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Summary

Multivariate data sets are now produced in several types of

microscopy. Multivariate statistical methods are necessary

in order to extract the useful information contained in such

(image or spectrum) series. In this review, linear and

nonlinear multivariate methods are described and illu-

strated with examples related both to the segmentation of

microanalytical maps and to the study of variability in the

images of unit cells in high-resolution transmission electron

microscopy. Concerning linear multivariate statistical ana-

lysis, emphasis is put on the need to go beyond the classical

orthogonal decomposition already routinely performed

through principal components analysis or correspondence

analysis. It is shown that oblique analysis is often necessary

when quantitative results are expected. Concerning non-

linear multivariate analysis, several methods are first

described for performing the mapping of data from a

high-dimensional space to a space of lower dimensionality.

Then, automatic classification methods are described. These

methods, which range from classical methods (hard and

fuzzy C-means) to neural networks through clustering

methods which do not make assumptions concerning the

shape of classes, can be used for multivariate image

segmentation and image classification and averaging.

Introduction

Physical and chemical sensors provide data concerning the

physical and chemical state and composition of specimens.

At the microscopic level, even at very high resolution,

several different signals (or different attributes of the same

signal) can be recorded simultaneously, thus providing

multivariate data sets. Such multivariate data sets are

recorded more and more often, because of the intuitive idea

that multivariate measurements can provide information

well beyond the limits achievable with individual measure-

ments. However, this intuitive idea becomes a reality only in

the cases where data analysis methods are available for

extracting useful compact information from the enormous

amount of data recorded. From this point of view, one could

say that, although several groups of methods are already in

use, there is still a lot to do before the full recorded

information can be optimally extracted.

Since we are dealing with multivariate data sets, the

generic term for these data analysis methods (which often

rely on some kind of statistics) should be multivariate

statistical analysis. However, from the point of view of

terminology, the situation is slightly confused, because

multivariate statistical analysis (MSA) is the name generally

used for representing a specific group of methods dealing

with the analysis of data sets by linear methods. However,

linear methods (such as principal components analysis

(PCA), correspondence analysis (CA), Karhunen–Loëve

Analysis (KLA), . . .) represent only a small part of all

available methods; nonlinear methods are also very

promising, and will probably constitute the largest part of

further developments.

In this paper, I will attempt to cover nonlinear methods

as well as linear ones. On the other hand, analysis of data

sets (which, as we will see, can be considered as the

mapping onto a subspace) is not the only piece of

information extraction; another aspect consists of the

interpretation of the projections. Although several facets

can again be recognized, I will concentrate on the question

of data (or object) classification. Obviously, this aspect is

largely connected to the topics of pattern recognition and,

in some way, of artificial intelligence. Supervised classifica-

tion methods, which require a preliminary training phase

(the classifier is trained with examples constituting the

training set), can be used. Alternatively, unsupervised

classification methods can be attempted, where the data

are gathered into several classes without the help of an

‘expert’, on the basis of their information content

(signature) only.
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It should be stressed that some of the concepts and

methods described in this paper (linear MSA, classification

of images in the representation space) were introduced in

electron microscopy by researchers working in the field of

three-dimensional reconstruction of macromolecules (van

Heel & Frank, 1981; Frank & van Heel, 1982; van Heel,

1984, 1989; Frank, 1990; Borland & van Heel, 1990).

Although these methodological contributions and the great

success they have had in recent years in elucidating the 3D

structure of important biological macromolecules are not

described in this paper, their importance in the diffusion of

related (although different) techniques for materials science

applications should be recognized.

The outline of the paper is the following. In the next

section, I give some examples of multivariate physical data

sets and I introduce those that I will use for illustration in

the rest of the paper. The following section is devoted to

linear multivariate statistical analysis. Since these methods

are described in many textbooks (Lebart et al., 1984) and

are already in use in several laboratories, only a brief

description of them will be given. Emphasis will be put on

the extension of orthogonal MSA to oblique MSA. The

section thereafter will be devoted to nonlinear mapping, an

extension of linear MSA. Several approaches will be

discussed and illustrated, ranging from the minimization

of a criterion (cost function) to neural networks approaches.

The last section will be devoted to automatic classification. I

will concentrate on unsupervised classification, which does

not mean that supervised classification does not deserve

attention. After briefly describing some classical statistical

classification techniques (which make assumptions con-

cerning the shape of clusters in the parameter space), I will

put emphasis on new methods which do not make

assumptions concerning the shapes of classes.

Some examples of multivariate data sets

Multivariate data sets produced in the domain of physical

sciences (as well as in other scientific domains) are very

diverse in nature. They can be ‘simple data’, series of

spectra, series of two- or three-dimensional images,

spectrum-images, etc.

Examples of ‘simple’ data are:

X the results of measurements (concentrations of different

elements for instance) made at different positions on a

specimen. Examples are described in Quintana (1991) and

Quintana & Bonnet (1994a,b).

X different preparation conditions related to some char-

acteristics of the specimens obtained (see for instance the

paper by Simeonova et al. (1996), which concerns the

conditions of preparation of high-temperature supercon-

ducting thin films).

Examples of multivariate spectra are:

X sets of spectra recorded as a function of time (time-

resolved spectroscopy) (Ellis et al., 1985). Examples of

multivariate statistical analysis of such data sets can be

found in Bonnet et al. (1991) and Jbara et al. (1995).

X sets of spectra recorded as a function of position, through

an interface for instance (Tencé et al., 1995). Examples of

multivariate statistical analysis of such data sets can be

found in Gatts et al. (1995), Müllejans & Bruley (1995),

Brun et al. (1996) and Titchmarsh & Dumbill (1996).

Multivariate two-dimensional (2D) image sets include

(Bonnet, 1995a):

X sets of different elemental (or chemical) maps of a

specimen recorded in different microanalytical modes

(Auger, EELS, X-ray emission, X-ray fluorescence, X-ray

differential absorption). Examples of the processing of this

type of data can be found in Bonnet et al. (1992), Prutton et

al. (1990, 1996), Cazaux (1993), Quintana & Bonnet

(1994a,b), Colliex et al. (1994) and Trebbia et al. (1995). As

an illustration of this type of data, I have selected a series of

14 X-ray fluorescence maps of a specimen of granite

(courtesy of K. Janssens and collaborators, Department of

Chemistry, University of Antwerp: Wekemans et al., 1997).

The series is displayed in Fig. 1.

X sets of images of unit cells recorded by high-resolution

transmission electron microscopy (HRTEM) of interfaces

between two crystals. Such data sets have been analysed

(with the purpose of visualizing the gradual change of

composition across the interface) by pattern recognition

techniques (Ourmazd et al., 1990; De Jong & Van Dyck,

1990; Kisielowski et al., 1995). Their analysis by multi-

variate statistical methods has also begun (Rouvière &

Bonnet, 1993; Aebersold et al., 1996). I will also show some

possibilities of this technique. Such a data set is displayed in

Fig. 2.

Multivariate three-dimensional (3D) images can also be

obtained with some microanalytical techniques (secondary

ion mass spectroscopy (SIMS) (Van Espen et al., 1992) or

fluorescence confocal laser microscopy, for instance).

Techniques working with 2D images can be extended to

3D images relatively easily, thanks to the increasing

capabilities of computers.

Four-dimensional (4D) image data sets are, for instance,

3D images recorded as a function of time, a mode which

begins to be feasible in fluorescence (confocal or not)

videomicroscopy.

Spectrum-images (or a variant of them: image-spectra)

will be the multivariate data sets of choice at the beginning

of the 21st century (Jeanguillaume & Colliex, 1989).

Combining spatial and full spectral information, they will

mix the advantages of spectroscopy and microscopy.

Although several acquisition procedures are already in

use, in different fields of physics, chemistry, biology and

teledetection, the procedures for analysing the data sets are

still in their infancy and I will not address them in this

paper.
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Linear multivariate statistical analysis (LMSA)

The purpose of LMSA is to reduce the number of

components of the objects studied. This is useful (and

sometimes necessary) because a multivariate data set

always contains redundant information: the N measure-

ments are never completely independent and some correla-

tion (or anticorrelation) is always present. LMSA can help

both to reduce redundancy and to define a new representa-

tion space (onto which the components of the objects are

less correlated). This step is performed on the basis of the

variance–covariance matrix (classically, the concept of

variance is supposed to be one of the concepts connected

to the information. However, other information descriptors

can also be used (Bonnet, in preparation)).

Consider X as the data set, arranged as a matrix: rows are

objects (or individuals) and columns are descriptors (or

features, or variables) of these objects. For instance, if one

wants to classify a set of images, images are individuals and

pixel intensities are features. But if one wants to classify

pixels (image segmentation), rows are composed of pixels

and columns represent the different image contents for

every pixel.

Y ¼ X:Xt
ð1Þ

where Xt indicates the transposed matrix, Y is the variance–

covariance matrix (variances of the images are along the

diagonal, and covariances, which represent the exchange of

information between pairs of images, are off the diagonal).

The next step consists of computing the eigenvalues (and

eigenvectors) of the variance–covariance matrix. The

eigenvectors then correspond to the new representation

space. The associated eigenvalues are proportional to the

strength of the corresponding eigenvectors in the variance–

covariance matrix, that is to say the amount of information

carried by the new direction of representation (thus,

eigenvalues are sorted in descending order). Note that the

nature of an eigenvector is analogous to that of an original

individual (spectrum, image, . . .). They can thus be

displayed as spectra (eigen-spectra) or images (eigen-

images), which can help in their interpretation.

Now, an original individual can be described as a linear

combination of the eigenvectors:

Xi ¼ Sj aij Aj ð2Þ

where aij represents the weight (or score) of the object i on

the axis (eigenvector) number j. The scores of the different

Fig. 1. Example of multivariate image set. The image series consists

of 14 X-ray fluorescence maps of a specimen of granite (courtesy of

K. Janssens and collaborators, University of Antwerp). The aim

of the analysis is to segment the specimen area into regions of

homogeneous composition, which means labelling pixels according

to their content in the different images (pixels are represented by

vectors in a 14-dimensional space). If this labelling can be per-

formed successfully, further quantification and characterization of

the specimen can take place: the percentage of area occupied by

the different phases can be computed, for instance.

Fig. 2. Another example of a multivariate image set. The image ser-

ies is composed of 190 subimages (unit cells) extracted from a

high-resolution transmission electron microscope image of a

GaAs–GaAlAs interface. Here, the aim is to analyse the differences

between subimages and to deduce from them the variation of com-

position across the interface. Subimages are digitized as 25 × 25

pixels and can thus be described by a vector in a 625-dimensional

space.
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objects can thus also be displayed (for display purposes, two

scores, aij and aij’, are often represented simultaneously, for

all objects i ¼ 1 . . . N). The two display possibilities (of

objects and of objects’ descriptors) often help to interpret the

complete data set in terms of sources of information: how

many sources are present? what do they represent?

It should be stressed that the true number of sources of

information (M) is often smaller than the number of

components (N) in the experimental set. Thus, a large

compression of information can be performed. Since the

eigenvectors are orthogonal, noise uncorrelated with the

useful signal is rejected into specific components, which can

thus be eliminated after proper inspection. The same is true

for experimental artefacts (Hannequin & Bonnet, 1988;

Trebbia & Mory, 1990). Therefore, the next step may be to

reconstitute the data set after selecting some ‘useful’

components and discarding some ‘useless’ ones. Since the

decomposition is linear, there is no difficulty in following the

reverse path (Bretaudiere & Frank, 1986) for reconstituting

a ‘filtered’ data set.

As an example, I will consider the application of LMSA to

sets of images. After its introduction in electron microscopy

by the groups around Frank and van Heel, this technique

has also been applied successfully in the domain of

materials science and physics (Trebbia & Mory, 1990; Van

Espen et al., 1992; Geladi, 1992; Rouvière & Bonnet, 1993;

Quintana & Bonnet, 1994a,b; Aebersold et al., 1996;

Trebbia, 1996). Thus, I will just describe briefly how MSA

can be applied to an example such as the one represented in

Fig. 1 (series of microanalytical maps). Then, I will

introduce the discussion concerning the need to go further

than the orthogonal LMSA described above.

The results of applying the orthogonal MSA to the 14

images of Fig. 1 are displayed in Fig. 3: Fig. 3(a) represents

the first four factorial images obtained after applying

correspondence analysis (one variant of LMSA: see Trebbia

& Bonnet, 1990, for an extended description) to this data

set. Figure 3(b) represents the scores of the 14 images on

the first two factorial axes, which account for 71% and 20%

of the total variance, respectively. Altogether, these two

figures allow us to understand the content of the data set.

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

Fig. 3. Results of applying correspondence analysis to the series of

14 microanalytical images (Fig. 1): (a) first four factorial images;

(b) scores of the 14 images onto the first two factorial axes. See

text for the interpretation of these results.

Fig. 4. An illustration of the need to go from

orthogonal MSA to oblique MSA when

quantitative results are expected. (a,b)

Two basic (reference) images. (c–h) Six

images obtained from a linear combination

of the two basic images. These images are

supposed to represent an experimental

multivariate data set (Poisson noise was

added to each image independently). (i,j)

The first two orthogonal factorial images

were obtained after principal components

analysis. The corresponding scores are dis-

played in Fig. 5. (k,l) The two oblique fac-

torial images were obtained after oblique

analysis. They compare very well with the

original basic images (a,b).
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The first source of information, represented by the factorial

axis number 1, opposes Ca and Sr (right of Fig. 3b) to Fe, Ti

and Mn (left of Fig. 3b). This corresponds to the spatial

localization displayed in the first factorial image in Fig. 3(a)

(left). The second source of information, represented by the

factorial axis 2, opposes Ca, Fe, Fi, Mn (top of Fig. 3b) to K

(bottom of Fig. 3b). This corresponds to the spatial

localization displayed in the second factorial image in Fig.

3(a). Altogether, we can anticipate that there are finally

three groups of different regions within the analysed area.

This will become more evident when other tools will be used

for analysing this data set (see the following sections).

For introducing the need to go towards oblique analysis, I

will first choose a simple example. I would like to consider

the set of simulated images displayed in Fig. 4. These images

were simulated according to the following protocol: first,

two basic images (representing two sources of information)

are created (Fig. 4a,b); then, these basic images are linearly

combined to produce six new images, which are supposed to

constitute the experimental data set (Poisson noise was

added in order to produce a more realistic data set) (Fig. 4c–

h). These six images were submitted to principal compo-

nents analysis (PCA), which means that no normalization

was applied to the data set before the variance–covariance

analysis. The first two eigen-images obtained are displayed

in Fig. 4(i,j) while the scores of the different images on the

principal axes 1 and 2 are displayed in Fig. 5 (numbers 1–6

represent the six images 4c–h). One can notice that,

although displaying some similarity with the two basic

images, the two eigen-images are not strictly equivalent (the

eigen-images are still a mixture of the two sources). Thus,

the scores on the two principal axes cannot be used as

estimates of the weighting factors. One can reformulate this

by saying that, in general, orthogonal LMSA is not a

quantitative method (see also, for instance, the comment of

T. Walker in the discussion of Trebbia, 1996).

The reason for this drawback is that LMSA decomposes

the data set into orthogonal components. On the other

hand, the real sources of information have very little chance

to be orthogonal. Thus, the eigenvectors do not, in general,

represent the basic sources of information faithfully and the

scores on the principal components do not correctly

represent the weighting factors.

If one wants to access the elementary sources of

information, one must perform an additional step after the

orthogonal decomposition. This step is often called oblique

analysis or factor analysis (Malinowski & Howery, 1980)

because it consists of rotating the significant orthogonal

axes until they are consistent with the nature of the basic

information sources. Contrary to the orthogonal analysis

which is completely assumption-free (except for the choice

of one of the variants of LMSA), oblique analysis implies

that some additional information is injected by the end-user.

This extra information (see Trebbia & Bonnet (1990) for a

discussion on the role of extra information in image

processing) can take many different forms, indicating that

many variants of oblique analysis have been suggested,

ranging from completely interactive forms to completely

automatic variants. In completely interactive variants, the

end-users must supply the basic components (or, equiva-

lently, they must specify the scores of M images onto the M

different basic components). Examples of this way of

proceeding can be found in Garenström (1986) and Sarkar

et al. (1993). In chemometrics, this kind of approach is

called partial least-squares (PLS) (Geladi & Kowalski, 1986)

or principal component regression (PCR) (Esbensen et al.,

1992).

For performing completely automatic oblique analyses,

some additional knowledge concerning the basic compo-

nents and the scores of the individuals on them must be

assumed. For instance, a frequent assumption is that they

both verify a positivity constraint (Di Paola et al., 1982;

Benali et al., 1994). With this assumption, several

algorithms can be used for performing the rotation of axes

automatically (oblimax method, varimax method, etc.).

Returning to the example illustrated in Figs. 4 and 5, we

can improve the results if we can provide some extra

knowledge. For instance, if we know that image 1 is a linear

combination of the two basic images with weighting factors

1 and 0·5, and image 2 is a linear combination with

weighting factors 1·2 and 0·4, the solution to the problem

Fig. 5. Scores of the six images (Fig. 4c–h), numbered 1–6, on the

first two orthogonal factorial axes (0 and 1) obtained after principal

components analysis. These scores (coordinates on orthogonal

axes) do not correspond to the weighting factors used for the simu-

lation. Thus, PCA is not a quantitative method in this situation

(because the two sources of information (Fig. 4a,b) are partly cor-

related). After oblique analysis, the two axes 0
0

and 1
0

are obtained.

At which point, the scores (coordinates) on these two axes corre-

spond perfectly to the weighting factors. Thus, oblique analysis is

a quantitative method (provided, of course, the experimental

images satisfy the underlying assumption of linear combination).

6 N. BONNET
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is trivial. The rotation matrix T can be obtained easily by

linear regression. Each of its columns is given by

Tl ¼ ðwtwÞ
¹1wtwl ð3Þ

where w is the matrix of (orthogonal) eigenvectors and wl is

a column vector representing the weights of the different

images on the oblique axis l.

The new (rotated) axes are also displayed in Fig. 5 (axes

00, 10 . . .). The basic images obtained after rotation are

displayed in Fig. 4(k,l) and, as expected, are now very close

to the basic images (Fig. 3a,b). The new scores (coordinates

of the experimental images onto the oblique axes) can be

obtained (0·3 and 0·8 for image 6, for instance) and are in

fact very close to the true ones, which means that oblique

analysis is a quantitative method.

It could be argued that the extra information provided by

the end-user in this case is, in fact, a large part of the

solution, and that this solution could have been obtained

directly by linear regression, without the intermediate step

of orthogonal LMSA. This is partly true, but the role of the

orthogonal MSA step is to prepare a proper application of

the linear regression (cleaning the data set by rejecting part

of the noise in specific components, determining the number

of components, etc.). Also, as mentioned above, less

stringent extra information can sometimes be used. In the

previous example, the same result can be obtained by using

the non-negativity constraint only.

Of course, the procedure is not limited to two sources of

information. In fact, one important step in the procedure

consists of determining the ‘true’ number of sources of

information (or degrees of freedom) present in the original

data set. New tools are presently being studied for getting

this piece of information.

Examples of this way of proceeding can be found in

Hannequin & Bonnet (1988), Bonnet & Trebbia (1992),

Geladi (1992) and Trebbia et al. (1995).

To conclude this section, I will come back to the possible

application of MSA to HREM. In Rouvière & Bonnet (1993),

we performed a preliminary investigation of this possibility

on experimental and simulated images of the GaAs/AlGaAs

system. Concerning the experimental interface, we showed

that LMSA was able to perform as well as the pattern

recognition technique developed by Ourmazd et al. (1990)

for the determination of the averaged chemical profile

across an interface. In addition, it offers significant

advantages which come mainly from the fact that

intermediate results can be obtained and displayed (namely,

the different eigen-images). These intermediate results may

be very useful for a detailed interpretation of the data set

content. For instance, we were able to depict a very small

drift of some cells relative to others, simply because the

second eigen-image was not centrosymmetric. These inter-

mediate results provide a clear advantage over methods

which are based only on the ‘blind’ computation of a single

parameter.

However, it should be stressed that the chemical profile

across the interface has been easily obtained (after careful

registration) only because the entire information contained

in the data set was concentrated on one factorial

component only (axis 1 represents the variation in Al

concentration). In this case, the results are directly

quantitative. If this were not the case (if a source of

information other than Al concentration were present),

none of the scores on the different orthogonal factorial axes

would represent the Al concentration. In order to obtain

this concentration, it would be necessary to perform oblique

analysis, that is to rotate the axes in such a way that one

oblique axis represents the concentration and the other

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

Fig. 6. Multivariate analysis of a series of

simulated HRTEM images of the GaAlAs

system. (a) Series of 21 × 3 images simu-

lated at a constant defocus value

(z ¼ 10 nm): the three rows correspond to

three different thicknesses (t ¼ 5, 6 and

7 nm), the 21 columns correspond to 21

different compositions (content in Al vary-

ing from 0% to 100%). (b) First three fac-

torial images (in descending order). (c)

Scores of the 21 × 3 images on the first

two factorial axes. Each original image is

a linear combination of the first factorial

images displayed in (b) with the weighting

coefficients displayed in (c).
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oblique axis represents the other source of information

(thickness effect, for instance).

This point is illustrated below. [001] HREM images of

AlxGa1–xAs crystals were simulated by J. L. Rouvière (CEA

Grenoble, France) for different compositions and thicknesses

(8 nm # t # 12 nm, around the optimum thickness defocus

condition for chemical analysis) (see fig. 4 in Rouvière &

Bonnet, 1993). Figure 6(a) shows simulated images obtained

for three different thicknesses (rows) and 21 values of the Al

concentration (columns). After correspondence analysis, it

appears that the whole information is spread onto two

orthogonal eigenvectors, representing 91% and 9% of the

total variance. The first three factorial images are displayed in

Fig. 6(b) and the scores onto the first two axes are displayed in

Fig. 6(c). As expected, one can see that the main information

source (chemical composition) is conveyed by axis 1, and the

second source of information (thickness effect) is mostly

conveyed by axis 2. Unfortunately, these two sources of

information are not completely orthogonal (otherwise, the

three curves should be parallel) and thus the coordinate on

axis 1 is not directly related to the chemical composition,

whatever the thickness. The same is true when a focus

variation is added to the variation in composition. This is

illustrated in Fig. 7. Figure 7(a) represents images of cells

simulated for four defocus values (rows) and 21 composition

values (columns). The first three factorial images are displayed

in Fig. 7(b) and the scores on the first two axes (which

represent 63% and 18% of the total variance, respectively) are

displayed in Fig. 7(c). Again, one can see that the effects of

composition and defocus are not completely independent. As

expected, the effect of defocus is even more severe than the

effect of thickness. Although this fact can be considered as a

drawback, it could also be used in a positive manner when

comparing experimental images to simulated ones: instead of

using one single experimental image for this comparison, it

would probably be better to consider focus series (for

experimental and for simulated images). Then, performing

multivariate statistical analysis on the mixed series (one

experimental focus series and several simulated focus series),

one can expect to be able to identify the correct structure (or

composition) according to its trace in the factorial space

spanned by axes 1 and 2.

Nonlinear multivariate statistical analysis (NLMSA)

As described above, the aim of MSA is to reduce (or

concentrate) the information contained in a multi-

dimensional data set into a set of reduced dimension.

Besides linear methods, nonlinear methods can also be

envisaged. Besides projection (also called mapping) meth-

ods, other tools are also available for analysing these data

sets. Classification methods, for instance, may play an

important role in pattern recognition and/or segmentation.

I will describe some methods belonging to these two groups

(mapping and classification).

Nonlinear mapping methods

I have described above how LMSA allows us to concentrate

a multidimensional set (which can be represented in a

parameter space RN) into a data set with lower dimension-

ality (RM, M < N). This was done by rotating the axes of

representation so that the variance along the new low order

axes is maximal.

Fig. 7. Multivariate analysis of a series of

simulated HRTEM images of the GaAlAs

system. (a) Series of 21 × 4 images simu-

lated at constant thickness (t ¼ 6 nm): the

four rows correspond to four different defo-

cus values (z ¼ 5, 10, 15 and 20 nm), the

21 columns correspond to 21 different

compositions (content in Al varying from

0% to 100%). (b) First three factorial

images (in descending order). Note: these

eigen-images look similar to the negatives

of those in Fig. 5(b). The sign of eigen-

images does not have any meaning by itself:

it must be combined with the sign of the

scores for a proper interpretation. (c) Scores

of the 21 × 4 images on the first two factor-

ial axes. Each original image is a linear

combination of the first factorial images

displayed in (b) with the weighting coeffi-

cients displayed in (c).

8 N. BONNET
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The same result can be obtained (sometimes with more

efficiency, which means with a lower final dimensionality)

by nonlinear mapping, a transformation which does not

involve only linear combinations of the original coordinates.

Several nonlinear mapping methods have already been

suggested: heuristic approaches, minimization of a distor-

tion measure and neural networks approaches.

(a) A heuristic approach

In Bonnet et al. (1995), we have suggested a heuristic

approach in order to generalize the concept of scatterplot

often used when the data set is composed of two or three

images only. The idea is first to reduce the N-dimensional

data set to two synthesized images. These images are

obtained by coding the information ‘seen by observers

looking at the N-dimensional parameter space’. This means

that the grey levels of the transformed images are the

distances from the N-dimensional pixels of the original data

set to the observers. The scatterplots can be built by

combining two of these synthesized images. The choice of

the coded distance depends on the nature of the observers

chosen, which is of a heuristic nature. For instance, they

can be the corners (or the diagonals) of the N-dimensional

hyper-rectangle. This method is easy to implement and very

fast, but its drawback is that there are many possibilities for

choosing the observers. Some of them lead to interesting

results (displaying a large part of the information contained

in the original data set), but others are not as interesting

(part of the information is hidden). Since our aim was

mainly exploratory data analysis (more specifically, disco-

vering the number of clusters in the scatterplot built from

two mappings of the data set), our choice between ‘good’

pairs of maps and ‘bad’ pairs was essentially made on a

visual basis. However, this may prove insufficient and more

objective methods may be needed.

(b) Nonlinear mapping based on the minimization of a

distortion criterion

A long time ago, American psychologists developed methods

for reducing the dimensionality of ‘simple’ multidimensional

data sets (such as the results of enquiries, soundings, etc.).

These methods include multidimensional scaling (MDS)

(Kruskal, 1964), Sammon’s mapping (Sammon, 1969) and

other variants.

They start from the simple idea that when projecting N-

dimensional objects onto a space of reduced dimension, the

distances between these objects must be preserved as far as

possible. Thus, a criterion E describing this preservation

may be used to evaluate the quality of the mapping. It can

also be used as an intermediate for designing the mapping

algorithm itself. The different variants of this approach rely

on different definitions of the preservation criterion. For

instance, MDS is based on the criterion

EMDS ¼
X

i < j

ðDij ¹ dijÞ
2

ð4Þ

where Dij is the distance between objects i and j in the

original space and dij is the distance between the same

objects in the projection space.

Sammon’s mapping is based on the criterion*

ES ¼
X

i < j

ðDij ¹ dijÞ
2
=Dij: ð5Þ

As an example, the Sammon’s mapping algorithm consists

of moving each object projection (in the M-dimensional

space) according to the rule deduced from a minimization of

ES according to the Newton’s approach:

~xiþ1 ¼ ~xi þ a:~A=B ð6Þ

where

A ¼
∂E

∂xil

¼ ¹
X

j

Dij ¹ dij

Dijdij

� �

ðxil ¹ xjlÞ

and

B ¼
∂2E

∂x2
il

¼

¹
X

j

1

Dijdij

Dij ¹ dij ¹
ðxil ¹ xjlÞ

2

dij

1 þ
Dij ¹ dijÞ

dij

� �

" #

:

This approach can be used for mapping the different types of

multidimensional data discussed above. In the case of

spectra or images, there are two possibilities: projection of

spectra/images or projection of energy channels/pixels.

Below, we illustrate these two possibilities.

Projection of images. The aim is to identify several groups of

images within an image set. This approach is often used in

high-resolution electron microscopy of isolated macromole-

cules, where it is necessary to compute an average of similar

images (views) before performing three-dimensional recon-

struction. Although only linear mapping is usually performed

in this context, one application of nonlinear mapping

(Radermacher & Frank, 1985) can be noticed. The approach

could also probably take place in materials science problems

(classification of unit cells in HRTEM of crystals, for instance).

Figure 8(a) displays a set of 15 noisy simulated images.

These images are composed of 64 × 64 pixels, which means

that each of them can be represented in R4096. Figure 8(b)

represents the result of the mapping onto a two-dimensional

space (R4096
→ R2). Each point represents an image. From

this, it is easy (a) to recognize that there are three groups of

images, (b) to know which image belongs to which group

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

* Denominators usually appearing in the expressions of the MDS and Sammon’s

criteria have been suppressed, since they are constant and thus are not involved

in the minimization process.
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(automatic classification procedures will be described in the

next section) and (c) to obtain an averaged view of the

images within each class.

(Figure 12(a) is the result of mapping the 190 subimages

of Fig. 2 onto a two-dimensional space (R625
→ R2). The

number of classes is more difficult to estimate in this

situation.)

Projection of pixels. The aim is now to identify several

groups of pixels within a multivariate image. This approach

can be used to segment such an image (which represents

different signals recorded from the same area of a specimen,

in any type of microanalysis for instance), in order to

visualize the different regions with homogeneous composi-

tion, and perform quantification in terms of area or spatial

distribution of the different phases.

(Figure 11(a) represents the result of mapping the 1560

pixels of images in Fig. 1 onto a two-dimensional space (R2)

according to the Sammon’s algorithm. One can easily see

that there are three main clouds (one of them could still be

split into two subclasses). From this information, a

classification of the different pixels into three (or four)

classes can be performed, either interactively, by selecting

the boundaries of classes in the two-dimensional map with a

graphic mouse (this approach is often named ‘interactive

correlation partitioning’: ICP), or automatically (see the

next section: I suggested naming this approach ‘automatic

correlation partitioning’: ACP) (Bonnet, 1995b).)

(c) Neural network approach to nonlinear mapping

Artificial neural networks (ANNs) have been developed as

an alternative to classical statistical analysis for solving

pattern recognition problems. One of the advantages they

are assumed to possess is their ability to cope with nonlinear

problems as well as with linear ones. Several ANNs have

been devised for solving the mapping problem. The self-

organizing map (SOM) (Kohonen, 1984) and the Diabolo

network (Kramer, 1991) are examples of such nets. I will

describe and illustrate the SOM technique only. It consists of

defining a set of neurones, arranged on a regular grid (a

square grid is often used, and corresponding to a projection

onto R2, although one-dimensional or three-dimensional

grids have also been used). An N-dimensional vector is

attached to each neurone of the grid composed of PM

neurones (M ¼ 2 in the case of the square grid). The aim of

the first phase (often called the training phase, although

there is no learning in the sense of supervised procedures) is

to dispatch all the objects (pixels, images, spectra or energy

channels) available among the neurones in such a way that

the vector associated with every neurone is similar to all the

vectors describing objects associated with this neurone. For

this purpose, a ‘competitive’ learning procedure is used:

each original object is compared to all the prototypes

(neurones) and a ‘winner’ is selected according to a

comparison rule (distance, scalar product . . .). Then the

neurones (prototypes) associated with the winner and its

neighbours are updated according to their similarity with

the object being processed:

~ptþ1 ¼ ~pt þ aðt þ 1Þ:ð~o ¹ ~ptÞ ð7Þ

where ~pt and ~ptþ1 are the prototype vectors at iteration t

and t þ 1, ~o is the processed object and a(t þ 1) is the

learning rate at iteration t þ 1.

This process is repeated until convergence, with empirical

rules for decreasing the size of the neighbourhood and the

updating coefficient a. At the end of the process, all objects

are mapped in such a way that similar objects are

represented by neurones close to each other, thus preser-

ving the topology of the original data set, hence the name

‘topological map’.

An example is given in Fig. 9, which represents the

mapping of the 190 unit cells (Fig. 2) onto a one-

dimensional space (R1) composed of four neurones. Figure

9(b) represents the four prototypes obtained after the

training phase. Figure 9(a) represents the labelling. Each

unit cell is represented by the number of its associated

neurone.

Fig. 8. Illustration of Sammon’s mapping procedure applied to

images (or subimages). (a) Fifteen simulated images belonging to

three different classes. (b) Mapping of the 15 images (size

64 × 64; dimension 4096) onto a two-dimensional parameter

space according to the Sammon’s algorithm (R4096
→R2). (c) Prob-

ability density function estimated from the result of mapping,

according to the Parzen window technique. From this estimated

pdf, it can be recognized that three classes of images are present.

Other tools allow us to determine which images belong to the dif-

ferent classes (see below).

10 N. BON NET
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This approach was used by Marabini & Carazo (1994) for

classifying sets of macromolecules. The advantages of this

method as compared to the linear MSA approach are

discussed in their papers. Further studies are necessary for

comparing this mapping technique with other nonlinear

ones in different situations.

Automatic clustering

Besides dimensionality reduction, another task consists of

classifying the different objects which constitute the

multivariate data set. The purpose of this task is often to

compute an average of the different objects which belong to

the same class (Van Heel & Frank, 1981). In microanalysis,

it may also be to segment multivariate images into regions

of homogeneous composition, and subsequently to char-

acterize them (Bonnet et al., 1997).

Some of the methods for automatic clustering work in the

original multidimensional space (RN) while others can only

work in a space of reduced dimensionality, which implies a

preliminary mapping (RN
→RM).

I will describe some of the methods available for

performing automatic clustering. The name ‘clustering’

refers to unsupervised classification. I will not address the

task of supervised classification in this paper. Some

examples of the applications of supervised classification for

microscope images can be found in Tovey et al. (1992),

Livens et al. (1996) and Aebersold et al. (1996). These

methods range from classical statistical methods to new

methods working directly in a reduced parameter space and

to neural networks approaches. All of them aim to classify

all the objects available into a limited number of classes on

the basis or their similarity/dissimilarity. (Note that

contrary to supervised methods, the number of classes is

unknown and finding this number is also a part of the

clustering procedure.)

(a) A classical statistical method: the C-means techniques

The aim of this technique is to dispatch objects into a

selected number of classes, and to modify the statistical

characteristics of the classes accordingly, until the sum of

the within-class variances is minimized.

The practical algorithm is described in many textbooks

(Duda & Hart, 1973) and in Bonnet (1995b). Thus, I will

not reproduce it here.

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

Fig. 9. Results of the classification of the 190 subimages (see Fig. 2)

by the self-organizing map procedure: (a) results of classification

into four classes (the grey levels correspond to the labels of the dif-

ferent subimages after classification); (b) prototypes associated with

the four neurones of the one-dimensional map.

Fig. 10. Results of the classification of the

190 subimages (see Fig. 2) by the K-

means procedure: (a) results of classifica-

tion into two, three, four and five classes

(the grey levels correspond to the labels of

the different subimages after classification).

(b) Averaged subimages after classification

into four classes.
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Finding the number of classes consists of performing the

classification for a variable number of classes and trying to

optimize a criterion describing the quality of the partition.

Unfortunately, the many different criteria suggested do not

often lead to the same result, except for the trivial case of

very compact and well-separated classes. A partial list of the

criteria suggested can be found in Bonnet et al. (1997). A

criterion which often gives good results when the number of

classes is greater than three is the second derivative of the

total within-class variance.

Note that other graphical tools can also help in deciding

the number of classes, depending on the purpose of the

classification process. For instance, it is possible to display

the correlation coefficient between any pixel vector and the

vector representing its class centre (see Bonnet et al., 1997,

for more details). Once classification is made, averaging can

also be performed: the pixel vector is replaced by the pixel

vectors averaged over all pixels belonging to the same class.

This procedure leads to a dramatic improvement of the

signal-to-noise ratio, without the degradation of the image

resolution resulting from the application of low-pass filters.

Of course, this approach can also be used for classifying

images (or spectra) instead of pixels. This approach was

recently attempted by Aebersold et al. in the context of

HRTEM images of the (g, g0)-interface of an Ni base

superalloy, but this attempt was made within the framework

of supervised classification (which implies training the

classifier with examples). I illustrate the procedure within

the framework of unsupervised classification (clustering).

Figure 10(a)–(d) displays the result of classifying the 190

subimages (Fig. 2) into a varying number of classes (C ¼ 2,

3, 4 and 5). Figure 10(e) displays the result of averaging the

unit cells which belong to the same class, for a classification

into four classes (Fig. 10c).

(b) A variant of the C-means technique: the fuzzy C-means

technique

Although it works well for easy classification problems, the

C-means technique becomes rather sensitive to some pitfalls

when the problem is more complicated (overlapping

classes . . .). A variant of the technique was proposed within

the framework of fuzzy logic. (In order to avoid confusion,

the classical technique is now called the hard C-means

(HCM) technique.) The idea in the fuzzy C-means algorithm

(FCM) is that, during the iterative process, objects to be

classified should not be attached to a single class, but

attached to all the C classes, with different degrees of

membership (0 # mic # 1, with Sc mic ¼ 1, where i is the

object number and c is the class number).

It can be shown that this approach is often less sensitive

to the initialization and less prone to becoming stuck in the

local minima of the objective function to be minimized.

More details concerning this variant and the criteria which

can be used for determining the number of classes can be

found in Bonnet et al. (1997).

(c) An approach combining mapping and clustering, which do

not make assumptions concerning the shape of the classes

The two approaches (hard C-means and fuzzy C-means)

described above make assumptions concerning the shape of

the classes (these assumptions are made implicitly through

the use of the concepts of class centres and of distances to

these centres). These methods were developed in the context

of classical statistics, starting with the idea of Gaussian

mixtures. Standard implementations assume that classes

have hyperspherical shapes (when the Euclidean distance is

used) or hyperelliptical shapes (when the Mahalanobis

distance is used). Variants are able to cope with linear or

hyperplane shapes (Krishnapuram & Freg, 1992). However,

it is very difficult, within this framework, to cope with a

mixture of different class shapes.

If one wants to do so, one has to move towards other

kinds of techniques. One such approach consists of

estimating the probability density function (pdf) of the

underlying distribution and of partitioning the parameter

space according to the estimated pdf (Zhang & Postaire,

1994; Herbin et al., 1996). The first step can be

accomplished by the Parzen technique: the pdf is estimated

as the convolution of the point distribution (one object is

represented by one point in the parameter space) with a

smoothing kernel (Gaussian kernel or Epanechnikov

kernel). This result in a smoothed distribution, where

several modes can be identified as representing several

classes (see Fig. 11b,c).

The second step can be performed according to several

approaches. We have recently suggested using tools

available within the framework of mathematical morphol-

ogy (but which work on the estimated pdf instead of on the

original images). In Herbin et al. (1996), we have suggested

performing iterative thresholding of the estimated pdf and

applying the skeleton by influence zone (SKIZ) to the

thresholded pdf, in order to define the zones of influence of

the modes and thus partitioning the parameter space. In

Bonnet et al. (1997) we have suggested replacing the binary

SKIZ with its grey-level equivalent: the watershed. The

watershed technique is a powerful tool (Beucher & Meyer,

1992) for partitioning a space described by a pseudocontin-

uous function. Here, the seeds for the different regions (one

region in the parameter space represents one class) are

given by the modes of the estimated pdf. Then, a flooding

process is used for attaching the points of the parameter

space to one of the classes (waiting lists are used, as

described by Vincent, 1990). When all points are attached,

the partition of the parameter space is completed. The

remaining step is trivial: the real objects are classified

according to their position in the parameter space.
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It must be stressed that this method does not make any

assumption concerning the shape of the classes (represented

by clusters in the parameter space): the distance of a point

(in the parameter space) to the mode of the class is not used

in the partitioning process. Only the estimated pdf value at

this point is used to insert the point in the waiting list.

It must also be stressed that this method cannot be applied

directly to data in a high- dimensional space (neither the

Parzen window technique nor the watershed technique can

be applied in R1024 for instance, when images with 32 × 32

pixels are to be classified). Thus, in general, this technique

must be combined with one of the (linear or nonlinear)

mapping techniques described in the first part of this paper.

One key point of this method (as of any unsupervised

classification methods) is the determination of the number

of classes. This results from the choice of the parameter of

the smoothing kernel. At the present state of development of

this method, a curve is drawn displaying the number of

modes of the estimated pdf as a function of this parameter

(the standard deviation of the Gaussian kernel). Then,

values of the parameter corresponding to extended plateaus

of the curve can be selected. In general, they correspond to

several possibilities for the number of classes (or subclasses)

present in the data set. In the future, we hope to be able to

select the value of the smoothing parameter automatically.

Illustrations of the method: (i) classification of pixels. Figure 11

shows the result obtained from the segmentation of the

multivariate image (Fig. 1). Figure 11(a) is the result of

mapping the pixels onto a two-dimensional space (from R14 to

R2). Figure 11(b) displays the pdf estimated from Fig. 11(a)

(by the Parzen method). The pdf is displayed in three

dimensions (the third dimension represents the amplitude of

the estimated pdf) in Fig. 11(c). Figure 11(d) represents the

labelled parameter space: a label is associated with each mode

of the estimated pdf (Fig. 11b). Then each label is propagated

(by the watershed technique) so that each position of the

quantified parameter space is attached to one of the classes.

Figure 11(e) represents the final result: each pixel of the

multivariate image is associated with a label (and represented

by a grey level) according to the coordinates of its projection

onto the parameter space. As such, the homogeneous regions

are represented by the same label. Further quantification can

take place: for instance, the percentage of the area occupied

by the different regions can be computed.

(ii) Classification of images. Figure 12 shows the result of

applying the watershed-based classification technique to the

190 subimages (Fig. 2). Figure 12(a) is the scatterplot built

with the scores of these subimages onto the two first

factorial axes (after applying correspondence analysis).

Alternatively, a nonlinear mapping algorithm can also be

used for this first step. Figure 12(b) (left) is the probability

density function estimated from this point distribution

according to the Parzen technique. One can see that two

modes are apparent, which means that the data set can be

split into two classes. The result of applying the watershed

technique to divide the parameter space into two regions is

displayed in the middle of the row (Fig. 12c). Finally, the

different subimages may be classified according to their

projection onto the parameter space (right of the row: Fig.

12d). Figure 12(e)–(g) displays the same kind of results, but

with a smaller parameter of the Parzen kernel. In this

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

Fig. 11. Results of automatic multivariate image segmentation by

the watershed-based method. (a) Result of Sammon mapping: the

1560 pixels (Fig. 1) in a space of dimension 14 are projected

onto a two-dimensional space: each white point represents a

pixel. One can identify three main clouds of points, representing

three classes of pixels. (b) Smoothing of the parameter space is per-

formed according to the Parzen technique. The result is an estima-

tion of the probability density function. The three modes of the

estimated pdf are apparent. (c) Same result as in (b), but repre-

sented as a three-dimensional plot. (d) Partition of the parameter

space (a, b and c) with the watershed technique. Each position

(of the parameter space) is labelled (i.e. associated to one of the

three modes) according to the estimated values of the probability

density function. (e) Partition of the image space: each pixel is

labelled (the grey levels represent the labels) according to the posi-

tion of its projection (see a) in the labelled parameter space (d).
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situation, four modes of the estimated pdf are obtained (left

of the row), and four classes are displayed in the parameter

space (middle of the row) and in the image space (right of

the row).

(d) Neural network approaches to classification

One of the main applications of ANN is also automatic

classification. Multilayers feedforward networks are essen-

tially dedicated to supervised classification (a training phase

uses prototypes for adjusting the weights of interconnec-

tions and a second phase exploits the results of training, in

order to perform the classification of new data). Concerning

unsupervised classification, several neural networks archi-

tectures have been suggested, which will only be mentioned

briefly here, but would justify a deeper study for comparison

with classical approaches.

ART-based neural networks. The adaptive resonance theory

(ART) is based on the classical concept of correlation,

enriched by the neural network concepts of plasticity–

stability (Carpenter & Grossberg, 1987). Simply, an ART-

based neural network consists of defining as many

neurones as are necessary to split an object set into

several classes (one neurone represents one class) accord-

ing to a predefined vigilance parameter r. Each time a new

object is presented (each object is presented several times,

until convergence), it is compared to all existing neurones.

A winner is defined as the closest neurone to the object

presented. If a similarity criterion with the winner is

verified (resonance), the object is attached to the

corresponding class and the neurone descriptor (vector)

is updated. If not, a new neurone is created, whose

descriptor is initialized with the object vector. Of course,

the final number of classes is related to the value of the

vigilance parameter r.

Examples of the applications of this neural network

technique in chemical and physical sciences can be found in

Wienke & Buydens (1995) and Gatts et al. (1995).

Figure 13 is an illustration of the possibilities of this

approach for the classification of cells in HRTEM: Fig.

13(a)–(d) are the results of classification obtained with the

ART algorithm for four different values of the vigilance

parameter r, which led to classifications into two, three, four

and five classes. Figure 13(e,f) display the averaged cell

images obtained in the case of two classes (Fig. 13a) and

four classes (Fig. 13c), respectively.

Learning vector quantization techniques. At the early stages,

learning vector quantization (LVQ) techniques were devel-

oped in the framework of supervised techniques, hence the

word ‘learning’ (see Kohonen, 1984, for instance). The aim

was to define several prototypes for each class, on the basis

of the training set, and then to classify unknown objects

using an algorithm like the K-nearest neighbours (KNN) for

instance.

Afterwards, the concept of prototypes was incorporated

within the framework of unsupervised classification (clus-

tering) through methods like Fuzzy-LVQ (FLVQ) (Bezdek &

Pal, 1995) or generalized-LVQ (GLVQ) (Pal et al., 1993).

Briefly, these methods try to characterize each class with a

prototype and to divide the whole data set into classes

represented by this prototype.

From my point of view, all neural network approaches

developed to this point for automatic clustering tasks suffer

from one serious drawback: they all rely on the concept of

class centre (or single prototype), which restricts their

efficiency to hyperspherical or hyperelliptical clusters.

Classes with arbitrary shapes cannot be handled properly.

Fig. 12. Results of the classification of the 190 subimages (see

Fig. 2) by the watersheds technique applied to the results of corre-

spondence analysis. (a) Scatterplot built with the scores of the sub-

images (each point represents a subimage) on the first two factorial

axes obtained after correspondence analysis. (b) Probability density

function (pdf) obtained after application of the Parzen technique to

the point distribution in (a). Two modes are obtained. (c) Labelling

of the parameter space obtained by the watershed technique

applied to the pdf. The two classes correspond to the two modes

of the estimated pdf. (d) Labelling of the subimages according to

the labelling of the parameter space. (e,g) Same as (b,d) but with

a smaller standard deviation of the smoothing kernel. Four

modes are observed in the estimated pdf, which results in four

classes of subimages.
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A useful jump will be accomplished when the concept of

single prototype is replaced by the concept of multi-

prototypes. Work in this direction is in progress.

Conclusion

In this paper, I have reviewed several aspects of multivariate

statistical methods applied to physical data analysis. I

started from linear methods, which have now been in use

for more than 10 years. I have shown that linear

multivariate statistical methods allow us to compress

high-dimensional data sets into a limited set of orthogonal

components. This can be used for a qualitative interpreta-

tion of the sources of information present in the multi-

variable data set. It also allows us to detect experimental

artefacts and to filter out these artefacts and a large part of

the noise. In certain circumstances, it is also possible to use

this decomposition for performing data interpolation or

extrapolation (Bonnet et al., 1992).

However, this orthogonal decomposition is often insuffi-

cient, because the real sources of information are rarely

orthogonal. Thus, an extension to oblique analysis is

often necessary when one wants to go from qualitative to

quantitative interpretation. New developments are still

necessary before oblique analysis can be used routinely in

physical data analysis, especially when the number of

factorial components is greater than two.

Besides linear multivariate statistical methods, I have

shown that other tools, such as nonlinear methods, may

also prove very useful. I have described two groups of such

tools: tools for mapping high-dimensional data sets onto

low-dimensional data spaces and tools for performing

automatic classification.

Tools for mapping (RN
→RM) include statistical methods

which attempt to minimize the distortion criterion (dis-

tances between objects in the destination space should

resemble the distances between the same objects in the

original space) as well as neural network methods, such as

self-organizing mapping. These mapping tools can be useful

for exploratory data analysis (finding structures in the data

set), for display purposes or for preparing the subsequent

classification step.

Automatic classification may be performed following a

supervised or unsupervised strategy. I did not consider the

former in this paper. Unsupervised classification (clustering)

can be performed through different approaches: classical

aggregation of objects around centres of classes, a variant of

this aggregation method according to the general principles

of fuzzy logic, clustering methods based on the estimation of

the probability density function followed by the partition of

the parameter space according to this pdf, and neural

network approaches. There is still work to be done before

complete confidence in the results of these automatic

methods can be ascertained (see, for instance, the dis-

crepancy obtained when trying to classify the 190 unit cell

images into more than two classes). However, I would say

that these methods can now be used to interpret

qualitatively (and even on a quantitative basis) the multi-

variate data sets produced by many sensors in the field of

physical sciences.

q 1998 The Royal Microscopical Society, Journal of Microscopy, 190, 2–18

Fig. 13. Results of the classification of the

190 subimages (see Fig. 2) by the neuromi-

metic ART-based procedure: (a–d) results of

classification into two, three, four and five

classes (the grey levels correspond to the

labels of the different subimages after classi-

fication); (e) averaged subimages after clas-

sification into two classes; (f) averaged

subimages after classification into four

classes.
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Some points which, from my point of view, need further

developments, are:

X the determination of the intrinsic dimensionality of a

data set: before attempting to perform dimensionality

reduction (mapping), it would be useful to know the

dimensionality of the data set, that is to say the dimension

of the subspace spanned by the data. Some ideas have been

formulated (the fractal dimension of the data set may be a

candidate) but to my knowledge, they have not been studied

in detail.

X oblique analysis (an extension of orthogonal MSA)

should be compared with the source separation method,

which provides independent components of a mixture

instead of only orthogonal components (Jutten & Heraut,

1991; Comon et al., 1991).

X also, nonlinear MSA methods (nonlinear PCA for

instance: Karhunen & Joutsensalo, 1995) should be

compared with the other nonlinear methods described in

this paper.

X in this paper, I have neglected the problem of robustness,

that is to say the sensitivity of the methods to the presence

of outliers and noise. Some references dealing with this

problem in the context of MSA should be consulted

(Walczak & Massart, 1995; Liang & Kvalheim, 1996).

Further studies of this problem must be conducted.

X MSA methods mostly consider the variance (and

covariance) as the support of information in a data set. It

is well known from information theory that this is not the

only way to characterize information. Entropy and mutual

entropy constitute other supports. Entropy-based MSA is the

subject of a forthcoming paper.
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