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Abstract

Multivariate geostatistics is based on modelling all covariances between all possible com-

binations of two or more variables at any sets of locations in a continuously indexed domain.

Multivariate spatial covariance models need to be built with care, since any covariance matrix

that is derived from such a model must be nonnegative-definite. In this article, we develop a

conditional approach for spatial-model construction whose validity conditions are easy to check.

We start with bivariate spatial covariance models and go on to demonstrate the approach’s con-

nection to multivariate models defined by networks of spatial variables. In some circumstances,

such as modelling respiratory illness conditional on air pollution, the direction of conditional

dependence is clear. When it is not, the two directional models can be compared. More gen-

erally, the graph structure of the network reduces the number of possible models to compare.

Model selection then amounts to finding possible causative links in the network. We demon-

strate our conditional approach on surface temperature and pressure data, where the role of the

two variables is seen to be asymmetric.

1 Introduction

The conditional approach to building multivariate spatial covariance models was introduced by Royle

et al. (1999). In that article, pressure and wind fields are modelled as a bivariate process over a

region of the globe, with the wind process conditioned on the pressure process through a physically-

motivated stochastic partial differential equation. In general, such models exhibit asymmetry; that

is, for Y1(·) and Y2(·) defined on d-dimensional Euclidean space R
d,

cov{Y1(s), Y2(u)} 6= cov{Y2(s), Y1(u)}, s, u ∈ R
d.

Of course, it is always true that cov{Y1(s), Y2(u)} = cov{Y2(u), Y1(s)}.

There are commonly-used classes of multivariate spatial models that assume symmetric, sta-

tionary dependence in the cross-covariances; that is, they assume C12(h) ≡ cov{Y1(s), Y2(s+ h)} =

cov{Y2(s), Y1(s+ h)} ≡ C21(h), for h ∈ R
d (e.g., Gelfand et al., 2004; Cressie & Wikle, 2011, Section

4.1.5; Genton & Kleiber, 2015). The most notable of these symmetric-cross-covariance models is

the linear model of coregionalization; see, for example, Journel & Huijbregts (1978, Section III.B.3),
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Webster et al. (1994), Wackernagel (1995), and Banerjee et al. (2015, Section 9.5). While symmetry

may reduce the number of parameters or allow fast computations, it may not be supported by the

underlying science or by the data.

Ver Hoef & Cressie (1993) avoid making symmetry restrictions by working with variance-based

cross-variograms and propose a spatial shift parameter to express asymmetry. Genton & Kleiber

(2015) review other approaches that capture asymmetry and include those of Apanasovich & Genton

(2010) and Li & Zhang (2011); see also Christensen & Amemiya (2001). In multivariate spatial-

lattice modelling, Sain & Cressie (2007), Sain et al. (2011), and Martinez-Beneito (2013) specifically

include asymmetry in their models.

A key outcome of multivariate geostatistics is optimal spatial prediction of a hidden multivari-

ate spatial process, Y (·) = {Y1(·), . . . , Yp(·)}
T

, based on multivariate noisy spatial observations,

{Zq(sqi) : i = 1, . . . ,mq, q = 1, . . . , p}, of the hidden processes {Yq(·) : q = 1, . . . , p}. Assuming

additive measurement error, εq(·), we have data Zq(·) = Yq(·) + εq(·) at the mq data locations,

DO
q ≡ {sqi : i = 1, . . . ,mq}, for q = 1, . . . , p. Notice that we have not assumed colocated data for

the different spatial variables. Optimally predicting just one of the processes, say Y1(·), using the

multivariate data {Zq(sqi)}, is often called cokriging.

Contributions to multivariate-spatial-prediction methodology include those of Myers (1982, 1992),

Ver Hoef & Cressie (1993), Wackernagel (1995), Cressie & Wikle (1998), Royle & Berliner (1999),

Gelfand et al. (2004), Majumdar & Gelfand (2007), Finley et al. (2008), Huang et al. (2009), Cressie

& Wikle (2011, Section 4.1.5), Furrer & Genton (2011), Heaton & Gelfand (2011), and Banerjee

et al. (2015, Chapter 7).

Genton & Kleiber (2015) give a comprehensive review of many different ways that valid mul-

tivariate covariances can be constructed, with a brief mention of the conditional approach. For

spatial-lattice data, Kim et al. (2001) and Jin et al. (2005) use a conditional approach to modelling

multivariate spatial dependence. For regularly or irregularly gridded spatial processes, Cressie &

Wikle (2011, p. 234) clarify the discussion of the conditional approach given in Gelfand et al. (2004).

For geostatistical data, Heaton & Gelfand (2011) build a multivariate model for predicting Z2 from

Z1 by conditioning on Z1 and a kernel-smoothed Z̃1. In this article, we show that Royle et al. (1999)

and Heaton & Gelfand (2011) describe specific cases of a large class of multivariate models whose

existence we establish.

2 Modelling joint dependence through conditioning

In this section, we introduce the conditional approach by considering the bivariate case. Here,

{(Y1(s), Y2(s)) : s ∈ D ⊂ R
d} are two co-varying spatial processes in a continuous-spatially-indexed

domain D of positive volume contained in d-dimensional Euclidean space Rd; the multivariate case is

considered in Section 4. As was seen in Section 1, it is sometimes convenient to write the individual

processes as Y1(·) and Y2(·), respectively. Then the joint probability measure of Y1(·) and Y2(·) can

be written as,

[Y1(·), Y2(·)] = [Y2(·) | Y1(·)][Y1(·)], (1)

where we use the convention that [A | B] represents the conditional probability of A given B, and

[B] represents the marginal probability of B. The conditional probability in (1) is shorthand for

[{Y2(s) : s ∈ D}|{Y1(v) : v ∈ D}], which we see in Section 3 is defined through the finite-dimensional

distributions. In this article, we are particularly interested in the conditional distributional properties

of Y2(s) and of {Y2(s), Y2(u)}, given {Y1(v) : v ∈ D}.

The order of the variables is a choice, but it is generally driven by the underlying science; for

example, Y1(·) might be ambient ozone in a city and Y2(·) might represent the spatial intensity
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or density of respiratory illness in the city; or Y1(·) might be a temperature field and Y2(·) might

be a rainfall field, where Y2(·) depends to some extent on Y1(·) through evapo-transpiration and

the Penman–Monteith equation (e.g., Beven, 1979). When the order is not obvious, both models

can be fitted and the best one selected, indicating discovery of a possible causative link. For the

multivariate case in Section 4, it is enough to have a partial order on the variables or, equivalently,

a directed acyclic graph (Cressie & Davidson, 1998).

Assume that E{Y1(·)} ≡ 0 ≡ E{Y2(·)}; we relax this in Section 3. Consider the following model

for the first two conditional moments of [{Y2(s) : s ∈ D} | Y1(·)]:

E{Y2(s) | Y1(·)} =

∫

D

b(s, v)Y1(v) dv, s ∈ D, (2)

cov{Y2(s), Y2(u) | Y1(·)} = C2|1(s, u), s, u ∈ D, (3)

where b(·, ·) is any integrable function that maps from R
d × R

d into R, and C2|1(·, ·) is a univariate

covariance function that does not depend functionally on Y1(·). In (2), b(·, ·) may be obtained from

scientific understanding of how Y2(·) evolves from {Y1(v) : v ∈ D}. Hence, we call b an interaction

function, and it has an important role in scientific modelling of positive or negative dependence of

Y2 on Y1. Recall from Section 1 that Yq is observed with measurement error, resulting in Zq, for

q = 1, 2. Unlike in Royle et al. (1999) and Heaton & Gelfand (2011), the focus of (2) and (3) is on

the latent processes Y1 and Y2, rather than on Z1 and Z2. Important special cases of (2) include

b(s, v) proportional to a kernel smoothing function and b(s, v) proportional to a Dirac delta function,

which describes pointwise dependence.

Critically, the conditional covariance function C2|1 in (2) is necessarily a nonnegative-definite

function, and there are many classes of such functions available (e.g., Christakos, 1984; Cressie, 1993,

Section 2.5; Banerjee et al., 2004, Section 2.2). Finally, suppose that Y1(·) has a valid univariate

covariance function C11(·, ·), which is also necessarily nonnegative-definite. Thus, the conditional

approach requires only specification of an integrable interaction function and two valid univariate

spatial covariance functions, C2|1 and C11, leading to rich classes of cross-covariance functions.

Section 3.3 gives one such class.

Define Cqr(s, u) ≡ cov{Yq(s), Yr(u)}, for q, r = 1, 2 and s, u ∈ D. From the two univariate spatial

covariance models, C2|1 and C11, we have:

C22(s, u) ≡ cov{Y2(s), Y2(u)}

= cov[E{Y2(s) | Y1(·)}, E{Y2(u) | Y1(·)}] + E[cov{Y2(s), Y2(u) | Y1(·)}]

=

∫

D

∫

D

b(s, v)C11(v, w)b(u,w) dvdw + C2|1(s, u), s, u ∈ D. (4)

When u = s in (4), one can see that var{Z2(s)} can be expressed as a decomposition of spatial

variation due to its regression on Y1(·) plus the remaining variation, C2|1(s, s), unexplained by Y2’s

dependence on Y1. In general, (4) shows a decomposition of spatial covariation into an explanatory

component and a descriptive component.

Importantly, the formulas for the cross-covariances are straightforward:

C12(s, u) = cov[Y1(s), E{Y2(u) | Y1(·)}] =

∫

D

C11(s, w)b(u,w) dw, s, u ∈ D, (5)

which has only an explanatory component. The other cross-covariance is obtained from

C21(s, u) = C12(u, s), s, u ∈ D. (6)
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Finally, recall that

C11(s, u) = cov{Y1(s), Y1(u)}, s, u ∈ D, (7)

is a given nonnegative-definite function, and this is descriptive only of spatial covariation in Y1.

Then (4)–(7) specifies all covariances {Cqr(·, ·)}, and any covariance matrix obtained from them

will be nonnegative-definite; see Section 3. From (5), C12(u, s) =
∫
D
C11(u,w)b(s, w)dw 6= C12(s, u),

in general, because b(·, ·) may be asymmetric. That is, the conditional approach captures asymmetry

naturally through the interaction function.

3 Bivariate stochastic processes based on conditioning

3.1 Existence of a bivariate stochastic process

Let [{Y 0
1 (s), Y

0
2 (s)} : s ∈ R

d] be a bivariate Gaussian process with mean 0, covariance functions

C0
11(·, ·), C

0
22(·, ·), and cross-covariance functions C0

12(·, ·), C
0
21(·, ·). Then for any pair of nonnegative

integers n1, n2 such that n1 + n2 > 0; for any locations {s1k : k = 1, . . . , n1}, {s2l : l = 1, . . . , n2},

and for any real numbers {a1k : k = 1, . . . , n1}, {a2l : l = 1, . . . , n2},

var

{
n1∑

k=1

a1kY
0
1 (s1k) +

n2∑

l=1

a2lY
0
2 (s2l)

}

=

n1∑

k=1

n1∑

k′=1

a1ka1k′C0
11(s1k, s1k′) +

n2∑

l=1

n2∑

l′=1

a2la2l′C
0
22(s2l, s2l′)

+

n1∑

k=1

n2∑

l′=1

a1ka2l′C
0
12(s1k, s2l′) +

n2∑

l=1

n1∑

k′=1

a2la1k′C0
21(s2l, s1k′) ≥ 0. (8)

Conversely, suppose that the set of functions, {Cqr(·, ·) : q, r = 1, 2}, has the property that

C12(s, u) = C21(u, s), for all s, u ∈ R
d, and that (8) holds. Then there exists a bivariate Gaussian

process {(Y1(s), Y2(s)) : s ∈ R
d} such that

cov{Yq(s), Yr(u)} = Cqr(s, u), s, u ∈ R
d; q, r = 1, 2.

The proof of this result relies on establishing the Kolomogorov consistency conditions (e.g., Billings-

ley, 1995, pp. 482–484) for the finite-dimensional distributions of

{Y1(s11), . . . , Y1(s1n1
), Y2(s21), . . . , Y2(s2n2

)}.

They are specified to be Gaussian with second-order moments defined by (4)–(7). The consistency

conditions are: the finite-dimensional distributions are consistent over marginalization; and permu-

tation of the variables’ indices does not change the probabilities of events, which we now establish.

Consider {Cqr(·, ·)} defined by (4)–(7). Because the finite-dimensional distributions are Gaussian,

permutation-invariance is guaranteed by (6), an expression for covariances. The right-hand side of

(4) consists of C2|1(·, ·), which is nonnegative-definite, added to a quadratic term that is guaranteed

to be nonnegative-definite, since C11(·, ·) in (7) is nonnegative-definite. Hence, C22(·, ·), which is the

sum of these two terms, is nonnegative-definite. Thus, marginally, Y2(·) has a nonnegative-definite

covariance function, but this is not enough. It remains to establish (8). Substitute (4) and (5) into

the left-hand side of (8) to obtain

n2∑

l=1

n2∑

l′=1

a2la2l′C2|1(s2l, s2l′) +

∫

D

∫

D

a(s)a(u)C11(s, u) dsdu, (9)
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where for δ(·) the Dirac delta function,

a(s) ≡

n1∑

k=1

a1kδ(s− s1k) +

n2∑

l=1

a2lb(s2l, s), s ∈ R
d.

Since C2|1 and C11 are nonnegative-definite, (9) is nonnegative, resulting in (8).

Only nonnegative-definite functions for univariate processes are needed in the conditional ap-

proach. Further, the finite-dimensional distribution,

[{Y1(s1k), Y2(s2l) : k = 1, . . . , n1; l = 1, . . . , n2}]

= [{Y2(s2l) : l = 1, . . . , n2} | {Y1(s1k) : k = 1, . . . , n1}][{Y1(s1k) : k = 1, . . . , n1}],

depends critically on the finite collection of interaction functions, {b(s2l, ·) : l = 1, . . . , n2}. The only

condition we place on b(·, ·) is that it is a real-valued integrable function.

The existence proof given above shows that there is at least one process with covariance func-

tions given by (4)–(7). However, the modeller is not restricted to fitting bivariate Gaussian pro-

cesses. Zammit-Mangion et al. (2015a) fit a non-Gaussian model constructively through (2).

In practice, geostatistical software will discretize the continuous spatial domain D onto a fine-

resolution finite grid defined by the spatial lattice, DL ≡ {s1, . . . , sn}, which represents the centroids

of the grid cells. That is, Yq(·) is replaced with the vector Yq ≡ {Yq(s1), . . . , Yq(sn)}
T

, q = 1, 2.

Under this discretization, (4)–(7) become, respectively,

cov(Y2) =Σ2|1 +BΣ11B
T, (10)

cov(Y1, Y2) =Σ11B
T, (11)

cov(Y2, Y1) =BΣ11, (12)

cov(Y1) =Σ11, (13)

which were given by Cressie & Wikle (2011, p. 160) and were used by Jin et al. (2005) for modelling

bivariate spatial-lattice data. In (10)–(13), Σ2|1 and Σ11 are nonnegative-definite n × n covariance

matrices obtained from {C2|1(sk, sl) : k, l = 1, . . . , n} and {C11(sk, sl) : k, l = 1, . . . , n}, respectively,

and B is the square n × n matrix obtained from {b(sk, sl) : k, l = 1, . . . , n}. Hence, the following

2n× 2n joint covariance matrix is nonnegative-definite:

cov{(Y T

1 , Y T

2 )T} =

[
Σ11 Σ11B

T

BΣ11 Σ2|1 +BΣ11B
T

]
. (14)

Banerjee et al. (2015, p. 273) state that it is meaningless to talk about the joint distribution of

Y2(s1) | Y1(s1) and Y2(s2) | Y1(s2) as building blocks for the conditional approach, with which we

agree. They also go on to say that this “reveals the impossibility of conditioning,” with which we

disagree. We have shown in this section that the conditional approach yields a well-defined bivariate

Gaussian process {Y1(·), Y2(·)}, since conditioning is on the whole process Y1(·). This implies a

well-defined joint distribution of the random vectors Y1 and Y2, obtained from discretization, whose

joint distribution is given by [Y1, Y2] = [Y2 | Y1][Y1], where [Y2 | Y1] is a N(BY1,Σ2|1) density, and

[Y1] is a N(0,Σ11) density. This relation is deceptively simple, but the existence proof above shows

how such relations are founded in the joint probability measure of Y1(·) and Y2(·).

The conditional density [Y2 | Y1] is derived from a linear regression of Y2 on Y1, not on the ob-

served variable Z1. The errors-in-variable model (Berkson, 1950; Heaton & Gelfand, 2011) considers

a regression of noisy observations Z2 on noisy observations Z1, which is different from the approach
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we take. For our conditional approach, the conditioning is on the whole vector Y1, but any marginal

or conditional finite-dimensional distribution can be easily derived. For example, [Y2(s1) | Y1(s1)]

can be obtained from [Y1(s1), Y2(s1)]/[Y1(s1)], as follows. The numerator is

[Y1(s1), Y2(s1)] =

∫

R

· · ·

∫

R

[Y2(s1) | Y1][Y1]dY1(s2) . . . dY1(sn),

which from (14) is Gaussian with mean 0 and 2× 2 covariance matrix,

[
C11(s1, s1)

∑n
k=1 C11(s1, sk)b1k∑n

k=1 C11(s1, sk)b1k C2|1(s1, s1) +
∑n

k=1

∑n
l=1 b1kC11(sk, sl)b1l

]
,

where bik is the (i, k)th element of B in (10)–(12), and the denominator is N(0, C11(s1, s1)).

We have seen above that it is not just one or a few finite-dimensional distributions that define

the conditional approach, it is all of them. Banerjee et al. (2015, p. 273) state that the conditional

approach is flawed and that kriging is not possible. In Section 3.2, we give a simple, one-dimensional

example of the conditional approach defined by (4)–(7) with kriging and cokriging equations for

predicting {Y1(s0) : s0 ∈ DL} from noisy incomplete data, {Zq(sqi) : i = 1, . . . ,mq, q = 1, 2}. We

deliberately chose not to predict the dependent variable Y2 to illustrate the flexibility of having a

fully bivariate model. Zammit-Mangion et al. (2015b) show that the important scientific problem of

predicting methane fluxes results in cokriging of this type.

The incorporation of non-zero mean functions in {Y1(·), Y2(·)} is straightforward. Let µ1(·) and

µ2(·) be real-valued functions defined on R
d, and suppose that the finite-dimensional Gaussian distri-

butions obtained from {Y1(s1k), Y2(s2l) : k = 1, . . . , n1; l = 1, . . . , n2} have means {µ1(s1k), µ2(s2l) :

k = 1, . . . , n1; l = 1, . . . , n2}, respectively. Then the method of proof at the beginning of this section

yields a bivariate Gaussian process {Y1(·), Y2(·)} with mean functions {µ1(·), µ2(·)} and covariance

functions {Cqr(·, ·) : q, r = 1, 2}. Covariates x1(·) and x2(·) can then be incorporated through

µq(s) = xq(s)
Tβq (s ∈ D, q = 1, 2), where β1 and β2 are vectors of regression coefficients of possibly

different dimensions.

3.2 Cokriging using covariances defined by the conditional approach

Section 3.1 establishes the existence of the bivariate process {Y1(·), Y2(·)} with {Cqr(·, ·)} given

by (4)–(7), and hence we may use cokriging for multivariate spatial prediction in the presence of

incomplete, noisy data.

The aim of cokriging is to predict, say, Y1(s0), s0 ∈ D, based on data Z1 and Z2 (e.g., Cressie,

1993, p. 138), where

Zq ≡ {Zq(s) : s ∈ DO
q }

T, DO
q ≡ {sqi : i = 1, . . . ,mq}, q = 1, 2. (15)

Recall that Zq(sqi) = Yq(sqi) + εq(sqi), E{εq(·)} = 0, and var{εq(·)} = σ2
εq (i = 1, . . . ,mq; q = 1, 2).

Then, the best predictor for Y1(s0) is the conditional mean, E{Y1(s0) | Z1, Z2}. Assuming mean-zero

joint Gaussian processes,

Ŷ1(s0) ≡ E{Y1(s0) | Z1, Z2} =
[
cT11 cT12

][C11 + σ2
ε1Im1

C12

C21 C22 + σ2
ε2Im2

]−1[
Z1

Z2

]
, (16)

where for q, r = 1, 2,

cT1r ≡ {C1r(s0, sri) : i = 1, . . . ,mr}, Cqr ≡ {Cqr(sqi, srj) : i = 1, . . . ,mq, j = 1, . . . ,mr},

6



and Imq
is the mq × mq identity matrix. Expression (16) is called the simple-cokriging predictor,

and it is also the best linear predictor of Y1(s0).

While in some multivariate models, the matrices (Cqr : q, r = 1, 2) are known in closed form

(Genton & Kleiber, 2015), this is not necessarily so here. Cokriging using the conditional approach

may require integrations over D in order to compute (Cqr). There are examples where the integrals

can be carried out analytically. One such example is given in Appendix 1.

To demonstrate the benefits of cokriging based on a bivariate spatial model defined by the con-

ditional approach, we simulated the processes Y1, Y2 on a regular discretisation, DL, of D = [−1, 1],

where |DL| = 200. We describe the covariations in C11(·, ·) and C2|1(·, ·) by Matérn covariance

functions,

C11(s, u) ≡
σ2
11

2ν11−1Γ(ν11)
(κ11|u− s|)ν11Kν11

(κ11|u− s|), (17)

C2|1(s, u) ≡
σ2
2|1

2ν2|1−1Γ(ν2|1)
(κ2|1|u− s|)ν2|1Kν2|1

(κ2|1|u− s|), (18)

where we set the variances to σ2
11 = 1, σ2

2|1 = 0.2, the scale parameters to κ11 = 25, κ2|1 = 75, the

smoothness parameters to ν11 = ν2|1 = 1.5, and where Kν is a Bessel function of the second kind of

order ν. For the interaction function, we used the shifted bisquare function

b(s, v) ≡

{
A{1− (|v − s−∆|/r)2}2, |v − s−∆| ≤ r,

0, otherwise,
(19)

where we set the shift parameter to ∆ = −0.3 to capture asymmetry, we set the aperture parameter

to r = 0.3, and we set the scaling parameter to A = 5. The grid cells were used to define the

discretized domain over which we carried out the numerical integrations in (4) and (5). For example,

C12(s0, u) ≃
∑n

k=1 ηkC11(s0, wk)b(u,wk), where DL ≡ (wk : k = 1, . . . , n) and (ηk : k = 1, . . . , n)

are the grid spacings. Here η1 = · · · = η200 = 0.01. The covariance matrix (14) is shown in Fig. 1,

left panel, where asymmetry is clearly present. Finally, the data Z1 and Z2 in (15) were generated

by adding independent, mean-zero Gaussian measurement errors with variances σ2
ǫ1 = σ2

ǫ2 = 0.25 to

Y1 and Y2 at given locations DO
1 and DO

2 , respectively. Here, DO
2 ≡ DL and DO

1 ≡ DL ∩ [0, 1], so

that Y1 is observed only for s ≥ 0.

We used the cokriging equation (16) to obtain Ŷ1 ≡ {Ŷ1(s0) : s0 ∈ DL}T based on the simulated

observations Z1 and Z2. We compared Ŷ1 to a kriging predictor Ỹ1 based only on data Z1, where

Ỹ1 ≡ {Ỹ1(s0) : s0 ∈ DL}T and Ỹ1(s0) ≡ cT11(C11 + σ2
ε1Im1

)−1Z1. We also compared Ỹ1 to a

misspecified cokriging predictor Y †
1 , where a misspecified symmetric model with ∆ = 0 is substituted

into (19) and hence into (4). Since the misspecification is in the interaction function, their parameters

A and r, with ∆ = 0, were re-estimated by maximum likelihood based on Z1 and Z2. As seen in

Fig. 1, right panel, the cokriging predictor Ŷ1 is representative of the true process Y1, even where it

is not observed. However, the kriging predictor Ỹ1 can only shrink to the mean, E{Y1(·)} = 0, in

spatial regions where there are no observations; and Y †
1 , which is based on a misspecified symmetric

model, is clearly a very poor predictor. Cokriging prediction of the dependent variable Y2 is omitted

here for the sake of brevity.

3.3 Deriving classes of cross-covariance functions from marginal covari-

ance functions

Our conditional approach may also be used to complement the joint approach to constructing mul-

tivariate covariance functions. In particular, Genton & Kleiber (2015) posed an open problem that
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Figure 1: Cokriging using spatial covariances defined by the conditional approach. Left panel:
The covariance matrix (14). Right panel, top: The simulated observations Z1 (open circles) and Z2

(dots). Right panel, bottom: The hidden value Y1 (solid line), the kriging predictor Ỹ1 (dashed line),

the misspecified cokriging predictor Y †
1 (dotted line), and the cokriging predictor Ŷ1 (dotted-dashed

line).

seems difficult when using a joint approach: “[G]iven two marginal covariances, what is the valid

class of possible cross-covariances that still results in a nonnegative-definite structure?”. A straight-

forward answer is available through our conditional approach. The class of cross-covariance functions

is given by (5) for any integrable function b(s, v) such that the function C2|1(·, ·) obtained from (4)

is nonnegative-definite. This is potentially a very rich class of cross-covariance functions, and an-

swering the question reduces to verifying which choice of b(·, ·) in (4) yields a nonnegative-definite

C2|1(·, ·).

For example, consider the stationary case in D = R
2, where we have stationary covariance

functions C11(h), C2|1(h), and interaction function b(s, v) = bo(v − s). Then from (4),

C2|1(h) = C22(h)−

∫

R2

∫

R2

bo(ṽ)bo(w̃)C11(h− ṽ + w̃) dṽdw̃.

Let ω ∈ R
2 denote spatial frequency, and let Γ11(ω),Γ22(ω), and Bo(ω) be the Fourier transforms

of C11(h), C22(h), and bo(h), respectively. Then, for C2|1(h) to be a valid covariance function, it

is required that Γ22(ω) − Bo(ω)Bo(−ω)Γ11(ω) be nonnegative and integrable over ω ∈ R
2 (Cressie

& Huang, 1999; Gneiting, 2002). The nonnegativity is trivial if Γ11(ω) = 0, hence consider those

ω ∈ Ω for which

Bo(ω)Bo(−ω) ≤ Γ22(ω)/Γ11(ω), (20)

where Γ11(ω) > 0. Recall that C11(h) and C22(h) are covariance functions and hence, necessarily,

Γ11(ω) ≥ 0 and Γ22(ω) ≥ 0. Further, Bo(ω)Bo(−ω) ≥ 0, trivially.

AnyBo(·) that satisfies (20) gives the required result, because finiteness follows from
∫
Γ22(ω) dω <

∞ being an upperbound on the integral,
∫
Γ22(ω)−Bo(ω)Bo(−ω)Γ11(ω) dω. Notice that Γ11(·) and

Γ22(·) are Fourier transforms of any pair of stationary covariance functions, and that the squared

modulus of Bo has only to stay below the envelope given by the right-hand-side of (20). From our

conditional approach, we see that there are many solutions to Genton and Keiber’s open problem.

Appendix 1 shows how to obtain a class of valid Matérn cross-covariance functions developed by

Gneiting et al. (2010) that satisfies (20).
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4 Multivariate spatial models through conditioning

4.1 Definition of cross-covariance functions

In this section, we extend our conditional approach from the bivariate to the multivariate case.

Initially, we work with the variables in their original ordering and subsequently show how directed

graphical models introduce parsimony into the conditional approach. Now, [Y1(·), . . . , Yp(·)] can be

decomposed as

[Yp(·) | Yp−1(·), Yp−2(·), . . . , Y1(·)]× [Yp−1(·) | Yp−2(·), . . . , Y1(·)]× · · · × [Y1(·)]. (21)

First, we set cov{Y1(s), Y1(u)} = C11(s, u); s, u ∈ D. Analogous to the bivariate case p = 2, we

define the first two conditional moments of Yq(·), for q = 1, . . . , p, as

E[Yq(s) | {Yr(·) : r = 1, . . . , (q − 1)}] =

q−1∑

r=1

∫

D

bqr(s, v)Yr(v)dv, s ∈ D, (22)

cov[Yq(s), Yq(u) | {Yr(·) : r = 1, . . . , (q − 1)}] = Cq|(r<q)(s, u), s, u ∈ D, (23)

where {bqr(·, ·) : r = 1, . . . , (q − 1); q = 2, . . . , p} are integrable functions that give the conditional

relationship of the rth process on the qth process, for r < q.

As a result of the decomposition in (21), we obtain from (22) and (23) the following expression

for the marginal covariance functions. For q = 1, . . . , p,

Cqq(s, u) ≡ cov{Yq(s), Yq(u)}

=

q−1∑

r=1

q−1∑

r′=1

∫

D

∫

D

bqr(s, v)Crr′(v, w)bqr′(u,w)dvdw + Cq|(r<q)(s, u). (24)

Once again, we see that the covariation, here given by (24), is decomposed into an explanatory

component and a descriptive component.

For r = 1, . . . , q − 1, the cross-covariance functions are

Crq(s, u) ≡ cov{Yr(s), Yq(u)} =

q−1∑

r′=1

∫

D

∫

D

bqr′(u,w)Crr′(s, w)dw, (25)

and Cqr(s, u) ≡ Crq(u, s). Expressions (24) and (25) depend on Crr′ , for r, r
′ < q, which are defined

iteratively: Starting with q = 2, C22, C12, and C21 depend on C11 and C2|1. The same idea is

repeated for q = 3, . . . , p.

4.2 Existence of a p-variate process

Following the discussion in Section 3.1, the existence of a p-variate Gaussian process with covariance

and cross-covariance functions given by (24) and (25) follows by showing that

var

{
p∑

q=1

nq∑

k=1

aqkYq(sqk)

}
≥ 0, (26)

for any real numbers {aqk : k = 1, . . . , nq; q = 1, . . . , p}, any nonnegative integers {nq : q = 1, . . . , p}

such that n1 + · · · + np > 0, and any {sqk : k = 1, . . . , nq; q = 1, . . . , p}. In Appendix 2, we
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demonstrate that (26) is equal to

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′) +

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D

aq(s)ar(u)Cqr(s, u)dsdu, (27)

where

aq(s) ≡

{
nq∑

k=1

aqkδ(s− sqk) +

np∑

m=1

apmbpq(spm, s)

}
. (28)

The nonnegativity of the first term in (27) follows by assumption, and the nonnegativity of the

second term follows by induction; see Appendix 2.

This result implies that a multivariate spatial Gaussian model constructed using the condi-

tional approach (22) and (23) exists, provided that the univariate covariance functions C11(·, ·)

and {Cq|(r<q)(·, ·) : q = 2, . . . , p} are valid and that the interaction functions {bqr(·, ·) : r =

1, . . . , q − 1; q = 2, . . . , p} are integrable, which are mild restrictions. Moreover, these functions

can be specified completely independently of one another.

4.3 Joint distributions implied by a network

Ambient air pollution can cause health problems but not the other way around. Both variables

exhibit spatio-temporal variabilities, however data are not available to track all of the parcels of air

and individuals interacting in a space-time cube. Integrating these two spatio-temporal processes

over time, results in a bivariate spatial process. Is a causal relationship still present?

Suppose that ao(h; τ) is a space-time interaction function, where h and τ denote spatial and

temporal separation respectively. Importantly, assume ao(h; τ) is zero for τ ≤ 0. We consider the

mean-zero case and express Y2(s; t) as a causative space-time convolution involving Y1(· ; ·),

Y2(s; t) =

∫ ∞

−∞

∫

D

Y1(v; t− τ)ao(s− v; τ)dvdτ + dV (s; t), (29)

where we let dV be a mean-zero, Gaussian, temporally uncorrelated process that satisfies var{dV (s; t)}

= 4|t|dt and dt is an infinitesimal interval at t. At each time point t, dV (s; t) is assumed to be spa-

tially correlated in a manner invariant with t. A simple example of such a process is one that is

space-time separable, where the temporal component is 2|t|1/2dW (t) for W (·) a Wiener process.

Interchanging the order of integration, the time-integrated process is

lim
T→∞

1

2T

∫ T

−T

Y2(s; t)dt = lim
T→∞

1

2T

∫ T

−T

∫

D

∫ ∞

−∞

Y1(v; t− τ)ao(s− v; τ)dτdvdt+ ξ(s),

where it can be shown that the spatial covariance function of ξ(s) is identical to that of dV (s; t);

see Da Prato & Zabczyk (2014, Section 4.2) for a formal treatment. The inner integrand of the first

term on the right-hand side is a convolution that is a function of t. Applying Fubini’s theorem to

the convolution (e.g., Wheeden, 2015, Chapter 6), we obtain

Y 2(s) =

∫

D

Y 1(v)bo(s− v)dv + ξ(s), (30)

where Y q(s) ≡ limT→∞(2T )−1
∫ T

−T
Yq(s; t)dt, bo(s − v) ≡ limT→∞

∫ T

−T
ao(s − v; t)dt, and where

one must ensure that
∫∞

−∞
ao(s − v; t)dt < ∞, for all s, v. Clearly, the spatio-temporal interaction

function ao(·; ·) is not identifiable from bo(·), but the causative structure in (29) implies a causative

relationship in the spatial domain D, from Y 1 to Y 2 through bo(·). Comparing (30) to the bivariate
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model in Section 2, we can identify cov{ξ(s), ξ(u)} with C2|1(s, u).

We continue the discretization by tesselating D into small finite elements. Then (30) can be

written as Y2 = BY1 + ξ, where the elements of the matrix B are defined by discretizing the

interaction function. This bivariate model can be represented as a simple directed acyclic graph

with Y1 as the parent node and Y2 as the child node. It is straightforward to see that assumptions

similar to (29) about the spatio-temporal dependence for p (≥ 2) variables, will engender a directed

acyclic graph. This has become an important approach used in multivariate statistical modelling

(e.g., Cox & Wermuth, 1996), and our research in this paper shows how it generalizes to multivariate

spatial statistical modelling. The directed acyclic graph structure is equivalent to a partial order on

the nodes (e.g., Cressie & Davidson, 1998). Then (Bishop, 2006, p. 362):

[Y1, . . . , Yp] =
∏

q∈R

[Yq|Ypa(q)][YR], (31)

where YR is set of spatial processes whose indices are given by all the root nodes, R are all the nodes

with parents, and pa(q) are all the parent nodes that have a directed edge to node q.

When there is causative structure between the p variables, expressed through a directed acyclic

graph, (31) shows that the p! possible multivariate models reduces to just one. The modeller then

needs to specify and fit the interaction functions, {bq,pa(q)(·, ·) : q ∈ R}, and the multivariate

marginal distribution [YR]. The special case of a rooted tree, common in multiresolutional spatial

models, leaves just one spatial process, say [Y1], to model marginally (e.g., Ver Hoef & Barry, 1998;

Huang et al., 2002). If there are feedback loops in the space-time cube considered earlier, temporal

aggregation will result in undirected edges between the relevant variables. For these edges, a choice

of direction that results in a directed acyclic graph results in a multivariate model. The fewer

edges there are that are undirected, the smaller the number of possible multivariate models to fit

via the conditional approach. Of course, it is possible to combine nodes of the network until all

remaining edges are directed. In that case, [YQ|pa(Q)] is a |Q|-variate conditional model, where Q is

the combined node consisting of |Q| spatial variables.

An undirected edge may be due to directed edges from a missing node in the network; for

example, exposure to cigarette smoke was a variable missing from the two-node network of Jin et al.

(2005), where lung cancer was modelled conditional on esophagus cancer. Without the presence of

the third node, a full bivariate modelling approach may seem more appropriate than a conditional

approach. Alternatively, an edge may be undirected because the causative mechanism is not yet well

understood, and the conditional approach will shed light on this. In this case, both directions can

be tried, and a model-selection criterion, such as cross-validation, the Akaike information criterion,

or the deviance information criterion, would indicate the appropriate direction of the edge. In

Section 5.3, we illustrate a case where the directed edge from the temperature variable to the

pressure variable is unequivocal. Model selection in this framework amounts to establishing the

causative links in the network (e.g., Lauritzen, 1996; Kolaczyk, 2009).

Finally, there are other, more direct ways that could guide the choice of edges in the network of

spatial variables. Generally speaking, although not necessarily, Y2(·) will be a smoother process than

Y1(·), due to the integral in (4). Hence, a Matérn model could be fitted to each individual spatial

process and an ordering of the fitted Matérn smoothness parameters could be used to indicate the

directed edges. A similar problem involving choice of edges was faced by time-series analysts, where

stationarity was assumed and the dependence was captured through a spectral and cross-spectral

representation of the process’ covariance and cross-covariance functions. Dahlaus (2000) developed

a series of hypothesis tests in spectral space to determine undirected edges in a network of temporal

processes.
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5 Analyzing a temperature-pressure dataset

5.1 The data

We demonstrate the flexibility of the conditional approach on a temperature-pressure dataset used

in Gneiting et al. (2010) and Apanasovich et al. (2012). The data, which are available with the R

package RandomFields (Schlather et al., 2015), are on the error fields, namely the difference between

temperature and pressure two-day forecasts and the respective observations from monitoring stations

in the Pacific Northwest of North America on December 18, 2003 at 4 p.m. Since the observations

are colocated, m1 = m2 ≡ m = 157, and DO
1 = DO

2 ≡ DO. Both pressure and temperature forecasts

are spatially smooth, although observations of temperature tend to be more variable than those of

pressure. The smoothing action of the interaction function in (4) can capture this, which implies

that we should condition on the temperature field. See below, where we diagnosed the suitability of

this choice by swapping the roles of temperature and pressure in (2).

5.2 The processes and their bivariate models

Here we discuss the spatial processes involved with temperature; a discussion of pressure follows

likewise. There is a latent temperature process T (·) for which we have observations, O1(si) =

T (si) + e1,O(si), and forecasts, F1(si) = T (si) + e1,F (si) (i = 1, . . . , 157), where e1,O(si) and

e1,F (si) are the observation and forecast errors, respectively. Then, the data are Z1(si) = Y1(si) =

F1(si)− O1(si) = e1,F (si)− e1,O(si) (i = 1, . . . , 157). Notice that the process Y1(·) itself is defined

in terms of observations, so we analyze the problem assuming that the temperature data Z1 and the

process Y1 at their respective locations are the same. We do likewise for pressure, resulting in data

Z2 and the process Y2 the same as Z2.

For both variables, the data are incomplete and hence cokriging is needed to map the respective

fields. Specifically, for any s0 ∈ D, our goal is to use cokriging to predict Y1(s0) and Y2(s0) and

to compute their prediction standard errors. In what follows, a number of bivariate spatial models

based on the conditional approach are fitted and their performances compared to Matérn-type models

fitted by Gneiting et al. (2010).

In the conditional approach given by (2)–(7), we need to specify the univariate covariance func-

tions, C11(s, u) and C2|1(s, u), and the integrable interaction function b(s, v). We let the covariance

functions be isotropic Matérn covariance functions given by (17) and (18). Further, we let b(s, v) be

a function of displacement, h ≡ v − s, so that bo(h) ≡ b(s, v). The four different models fitted are

written as:

Model 1 (independent processes): bo(h) ≡ 0,

Model 2 (pointwise dependence): bo(h) ≡ Aδ(h),

Model 3 (diffused dependence): bo(h) ≡

{
A{1− (‖h‖/r)2}2, ‖h‖ ≤ r,

0, otherwise,

Model 4 (asymmetric dependence): bo(h) ≡

{
A{1− (‖h−∆‖/r)2}2, ‖h−∆‖ ≤ r,

0, otherwise,

where bo(·) in Models 3 and 4 is a bisquare and shifted bisquare function, respectively. The introduc-

tion of the asymmetric parameter ∆ = (∆1,∆2)
T in Model 4 is analogous to applying the shifting

method of Ver Hoef & Cressie (1993), Christensen & Amemiya (2001), and Li & Zhang (2011) to the

diffused symmetric dependence in Model 3. We explored whether asymmetry might be present in

the data by first interpolating the temperature and pressure error fields onto a regular grid, and then

plotting the correlation between the two gridded fields as a function of the displacement vector h of
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Figure 2: Spatial domain and correlation functions. Left panel: State boundaries and province
boundaries of a region of the USA and Canada (dark solid lines), with the domain of interest
enclosed by a bounding polygon (dashed line). The irregular triangular grid used for discretizing D
(light solid lines) and the observation locations given by DO (dots) are also shown. The discretized
spatial domain DL consists of the vertices of the triangular grid. Right panel: The correlation and
cross-correlation functions estimated using Model 4, depicted as a function of displacement h, in
degrees longitude/latitude, at the location s = (−123◦, 45◦). Contour lines of correlation are in
intervals of 0.2.

the temperature field. The contour plot showed a clear negative dip in the bottom-right quadrant,

indicating asymmetry. In contrast, the bivariate spatial models fitted to these data by Gneiting

et al. (2010) and Apanasovich et al. (2012) are symmetric.

We discretized both Y1(·) and Y2(·) onto a triangulated grid using the mesher available with the

R package INLA available from www.r-inla.org. The resulting irregular spatial lattice had n1 = n2 ≡

n = 2063 vertices each. Here, these n vertices define DL; see Fig. 2, left panel. Under the chosen

triangulation, the integral in (2) is approximated as E{Y2(sl) | Y1(·)} ≃
∑n

k=1 ηkb(sl, vk)Y1(vk),

where in this case {ηk : k = 1, . . . , n} are the areas of the small Voronoi polygons constructed from

the triangulated grid (e.g., Lee & Schachter, 1980). In order to ensure nonnegative-definiteness of

C11 and C2|1, we follow Gneiting et al. (2010) and use chordal distances to establish the covariances

between two points on the sphere. This embeds Earth’s surface into R
3, where univariate covariance

functions are readily available. The interaction function has no such constraint, so we capture

asymmetry in the interaction function bo(·) directly in the longitude-latitude space and carry out

the numerical integration there.

5.3 Estimation and prediction

From (14), the covariance matrix of the bivariate spatial process is

cov((Y T

1 , Y T

2 )T) =

[
Σ11 + τ21 Im Σ11B

T

BΣ11 Σ2|1 +BΣ11B
T + τ22 Im

]
, (32)

which is a 4126 × 4126 matrix. The terms τ21 Im and τ22 Im are due to micro-scale effects, which

we add to make our model comparable with that of Gneiting et al. (2010). Maximum likelihood

estimation took on the order of 1 minute for Models 1 and 2, and on the order of 1 hour for Models 3

and 4. Computational requirements when numerical integration is required can be reduced by using
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Table 1: Parameter estimates for Models 1–4. Blank entries indicate that the parameter is not
present in the model.

τ1 τ2 σ11 σ2|1 κ11 κ2|1 ν11 ν2|1 A r ∆1 ∆2

Model 1 0.00 68.47 2.60 275.34 0.011 0.010 0.60 1.56
Model 2 0.00 67.78 2.60 242.04 0.011 0.011 0.60 1.58 −14.30
Model 3 0.00 70.16 2.68 243.77 0.011 0.010 0.61 1.84 −40.83 1.46
Model 4 0.01 69.79 3.02 199.86 0.007 0.004 0.56 1.24 −65.58 1.18 0.76 −1.42

Table 2: Log-likelihood (Log-lik.), Akaike information criterion (AIC) for Models 1–4, the parsimo-
nious Matérn model, the shifted parsimonious Matérn model, and the full Matérn model

No. of parameters Log-lik. AIC

Model 1 8 −1276.77 2569.54
Model 2 9 −1269.92 2557.84
Model 3 10 −1264.90 2549.80
Model 4 12 −1258.21 2540.43

Parsimonious Matérn 8 −1265.76 2547.52
Shifted parsimonious Matérn 10 −1260.87 2541.75

Full Matérn 11 −1265.53 2553.06

a covariance function C11 that can be evaluated rapidly on a fine grid, or that has compact support

(Furrer et al., 2012).

The maximum likelihood estimates of the parameters for the four different interaction functions

are given in Table 1. Notice that some of the estimates change considerably between model spec-

ifications. For example, the scale parameter σ2|1 decreases from 275.34 in the independent model

to 199.86 in the asymmetric-dependence model, which illustrates how some of the variability in the

pressure error field is accounted for by conditioning on the temperature error field. The estimate of

the interaction parameter A is also seen to become steadily more negative from Model 2 to Model

4, implying that the interaction function is most influential when it is allowed to have both a scale

and an asymmetry term.

Since out-of-sample spatial prediction is a principal use of multivariate spatial models, we used

the Akaike information criterion and cross-validation to assess model performance (Stone, 1977). As

seen in Table 2, the Akaike information criterion decreases steadily from Model 1 with 8 parameters

(2569.54) to the lowest at Model 4 with 12 parameters (2540.43). The symmetric Matérn models of

Gneiting et al. (2010, Table 3) performed worse than Model 4, while the parsimonious Matérn model

gave a similar Akaike information criterion to Model 3. The shifted parsimonious Matérn model,

constructed by applying the method of Li & Zhang (2011) to the parsimonious Matérn model, gave

a similar Akaike information criterion to Model 4. These results were expected due to the similarity

between Model 3 and the parsimonious Matérn model, which is found in Appendix 1, and due to

the analogy between the approach of Li & Zhang (2011) and our inclusion of ∆ in Model 4. Overall,

these results suggest that allowing for asymmetries in the model is more important in this problem

than incorporating smoothness and/or scale parameters in the cross-dependencies. Correlation and

cross-correlation functions estimated from Model 4 are shown in Figure 2, right panel.

For our cross-validation analysis we left out a single location and found the predictive distribution

of both fields at the left-out location using parameters estimated from all the data. In Table 3, which

is found in Appendix 3, we list the maximum absolute error, the root-mean-squared prediction error,

and the mean continuous-ranked probability score from our cross-validation study. As well as giving

results for Models 1–4, we also include those obtained using the parsimonious Matérn and the
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full bivariate Matérn models with the RandomFields package (Schlather et al., 2015) and those

from the parsimonious Matérn model. Within the models we propose, Model 4 and the shifted

parsimonious Matérn model outperformed the others on nearly all cross-validation diagnostics for

both the pressure and temperature error fields. When compared to the symmetric parsimonious

and full bivariate Matérn models, the asymmetric models offer considerable improvement in the

prediction performance of both error fields.

In Fig. 3, left panels, we show the cokriged temperature and pressure error fields under Model 4

using the entire dataset that includes both Z1 and Z2. Notice how the temperature error field is con-

siderably rougher than the pressure error field. In Fig. 3, right panels, we illustrate for temperature

the difference between the cokriging standard errors based on Model 1 and those based on Model

4. The spatial pattern of the standard errors is a clear consequence of the asymmetric covariance

function: comparing Models 1 and 4, we see that Model 4 tends to have lower standard errors in

regions that are south-east of the observation locations, which is due to Model 4’s asymmetry.

Finally, we re-did all the experiments for the same models described above, but now with Y1

as pressure error and Y2 as temperature error. With this reversed conditioning, the Akaike infor-

mation criteria for Models 1–3 did not change substantially, however that for Model 4 worsened

from 2540.43 to 2560.97. Further, the analogous leave-one-out cross-validation diagnostics showed

that the reversed modelling of temperature error given pressure error in Model 4 resulted in worse

predictive performance in the respective entries of Table 3, with regard to both temperature and

pressure. Clearly, the direction of dependence plays a central role here in model performance and

our conditional approach has allowed us to propose a preferred direction. We discuss this in greater

detail in Section 4.3.

6 Discussion

The conditional approach can be modified easily for different spatial domains. Consider {Y1(s) : s ∈

D1} and {Y2(s) : s ∈ D2}, for D1, D2 ⊂ R
d; then (2) becomes,

E(Y2(s) | Y1(·)) =

∫

D1

b(s, v)Y1(v)dv; s ∈ D2.

For example, Cressie & Wikle (2011, p. 287) illustrate bivariate spatial dependence between Mallard

breeding bird pairs in the Prairie Pothole region of North America and the El Niño phenomenon in

the tropical Pacific Ocean, for which the conditional approach could be used.

In Section 5, we estimated the parameters appearing both in C11(h), C2|1(h), and in the inter-

action function b(s, v). In some cases, b(s, v) can be given by the underlying science. One such case

is atmospheric trace-gas inversion (Zammit-Mangion et al., 2015a), in which a non-Gaussian flux

field Y1 is estimated from the mole-fraction field Y2, observed at isolated locations. The interaction

function b(s, v) was obtained directly from a transport model driven by weather forecasts and hence

was assumed known (e.g., Ganesan et al., 2014).

Even if the parameters are known or estimated off-line, spatial or spatio-temporal inference with

multivariate models can remain computationally challenging. When treating all variates simultane-

ously in joint form, sparse formulations and sparse linear-algebraic methods can greatly facilitate

the computation (e.g., Zammit-Mangion et al., 2015b). Sparseness is guided by the graphical repre-

sentations, which are discussed in Section 4.3. By constructing multivariate spatial models through

conditioning, the accompanying graphical representations allow exact inference through sequential

algorithms. Markov chains of spatial processes, such as autoregressive spatio-temporal processes, can

be tackled with the iterative Rauch–Tung–Striebel smoother (e.g., Rauch et al., 1965). For more gen-
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Figure 3: Cokriging predictions in the discretized spatial domain. Left panels: The cokriged surface
using maximum likelihood estimates for the parameters with Model 4 for the temperature and
pressure error fields. Top-right panel: A scatter plot of the cokriging prediction standard errors of
Y1 obtained with Model 4 against those obtained with Model 1 at each of the mesh vertices. The
colour illustrates the difference between the two, with green denoting the higher standard error of
Model 4 and purple denoting the higher standard error of Model 1. Bottom-right panel: A spatial
plot of the difference in the prediction standard errors of Y1 obtained with Model 4 and Model 1,
with green denoting a higher standard error of Model 4 and purple denoting a higher standard error
of Model 1.

eral constructions, such as trees or polytrees, the sum-product or peeling algorithm may be used for

exact inference. When likelihoods associated with some or all of the processes in {Yq : q = 1, . . . , p}

are intractable, approximate message passing may be used to keep the computations tractable (e.g.,

Heskes & Zoeter, 2002), such as when the data model for Zq(·) is a spatial Poisson point process

and Yq(·) is the log-intensity of the process.

Reproducible code and data are available from https://github.com/andrewzm/bicon.
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Appendix 1

A class of Matérn cross-covariance functions consistent with marginal

Matérn covariance functions

Let C11(h), C22(h), and bo(h) be isotropic Matérn covariance functions on R
2 and, for simplicity,

assume that they all have the same scale κ. Then, using obvious notation, their Fourier transforms

are

Bo(ω) = σ2
b

Γ(νb + 1)κ2νb

πΓ(νb)
(κ2 + ‖ω‖2)−νb−1, ω ∈ R

2,

Γii(ω) = σ2
ii

Γ(νii + 1)κ2νii

πΓ(νii)
(κ2 + ‖ω‖2)−νii−1, ω ∈ R

2, i = 1, 2.

For C21(·) and C12(·) to be valid cross-covariance functions, it is required that

Γ22(ω)−Bo(ω)Bo(−ω)Γ11(ω) ≥ 0,

and hence that

σ4
b ≤

π2σ2
22

σ2
11

1

ν2bκ
4νb

ν22κ
2ν22

ν11κ2ν11

(κ2 + ‖ω‖2)2+2νb+ν11−ν22 . (33)

It can be easily shown that the inequalities,

νb ≥ (ν22 − ν11 − 2)/2, (34)

σ2
b ≤ 2π

σ22

σ11

1

ν22 − ν11 − 2

κν22

κν11κ2νb

(
ν22
ν11

) 1

2

, (35)

are sufficient for (33) to hold. Then, from (5), C12(h) is also a Matérn covariance function with

variance

σ2
12 =

1

πκ2

νbν11
νb + ν11 + 1

σ2
bσ

2
11, (36)

and smoothness ν12 ≡ νb + ν11 + 1. Hence, from (34), ν12 ≥ (ν11 + ν22)/2.

Now consider the bound on the smoothness, ν12 = (ν11 + ν22)/2, which is obtained from the

bound, νb = (ν22 − ν11 − 2)/2, in (34). An inequality for the variance σ2
12 is then obtained by

substituting this value of νb and the inequality (35) into (36): σ2
12 ≤ 2σ11σ22(ν11ν22)

1/2(ν11+ν22)
−1.

The conditions on ν12 and σ2
12 are those that Gneiting et al. (2010) impose in order to construct

parsimonious bivariate Matérn models. Clearly, these are more restrictive than our conditions (34)

and (35).

Generalizing these ideas to arbitrary scale parameters κ11, κ22, κb, as in Gneiting et al. (2010)

could be done, but it is more fruitful to give up the assumption that the interaction function is a

Matérn symmetric nonnegative-definite covariance function; recall that it only needs to be integrable.

Appendix 2

Proof of existence of the multivariate process

Here, we prove by induction that (26) holds for for any real numbers {aqk : k = 1, . . . , nq; q =

1, . . . , p}, any nonnegative integers {nq : q = 1, . . . , p} such that n1 + · · · + np > 0, and any

{sqk : k = 1, . . . , nq; q = 1, . . . , p}. We have already shown, through (9), that there exists a

bivariate stochastic process, and hence the variance of any linear combination of the two processes
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is nonnegative. Now, assume that {Y1(·), . . . , Yp−1(·)}
T is a well defined (p − 1)-variate stochastic

process. We re-write (26) as:

var

{
p−1∑

q=1

nq∑

k=1

aqkYq(sqk) +

np∑

m=1

apmYp(spm)

}
.

Then, following the definitions for the marginal and cross-covariances in (24) and (25) and using

standard identities, we obtain the following expression for (26):

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′)

+

p−1∑

q=1

p−1∑

r=1

np∑

m=1

np∑

m′=1

apmapm′

∫

D

∫

D

bpq(spm, v)Cqr(v, w)bpr(spm′ , w)dvdw

+

p−1∑

q=1

p−1∑

r=1

nq∑

k=1

np∑

m′=1

aqkapm′

∫

D

bpr(spm′ , w)Cqr(sqk, w)dw

+

p−1∑

q=1

p−1∑

r=1

nq∑

k′=1

np∑

m=1

aqk′apm

∫

D

bpq(spm, v)Cqr(v, srk′)dv

+

p−1∑

q=1

p−1∑

r=1

nq∑

k=1

nr∑

k′=1

aqkark′Cqr(sqk, srk′),

which can be simplified to

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′)

+

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D

{
nq∑

k=1

aqkδ(s− sqk) +

np∑

m=1

apmbpq(spm, s)

}
(37)

×

{
nq∑

k′=1

ark′δ(u− srk′) +

np∑

m′=1

apm′bpr(spm′ , u)

}
Cqr(s, u)dsdu.

Expression (37) can be further reduced to

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′) +

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D

aq(s)ar(u)Cqr(s, u)dsdu, (38)

and this is (27). The first term in (38) is nonnegative by assumption, while the second term is

nonnegative since {Y1(·), . . . , Yp−1(·)}
T is a well-defined (p− 1)-variate process.
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Appendix 3

Leave-one-out cross-validation diagnostics

Table 3: Leave-one-out cross-validation prediction diagnostics: mean absolute error (MAE), root-
mean-squared prediction error (RMSPE), and mean continuous-ranked probability score (MCRPS).

Process Model MAE RMSPE MCRPS

Pressure (Pa)

Model 1 69.56 123.36 55.33
Model 2 70.19 124.4 55.64
Model 3 70.32 123.0 55.19
Model 4 66.07 114.7 51.73
Parsimonious Matérn 70.15 123.0 55.35
Shifted parsimonious Matérn 67.01 115.0 52.48
Full Matérn 66.19 122.8 55.23

Temperature (oC)

Model 1 1.14 1.63 0.81
Model 2 1.14 1.63 0.81
Model 3 1.10 1.53 0.78
Model 4 1.08 1.47 0.77
Parsimonious Matérn 1.11 1.56 0.79
Shifted parsimonious Matérn 1.09 1.48 0.77
Full Matérn 1.11 1.58 0.79
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