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AbstractÐIntrusion detection complements prevention mehcanisms, such as firewalls, cryptography, and authentication, to capture

intrusions into an information system while they are acting on the information system. Our study investigates a multivariate quality

control technique to detect intrusions by building a long-term profile of normal activities in information systems (norm profile) and using

the norm profile to detect anomalies. The multivariate quality control technique is based on Hotelling's T2 test that detects both

counterrelationship anomalies and mean-shift anomalies. The performance of the Hotelling's T2 test is examined on two sets of

computer audit data: a small data set and a large multiday data set. Both data sets contain sessions of normal and intrusive activities.

For the small data set, the Hotelling's T2 test signals all the intrusion sessions and produces no false alarms for the normal sessions.

For the large data set, the Hotelling's T2 test signals 92 percent of the intrusion sessions while producing no false alarms for the normal

sessions. The performance of the Hotelling's T2 test is also compared with the performance of a more scalable multivariate

techniqueÐa chi-squared distance test.

Index TermsÐComputer security, intrusion detection, multivariate statistical analysis, chi-square test, and Hotelling's T2 test.
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1 INTRODUCTION

AS we increasingly rely on information infrastructures to
support critical operations in defense, banking, tele-

communication, transportation, electric power, and many
other systems, intrusions into information systems have
become a significant threat to our society with potentially
severe consequences [1], [2]. An intrusion compromises the
security (e.g., availability, integrity, and confidentiality) of
an information system through various means, including
denial-of-service, remote-to-local, user-to-root, information
probing, and so on [3]. Denial-of-service intrusions make a
host or network service unavailable by overloading or
disrupting the service. Remote-to-local intrusions gain
unauthorized access to a host machine without a legitimate
user account on the host machine. User-to-root intrusions
happen when a regular user on a host machine obtains
privileges normally reserved for a root or super user.
Information probing intrusions use programs to scan a
network of computers for gathering information or finding
known vulnerabilities.

Layers of defense can be set up against intrusions

through prevention, detection, etc. Firewalls, authentica-

tion, and cryptography are some examples of the online

intrusion prevention mechanisms used to protect informa-

tion systems from external intrusions [4]. Offline intrusion

prevention efforts focus on methodologies of secure soft-

ware design and engineering. The online prevention

mechanisms form a fence around information systems to

raise the difficulty level of breaking into information
systems. However, the fence can only be raised to a level
that does not degrade services from information systems.
Although secure software methodologies will continue to
improve, bugs and vulnerabilities in information systems
are inevitable due to difficulty in managing the complexity
of large-scale information systems during their specifica-
tion, design, implementation, and installation. Intruders
explore the bugs and vulnerabilities in information systems
to attack information systems. Hence, we expect that some
intrusions will be leaked through the fence of prevention
and act on information systems.

Intrusion detection techniques capture intrusions while
they are acting on an information system. Existing intrusion
detection techniques fall into two major categories: signa-
ture recognition and anomaly detection [5], [6]. Signature
recognition techniques, also referred to as misuse detection
in some literature, match activities in an information system
with signatures of known intrusions and signal intrusions
when there is a match. For a subject (user, file, privileged
program, host, network, etc.) of interest, anomaly detection
techniques establish a profile of the subject's normal
behavior (norm profile), compare the observed behavior
of the subject with its norm profile, and signal intrusions
when the subject's observed behavior deviates significantly
from its norm profile. Therefore, anomaly detection
techniques rely on a norm profile and consider a deviation
of the subject's behavior from its norm profile as a symptom
of an intrusion. A justification of using anomaly detection
for intrusion detection is provided in [7].

Signature recognition techniques utilize intrusion signa-
turesÐprofiles of intrusion characteristicsÐand consider
the presence of an intrusion signature as evidence of an
intrusion. Anomaly detection techniques use only data of
normal activities in information systems for training and
building a norm profile. Signature recognition techniques
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rely on data of both normal and intrusive activities for
learning intrusion signatures either manually or automati-
cally through data mining.

Signature recognition techniques have been used in most

existing intrusion detection systems, including NSM/ASIM,

NetRadar, IDES/NIDES, EMERALD, NetRanger, Stalker,

CMDS, NetStalker, TCP Warpper, Tripwire, SATAN, and

STAT [5], [6], [8], [9], [10], [11], [12]. Intrusion signatures

have been characterized as strings, event sequences, activity

graphs, and intrusion scenarios (consisting of event

sequences, their preconditions, and target compromised

states). Finite state machines [8], colored Petri Nets [9],

associate rules [10] and production rules of expert systems

[11], [12] have been used to represent and recognize

intrusion signatures. Intrusion signatures are either manu-

ally encoded or automatically learned through data mining.

However, signature recognition techniques have a limita-

tion in that they cannot detect novel intrusions whose

signatures are unknown.
Anomaly detection techniques capture both known

intrusions and unknown intrusions if intrusions demon-

strate a significant deviation from a norm profile. Several

types of anomaly detection techniques exist: string-based,

specification-based, and statistical-based [11], [12], [13], [14],

[15], [16], [17], [18]. String-based anomaly detection techni-

ques [13], [17] collect sequences of system calls or audit

events that appear in normal activities from historic data,

represent those sequences as strings, store those strings as a

norm profile, and employ either negative selection [17] or

positive selection [13] to determine whether an observed

string deviates from the string-based norm profile. Speci-

fication-based anomaly detection techniques [18] use pre-

dicates in formal logic to specify normal activities in a norm

profile, and employ logical reasoning to infer the consis-

tency of observed activities with the norm profile. Statis-

tical-based anomaly detection techniques use statistical

properties (e.g., mean and variance) of normal activities to

build a statistical-based norm profile, and employ statistical

tests to determine whether observed activities deviate

significantly from the norm profile.
An advantage of statistical-based anomaly detection

techniques is their capability of explicitly representing and

handling variations and noises involved in activities of

information system, whereas string-based anomaly detec-

tion techniques and specification-based anomaly detection

techniques lack such a capability of noise handling and

variance representation. A norm profile must consider and

represent variations of normal activities for distinguishing

truly anomalous activities from expected variations of

normal activities.
Most studies on statistical-based anomaly detection

techniques [11], [12], [13], [14], [15], [16] are based on a

statistical technique developed for IDES/NIDES. This

technique computes test statistics of a normal distribution

(called Q statistic and S statistic) using data on a single

measure. This technique has several drawbacks. First of all,

the technique is sensitive to the normality assumption. If

data on a measure are not normally distributed, the

technique yields a high false alarm rate, especially when

departures from normality are due to kurtosis (flatness).

Second, the technique is univariate in that a statistical norm

profile is built for only one measure of activities in

information systems. However, intrusions often affect

multiple measures of activities collectively. Anomalies

resulting from intrusions may cause deviations on multiple

measures in a collective manner rather than through

separate manifestations on individual measures.
This paper presents our work on multivariate statistical

analysis of audit trails for host-based intrusion detection.

Specifically, Hotelling's T2 testÐa multivariate statistical

process control (SPC) techniqueÐis used to analyze audit

trails of activities in an information system and detect host-

based intrusions into the information system that leave

trails in the audit data. Hotelling's T2 test is also compared

with a more scalable multivariate statistical analysis

techniqueÐthe chi-squared test.
The rest of the paper is organized as follows: Section 2

describes the two multivariate statistical analysis techni-
ques based on Hotelling's T2 (T2 test) and the chi-squared
distance test (X2 test) respectively. Section 3 defines the
problem of intrusion detection. Section 4 presents and
discusses the performance of the T2 test in comparison with
the performance of the X2 test.

2 MULTIVARIATE STATISTICAL ANALYSIS

In this section, we first describe Hotelling's T2 test and the
chi-squared distance test. Then, we compare these two
techniques, and discuss their differences from the statistical
test in IDES/NIDES.

2.1 Hotelling's T2 Test

Let Xi � �Xi1; Xi2; . . . ; Xip�0 denote an observation of p
measures on a process or system at time i. Assume that
when the process is operating normally (in control), the
population of X follows a multivariate normal distribution
with the mean vector � and the covariance matrix

P
. Using

a data sample of size n, the sample mean vector X and the
sample covariance matrix S are usually used to estimate �
and

P
[19], [20], [21], [22], [23], [24], [25], [26], where

X � �X1; X2; . . . ; Xp� �1�

S � 1

nÿ 1

Xn
i�1

�Xi ÿX��Xi ÿX�0: �2�

Hotelling's T2 statistic for an observation Xi is
determined by the following [19], [20], [21], [22], [23],
[24], [25], [26]:

T 2 � �Xi ÿX�0Sÿ1�Xi ÿX�: �3�
A large value of T2 indicates a large deviation of the
observation Xi from the in-control population.

We can obtain a transformed value of the T2 statistic,

n�nÿ p�
p�n� 1��nÿ 1�T

2
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which follows an F distribution with p and nÿ p degrees of

freedom, by multiplying T2 by the constant

n�nÿ p�
p�n� 1��nÿ 1� :

If the transformed value of the T2 statistic is greater than the

tabulated F value for a given level of significance, � , then

we reject the null hypothesis that the process is in control

(normal) and thus signal that the process is out of control

(anomalous).
If Xi does not follow a multivariate normal distribu-

tion, the transformed value of the T2 statistic may not

follow an F distribution. As a result, we cannot use the

tabulated F value as a signal threshold to determine

whether a transformed value of the T2 statistic is large

enough for an out-of-control signal. For intrusion detection,

multiple measures of activities in an information system are

represented by multiple random variables. Typically, we do

not know a priori what distribution each random variable

follows, and thereby cannot assume that the variable

follows a normal distribution.
However, if the p variables are independent and p is

large (usually greater than 30), T2 follows approximately a

normal distribution according to the central limit theorem

[20], regardless of what distribution each of the p variables

follows. Using a sample of T2 values, the mean and

standard deviation of the T2 population can be estimated

from the sample mean T 2 and the sample standard

deviation ST 2 . The in-control limits to detect out-of-control

anomalies are usually set to 3-sigma control limits [19], [20],

[21], [22], [23], [24], [25], [26] as determined by

�T 2 ÿ 3ST 2 ; T 2 � 3ST 2 �. Since we are interested in detecting

significantly large T2, we need to set only the upper control

limit to T 2 � 3ST 2 as a signal threshold. That is, if the T2 for

an observation is greater than T 2 � 3ST 2 , we signal an

anomaly.
An out-of-control signal from the T2 test can be caused

by a shift from the in-control mean vector (mean shift), a

departure from the in-control covariance structure or

variable relationships (counterrelationship), or combina-

tions of the two situations. In a mean shift situation, one or

more of the p variables is out of control. In a counter-

relationship situation, a relationship between two or more

of the p variables changes from the variable relationship

established in the covariance matrix.
Although the T2 test detects both mean shifts and

counterrelationships, the T2 test is more sensitive to

counterrelationships than mean shifts because the T2 test

relies largely on the correlated structure of variables

(covariance matrix) for signal detection. An example is

illustrated in [21] with two variables and a high positive

correlation between the two variables while they are in

control. For this example, the T2 test signals an observation

with a counterrelationship, but does not signal an observa-

tion with an out-of-control mean shift on one variable

because both variables shift in the same direction and thus

still maintain their relationship of a positive correlation.

2.2 X2 Test

We develop another multivariate statistical analysis techni-
que based on the chi-squared distance test. In this paper, the
X2 test and its performance are mainly used for evaluating
the performance of the T2 test. Hence, the X2 test is only
briefly described in this paper. Details of the X2 test can be
found in [27].

If we have p variables to measure and Xj denotes the
observation of the jth �1 � j � p� variable at a particular
time, the X2 test statistic is given by the equation:

X2 �
Xp

j�1

Xj ÿXj

ÿ �2

Xj

: �4�

This test statistic measures the distance of a data point
from the center of a data population. Hence, we call this test
the chi-square distance test. When the p variables are
independent and p is large (usually greater than 30), the X2

statistic follows approximately a normal distribution
according to the central limit theorem [20], regardless of
what distribution each of the p variables follows. Using a
sample of X2 values, the mean and standard deviation of
the X2 population can be estimated from the sample
mean X2 and the sample standard deviation SX2 . The in-
control limits to detect out-of-control anomalies are
usually set to 3-sigma control limits [20], [21] as
determined by �X2 ÿ 3SX2 ; X2 � 3SX2 �. Since we are inter-
ested in detecting significantly large X2 values, we need to
set only the upper control limit to X2 � 3SX2 as a signal
threshold. That is, if the X2 for an observation is greater
than X2 � 3SX2 , we signal an anomaly.

2.3 Comparison of the T2 Test and the X2 Test

Both the T2 test statistic and the X2 test statistic measure the
distance of an observation from the multivariate mean
vector of a population. The T2 test statistic uses the
statistical distance that incorporates the multivariate var-
iance-covariance matrix, whereas the X2 test statistic uses
the chi-squared distance. The chi-squared distance is
similar to a Euclidean distance but using the average value
on each variable to scale the Euclidean distance on that
variable or dimension.

In general, anomalies involving multiple variables can
be caused by shifts from the means of these variables (mean
shifts), departures from variable relationships (counter-
relationships), or combinations of mean shifts and counter-
relationships. In contrast to the T2 statistic, the X2 statistic
does not account for the correlated structure of the p variables.
OnlyX is estimated to establish the norm profile according to
formula (1). Hence, the T2 test detects both mean shifts and
counter-relationships, whereas the X2 test detects only the
mean shift on one or more of the p variables.

The X2 test performs well in intrusion detection [27].
When tested on a small set of computer audit data
containing sessions of both normal and intrusive activities,
the X2 test signals all the intrusion sessions and produces
no false alarms on the normal sessions. A session
consists of many events. For the small data set, the X2

test detects 75 percent of the intrusive events, and
produces no false alarms on the normal events. For a
large multiday data set, the X2 test signals 60 percent of
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intrusion sessions when the signal threshold is set so that no
false alarms are produced on normal sessions.

To further investigate whether the additional capability
of detecting counterrelationships in the T2 test can produce
a better performance in intrusion detection, we conduct the
T2 test on the same small data set and the same large data
set in this study.

2.4 Differences from the Statistical Test
in IDES/NIDES

The T2 test and the X2 test are multivariate statistical
techniques coping with multiple measures of activities in
information systems, whereas the statistical technique in
IDES/NIDES is univariate for only one measure of activities.
Hence, separate statistical tests must be performed for
multiple measures of activities. Even without the considera-
tion of the variance-covariance matrix, the X2 test is still not
equivalent to separate tests on individual variables measur-
ing different characteristics of the same process such as
univariate tests in IDES/NIDES. It is well understood [21],
[26] that separate univariate tests on individual variables
can lead to misses caused by incorrect control limits due to
accumulated effects of significance probabilities. Fig. 1
shows differences between the control limits of separate
univariate tests and the control limit of a multivariate test
without a covariance structure such as the X2 test.

IDES/NIDES [14], [15] proposes a multivariate test using
the squared sum of the separate test statistics from multiple
measures. However, this multivariate test is not robust
because the individual univariate tests cannot robustly
measure the distance of an observation from the mean on
individual measures due to the sensitivity of the individual
univariate tests to the normality assumption. In the T2 test
or the X2 test, the distance of an observation from the mean
on individual variables is measured using the statistical

distance or the chi-squared distance. The sum of the distance
over multiple variables in the T2 test or the X2 test follows a
normal distribution when multiple variables are independent
and the number of multiple variable is large (e.g., greater
than 30). Hence, the T2 test and the X2 test are robust to the
normality assumption for individual variables. We illustrate
later in this paper that there are more than 30 variables in an
observation in our study, and our multiple variables are
likely independent of each other.

3 PROBLEM DEFINITION

This section describes the intrusion detection problem,
including the data source, training data, testing data, and
problem representation.

3.1 Data Source

A computer and network system within an organization
typically includes a number of host machines (e.g.,
machines running a UNIX operation system and machines
running the Microsoft Windows operating system) and
communication links connecting those host machines.
Currently two sources of data have been widely used to
capture activities in a computer and network system for
intrusion detection: network traffic data and host audit trail
data (audit data). Network traffic data contain data packets
traveling over communication links between host machines
to capture activities over communication networks. Audit
data capture activities occurring on a host machine.

In this study, we use audit data from a UNIX-based host
machine (specifically a Sun SPARC 10 workstation with the
Solaris operating system), and focus on attacks on a host
machine that leave trails in audit data. The Solaris operating
system from Sun Microsystems Inc. has an auditing facility,
called the Basic Security Module (BSM). BSM monitors the
events related to the security of a system and records the
crossing of instructions executed by the processor in the
user space and instructions executed in the kernel. This is
based on the assumption that the actions in the user space
cannot harm the security of the system and the security-
related actions that can impact the system only take place
when users request services from the kernel. BSM records
the execution of system calls by all processes launched by
the users. A full system call trace gives us overwhelming
information, whereas the audit trail provides a limited
abstraction of the same information in which the context
switches, memory allocation, internal semaphores and
consecutive file reads do not appear. And there is always
a straightforward mapping of audit events to system calls.

The BSM audit records contain detailed information
about the events in the system. It includes detailed user and
group identificationÐfrom the login identity to the one
under which the system call is executed, the parameters of
the system call executionÐfile names including full path,
command line arguments etc., the return code from the
execution and the error code. We, however, use only the
event type information.

There are 284 different types of events in BSM audit data.
In UNIX, there are thousands of commands available. Since
the audit events are closer to the core of the operating
system, the event type is more representative than the
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actual command sequences used. For example, we can use
any text editor, such as vi and ed to edit a file, but most of
the time the audit event stream will contain the following
event types: AUE_EXECVE, AUE_OPEN_R, AUE_ACCESS,
AUE_STAT. In an intrusion session an intruder tries to
hide the not-so-frequently-used commands essential for
intrusion by adding large amounts of frequently used
commands. This causes intrusion detection techniques to
recognize these as noise and fail to detect the intruder's
attempts. By using the event type information, we are able
to extract out the redundant information about which
particular commands are used, which particular files are
accessed etc., and can focus on which particular kernel
level event types the intruder uses. We also eliminate the
problem of having different scenarios when we combine
normal and intrusion sessions from different sources such
as different host machines. As long as they belong to the
same Solaris BSM, we get consistent event type informa-
tion. Moreover, we need not look at the nature of these
intrusions as we are interested only in detecting them
regardless of how sophisticated the intrusions are.

Several studies [13], [17] also show that events types in
information systems can be used to effectively detect
intrusions for a specific application, a network service [17]
or a host machine in general [13].

3.2 Training and Testing Data

In this study, we use two sets of data. A small set of audit
data is sampled by recording both normal activities and
intrusive activities on host machines with Solaris 2.5.
Normal activities and intrusive activities are simulated to
produce these audit data. Normal activities are simulated
by the MIT Lincoln Laboratory according to normal
activities observed in a real-world computer and network
system [3]. A number of intrusions are also simulated in our
laboratory on a host machine with Solaris 2.5, including
password guessing, use of symbolic links to gain the root
privilege, attempts to gain an unauthorized remote access,
etc. The small data set is used in the early stage of our study
when we do not have access to the complete data set from
the MIT Lincoln Laboratory. There is only a small data set
that is accessible to the general public. Since there are not
many intrusions in such a small data set, we run the
simulation of intrusion scenarios that we have collected
over the years in our laboratory to create the audit data of
intrusive activities. As discussed in the previous section,
the use of the event type information minimizes the
problem with two machine sources of audit data in the
small data set.

In the small data set, the audit data of normal activities
consist of 3,019 audit events, and the audit data of intrusive
activities consist of 1,751 audit events. We use the first part
of the audit data for normal activities as our training data
set, and use the remaining audit data for normal activities
and attack activities as our testing data set. The training
data set consists of 1,613 audit events for normal activities.
The testing data set consists of 1,406 audit events for normal
activities and 1,225 audit events for intrusive activities.

For the large set of audit data, we obtain nine weeks of
the 1998 audit data set from the MIT Lincoln Laboratory in a
later stage of our study. The nine weeks of the 1998 audit

data set is divided into seven weeks of labeled training data
and two weeks of unlabeled testing data. Since the testing
data are not labeled, this makes it difficult to evaluate the
performance of our techniques. Hence, we use the training
data set for both training and testing in our study. During
training, we use audit data of activities with the normal
label to build the norm profile. During testing, we remove
the label of audit data and use our techniques to generate a
label. The labels of activities from our testing are then
compared to the given labels for evaluating the perfor-
mance of our techniques.

There are in total 35 days of data in the seven weeks of
training data. We pick 4 days of data as a representative of
the entire training data set. We pick two days with
relatively few intrusions and two days with comparatively
more intrusions, varied in length. We have chosen week-1,
Monday data as day-1 data, week-4, Tuesday data as day-2
data, week-4, Friday data as day-3 data and week-6,
Thursday data as day-4 data. Table 1 summarizes the
statistics about these 4 days of data.

As we can see from Table 1, the average session length is
comparatively smaller in day-2 and day-3 than that in
day-1 and day-4. Around 3 percent of audit events on
day-2 and day-4 are due to intrusive activities whereas
less than 0.80 percent of audit events in day-1 and day-3
data are from normal activities. In terms of sessions,
almost one-fourth of the sessions in day-2 and one-twelfth
of the sessions in day-3 are intrusion sessions. Day-1
contains mostly normal sessions, day-4 also does not have
too many intrusion sessions. A total of 176 instances of
nine types of intrusions are present in these four days of
data. Our objective is to detect any ongoing intrusions
rather than any particular type of intrusion, so our
concern is about how many of these intrusion sessions
we can detect.

We use only the normal events of the first two days of
data for training. Day-1 and day-2 contain 740,995 and
1,283,903 audit events arising from 296 and 372 normal
sessions, respectively. Day-3 and day-4 are used for testing
which contain 2,232,981 and 893,603 audit events for normal
activities respectively. Numbers of audit events for intru-
sive activities in these two days are 16,524 and 31,476
arising from 29 and 14 intrusion sessions respectively. Day-
3 contains 339 sessions and day-4 contains 447 sessions in
total comprising both normal and intrusive sessions. In the
large data set, an intrusion occurs in one session only.

3.3 Problem Representation

A BSM audit record for each event contains a variety of
information including the event type, user ID, group ID,
process ID, session ID, the system object accessed, and so
on. As discussed in Section 2.1, in this study we extract and
use the event type from the record of each audit event.
There are 284 different types of BSM audit events from
Solaris 2.5. All the 284 types of audit events are considered
in this study.

Activities on a host machine are captured through a
continuous stream of audit events, each of which is
characterized by the event type. For intrusion detection,
we want to build a long-term profile of normal activities,
and to compare the activities in the recent past to the long-
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term norm profile for detecting a significant deviation. We
define activities in the recent past from time tÿ k to time t
by a vector of �X1; X2; . . . ; X284� for the 284 event types
respectively, based on the exponentially weighted moving
average technique [20]. At time t, the audit events in the
recent past from time tÿ k to time t are summarized as
follows:

Xi t� � � � � 1� 1ÿ �� � �Xi tÿ 1� � �5�
if the audit event at time t belongs to the ith event type

Xi t� � � � � 0� 1ÿ �� � �Xi tÿ 1� � �6�
if the audit event at time t is different from the ith event
type, where Xi�t� is the observed value of the ith variable in
the vector of an observation at time t, � is a smoothing
constant that determines k or the decay rate, and
i � 1; . . . ; 284. The most recent observation at time t receives
a weight of �, the observation at time tÿ 1 receives a weight
of ��1ÿ ��, and the observation at time tÿ k receives a
weight of ��1ÿ ��k. Hence, Xi�t� represents an exponen-
tially decaying count of event type i, measuring the

intensity of event type i in the recent past. A multivariate
observation, �X1; X2; . . . ; X284�, represents the intensity
distribution of various event types.

In this study, we initialize Xi�0� to 0 for i � 1; . . . ; 284.
We set � to 0.3, a common value for the smoothing
constant [21]. Fig. 2 shows the decay effect of the
smoothing constant 0.3.

Hence, for each audit event in the training and testing
data, we obtain a vector of �X1; . . . ; X284�. For example,
given the following stream of audit events:

t � 0; 1; 2; 3; . . .
EventType3; EventType8; EventType1; . . .

At t � 0, all variables in the vector of �X1; . . . ; X284� have a
value of 0. At time t � 1, X3 has a value of

0:3 �� 0:3 � 1� 0:7 � 0�;
and all other variables have a value of 0. At time t � 2, X3

has a value of 0:21�� 0:3 � 0� 0:7 � 0:3), X8 has a value of
0:3�� 0:3 � 1� 0:7 � 0), and all other variables have a value
of 0. At t � 3, X3 has a value of 0:147�� 0:3 � 0� 0:7 � 0:21),
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X8 has a value of 0.21 (� 0:3 � 0� 0:7 � 0:3), X1 has a value
of 0.3 (� 0:3 � 1� 0:7 � 0), and all other variables have a
value of 0.

The long-term profile of normal activities measured by the
284 variables is captured by the sample mean vectorX and the
sample covariance matrix S. The audit events for normal
activities in the training data give us a sample of
�X1; . . . ; X284�'s to obtain the sample mean vector X and
the sample covariance matrix S.

For each of the audit events in the testing data and the
corresponding observation of �X1; . . . ; X284�, we compute
the T2 statistic according to formula (3). The T2 value is
small if the observation is close to the norm profile.

To determine the upper limit of T2 in terms of T 2 � 3ST 2

as the signal threshold, we need to compute T 2 and ST 2 . For
the small data set, we use the T2 values for the first half
(first 703 audit events) of the 1,406 audit events for normal
activities in the testing data to obtain T 2 and ST 2 . For the
large data set, we use T2 values for the 740,995 and
1,283,903 audit events for normal activities in day-1 and
day-2 data, respectively, to obtain T 2 and ST 2 . The upper
limit, T 2 � 3ST 2 , is then used to determine for which events
in testing data we should generate signal. For small data,
we compute T2 values for each event in the second half (last
703 audit events) of the 1,406 audit events for normal
activities and 1,225 audit events for intrusive activities in
the testing data and determine which events we should
signal. For the large data set the testing days are day-3 and
day-4 which contain 2,232,981 and 893,603 audit events for
normal activities and 6,524 and 31,476 audit events for
intrusive activities, respectively. The T2 value for each of
these events is compared with the signal threshold, and if it
exceeds the threshold, we signal the audit event as
anomalous.

There is only a small amount of audit data in the small
data set. This might cause an overfitting problem. However,
in the small data set only 49 event types appear. Hence, to
prevent the overfitting problem, we use only 49 variables in
the T2 test and the X2 test for the small data set.

4 RESULTS AND DISCUSSIONS

This section describes the results obtained by applying the
T2 test and the X2 test to the small and the large sets of
audit data, as described in the previous section, to test the
performance of these two techniques.

4.1 Results for the Small Data Set

Table 2 summarizes the statistics (minimum, maximum,
average and standard deviation) of the T2 values for 1,406
audit events of normal activities and 1,225 audit events of
intrusive activities. As shown in Table 2, the T2 values of
the audit events for normal activities are, on average,

smaller than the T2 values of the audit events for intrusive
activities. Note that the smaller the T2 is, the closer the audit
event is to the norm profile.

Using the T2 values for the first 703 audit events for
normal activities in the testing data, we obtain 10.4, 16.0 and
58.4 for T 2, ST 2 , and T 2 � 3ST 2 , respectively. That is, the
upper limit of the T2 values for the audit events of normal
activities is 58.4 as a signal threshold. If a T2 value for an
audit event is greater than 58.4, we signal this audit event as
anomalous.

When we use the upper limit of 58.4 as a signal threshold
to examine the T2 values for the remaining 703 audit events
of normal activities, we have signals for 15 audit events of
normal activities. This indicates a 2 percent (� 15=703) false
alarm rate by audit event. A false alarm is a signal when the
audit event comes from normal activities. When we use the
upper limit of 58.4 as a signal threshold to examine the
T2 values for the 1,225 audit events of intrusive
activities, we have 465 signals. The detection rate by
audit event is 38 percent (� 465=1225). To reduce the
false alarm rate of the T2 test to 0 percent, we can use
126Ðthe maximum T2 value of the audit events for normal
activities in the testing data as a signal threshold. Using this
signal threshold, we obtain the detection rate of 16 percent.

The performance of the T2 test is not as good as the
performance of the X2 test on the same set of testing data
as presented in Section 2. Using the X2 values for the first
703 audit events for normal activities in the testing data,
we obtain 6.85 for X2 � 3SX2 as the upper limit of X2

values for normal activities. Using the upper limit of 6.85
as a signal threshold to examine the X2 values for the
remaining 703 audit events of normal activities and the
1,225 audit events of intrusive activities in the testing data, we
obtain 0 percent false alarm rate by audit event and 75 percent
detection rate by audit event. The pair of 0 percent false alarm
rate and 75 percent detection rate from the X2 testing
results are better than the pair of 2 percent false alarm rate
and 38 percent detection rate and the pair of 0 percent false
alarm rate and 16 percent detection rate from the T2 testing
results.

Since an intrusion session corresponds to one intrusion,
we can signal a session as intrusive when there is a signal
on at least one audit event in that session. Using the upper
limit of 6.85 as a signal threshold, the X2 test yields 0 percent
false alarm rate by session and 100 percent detection rate by
session. Using the maximum T2 value of audit events for
normal activities in the testing data as a signal threshold, the
T2 test also achieves 0 percent false alarm rate by session and
100 percent detection rate by session. Both X2 test and T2 test
yield ideal performance when we analyze performance by
session.

816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

TABLE 2
The Statistics of the T2 Values for Normal and Intrusive Events in the Testing Part of the Small Data Set



For a given test, different signal thresholds lead to
different pairs of false alarm and detection rates that
describe the performance of the test according to signal
detection theory [28]. A Receiver Operating Characteristic
(ROC) curve plots pairs of false alarm rate and detection
rate as points when various signal thresholds are used. Fig. 3
shows the ROC curve of the X2 test and the ROC curve of the
T2 test by plotting pairs of false alarm rate by audit event and
detection rate by audit event. The nearer the ROC curve of a
test is to the upper-left corner (representing 100 percent
detection rate and 0 percent false alarm rate), the better the
performance of the test is. Since the ROC curve of the X2

test is nearer to the upper-left corner than the ROC curve of
the T2 test (see Fig. 3), the X2 test performs better than the
T2 test in intrusion detection with respect to both false
alarm rate and detection rate.

4.2 Results for the Large Data Set

Table 3 summarizes the statistics (minimum, maximum,
average, and standard deviation) of the T2 values for the
testing data that include 3,174,584 audit events of normal
activities and 48,000 audit events of intrusive activities in
total. As shown by the statistics in Table 3, the T2 values of
the audit events for normal activities are in average smaller
than the T2 values of the audit events for intrusive
activities. Note that the smaller the T2 is, the closer the
audit event is to the norm profile.

Using the T2 values for the normal activities in the
training data, we obtain 2:664802E� 04, 4:059345E� 04,
and 1:484284E� 05 for T 2, ST 2 , and T 2 � 3ST 2 , respectively.
That is, the upper limit of the T2 values for the audit events
of normal activities is 148,428.4 as a signal threshold. If a T2

value for an audit event is greater than 148,428.4, we signal
this audit event as anomalous.

When we use the upper limit of 148,428.4 as a signal
threshold to examine the T2 values for the audit events
of normal activities during testing data, we have signals
for 27 audit events of normal activities. This indicates
0.0008 percent (� 27=3174584) false alarm rate by audit
event. When we use the upper limit of 148,428.4 as a signal
threshold to examine the T2 values for the audit events of
intrusive activities during testing data, we have 142 signals.
The detection rate by audit event is 0.3 percent (� 142=48000)
only.

Using the X2 values for the normal activities in the
training data, we obtain 4:975038E� 02 for X2 � 3SX2 as the
upper limit of X2 values for normal activities. Using the
upper limit of 497.5038 as a signal threshold to examine the
X2 values for the audit events of normal activities and
intrusive activities in the testing data, we obtain 0.1 percent
false alarm rate by audit event and 1.36 percent detection
rate by audit event.

Fig. 4 shows the ROC curves from the X2 test and the T2 test
by plotting pairs of false alarm rate by audit event and
detection rate by audit event. We do not get good perfor-
mance from any of these techniques. X2 achieves 90 percent
intrusion detection rate only after 40 percent false alarm rate,
whereas the performance of T2 is not good at all. Many
normal events are signaled and many intrusion events are
missed. Therefore event-wise analysis does not yield good
performance.

We also conduct a session-wise analysis of the results. In
order to do the session-wise analysis, we group the T2 and
X2 values for the audit events according to each session and
count how many of the audit events inside that session are
signaled. We divide the signal count by the number of audit
events in that session and call it ªsession signal ratio.º If the
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Fig. 3. The ROC curves of the T2 test and the X2 test for the event-wise analysis sor the small data set.

TABLE 3
The Statistics of the T2 Values for Normal and Intrusive Events in the Testing Part of the Large Data Set



session is an intrusion session, we expect a high session

signal ratio. If it is a normal session, we expect the session

signal ratio to be low. Table 4 summarizes the statistics

about session signal ratio for the large data set for T2.

Though the average session signal ratio for intrusion

sessions is low (0.94 percent), it is significantly higher than

that of the normal sessions (0.00003 percent). Therefore, if

we plot the ROC curve using the session signal ratio, it will

tell us how much separation we get among the session

signal ratio for normal sessions and attack sessions.
Fig. 5 shows that both X2 and T2 tests perform very well

in intrusion sessions from normal sessions through session

signal ratios. The T2 test achieves 95 percent intrusion

detection rate, whereas the X2 test achieves 60 percent

intrusion detection rate at 0 percent false alarm rate by

session. But after 5 percent false alarm rate X2 performs

better than T2 technique though the margin is not large.

4.3 Discussions

Figs. 3, 4, and 5 show that the X2 testing results are either

better than or comparable to the T2 testing results for

both the small and the large data sets. Both the T2 test

and the X2 test detect mean shifts. The T2 test differs from

the X2 test only in the T2 test's additional capability in

detecting counterrelationships. Considering the similarity

and difference between the T2 test and the X2 test, the better
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Fig. 4. The ROC curves of the T2 test and the X2 test for the event-wise analysis for the large data set.

Fig. 5. The ROC curves of the T2 test and the X2 test for the session-wise analysis for the large data set.
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or comparable performance of the X2 test indicates two

possibilities. First, intrusions manifest themselves mainly

through mean shifts in the intensity distribution of various

event types. Hence, the capability of the X2 test in detecting

mean shifts allows it to detect intrusions effectively. Second,

the additional capability of the T2 test in detecting

countershifts might pick up some normal noises and

variations leading to counterrelationships. Those counter-

relationships increase the variance of the T2 test values for

audit events of normal activities, and thus make the

boundary between normal activities and intrusive activities

less distinctive. This is confirmed by our observation from

the testing results that the variance of the X2 test values for

the audit events of normal activities is less than the variance

of the T2 test values for those audit events of normal

activities.
In addition to special means of attacking information

systems, intrusions usually need to use some means (e.g.,
commands such as ls) that also appear in normal activities.
Hence, we should not expect an intrusion detection
technique to signal every audit event in an intrusive
session. However, we should expect that the number of
signals during an intrusive session and the number of
signals during a normal session would be largely different
in general. Therefore, the session-wise analysis is expected
to be more reliable than the event-wise analysis as seen in
the testing results of this study.

In summary, despite of its ability to capture the
correlated structure of multiple variables and detecting
counterrelationships as well as mean shifts, the perfor-
mance of Hotelling's T2 test for intrusion detection is not as
good as the performance of the X2 test that detects only
mean shifts. Because intrusions may manifest more through
mean shifts than through counterrelationships, we can
suppress noises and variations in normal activities causing
counterrelationships to improve the accuracy of intrusion
detection. Note that without the computation of the
covariance matrix, the computational complexity of the
X2 test is much less than that of the T2 test. Hence, it
appears that a more scalable multivariate analysis
technique detecting mean shifts only is sufficient for
intrusion detection, possibly due to the nature of the
intrusion detection problem.
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