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Summary

We propose a multivariate sparse group lasso variable selection and estimation method for data
with high-dimensional predictors as well as high-dimensional response variables. The method is
carried out through a penalized multivariate multiple linear regression model with an arbitrary
group structure for the regression coefficient matrix. It suits many biology studies well in
detecting associations between multiple traits and multiple predictors, with each trait and each
predictor embedded in some biological functioning groups such as genes, pathways or brain
regions. The method is able to effectively remove unimportant groups as well as unimportant
individual coefficients within important groups, particularly for large p small n problems, and is
flexible in handling various complex group structures such as overlapping or nested or multilevel
hierarchical structures. The method is evaluated through extensive simulations with comparisons
to the conventional lasso and group lasso methods, and is applied to an eQTL association study.
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1 Introduction

Genomic association studies with a single phenotype have been widely studied. Such
association studies often encounter high-dimensional predictors with sparsity, i.e., only a
small number of predictors are associated with the response. To select truly associated
predictors, it is necessary to use regularization penalties to shrink the coefficients of
irrelevant predictors to exactly zero. Popular penalties for regression models with a
univariate response include the lasso (Tibshirani, 1996), the adaptive lasso (Zou, 2006), the
elastic net (Zou and Hastie, 2005) and the smoothly clipped absolute deviation (Fan and Li,
2001), among many others.
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An important characteristic of high-dimensional genomic predictors is the intrinsic group
structures. For example, the DNA markers, also known as single nucleotide polymorphisms
(SNPs), can often be grouped into genes, and genes can be grouped into biological
pathways. Such grouping strategies have been applied successfully to genomic studies in
rare variant detection (Zhou et al., 2010; Biswas and Lin, 2012). For group variable
selection, Yuan and Lin (2006) proposed the group lasso method for the univariate response
case. It penalizes the L, norm of each predictor group and selects important groups in an
“all-in-all-out” fashion. That is, all the predictors in a group are included or excluded
simultaneously. However, in real applications, this is rarely the case. Oftentimes, not all the
variables in an important group are important. For example, a gene associated with a certain
complex trait does not mean that all the variants within the gene are causal, and a pathway
that regulates certain gene expressions does not necessarily indicate that all its components
have regulatory effects. Recent efforts have been made to select both important groups and
important within-group signals simultaneously. Huang et al. (2009) and Zhou and Zhu
(2010) adopted a L, 0 <y < 1, penalty to select important groups while removing
unimportant variables within them; Zhou et al. (2010) used a penalized logistic regression
with a mixed L /L, penalty to select both common and rare variants in a genome-wide
association study; and Simon et al. (2013) proposed the sparse group lasso for selecting both
important groups and within group predictors. However, all the above methods concern a
univariate response.

Many other genomic data analyses focus on investigating the associations between high
dimensional response variables and high-dimensional covariates, such as gene-gene
associations (Park and Hastie, 2008; Zhang et al., 2010), protein-DNA associations
(Zamdborg and Ma, 2009) and brain fMRI-DNA (or gene) associations (Stein et al., 2010).
Oftentimes pairwise associations are calculated in such studies. For example, many
multivariate genome-wide association studies nowadays still look for one association at a
time between a single marker and a single trait, and then correct for multiple hypothesis
testing (Dudoit et al., 2003; Stein et al., 2010). However, when both responses and
predictors are of high dimensions, most of the family-wise type I error controlling
procedures are usually too conservative and yield poor performance (Stein et al., 2010), and
oftentimes adjusted analysis considering multiple variables simultaneously is more
appropriate.

High dimensional responses also have natural group structures very often, for example,
pathway group structures for gene expression responses and brain functional regions for
fMRI intensity responses. For multivariate responses, Peng et al. (2010) adopted the mixed
L /L, penalty in an orthonormal setting for identifying hub covariates in a gene regulation
network; Obozinski et al. (2011) and Bunea et al. (2011) studied joint support union and
joint rank selections; Lounici et al. (2011) proved oracle inequalities for multitask learning.
Despite all the efforts, little focus, to our knowledge, has been put on the cases where the
responses also have a group structure, whereas such cases are commonly encountered in
biological studies. A possible strategy for multivariate-response analysis is to perform
covariate selection for one response variable at a time. In such analysis the predictor group
structure can be considered but the response group structure is overlooked.

Biometrics. Author manuscript; available in PMC 2015 June 24.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Lietal.

Page 3

In this article, we propose a regularization method for making a good use of the intrinsic
biological group structures on both covariates and responses to facilitate a better variable
selection on multivariate-response and multiple-predictor data by effectively removing
unimportant blocks of regression coefficients. Both the predictor and response group
structures, or in general, the block structure of the regression coefficient matrix, are assumed
known. Information of many biologically confirmed group structures can be achieved from
publicly available repositories, for example, RefSeq gene files from NCBI Reference
Sequence Database (http://www.ncbi.nlm.nih.gov/refseq/), KEGG pathway maps from
Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/), and Brodmann
brain anatomic region atlas from https://surfer.nmr.mgh.harvard.edu/fswiki/
BrodmannAreaMaps. The proposed method can handle cases where the number of variables
in either responses or predictors is much greater than the sample size, and complex group
structures such as overlapping groups where a variable belongs to multiple groups. The
estimators enjoy finite sample oracle bounds for the prediction error, the estimation error,
and the estimated sparsity of the regression coefficient matrix. Extensive simulations show
that the proposed method outperforms competitive regularization methods. We applied the
proposed method to a yeast gene expression quantitative loci (eQTL) study, where the
numbers of gene expression responses and genetic marker predictors are both much larger
than the sample size. The gene expressions are grouped into biological pathways and the
genetic markers are grouped into genes. We demonstrate by considering both group
structures that the proposed method generates a much more interpretable and predictive
eQTL network between the gene expressions and genetic markers, comparing with several
other commonly used regularized approaches.

2 Multivariate linear model with arbitrary grouping

We consider the multivariate linear model

Y=XB+W.

where Y = (yy, -, Yg) € R™is the response matrix of n samples and q variables, X =
(X1,"+*, Xp) € R™P is the covariate matrix of n samples and p variables, B = (Bjpxq € RP*?
is the coefficient matrix and W = (wy,*-, Wg) € R™%is the matrix of error terms with each

Wi ~ N(O, a'g I,.,). kK=1,--,0. Assume Y and X are centered so that there is no intercept in
B. We adopt the notational convention that the column vectors of X are indexed by j, the
column vectors of Y and W are indexed by K, and the samples are indexed by i.

Assume B contains G groups, and each group, denoted as Bg where g € {1,---, G}, is a
subset of two or more elements in B. We denote the group structure by ¥ = {By,-:-, Bg}. We
use B or By to denote either the set of all their elements or the numerical values of all their
elements, depending on the context, which should not cause any confusion. Figure 1
illustrates a few examples of group structures, where each highlighted block indicates an
important group in ¢ and each figure may represent several different group structures. Note
that the group structures considered in this article are pre-defined by biological functions,
such as gene or pathways. Also note that the union of all groups in & does not need to
contain all the elements of B, in other words, some Bjk may not belong to any group. We say
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By, is nested in By, if Bg; C Bg,; By, and By, are overlapping if Bg; N By, is not empty.
Obviously, nested groups are a special case of overlapping. A group structure with
overlapping groups is common in biological studies. For example, when grouping genetic
variants according to genes or pathways, different genes or pathways can overlap.

Though the proposed method works for an arbitrary group structure & on B, in real
applications, a biologically meaningful group structure on B is usually introduced from the
group structures of both predictors and responses. Specifically, suppose X has m; column
groups and Y has mp column groups, then they yield m; xmy intersection block groups on B.
We denote this intersection block group structure by @xy, the row block group structure only
determined by the predictor groups by @y, and the nested group structure containing all
groups in Tyy and Yx by Ixy U Dx. In the eQTL association study, a nonzero group in Yxy
indicates that the corresponding gene group has SNPs associated with expressions in the
corresponding pathway group. A nonzero group in % indicates that the corresponding gene
group has an effect on some or all of the expressions.

G
For an arbitrary group structure 7 with G groups, let Z o=1 1Byll; be the total sum of L,

norms of ever in 4, wh ||Bg||3=z . jJQ‘* Th L d

y group in ¥, where #eng o The group Ly norm reduces to the
Frobenius norm [|All, = {tr(ATA)}1/2 for a matrix group A and to the vector L, norm ||alj, =
{aTa}1’2 for a vector group a. Proofs of theoretical results in the following sections are
provided in the web-based Supplementary Materials.

3 The regularization method and its properties

3.1 The multivariate sparse group lasso

For an arbitrary group structure % on B, to simplify the notation, we denote {g: By € ¥} by
{g € ¥} as long as it does not cause any confusion. Forj=1,...,pand k=1, ..., g, let Xjk >
0 be the adaptive lasso tuning parameter for Bjk, with Ajk = 0 if Bji is not penalized. Let Ag >
0 be the adaptive tuning parameter for group By € %, with Ag = 0 if group By is not
penalized. We consider the following penalized optimization problem for a general
regularized multivariate multiple linear regression:

1 ) (
arg Imn%” Y - XB |§+ Z k| f ijZ)\gHBgHE: @
B 1<j<p.l<k<g ged

where the L, penalty term aims to shrink unimportant groups to zero and the L penalty term
aims to shrink unimportant entries within an important group to zero. We call it the
multivariate sparse group lasso (MSGLasso). We exclude the trivial case that Ag = 0 for all g
€ % and Ajk = 0 for all j, k. To better understand the solution to (2), we develop the following
theorem for Bjk when all other elements in B are fixed.

Theorem 3.1—For an arbitrary group structure % on B, let B be the solution to (2) and Bjk
beits jk-th element. If for some group Bgy € ¥ with a tuning parameter g,
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D DR LR VA HE-R N
\f {jk:8,1.€ Byo}

then BJAk = 0 for every Bjk € Bgo. Otherwise, Bjx satisfies

. sgn(Sir) (|Sjk] — nAze) |

ik 2 y = :
LT S TR

“

whereSjkszT( Y - Xé’q_j))_k with B(:j) being the j-th row of B Feplaced by zeros, the
subscript -k refersto the k-th column of a matrix, and a, = aif a> 0 and 0 otherwise.

Note that Theorem 3.1 is a general solution form and applies to arbitrary group structures. If
there is no group structure assigned on B, then 4 becomes an empty set and (4) reduces to
the lasso solution; If Ajk = O for all j, k, then (4) and (3) provide the group lasso solution. It is
of interest to consider certain special group structures that are intuitive and commonly used
in many applications. Specifically, we consider model (2) with the following four group
structures: (I) ¥ = &, no group structure assigned on B; (II) Fx; (II1) Yxy; AV) Ixy U 9.
The corresponding optimization problems become

1 .
arg min—||¥Y - XB |§+)\|B|l: 5)
B 2n

1 .
arg mm2—|| Y-XB |§+)\|B|1+A1 w;;2||By]_| 2 ()
B " ne

&

arg mm—HY XB |2+)\|B|1T)\2 Z u,l /2 By, |,
G2EG 5y

(7

1 2 142 /2
argBmmEH Y — XB|5+A|B|;+XA; Z: wy! | By, [l +A2 Z u;_} | By |- ®
g'[E':‘;fY 925‘:9’,\'3"
where [B[; = Yk [Bjil is the Lj norm of B, and wg; and wg, are some weights, in particular,
the group sizes. The tuning parameter Aji = ) for all lasso penalties, )\g:,\lu,'clifz if g € 9y,
and /\g—/\gu.‘ lf ge gxy

In the remaining of this article, we call (5) the Lasso model, (6) the Lasso+X model, (7) the
Lasso+ XY model, and (8) the Lasso+ X+ XY model.

Let BLA, BL;(, BLAXY and BLAxxy be the solutions to (5), (6), (7) and (8), respectively. Their
corresponding expressions from Theorem 3.1 further reduce to some interesting simpler
forms under the orthonormal design, in particular, B|_x and B|_xy are just further shrinkages
of B|_, and BLXXY is a further shrinkage of either BLX or Bny We are also interested in the
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group lasso cases where L = 0 in (6), (7) and (8), with their solutions denoted by BGAX’ BGAXY
and Bgyxys respectively. Then the main theorems in Yuan and Lin (2006) and Peng et al.
(2010) become special cases.

In the eQTL example that we will analyze later, method (5) does not take the advantage of
knowing the group structure. Method (6) only concerns the predictor group structure,
therefore can select important gene groups. However, it ignores which pathways those genes
are associated with. Method (7) considers both predictor and response group structures,
therefore can select gene-to-pathway association blocks. Method (8) pertains advantages of
both (6) and (7) and is more robust to misspecified group structures.

3.2 Oracle inequalities

The lasso method has been shown to achieve the oracle bounds for both prediction and
estimation in the multiple linear regression model, which are the error bounds one would
obtain if the true model were given, see for example, Bickel et al. (2009). Similar bounds
also hold for a total of pq regression coefficients in the multivariate multiple linear
regression model with a multivariate mixed L /L, penalty. For notational simplicity, we
consider the following special case of (2) with Ajx = A for all j, k:

1 :
arg Ir11112_—|| Y-XB |§_+)\|B|l—z/\g||Bg 2 )
B N €%

We follow the method of Bickel et al. (2009). Let J;(B) = {jKk: |Bj/ #0} be the index set of
nonzero elements in B, and J,(B) = {g € %, [|Bgll, #0} be the index set of nonzero groups in
9. Define M;(B) = 5Bk #0) = |3;(B)| and Ma(B) = Yye I((IBgll> #0) = |3(B)|. For any
matrix A € RP*9and any given index set J; C {jk: 1 <j <p, 1 <k =q}, denote Ay, the
projection of A on the index set Jj, that is the matrix with the same elements of A on
coordinates J; and zeros on the complementary coordinates .ji. Also for any group index set
J, C {1,---,|9]}, denote Ay, the set of projection of A on each of {Bg: g € J,}, that is Ay, =
{ABg :g € Jr}. Denote M(B) =r and M,(B) = s. We then impose a restricted eigenvalue
assumption for the multivariate linear regression model with a multivariate mixed L;/L,
penalty, which leads to the desirable oracle inequalities.

Assumption 3.2—Let J; C {jk: 1 <j <p, 1 <k =g} and J, C {1,--,|%]|} be any index sets
that satisfy [J;| <r and|J,| <s.Letp={pg: g€ ¥} beaset of positive numbers. Then for
any nontrivial matrix A € RP*4 that satisfies

AL 2D pellAg, I, < 318,142 ol A, Il

geEJS gedz

the following minimums exist and are positive:

min ”:X7A|2>U.HO(T’.S,,§): min XAl
.i';,.f—g:AiO-nlr"2||AJl||2 e

—m >0
D Bwn Z[A,

k1(r. s, p)=
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Theorem 3.3—Consider model (9). Let B* be the true coefficient matrix. Assume each
column of the error matrix, wi, follows a multivariate normal distribution N(0, oyl ), and all
the diagonal elements of the matrix XTX/n are equal to 1. Suppose M;(B*) = r and M,(B*)
=s. Let . bethe largest eigenvalue of XTX/n, 0 = max{oy, -, oql, A\g=pghforge %, p
=min{1, pg; g € ¥}, ¢ be the maximum number of duplicates of a coefficient in overlapping
groupsin¥, and

A=20A{log(pg)/n}"?
for some constant A > 212, Furthermore, assume Assumption 3.2 holds with 1| = (T, S, p)

and x, = 1(T, S, p). Then with probability at least 1 — (pq)“Az/z, we have the following
oracle bounds for the prediction error, the estimation error and the order of sparsity:

/2
l||X( — BY)|7 <1672 rt Z(Eyag;m;ﬁ}:})]'
7 Mz = K i

2

2

|B- B, <

T

o 1/2
32(c+2)0 A (log(:-qu)“? P12 (EQSJQ.B* )
1+p T ke

5 1/2 2
1/2 i
2 e (Zgg..'g(s*] ‘Oﬂ)

Jlfl(B) < 64:7-,-":-‘111ax T1+ ko

The mean square prediction error is bounded by a factor of order A2 ~ log(p)/n, the || norm

of the estimation error is bounded by a factor of ord \f]og{p 9)/™ and the estimated ord

y a factor of order , and the estimated order
of sparsity is bounded by a constant related to Assumption 3.2. These results are similar to
those in Bickel et al. (2009). Note that Theorem 3.3 will still hold for flexible Xjk in (2), as
long as Aji > 0 for all j, k.

4 The mixed coordinate descent algorithm

Based on Theorem 3.1, the zero groups can be determined according to (3) and the entries in
a nonzero group can be determined by solving for the fixed point solution of (4) using a
coordinate descent algorithm. The coordinate algorithm updates each coefficient coordinate
Bjk at a step while fixing all the other coefficients at their current values. Theoretically, the
coordinate descent algorithm would work if one can solve (4) for B]k exactly. Practically,
since Bjk also appears in the term }{gc%. BikeBgs |\Bg||2>0 Xg/||Bg||2 on the right hand side of
(4), unlike lasso, a closed form solution is usually not available and numerically solving for
BjAk requires iteratively updating (4), which can be time consuming. Here we propose a mixed
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. . . ~ slm—1)  ~(m] .
coordinate descent algorithm, which only updates Bjk once from 3&? ) to SET according to

(4) without iteratively solving (4). In particular, the algorithm updates Bjk by the following.

L. If any of the groups By € & containing fj satisfies (3), then the entire group is
estimated at zero. Otherwise Bjk will be updated according to one of the situations
ID-AV).

m—1)
If all the groups contammg Bjk satisfy ||Bi; (R || =0 at the current step, where

(rn— l,l .

B g—(jk) 18 B e With its jkth element replaced by zero, then Bjk is updated by

Lm— {m—1)
sen(Sj )| 1S5 =k ey, oy 0 T Ak
. (g€ F:i, By | B I,=0!
{m) g—Lik) +

5115

Notice that in this case, (4) becomes a closed form lasso solution.

Im.

I.
If all the groups containing i satisfy ||Bq (J;;) || >0 at the current step and Ajk = 0,

then ,3_?;17 R is updated by the group lasso formulation
{m—1)
,.;.(m)_ Sjk
Hik T 5 Alm—1), °
2yl +nd2 ooy, o/ 1Bg
locwayeBa B > -

Notice in this case, all the entries in By with [[Bg_j)ll> > O will enter as nonzero
entries, or in other words, the whole group By will be selected as an important

group.
IV. If some but not all groups containing Bj satisfy ||BgA_(j kll2 = 0 at the current step,
-1]

Af 1)
then .6’ belongs to a mixture of the lasso case (for groups with ||B qm(ﬂ:) || =0)
(m— lj

and the group lasso case (for groups with ||Bq (k) || >0), and it is updated as if by
a mixture of the lasso and the group lasso through

sgn S(m— |S(7” 1}'| ny’ Agr — ﬂ')\jk
) focw:eBg BTN —op
som)_ s +
i = 5 '\I'?]’?. 1] ’
LD ey oo /1Bl

|3U}

4,8y B
{ge¥: E"‘l,.,mz

Specifically, the algorithm is given in the following for a fixed set of values of all the tuning

parameters.

Sep 1. Standardize the data such that

Biometrics. Author manuscript; available in PMC 2015 June 24.
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T n "
Zyik:[}; ZI@:{]} Zrﬁszl; for allj € {1,--- ,ph.ke{l.--- .q}.
i=1 i=1

i=1

. . noog L
In our numerical examples, we also standardize Yy such that 2-5:1 #3=1 to minimize
the impact of different scales of variations across Yy on the regression coefficients for all

ke {1,--q}.

Sep 2. Set initial values for all BjAk and the iteration index m= 1. We use initial values
3’5? =0 in our numerical examples.

Step 3. For a given pair (j, K), fix By at ,3_;1:1” for all j #j or K #k. Then update
_.3_&-:171’ to 3‘%? by (I) to (IV) accordingly.

Sep 4. Repeat Step 3 for allj € {1,---, p} and k € {1,--+, q}, and iterate until ||B(F") -
B(M-1)|| reaches a prespecified precision level for some norm ||-||. We use infinity norm
in our numerical examples.

Convergence of different types of coordinate descent algorithms have been studied in the
literature. Tseng (2001) provided conditions for convergence of cyclic coordinate descent
algorithm with general separable objective functions. Wu and Lange (2008) proved the
convergence of greedy coordinate descent algorithm with a L; loss and the lasso penalty.
Based on Wu and Lange (2008), we show the convergence of our mixed coordinate descent
algorithm which is given in the following proposition. Details are provided in the
supplemental materials, where we also illustrate that the speed of convergence of our mixed
coordinate descent algorithm is much faster than the coordinate descent algorithm that
solves the fixed point solution to (4) with inner iterations.

Proposition 4.1

A sequence of coordinate estimates iteratively updated by the mixed coor- dinate descent
algorithm converge to a global minimizer of the objective function.

We implemented the MSGLasso and the mixed coordinate descent algorithm with C/C++
language and wrapped into an R package. It is available on the web-based Supplementary
Materials and will soon be upload to CRAN repository.

5 Numerical studies

5.1 Simulations

In this section, we first investigate the numerical performances of Lasso, Lasso+ X, Lasso

+ XY, Lasso+ X+ XY methods and their group lasso counterparts when the true coefficient
matrix B* takes a group structure of either Gy, ¥xy or xy U Tx. We also compare the
proposed MSGLasso method with lasso and group lasso for an overlapping group structure.

Biometrics. Author manuscript; available in PMC 2015 June 24.
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All the true group structures considered in our simulations are given in Fig.1(a)-1(d). For
each group structure, we consider two scenarios: (i) “all-in-all-out”, where all the
coefficients in an important group are important, and (ii) “not-all-in-all-out”, where only a
subset of coefficients in an important group are important. Specifically, we generate B* by

setting 3}, =01if it is from an unimportant group, and drawing its value from a uniform
distribution on [-5,—1] U [1, 5] and fixing it for the simulations if it is from an important
group. The sparsity of an important group in the “not all in all out” setting is randomly set
between 1/4 and 1/6.

Each B* is of dimension 200 x 200. For a nonoverlapping group structure, each X row
group is of dimension 20 x 200; each XY block group is of dimension 20 x 20. For the
overlapping group structure, the groups start on coordinates (1, 21, 41, 61, 101, 121, 141,
181) and end on coordinates (20, 40, 70, 100, 120, 150, 180, 200), for both X and Y
variables.

Covariates Xg, i =1,--+, n, are generated from a multivariate normal distribution Np(O, %),
where Xy = diag(XZq;, -, Xg,) is block diagonal and each block corresponds to each group
of X which has the first order autoregressive structure. Specifically, Zg; (j, K) = p|j‘k| for any
j» K pair from the same group, i = 1,---, 10. The error terms Wiy are generated from a normal
distribution N(0, 62), where 02 is to yield a signal to noise ratio of 2. Finally, the responses
are generated from Y = XB* +W.

The optimal values of tuning parameters may be selected by different criteria. Since the
degrees of freedom are difficult to determine for a penalty with multiple tuning parameters,
we search for the optimal tuning parameter values using a 5-fold cross-validation over a
wide range of candidate values. The searching process starts with the largest candidate
tuning parameter values with each by itself shrinking all the coefficients to zero. The
converged estimates B obtained from the previous searching step are used as the initial
values for B in the next searching step with a new set of tuning parameter values. We find it
is very effective in reducing the computational cost.

For each simulation setup, we run a hundred replications and calculate the averages of the
following quantities:

false positives=|{ijpairs:3,; # 0and3;;=0}|.

false negatives=|{¢ jpairs:_ﬁij=0and,5’.f_‘?- # 0},

|{ijpairs:3;; # Oand3}; # 0}
[{ijpairs:3}; # O}

sensitivity=

Biometrics. Author manuscript; available in PMC 2015 June 24.
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[{ijpairs:3;;=0and3;;=0}
{ijpairs:3f;=0}|

specificity=

o2
prediction error=|| ¥ies — Xtest B,

where || is the number of elements in a set and (Yieg, Xiest) is an independently generated
testing set of 100 samples.

Figure 2 summarizes these quantities for simulation setups with “not all in and all out” for
all the group structures in Fig.1 at p=q =200, n= 150, and p = 0.5. The proposed method
using Lasso+ X+ XY for the nonoverlapping group structures %y, Yxy and Txy UZx as well as
for the overlapping group structure are highlighted in black. The methods for the correctly
specified group structures are highlighted in grey except in Fig.2(c) and Fig.2(d), where the
implemented group structures are by themselves the correctly specified group structures.
From Fig.2 we see that correctly incorporating group structure improves both variable
selection and prediction, and our proposed method Lasso+ X+ XY, or the MSGLasso,
performs at least the same as, if not better than, the methods for the correct group structures
and yields the lowest prediction errors.

Figure 3 illustrates fitted results for a data set randomly chosen from one hundred
replications, where B* has a “not all in all out” either ¥xy U ¥x or overlapping group
structure with p =200, g =200 and p = 0.5. It clearly shows that the MSGLasso results for
correctly specified group structure, both in Fig.3(e) and in Fig.3(k), yield the most desirable
estimates. Methods without lasso penalty yield too many false positives inside the important
groups for the “not all in all out” case even when the groups are correctly specified, while
methods with lasso penalty but incorrectly specified groups yield too many false positives
outside the important groups.

5.2 Yeast eQTL data analysis

In this section, we demonstrate our method by analyzing a yeast eQTL data set generated by
Brem and Kruglyak (2005), see also Yin and Li (2011), where gene expressions are grouped
into, possibly overlapping, pathways and the genetic markers are grouped into genes.

The data set contains 6216 yeast genes assayed for 112 individual segregant. Genotypes of
these 112 segregant at 2956 marker positions were also collected using GeneChip Yeast
Genome S98 microarrays. The 6216 expressed genes are grouped by Kyoto Encyclopedia of
Genes and Genomes pathways and the 2956 markers are grouped by genes, taking isoform
genes as the same gene. To illustrate the method, in the reported analysis we only include
genes from the following four pathways: the mitogen-activated protein kinases (MAPK)
pathway containing 54 genes, the cell cycle pathway containing 116 genes, the cancer
pathway containing 20 genes and the ribosome pathway containing 137 genes. There are in
total 315 distinct expressed genes in these pathways, with 5 genes overlapping between
MAPK and cell cycle, 5 genes overlapping between MAPK and cancer, 3 genes overlapping
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between cell cycle and cancer, and 1 gene overlapping between MAPK, cell cycle and
cancer. Ribosome does not contain overlapping genes with the other three pathways.

We follow a similar procedure of Yin and Li (2011) for prescreening genotype markers by
performing univariate linear regressions across all the 315 gene expressions and 2956
markers, and include the 395 markers with p-value of 0.01 or smaller into the final analysis.
These 395 markers are embedded in 45 distinct genes.

Since some marker within a gene is associated with some gene expression in a pathway does
not necessarily imply the gene must be associated with all four pathways, we exclude the ¥y
group structure and only apply an overlapping ¥xy group structure in the data analysis. We
cross-validate the performance of the multivariate sparse group lasso, the multivariate lasso,
the multivariate group lasso and the univariate lasso. In particular, we randomly divide the
112 samples into five approximately equal sized subsets, set one subset aside as the test set,
and use the remaining four subsets as the training set. Then for each model, we run 5-fold
cross-validation on the training set to estimate the coefficient matrix, and use the estimated
model to compute the prediction error on the test set. We repeat the above procedures until
each of the five subsets has been used as the test set once. The overall cross-validated
prediction errors, the sum of squares, are reported in Table 1. The univariate lasso is
conducted by first selecting variables on the training set using 315 separate lasso
regressions, each for a single gene expression variable, and then implementing multivariate
linear regression on only the selected set of covariates to obtain B. Our proposed method has
the best performance. The univariate lasso gives the highest prediction error, this is expected
as the relations among responses are totaly overlooked. And this leads to high variability and
over-fitting (Peng et al., 2010). The proposed method shows roughly a 10% decrease of the
cross-validated prediction error over the multivariate lasso method, the second best approach
among all four compared methods.

We then apply the multivariate sparse group lasso to the entire data set with 315 gene
expressions and 395 markers. The final tuning parameters are A = 7 x 1072 and A = 2 x
10~* determined by a 5-fold cross-validation. We also investigate the selection stability
following Meinshausen and Bithlmann (2010) by calculating the selection frequencies of the
top selected associations using one hundred bootstrap datasets. The top associations in terms
of size, with selection frequency no less than 95%, are given in Table 2. The p-values in the
last column are obtained from marginal simple linear regressions. Overall there are 1422
nonzero elements in the estimated coefficient matrix, which gives an overall estimated
sparsity of about 1%. There are 235 markers with nonzero coefficients related to genes in
the MAPK pathway, 135 markers related to genes in the cell cycle pathway, 65 markers
related to genes in the cancer pathway, and 65 markers related to genes in the ribosome
pathway. Among those, 34 markers are related to genes in the overlap of MAPK and cell
cycle pathways, 23 markers are related to genes in the overlap of MAPK and cancer
pathways, and 5 markers is related to a gene in the overlap of MAPK, cell cycle and cancer
pathways.

Table 3 lists the top pathway-gene groupwise associations in terms of the group L, norms
with a 100% group-wise selection frequency. Out of 180 block groups, 89 groups contain

Biometrics. Author manuscript; available in PMC 2015 June 24.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Lietal.

Page 13

nonzero coefficients. Several top selected genes have been reported in the literature. For
example, one of the isoforms of YCR gene, YCR073C/SK?22 is MAPK cascade involved in
osmosensory signaling pathway. Gene groups YJL and YGR in the Scr homology 3 domains
are interacting with gene Pbs2 in one of the three kinase components in the MAPK pathway
(Zarrinpar et al., 2003). The top association signals detected between the gene expressions in
the joint of MAPK, cell cycle and cansor pathways and markers in NHR gene group also
confirm the regulation effects of NHR genes on cell cycle pathway and other
autophagyrelated genes (Nicole, 2011).

It worth noting that none of the association p-values from marginal simple linear regressions
between gene YJL and pathway MAPK survives the Bonferroni correction for multiple
comparisons. For example, the 14th signal in Table 2 has a univariate marginal p-value of
0.044, therefore it is unlikely to be picked up by the pairwise analysis. However, the
MSGLasso successfully selected this signal in an adjusted analysis with high individual and
group selection frequencies, see Tables 2 and 3. This finding is supported by Zarrinpar et al.
(2003). It demonstrates that besides the advantage of dimension reduction, the MSGLasso
can also pick out important signals that would be missed by the pairwise method.

The stability selection results show that the first 40 selected top signals do not contain zero
within their 2.5%-97.5% bootstrap percentile band, and the bootstrap Q1-Q3 band of the
top 100 selected signals do not contain zero, indicating that the top selected signals using
proposed method have high selection frequencies from bootstrap samples.

6 Discussion

For a predetermined group structure, the MSGLasso effectively and efficiently selects the
important groups and important individual signals within those groups. There is some
interest in recent literature in learning the group structure and selecting the important
variables simultaneously. For example, Yin and Li (2011) proposed a conditional Guassian
graphical model to select nonzero entries in the precision matrix conditional on
simultaneously selected predictors. It is of interest to select important predictors via the
MSGlasso based on a data driven group structure, where the selection of group structure is a
topic for future research.

The L1/L2 penalty in the MSGLasso ensures that the objective function is a convex function
with respect to B. The convexity is essential for the proposed mixed coordinate descent
algorithm. Replacing the L1 penalty by the SCAD penalty (Fan and Li, 2001) would be of
interest, but the respective optimization is non-convex, thus not guaranteed to converge to
the global minimum. More research along this line is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(d)

Figure 1.

B* group structures. Important groups are shaded. (a) X group structure, (b) XY group

structure, (c) X+XY group structure (nesting group structure) and (d) overlapping group

structure.
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(a)

Figure 3.
Heatmaps of coefficient matrices, selection effects. (a)—(h): “Not all in all out” X+ XY

nonoverlappmg group structure with n= 100, p= 200, q= 200, and p = 0.5. (a) B*; (b) B|_,
() BL: (d) By : () By : () Box: () Boxy : (h) Baxxy: ()~(1): “Not all in all out”
overlapping group structure with n = 100, p = 200, q = 200, and p = 0.5. (i) B*; (j) B|_; &)
BsaL: (D) Be.
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Table 1

Comparison of prediction errors between different methods

Method MSG lasso Mlasso MG lasso  lasso

Prediction error 3094.5 3396.8 3557.4 3683.3

MSG lasso = multivariate sparse group lasso, M lasso = multivariate lasso, MG lasso = multivariate group lasso, lasso = univariate lassos.
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