lange (2008), we show the convergence of our mixed coordinate descent 

algorithm which is given in the following proposition. Details are provided in the 

supplemental materials, where we also illustrate that the speed of convergence of our mixed 

coordinate descent algorithm is much faster than the coordinate descent algorithm that 

solves the fixed point solution to (4) with inner iterations.

Proposition 4.1

A sequence of coordinate estimates iteratively updated by the mixed coor- dinate descent 

algorithm converge to a global minimizer of the objective function.

We implemented the MSGLasso and the mixed coordinate descent algorithm with C/C++ 

language and wrapped into an R package. It is available on the web-based Supplementary 

Materials and will soon be upload to CRAN repository.

5 Numerical studies

5.1 Simulations

In this section, we first investigate the numerical performances of Lasso, Lasso+X, Lasso

+XY, Lasso+X+XY methods and their group lasso counterparts when the true coefficient 

matrix B* takes a group structure of either X, XY or XY ∪ X. We also compare the 

proposed MSGLasso method with lasso and group lasso for an overlapping group structure.
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All the true group structures considered in our simulations are given in Fig.1(a)–1(d). For 

each group structure, we consider two scenarios: (i) “all-in-all-out”, where all the 

coefficients in an important group are important, and (ii) “not-all-in-all-out”, where only a 

subset of coefficients in an important group are important. Specifically, we generate B* by 

setting  if it is from an unimportant group, and drawing its value from a uniform 

distribution on [−5,−1] ∪ [1, 5] and fixing it for the simulations if it is from an important 

group. The sparsity of an important group in the “not all in all out” setting is randomly set 

between 1/4 and 1/6.

Each B* is of dimension 200 × 200. For a nonoverlapping group structure, each X row 

group is of dimension 20 × 200; each XY block group is of dimension 20 × 20. For the 

overlapping group structure, the groups start on coordinates (1, 21, 41, 61, 101, 121, 141, 

181) and end on coordinates (20, 40, 70, 100, 120, 150, 180, 200), for both X and Y 
variables.

Covariates , i = 1,⋯, n, are generated from a multivariate normal distribution Np(0, ΣX), 

where ΣX = diag(Σg1,⋯, Σg10) is block diagonal and each block corresponds to each group 

of X which has the first order autoregressive structure. Specifically, Σgi (j, k) = ρ|j−k| for any 

j, k pair from the same group, i = 1,⋯, 10. The error terms wik are generated from a normal 

distribution N(0, σ2), where σ2 is to yield a signal to noise ratio of 2. Finally, the responses 

are generated from Y = XB* +W.

The optimal values of tuning parameters may be selected by different criteria. Since the 

degrees of freedom are difficult to determine for a penalty with multiple tuning parameters, 

we search for the optimal tuning parameter values using a 5-fold cross-validation over a 

wide range of candidate values. The searching process starts with the largest candidate 

tuning parameter values with each by itself shrinking all the coefficients to zero. The 

converged estimates B ̂ obtained from the previous searching step are used as the initial 

values for B in the next searching step with a new set of tuning parameter values. We find it 

is very effective in reducing the computational cost.

For each simulation setup, we run a hundred replications and calculate the averages of the 

following quantities:

Li et al. Page 10

Biometrics. Author manuscript; available in PMC 2015 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where |·| is the number of elements in a set and (Ytest, Xtest) is an independently generated 

testing set of 100 samples.

Figure 2 summarizes these quantities for simulation setups with “not all in and all out” for 

all the group structures in Fig.1 at p = q = 200, n = 150, and ρ = 0.5. The proposed method 

using Lasso+X+XY for the nonoverlapping group structures X, XY and XY ∪ X as well as 

for the overlapping group structure are highlighted in black. The methods for the correctly 

specified group structures are highlighted in grey except in Fig.2(c) and Fig.2(d), where the 

implemented group structures are by themselves the correctly specified group structures. 

From Fig.2 we see that correctly incorporating group structure improves both variable 

selection and prediction, and our proposed method Lasso+X+XY, or the MSGLasso, 

performs at least the same as, if not better than, the methods for the correct group structures 

and yields the lowest prediction errors.

Figure 3 illustrates fitted results for a data set randomly chosen from one hundred 

replications, where B* has a “not all in all out” either XY ∪ X or overlapping group 

structure with p = 200, q = 200 and ρ = 0.5. It clearly shows that the MSGLasso results for 

correctly specified group structure, both in Fig.3(e) and in Fig.3(k), yield the most desirable 

estimates. Methods without lasso penalty yield too many false positives inside the important 

groups for the “not all in all out” case even when the groups are correctly specified, while 

methods with lasso penalty but incorrectly specified groups yield too many false positives 

outside the important groups.

5.2 Yeast eQTL data analysis

In this section, we demonstrate our method by analyzing a yeast eQTL data set generated by 

Brem and Kruglyak (2005), see also Yin and Li (2011), where gene expressions are grouped 

into, possibly overlapping, pathways and the genetic markers are grouped into genes.

The data set contains 6216 yeast genes assayed for 112 individual segregant. Genotypes of 

these 112 segregant at 2956 marker positions were also collected using GeneChip Yeast 

Genome S98 microarrays. The 6216 expressed genes are grouped by Kyoto Encyclopedia of 

Genes and Genomes pathways and the 2956 markers are grouped by genes, taking isoform 

genes as the same gene. To illustrate the method, in the reported analysis we only include 

genes from the following four pathways: the mitogen-activated protein kinases (MAPK) 

pathway containing 54 genes, the cell cycle pathway containing 116 genes, the cancer 

pathway containing 20 genes and the ribosome pathway containing 137 genes. There are in 

total 315 distinct expressed genes in these pathways, with 5 genes overlapping between 

MAPK and cell cycle, 5 genes overlapping between MAPK and cancer, 3 genes overlapping 
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between cell cycle and cancer, and 1 gene overlapping between MAPK, cell cycle and 

cancer. Ribosome does not contain overlapping genes with the other three pathways.

We follow a similar procedure of Yin and Li (2011) for prescreening genotype markers by 

performing univariate linear regressions across all the 315 gene expressions and 2956 

markers, and include the 395 markers with p-value of 0.01 or smaller into the final analysis. 

These 395 markers are embedded in 45 distinct genes.

Since some marker within a gene is associated with some gene expression in a pathway does 

not necessarily imply the gene must be associated with all four pathways, we exclude the X 

group structure and only apply an overlapping XY group structure in the data analysis. We 

cross-validate the performance of the multivariate sparse group lasso, the multivariate lasso, 

the multivariate group lasso and the univariate lasso. In particular, we randomly divide the 

112 samples into five approximately equal sized subsets, set one subset aside as the test set, 

and use the remaining four subsets as the training set. Then for each model, we run 5-fold 

cross-validation on the training set to estimate the coefficient matrix, and use the estimated 

model to compute the prediction error on the test set. We repeat the above procedures until 

each of the five subsets has been used as the test set once. The overall cross-validated 

prediction errors, the sum of squares, are reported in Table 1. The univariate lasso is 

conducted by first selecting variables on the training set using 315 separate lasso 

regressions, each for a single gene expression variable, and then implementing multivariate 

linear regression on only the selected set of covariates to obtain B ̂. Our proposed method has 

the best performance. The univariate lasso gives the highest prediction error, this is expected 

as the relations among responses are totaly overlooked. And this leads to high variability and 

over-fitting (Peng et al., 2010). The proposed method shows roughly a 10% decrease of the 

cross-validated prediction error over the multivariate lasso method, the second best approach 

among all four compared methods.

We then apply the multivariate sparse group lasso to the entire data set with 315 gene 

expressions and 395 markers. The final tuning parameters are λ = 7 × 10−2 and λ1 = 2 × 

10−4 determined by a 5-fold cross-validation. We also investigate the selection stability 

following Meinshausen and Bühlmann (2010) by calculating the selection frequencies of the 

top selected associations using one hundred bootstrap datasets. The top associations in terms 

of size, with selection frequency no less than 95%, are given in Table 2. The p-values in the 

last column are obtained from marginal simple linear regressions. Overall there are 1422 

nonzero elements in the estimated coefficient matrix, which gives an overall estimated 

sparsity of about 1%. There are 235 markers with nonzero coefficients related to genes in 

the MAPK pathway, 135 markers related to genes in the cell cycle pathway, 65 markers 

related to genes in the cancer pathway, and 65 markers related to genes in the ribosome 

pathway. Among those, 34 markers are related to genes in the overlap of MAPK and cell 

cycle pathways, 23 markers are related to genes in the overlap of MAPK and cancer 

pathways, and 5 markers is related to a gene in the overlap of MAPK, cell cycle and cancer 

pathways.

Table 3 lists the top pathway-gene groupwise associations in terms of the group L2 norms 

with a 100% group-wise selection frequency. Out of 180 block groups, 89 groups contain 
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nonzero coefficients. Several top selected genes have been reported in the literature. For 

example, one of the isoforms of YCR gene, YCR073C/SSK22 is MAPK cascade involved in 

osmosensory signaling pathway. Gene groups YJL and YGR in the Scr homology 3 domains 

are interacting with gene Pbs2 in one of the three kinase components in the MAPK pathway 

(Zarrinpar et al., 2003). The top association signals detected between the gene expressions in 

the joint of MAPK, cell cycle and cansor pathways and markers in NHR gene group also 

confirm the regulation effects of NHR genes on cell cycle pathway and other 

autophagyrelated genes (Nicole, 2011).

It worth noting that none of the association p-values from marginal simple linear regressions 

between gene YJL and pathway MAPK survives the Bonferroni correction for multiple 

comparisons. For example, the 14th signal in Table 2 has a univariate marginal p-value of 

0.044, therefore it is unlikely to be picked up by the pairwise analysis. However, the 

MSGLasso successfully selected this signal in an adjusted analysis with high individual and 

group selection frequencies, see Tables 2 and 3. This finding is supported by Zarrinpar et al. 

(2003). It demonstrates that besides the advantage of dimension reduction, the MSGLasso 

can also pick out important signals that would be missed by the pairwise method.

The stability selection results show that the first 40 selected top signals do not contain zero 

within their 2.5%–97.5% bootstrap percentile band, and the bootstrap Q1–Q3 band of the 

top 100 selected signals do not contain zero, indicating that the top selected signals using 

proposed method have high selection frequencies from bootstrap samples.

6 Discussion

For a predetermined group structure, the MSGLasso effectively and efficiently selects the 

important groups and important individual signals within those groups. There is some 

interest in recent literature in learning the group structure and selecting the important 

variables simultaneously. For example, Yin and Li (2011) proposed a conditional Guassian 

graphical model to select nonzero entries in the precision matrix conditional on 

simultaneously selected predictors. It is of interest to select important predictors via the 

MSGlasso based on a data driven group structure, where the selection of group structure is a 

topic for future research.

The L1/L2 penalty in the MSGLasso ensures that the objective function is a convex function 

with respect to B. The convexity is essential for the proposed mixed coordinate descent 

algorithm. Replacing the L1 penalty by the SCAD penalty (Fan and Li, 2001) would be of 

interest, but the respective optimization is non-convex, thus not guaranteed to converge to 

the global minimum. More research along this line is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

B* group structures. Important groups are shaded. (a) X group structure, (b) XY group 

structure, (c) X+XY group structure (nesting group structure) and (d) overlapping group 

structure.
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Figure 2. 

Simulation results, large p small n, “not all in all out” cases with n = 100, p = q = 200 and ρ 

= 0.5. SGL: the multivariate sparse group lasso; G: the multivariate group lasso.
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Figure 3. 

Heatmaps of coefficient matrices, selection effects. (a)–(h): “Not all in all out” X+XY 

nonoverlapping group structure with n = 100, p = 200, q = 200, and ρ = 0.5. (a) B*; (b) B̂
L; 

(c) B̂LX; (d) B̂LXY ; (e) B̂LXXY ; (f) B̂GX; (g) B ̂
GXY ; (h) B ̂

GXXY. (i)–(l): “Not all in all out” 

overlapping group structure with n = 100, p = 200, q = 200, and ρ = 0.5. (i) B*; (j) B̂L; (k) 

B̂SGL; (l) B̂G.
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Table 1

Comparison of prediction errors between different methods

Method MSG lasso M lasso MG lasso lasso

Prediction error 3094.5 3396.8 3557.4 3683.3

MSG lasso = multivariate sparse group lasso, M lasso = multivariate lasso, MG lasso = multivariate group lasso, lasso = univariate lassos.
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