
Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017

https://doi.org/10.5194/hess-21-2701-2017

© Author(s) 2017. This work is distributed under

the Creative Commons Attribution 3.0 License.

Multivariate statistical modelling of compound events via

pair-copula constructions: analysis of floods in Ravenna (Italy)

Emanuele Bevacqua1, Douglas Maraun1, Ingrid Hobæk Haff2, Martin Widmann3, and Mathieu Vrac4

1Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
2Department of Mathematics, University of Oslo, Oslo, Norway
3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
4Laboratoire des Sciences du Climat et de l’Environnement, CNRS/IPSL, Gif-sur-Yvette, France

Correspondence to: Emanuele Bevacqua (emanuele.bevacqua@uni-graz.at)

Received: 9 December 2016 – Discussion started: 2 January 2017

Revised: 6 April 2017 – Accepted: 1 May 2017 – Published: 8 June 2017

Abstract. Compound events (CEs) are multivariate extreme

events in which the individual contributing variables may not

be extreme themselves, but their joint – dependent – occur-

rence causes an extreme impact. Conventional univariate sta-

tistical analysis cannot give accurate information regarding

the multivariate nature of these events. We develop a con-

ceptual model, implemented via pair-copula constructions,

which allows for the quantification of the risk associated with

compound events in present-day and future climate, as well

as the uncertainty estimates around such risk. The model in-

cludes predictors, which could represent for instance mete-

orological processes that provide insight into both the in-

volved physical mechanisms and the temporal variability of

compound events. Moreover, this model enables multivariate

statistical downscaling of compound events. Downscaling is

required to extend the compound events’ risk assessment to

the past or future climate, where climate models either do

not simulate realistic values of the local variables driving the

events or do not simulate them at all. Based on the developed

model, we study compound floods, i.e. joint storm surge and

high river runoff, in Ravenna (Italy). To explicitly quantify

the risk, we define the impact of compound floods as a func-

tion of sea and river levels. We use meteorological predictors

to extend the analysis to the past, and get a more robust risk

analysis. We quantify the uncertainties of the risk analysis,

observing that they are very large due to the shortness of the

available data, though this may also be the case in other stud-

ies where they have not been estimated. Ignoring the depen-

dence between sea and river levels would result in an under-

estimation of risk; in particular, the expected return period of

the highest compound flood observed increases from about

20 to 32 years when switching from the dependent to the in-

dependent case.

1 Introduction

On 6 February 2015, a low-pressure system that developed

over the north of Spain moved across the island of Corsica

into Italy. The low pressure itself (Fig. 1) and the associ-

ated south-easterly winds drove a storm surge to the Adri-

atic coast at Ravenna (Italy). Alongside the storm surge, large

amounts of precipitation fell in the surrounding area, causing

high values of discharge in small rivers near the coast. These

river discharges were partially obstructed from draining into

the sea by the storm surge, which then contributed to major

flooding along the coast.

Such a compound flood is a typical example of a com-

pound event (CE). CEs are multivariate extreme events in

which the individual contributing variables may not be ex-

treme themselves, but their joint – dependent – occurrence

causes an extreme impact. The impact of CEs may be a cli-

matic variable such as the gauge level (e.g. for compound

floods), or other relevant variables such as fatalities or eco-

nomic losses. CEs have received little attention so far, as un-

derlined in the report of the Intergovernmental Panel on Cli-

mate Change on extreme events (Seneviratne et al., 2012).

CEs are responsible for a very broad class of impacts on

society. For example, heatwaves amplified by the lack of soil

moisture, which reduces the latent cooling, may be classi-
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Figure 1. Sea level pressure and total precipitation on 6 Febru-

ary 2015, when the coastal area of Ravenna (indicated by the yellow

dot) was hit by a compound flooding.

fied as CEs (Fischer et al., 2007; Seneviratne et al., 2010).

The impact of drought cannot be fully described by a sin-

gle variable (e.g. De Michele et al., 2013; Shiau et al., 2007):

analyses have been carried out which consider drought sever-

ity, duration (Shiau et al., 2007), maximum deficit (Saghafian

and Mehdikhani, 2013), as well as the affected area (Seri-

naldi et al., 2009). Another example of CE includes fluvial

floods resulting from extreme rainfall occurring on a wet

catchment (Pathiraja et al., 2012).

In the recent literature, more attention has been given to

the study of CEs through multivariate statistical methods

(Seneviratne et al., 2012) which can offer more in-depth

information, regarding the multivariate nature of CEs, than

conventional univariate analysis. Combinations of univariate

analyses for studying CEs are only sufficient when no depen-

dence exists among the compound variables. However, this is

not usually the case, and so would lead to misleading conclu-

sions about the assessment of the risk associated with CEs.

Modelling CEs is a complex undertaking (Leonard et al.,

2014), and methods to adequately study them are required.

Parametric multivariate statistical models allow one to con-

strain the dependencies between the contributing variables

of CEs, as well as their marginal distributions (e.g. Hobæk

Haff et al., 2015; Serinaldi, 2015; Aghakouchak et al., 2014;

Saghafian and Mehdikhani, 2013; Serinaldi et al., 2009;

Shiau et al., 2007; Shiau, 2003). The parametric structure re-

duces the uncertainties of the statistical properties we want

to estimate from the data, compared to empirical estimates.

However, such a reduction of the uncertainties depends on

the choice of a proper parametric model. As observed data

are often limited, the uncertainties might be substantial and

should thus be quantified (Serinaldi, 2015).

Due to the complex dependence structure between the con-

tributing variables, advanced multivariate statistical models

are necessary to model CEs. For example, modelling the

multivariate probability distribution of the contributing vari-

ables with multivariate Gaussian distributions would usually

not produce satisfying results. A multivariate Gaussian dis-

tribution would assume that the dependencies between all

the pairs are of the same type (homogeneity of the pair de-

pendencies), and without any dependence of the extreme

events, also called tail dependence. Furthermore, a multi-

variate Gaussian distribution would assume that all of the

marginal distributions would be Gaussian. To solve the lat-

ter problems, the use of copulas has been introduced in geo-

physics and climate science (e.g. Schölzel and Friederichs,

2008; Salvadori et al., 2007). Through copulas, it is pos-

sible to model the dependence structure of variables sepa-

rately from their marginal distributions. However, multivari-

ate parametric copulas lack flexibility when modelling sys-

tems with high dimensionality, where heterogeneous depen-

dencies exist among the different pairs (Aas et al., 2009).

Therefore, this lack of flexibility of copulas would be a lim-

itation for many types of compound events. Pair-copula con-

structions (PCCs) decompose the dependence structure into

bivariate copulas (some of which are conditional) and give

greater flexibility in modelling generic high-dimensional sys-

tems compared to multivariate parametric copulas (Aas et al.,

2009; Acar et al., 2012; Bedford and Cooke, 2002; Hobæk

Haff, 2012).

Here we develop a multivariate statistical model, based on

PCCs, which allows for an adequate description of the de-

pendencies between the contributing variables. The model

provides a straightforward quantification of risk uncertainty,

which is reduced with respect to the uncertainties obtained

when computing the risk directly on the observed data of

the impact. We extend the multivariate statistical model by

including predictors for the contributing variables. Such pre-

dictors could represent for instance meteorological processes

driving the contributing variables. This increase in complex-

ity of the model due to additional variables is accommo-

dated for through the use of PCCs. The predictors allow us to

(1) gain insight into the physical processes underlying CEs,

as well as into the temporal variability of CEs, and (2) to

statistically downscale CEs and their impacts. Downscaling

may be used to statistically extend the risk assessment back

in time to periods where observations of the predictors but

not of the contributing variables and impacts are available,

or to assess potential future changes in CEs based on climate

models. Based on this model, we study compound flooding

in Ravenna.

In the context of compound floods, the dependence be-

tween rainfall and sea level has previously been studied for

other regions (e.g. Wahl et al., 2015; Zheng et al., 2013; Kew

et al., 2013; Svensson and Jones, 2002; Lian et al., 2013).

Among these studies, Wahl et al. (2015) observed an increase

in the risk of compound flooding in major US cities driven by

an increasing dependence between storm surges and extreme

rainfall. The impact of compound floods can be described as

the gauge level in a river near the coast, which is driven both
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by the river discharge upstream and the sea level. Only a few

studies have explicitly quantified the impact of compound

floods and the associated risks (Zheng et al., 2014, 2015; Van

den Hurk et al., 2015; Van Den Brink et al., 2005). The rea-

son might be difficulties in quantifying the impact due to a

lack of data. For the Rotterdam case study, the impact has

been explicitly quantified (Van Den Brink et al., 2005; Kew

et al., 2013; Klerk et al., 2015). However, there is still debate

as to whether the floods in this case are actually CEs, i.e.

if surges and discharges can be treated independently or not

when assessing the risk of flooding. As discussed in Klerk et

al. (2015), a significant dependence is more likely in small

catchments, such as those in mountainous areas by the coast,

which have a quick response time to rainfall that may favour

the coincidence of high river flows and storm surges driven

by the same synoptic weather system.

Here, we explicitly define the impact of compound floods

as a function of sea and river levels in order to quantify the

flood risk and its related uncertainties. Moreover, we quantify

the risk underestimation that occurs when the dependence

among sea and river levels is not considered. We identify the

meteorological predictors driving the river and sea levels. By

incorporating such predictors into the statistical model, we

extend the analysis of compound floods into the past, where

data are available for predictors but not for the river and sea

level stations.

The paper is organized as follows. The Ravenna case study

is discussed in Sect. 2. We introduce the conceptual model

for compound events in Sect. 3. Pair-copula constructions,

i.e. the mathematical method we use to implement the model,

are introduced in Sect. 4. Based on the presented conceptual

model for compound events, in Sect. 5 we develop the model

for compound floods in Ravenna. Results are presented in

Sect. 6; discussion and conclusions are provided in Sect. 7.

More technical details can be found in the Appendices.

2 Compound flooding in the coastal area of Ravenna

In this study, we focus on the risk of compound floods in the

coastal area of Ravenna. The choice of the case study was

motivated by the extreme event that happened on 6 February

2015, as presented in the Introduction. On the day prior to

the event, values of up to approximately 80 mm of rain were

recorded in the surrounding area of Ravenna, and around

90 mm on the day of the event itself. The sea level recorded

was the highest observed in the last 18 years (Arpa Emilia-

Romagna, 2015). The high risk of flooding to the popula-

tion in the Ravenna region has been underlined by the LIFE

PRIMES project (Life Primes, 2016a), recently financed by

the European Commission, whose target is “to reduce the

damages caused to the territory and population by events

such as floods and storm surges” (Life Primes, 2016b) in

Ravenna and its surrounding areas. As pointed out by Masina

et al. (2015), natural and anthropogenic subsidences repre-

Figure 2. Hydraulic system for the Ravenna catchment. The area af-

fected by compound floods is marked by the red point. The impact is

the water level h, which is influenced by the contributing variables

Y , i.e. sea and river levels. The variables inside the black rectangle

are used to develop the three-dimensional (unconditional) model.

The X are the meteorological predictors driving the contributing

variables Y , which are incorporated into the five-dimensional (con-

ditional) model.

sent a threat to the coastal area of Ravenna, characterized by

land elevations which are in many places below 2 m above

mean sea level (Gambolati et al., 2002). The sea level in-

undation risk along the coast of Ravenna has recently been

studied by Masina et al. (2015), who considered the joint ef-

fect of seawater level and significant wave height.

A schematic representation of the catchment on which we

focus is shown in the black rectangle of Fig. 2. The Y vari-

ables, river and sea levels, represent the contributing vari-

ables, and the the water level h is the impact of the com-

pound flood. The X variables are meteorological predictors

of the contributing variables Y , which will be discussed in

more detail later.

We develop a multivariate statistical model able to assess

the risk of compound floods in Ravenna. Our research objec-

tives are the following.

1. Develop a statistical model to represent the dependen-

cies between the contributing variables of the compound

floods, via pair-copula constructions.

2. Explicitly define the impact of compound floods as a

function of the contributing variables. This allows us to

estimate the risk and the related uncertainty.

3. Identify the meteorological predictors for the contribut-

ing variables Y . Incorporate the meteorological predic-

tors into the model to gain insight into the physical

mechanisms driving the compound floods and into their

temporal variability.

4. Extend the analysis into the past (where data are avail-

able for the predictors but not for the contributing vari-

ables Y ).

www.hydrol-earth-syst-sci.net/21/2701/2017/ Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017
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2.1 Dataset

The data used here for the contributing variables Y and the

impact h are water levels at a daily resolution (daily aver-

ages of hourly measurements). We use data for the extended

winter season (November–March) of the period 2009–2015.

Data sources are the Italian National Institute for Environ-

mental Protection and Research (ISPRA) for the sea, and

Arpae Emilia-Romagna for rivers and impact. River data

were processed in order to mask periods of low quality, i.e.

those suspected of being influenced by human activities such

as the use of a dam. Moreover, we applied a procedure to

homogenize the data of the rivers; details are given in Ap-

pendix A. We do not filter out the astronomical tide com-

ponent of the sea level, considering that the range of varia-

tion of the daily average of sea level is about 1 m, while that

of the astronomical tide is about 9 cm. To check the above,

we used the astronomical tide obtained through FES2012,

which is a software produced by Noveltis, Legos and the CLS

Space Oceanography Division and distributed by Aviso, with

support from Cnes (http://www.aviso.altimetry.fr/). Meteo-

rological predictors were obtained from the ECMWF ERA-

Interim reanalysis dataset (covering the period 1979–2015,

with 0.75 × 0.75◦ of resolution (Dee et al., 2011)). Specifi-

cally, for the river predictors we use daily data (sum of 12-

hourly values) of total precipitation, evaporation, snowmelt

and snowfall, while for the sea level predictor we use daily

data (average of 6-hourly values) of sea level pressure.

3 Conceptual conditional model for compound events

Leonard et al. (2014) define a CE as “an extreme impact

that depends on multiple statistically dependent variables or

events”. This definition stresses the extremeness of the im-

pact rather than that of the individual contributing variables,

which may not be extreme themselves, and the importance

of the dependence between these contributing variables. The

physical reasons for the dependence among the contributing

variables can be different. There can be a mutual reinforce-

ment of one variable by the other and vice versa due to sys-

tem feedbacks, e.g. the mutual enhancement of droughts and

heatwaves in transitional regions between dry and wet cli-

mates (Seneviratne et al., 2012). Or the probability of oc-

currence of the contributing variables can be influenced by

a large-scale weather condition, as has occurred in Ravenna

(Fig. 1), where the low-pressure system caused coinciding

extremes of river runoff and sea level. It is clear then that

the dependence among the contributing variables represents

a fundamental aspect of compound events, and so it must be

properly modelled to represent these extreme events well.

Our statistical conditional model consists of three com-

ponents: the contributing variables Yi , including a model of

their dependence structure, the impact h, and predictors Xj

of the contributing variables. The contributing variables Yi

and their multivariate dependence structure drive the CE. For

instance, in the case of compound floods, the contributing

variables are runoff and sea level. The impact h of a CE can

be formalized via an impact function h = h(Y1, . . .,Yn). In

the case of compound flooding, we define the river gauge

level in Ravenna as the impact, but in principle it can be any

measurable variable such as agricultural yield or economic

loss. The predictors Xj provide insight into the physical pro-

cesses underlying CEs, including the temporal variability of

CEs, and can be used to statistically downscale CEs when the

variables Y and the impact h are available (e.g. Maraun et al.,

2010).

The downscaling feature is particularly useful for com-

pound events, which are not realistically simulated or may

not even be simulated at all by available climate models. For

instance, standard global and regional climate models do not

simulate realistic runoff (Flato et al., 2013; Materia et al.,

2010; Tisseuil et al., 2010), and do not simulate sea surges.

Here, our model can be used to downscale these contribut-

ing variables, e.g. from simulated large-scale meteorologi-

cal predictors. In particular, the model provides a simultane-

ous, i.e. multivariate, downscaling of the contributing vari-

ables Yi , which allows for a realistic representation both of

the dependencies between the Yi and of their marginal distri-

butions. This is relevant because a separate downscaling of

the contributing variables Yi may lead to unrealistic repre-

sentations of the dependencies between the Yi , which in turn

would cause a poor estimation of the impact h. The down-

scaling feature can be useful for extending the risk analysis

into the past, where observations of the predictors but not of

the contributing variables and impacts are available.

More specifically, the conceptual conditional model con-

sists of the following.

1. An impact function to quantify the impact h:

h = h(Y1, . . .,Yn). (1)

2. Predictors X for the contributing variables Y .

3. A conditional joint probability density function (pdf)

fY |X(Y |X) of the contributing variables Y , given the

predictors X (which we describe through a paramet-

ric model, via pair-copula constructions). In particular,

both the contributing variables Y and predictors X are

time dependent, i.e. Y = Y (t) and X = X(t).

A particular type of such a model is obtained when the pre-

dictors are not considered in the joint pdf, i.e. when consid-

ering fY (Y ). This unconditional model does not allow for

changes in the contributing variables Y and in the impact

due to variations of the predictors X. In general, formaliz-

ing the impact h of a CE as in step 1 – to then assess the

risk of CE based on values of h – corresponds to the struc-

tural approach (Salvadori et al., 2015; Serinaldi, 2015; Volpi

and Fiori, 2014), which has recently been formalized in Sal-

vadori et al. (2016). Here, the advantage of the general model

Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017 www.hydrol-earth-syst-sci.net/21/2701/2017/
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we propose is that it allows for taking into account variations

of the impact h driven by temporal changes in the predictors

X. Through the conditional pdf, the model allows for a real-

istic representation both of the dependencies between the Yi

and of their marginal distributions.

When the variables Y are available but not the impact h,

the model can still be used to only estimate the variables Y .

This may be useful when assessing the risk of CEs through

e.g. multivariate return periods of the contributing vari-

ables Y (e.g. Gräler et al., 2016, 2013; Salvadori et al., 2016,

2011; Wahl et al., 2015; Aghakouchak et al., 2014; Saghafian

and Mehdikhani, 2013; Shiau et al., 2007; Shiau, 2003).

Moreover, it may happen that the impact h is available but

the variables Y are not. In this case the model may still be

used in the form fh|X(h|X) to directly estimate the impact h,

based on the conditional joint pdf of the impact h, given the

predictors X. In this case, depending on the physical system,

it may be more or less complicated to calibrate the predictors.

Also, we observe that Eq. (1) is general, and a possibility for

estimating the impact would be to use the conditional joint

pdf fh|Y (h|Y ). Such an approach may be useful for cases

where complex relations exist between the impact h and the

variables Y , and therefore it may be difficult to implement

e.g. a proper regression model to describe the impact h.

An advantage of using a parametric statistical model is

that this constrains the dependencies between the contribut-

ing variables, as well as their marginal distributions, and

thereby reduces their uncertainties with respect to empiri-

cal estimates (Hobæk Haff et al., 2015). Such a reduction in

turn reduces the uncertainty in the estimated physical quan-

tity of interest, like the impact of the CE. However, the uncer-

tainty reduction depends on the choice of a proper parametric

model, in particular when modelling the tail of a univariate

or multivariate distribution.

4 Statistical method

Pair-copula constructions (PCCs) are mathematical decom-

positions of multivariate pdfs proposed by Joe (1996), which

allow for the modelling of multivariate dependencies with

high flexibility. We start by presenting the concept of copu-

las, and then we introduce PCCs. More technical details can

be found in the Appendices.

4.1 Copulas

Consider a vector Y = (Y1, . . .,Yn) of random variables, with

marginal pdfs f1(y1), . . .,fn(yn), and cumulative marginal

distribution functions (CDFs) F1(y1), . . .,Fn(yn), defined on

R ∪ {−∞,∞}. We use the recurring definition ui := Fi(yi),

where the name u indicates that these variables are uniformly

distributed by construction. According to Sklar’s theorem

(Sklar, 1959) the joint CDF F(y1, . . .,yn) can be written as

F(y1, . . .,yn) = C(u1, . . .,un), (2)

where C is an n-dimensional copula. C is a copula if C :

[0,1]n → [0,1] is a joint CDF of an n-dimensional random

vector on the unit cube [0,1]n with uniform marginals (Joe,

2014; Salvadori et al., 2007; Nelsen, 2006; Genest et al.,

2007; Salvadori and De Michele, 2007).

Under the assumption that the marginal distributions Fi

are continuous, the copula C is unique and the multivariate

pdf can be decomposed as

f (y1, . . .,yn) = f1(y1) · . . . · fn(yn) · c(u1, . . .,un), (3)

where c is the copula density. Equation (3) explicitly rep-

resents the decomposition of the pdf as a product of the

marginal distributions and the copula density, which de-

scribes the dependence among the variables independently

of their marginals. Equation (3) has some important practi-

cal consequences: it allows us to generate a large number

of joint pdfs. In fact, inserting any existing family for the

marginal pdfs and copula density into Eq. (3), it is possible to

construct a valid joint pdf, provided that suitable constraints

are satisfied. The group of the existing parametric families of

multivariate distributions (e.g. the multivariate normal distri-

bution, which has normal marginals and copula) is only a part

of the realizations which are possible via Eq. (3). Copulas

therefore make it easy to construct a wide range of multivari-

ate parametric distributions.

4.2 Tail dependence

The dependence of extreme events cannot be measured by

overall correlation coefficients such as Pearson, Spearman or

Kendall. Given two random variables which are uncorrelated

according to such overall dependence coefficients, there can

be a significant probability of getting concurrent extremes

of both variables, i.e. a tail dependence (Hobæk Haff et al.,

2015). On the contrary, two random variables which are cor-

related according to an overall dependence coefficient may

not necessarily be tail dependent.

Mathematically, given two random variables Y1 and Y2

with marginal CDFs F1 and F2 respectively, they are upper

tail dependent if the following limit exists and is non-zero:

λU (Y1,Y2) = lim
u→1

P(Y2 > F−1
2 (u)|Y1 > F−1

1 (u)), (4)

where P(A|B) indicates the generic conditional probability

of occurrence of the event A given the event B. Similarly, the

two variables are lower tail dependent if

λL(Y1,Y2) = lim
u→0

P(Y2 < F−1
2 (u)|Y1 < F−1

1 (u)) (5)

exists and is non-zero.

4.3 Pair-copula constructions (PCCs)

While the number of bivariate copula families is very large

(Joe, 2014; Nelsen, 2006), building higher-dimensional cop-

ulas is generally recognized as a difficult problem (Aas et

www.hydrol-earth-syst-sci.net/21/2701/2017/ Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017
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al., 2009). As a consequence, the set of copula families hav-

ing a dimension greater than or equal to 3 is rather limited,

and they lack flexibility in modelling multivariate pdfs where

heterogeneous dependencies exist among different pairs. For

instance, they usually prescribe that all the pairs have the

same type of dependence, e.g. they are either all tail depen-

dent or all not tail dependent. Under the assumption that the

joint CDF is absolutely continuous, with strictly increasing

marginal CDFs, PCCs allow us to mathematically decom-

pose an n-dimensional copula density into the product of

n(n−1)/2 bivariate copulas, some of which are conditional.

In practice, this provides high flexibility in building high-

dimensional copulas. PCCs allow for the independent selec-

tion of the pair-copulas among the large set of families, pro-

viding higher flexibility in building high-dimensional joint

pdfs with respect to using the existing multivariate paramet-

ric copulas (Aas et al., 2009).

When the dimension of the pdf is large, there can be

many possible, mathematically equally valid decompositions

of the copula density into a PCC. For example, for a five-

dimensional system there are 480 possible different decom-

positions. For this reason, Bedford and Cooke (2001b, 2002)

have introduced the regular vine, a graphical model which

helps to organize the possible decompositions. This is help-

ful for choosing which PCC to use to decompose the mul-

tivariate copula. In this study we concentrate on the sub-

categories canonical (also known as C-vine) and D-vine of

regular vines. Out of the 480 possible decompositions for a

five-dimensional copula density, 240 are regular vines (60

C-vines, 60 D-vines and 120 other types of vines) (Aas et

al., 2009). The decomposition we selected for the conditional

model is the following D-vine:

f12345(y1,y2,y3,y4,y5) = f4(y4) · f5(y5) · f3(y3)

· f1(y1) · f2(y2)

· c45(u4,u5) · c53(u5,u3) · c31(u3,u1) · c12(u1,u2)

· c43|5(u4|5,u3|5) · c51|3(u5|3,u1|3) · c32|1(u3|1,u2|1)

· c41|35(u4|53,u1|53) · c52|13(u5|31,u2|31)

· c42|135(u4|513,u2|513), (6)

where (Y1,Y2,Y3) are the variables (Y1Sea ,Y2River ,Y3River), and

(Y4,Y5) are the predictors (X1Sea ,X23Rivers) (details about the

predictors are given in the next section). Details about the

selection procedure of the vine (Eq. 6) are given in Appen-

dices B2 and C, while the graphical representation of this

vine is shown in Fig. B1A (Appendix B1).

As described in Sect. 3, the conditional model is based

on the conditional joint pdf fY |X(Y |X), which is decom-

posed via PCC. Details regarding conditional joint pdfs de-

composed as C- or D-vines (including the developed algo-

rithms for sampling from such vines) are presented in Ap-

pendix B2. Moreover, the developed routines for working

with conditional vines are publicly available via the CD-

VineCopulaConditional R package (Bevacqua, 2017). More

details about vines and the decompositions used for the un-

conditional model are given in Appendix B1. Details regard-

ing the statistical inference of the joint pdf can be found in

Appendix C.

5 Model development

The extreme impact of compound events may be driven by

the joint occurrence of non-extreme contributing variables

(Leonard et al., 2014; Seneviratne et al., 2012). This is the

case for compound floods in Ravenna, where not all extreme

values of the impact would be considered when selecting

only extreme values of the contributing variables. Therefore

we model the contributing variables, without focusing only

on their extreme values. Below we show the steps we follow

to study compound floods in Ravenna, based on the concep-

tual model described in Sect. 3. We will go through these

steps in detail in the next sections.

1. Define the impact function:

h = h(Y1Sea ,Y2River ,Y3River). (7)

The contributing variables Y (sea and river levels) and

the impact are shown in the black rectangle of Fig. 2.

2. Find the meteorological predictors of the contributing

variables Y . For each variable Yi we found more than

one meteorological predictor, which we aggregated into

a single variable Xi . We refer to this variable as the pre-

dictor Xi of the variable Yi from now on. Moreover, we

use the same predictor for the two river levels because

they are driven by a similar meteorological influence.

The predictors are graphically shown in Fig. 2, where

we introduce X1Sea (the predictor of Y1Sea ) and X23Rivers

(the predictor of Y2River and Y3River ).

3. Fit the five-dimensional conditional joint pdf

fY |X(Y1Sea ,Y2River ,Y3River |X1Sea ,X23Rivers) of the con-

ditional model (modelled via PCC). To develop the

unconditional model, we fit the three-dimensional

pdf fY (Y1Sea ,Y2River ,Y3River), which includes only the

contributing variables Y inside the black rectangle of

Fig. 2. The time series of the contributing variables

have significant serial correlations, and this should

be considered in order to avoid underestimating the

risk uncertainties (see Appendix E and Fig. E1). Only

for the unconditional model did we explicitly model

such serial correlations by combining the PCC with

autoregressive AR(1) models (see Appendix E).

4. Given the complexity of the problem, an analytical

derivation of the statistical proprieties of the impact is

impracticable. Therefore, we apply a Monte Carlo pro-

cedure. Specifically we simulate the contributing vari-

ables Y from the fitted models, and then we define the

Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017 www.hydrol-earth-syst-sci.net/21/2701/2017/
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simulated values of h via Eq. (7) as

hsim := h
(

Y sim
1Sea

,Y sim
2River

,Y sim
3River

)

, (8)

where Y
sim are the simulated values of Y .

5. Perform a statistical analysis of the values hsim. To as-

sess the risk associated with the events, we compute the

return levels of h by fitting a generalized extreme value

(GEV) distribution to annual maximum values (defined

over the period November–March). We compute the

model uncertainties, which is straightforward through

such models. Practically, such uncertainties propagate

through to the risk assessment, and so they must be con-

sidered (details about model-based return level uncer-

tainty are given in Appendix D).

To neglect the Monte Carlo uncertainties, i.e. the sam-

pling uncertainties due to the model simulations, we produce

long simulations. For example, to obtain the model-based re-

turn level curve, we simulate a time series hsim(t) of length

equal to 200 times the length of the observed data (6 years).

From this we get a time series of 1200 annual maximum val-

ues, to which we fit the GEV distribution to get the return

level. Observation-based return levels are obtained by fitting

a GEV to annual maximum values of hobs. The relative un-

certainties are computed by propagating the parameter uncer-

tainties of the fitted GEV distribution (more details are given

at the end of Appendix D).

5.1 Impact function

The water level h is influenced by river (Y2River and Y3River )

and sea (Y1Sea ) levels (Fig. 2). We describe this influence

through the following multiple regression model:

h = a1Y1Sea + a21Y2River + a22Y
2
2River

+ a31Y3River

+ a32Y
2
3River

+ c + ηh(0,σh), (9)

where ηh(0,σh) is a Gaussian distributed noise having a stan-

dard deviation equal to σh. The contribution of the rivers to

the impact h is expressed via quadratic polynomials, which

guarantees a better fit of the model according to the Akaike

information criterion (AIC). In particular, we defined the re-

gression model as the best output of both a forward and back-

ward selection procedure, considering linear and quadratic

terms for all of the Y as candidate variables. The Q–Q plot

of the model, i.e. the plot of the quantiles of observed values

against those of the mean predicted values from the model, is

shown in Fig. 3. The points are located along the line y = x,

which indicates that the model is satisfying. Omitting one of

the variables as a predictor reduces the model performance,

underlining the compound nature of the impact h. The sum

of the relative contributions of the rivers is very similar to

that of the sea. The parameters of this model (and of those
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Figure 3. Q–Q plot between the observed impact (x-axis) and the

modelled impact (y-axis) from the regression model (Eq. 9).

in Sect. 5.2) were estimated according to the maximum like-

lihood approach, solved by QR decomposition (via the lm

function of the stats R package – R Core Team, 2016).

5.2 Meteorological predictor selection

Figure 4 shows the resulting scatter plots of observed pre-

dictands (Y obs) and selected observed predictors (Xobs). To

fit the joint pdf of the conditional model, we use all time

steps where data for all of the X and Y variables have been

recorded. However, we calibrate the predictors of rivers and

sea separately, so we use all available data for each Y variable

(during the period November–March). The procedure we use

to identify the meteorological predictors is shown below.

5.2.1 River levels

The meteorological influence on the two rivers Y2River and

Y3River is very similar because their catchments are small and

close by (as a consequence the Spearman correlation between

the rivers is high, i.e. 0.79). Therefore we use the same pre-

dictor for the two river levels.

The river levels are influenced by the total input of wa-

ter over the catchments, which is given by the positive con-

tribution of precipitation and snowmelt, and by evaporation

which results in a reduction of the river runoff. Specifically,

we compute the input of water w on the day t∗ over the river

catchments (one grid point) as

w(t∗) = Ptotal(t
∗) − E(t∗) + Smelt(t

∗) − Sfall(t
∗), (10)

where Ptotal is the total precipitation, E is the evaporation,

Smelt is the snowmelt and Sfall is the snowfall. The snow-

www.hydrol-earth-syst-sci.net/21/2701/2017/ Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017
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Figure 4. Scatter plots of predictands Y obs and predictors Xobs.

The numbers are Spearman coefficient correlations. The red lines

(computed via LOWESS, i.e. locally weighted scatter-plot smooth-

ing) are shown to better visualize the relationship between pairs (R

Core Team, 2016).

fall accounts for the fraction of precipitation which does not

immediately contribute to the input of water over the catch-

ments because of its solid state. While a fraction of the water

input over the catchment rapidly reaches the rivers as surface

runoff, another fraction infiltrates the ground and contributes

only later to the river discharge. Compared with the first frac-

tion, the second has a slower response to precipitation and

changes more gradually over time. This double effect under-

lines the compound nature of river runoff whose response to

precipitation falling at a given time is higher if in the previous

period additional precipitation fell in the river catchment. To

consider both of these effects, we define the river predictor

as

X23Rivers(t) = aR

t
∑

t∗=t−1

w(t∗) + bR

t
∑

t∗=t−10

w(t∗) + cR, (11)

where cR is a constant. We choose the parameters of

Eq. (11) by fitting the right-hand side of this equation to the

river contributions to the impact, i.e. Y23Rivers := a21Y2River +

a22Y
2
2River

+ a31Y3River + a32Y
2
3River

(see Eq. 9). The lags n = 1

and n = 10 days are those which maximize respectively the

upper tail dependence and the Spearman correlation between

Y23Rivers(t) and the cumulated w over the previous n days, i.e.
∑t

t∗=t−nw(t∗). Here, we use the upper tail dependence to get

the typical river response time to the fraction of water which

directly flows into the rivers as surface runoff. Similarly, the

Spearman correlation is used to get the typical time required

for the infiltrated water in the ground to flow into the rivers.

By defining the river predictor as in Eq. (11), we aggregate

the different meteorological drivers of the rivers in the single

predictor X23Rivers(t). Such aggregation allows for a simpli-

fication of the system describing the compound floods, due

to a reduction of the involved variables. Furthermore this re-

duces the variables described by the joint pdf fY ,X(Y ,X),

whose numerical implementation errors can potentially in-

crease with higher dimensionality (Hobæk Haff, 2012).

All of the terms involved in the multiple regression model

(Eq. 11) are statistically significant at level α = 2 × 10−16.

Moreover, the quality of the river predictor X23Rivers improves

(according to the likelihood and to the Spearman correlation

between X23Rivers and Y23Rivers ) when we use all of the terms

in Eq. (10), instead of only Ptotal(t
∗). The presence of more

terms in Eq. (10) does not increase the number of model pa-

rameters.

5.2.2 Sea level

Sea level can be modelled as the superposition of the baro-

metric pressure effect, i.e. the pressure exerted by the atmo-

spheric weight on the water, the wind-induced surge, and an

overall annual cycle. As for the river predictor, we aggregate

the different physical contributions in a single predictor. We

define the sea level predictor on day t as

X1Sea(t) = aS SLPRavenna(t) + bS SLP (t) · RMAP

+ cS sin(ωYeart + φ) + dS, (12)

where SLPRavenna is the sea level pressure in Ravenna, SLP ·

RMAP is the wind contribution due to the sea level pressure

field SLP, the harmonic term is the annual cycle and dS is a

constant term. In Eq. (12) the SLP field and the regression

map are represented as column vectors. We choose the pa-

rameters of Eq. (12) by regressing the sea level Y1Sea(t) on

the right-hand side of this equation. A more detailed physi-

cal interpretation of the terms is given in the following.

1. aSSLPRavenna accounts for the barometric pressure ef-

fect (Van Den Brink et al., 2004). The regression map

RMAP indicates which anomalies of the SLP field are

associated with high values of the residual of the baro-

metric pressure effect (see Fig. 5, where more details are

also given). Particularly, according to the geostrophic

equation for wind, these pressure anomalies induce

wind in the Adriatic Sea towards Ravenna’s coast.

Therefore, the projection of the SLP field onto this re-

gression map, i.e. the term SLP (t) · RMAP, describes

the wind-induced change in sea level at time t .

2. cS sin(ωYeart + φ) describes the remaining annual cycle

of the sea level which is not described by barometric

pressure effect and wind contribution. This harmonic

term could be driven by the annual hydrological cy-

cle (Tsimplis and Woodworth, 1994), i.e. due to cyclic

Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017 www.hydrol-earth-syst-sci.net/21/2701/2017/
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Figure 5. Regression map R̂MAP(i,j) in matrix notation. The value

of the regression map in the location (i,j) is given by R̂MAP(i,j) =

var(R0)−1 × cov(R0,SLPi,j ), where R0(t) is the residual of the

barometric pressure effect obtained from the fit of the linear model

a0SLPRavenna(t) + d0 to Y1Sea
(t). The regression map is equiva-

lent to a one-dimensional maximum covariance analysis (Widmann,

2005). The red dot indicates Ravenna.

runoff of rivers which flow into the Adriatic Sea, or

due to density variations of the seawater (caused by the

annual cycle of water temperatures). Astronomical tide

may explain a minor fraction of this term. The range of

variation of cS sin(ωYeart+φ) is about 10 % of that of the

sea level. When we use the predictor to extend the anal-

ysis to the period 1979–2015, this term will be kept con-

stant assuming that the annual cycle has not drastically

changed in past years. Moreover, we will not consider

long-term sea level rise because its influence on both sea

and impact h level variations is negligible over the con-

sidered period (the observed rate of sea level rise in the

northern Adriatic Sea has been ∼ 0.8 mm yr−1 (NOAA,

Tides and Currents, 2017)). Also, the relative sea level

rise has been negligible over the considered period (Car-

bognin et al., 2011).

All the terms involved in the multiple regression model are

statistically significant at level α = 2 × 10−16.

6 Results

The results of the unconditional and conditional models are

presented in the following sections.

6.1 Unconditional (three-dimensional) model

The unconditional model reproduces the joint pdf of the con-

tributing variables (Y1Sea ,Y2River ,Y3River), and, in conjunction

with the autoregressive models, also the serial correlations.

The model is used to simulate values of the impact h and as-

sess the risk of compound floods, with related uncertainties.
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Figure 6. Scatter plots of observed (grey) against simulated (black)

contributing variables Y . The simulated series are obtained via the

three-dimensional model (including the serial correlation), and have

the same length as the observed series.

The selected pair-copula constructions and fitted pair-copula

families are shown in Appendices B1 and C.

Figure 6 shows, qualitatively, a good agreement between

simulated and observed contributing variables Y . In Fig. 7 we

show the return levels of the impact h. There is good agree-

ment between the model- and observation-based expected re-

turn levels, even for return periods larger than 6 years (the

length of the observed data). For return periods larger than

shown in Fig. 7, the agreement slowly decreases. The model-

based expected return period of the highest compound flood

observed (3.19 m) is 18 years (the 95 % confidence interval is

[2.5,∞] years, where ∞ indicates a value larger than 1050 in

this context from now on). The reason for such large uncer-

tainty in the return period is the shortness of available data.

However, the model-based uncertainties are large but still

smaller, up to return periods of about 60 years, than those ob-

tained when computing the return level directly (based on the

GEV) on the observed data of the impact (Fig. 7). Moreover,

when considering a model which does not take the serial cor-

relation of the contributing variables Y into account, we get

an underestimation of the risk uncertainties. For example, the

amplitude of the 95 % confidence interval of the 20-year re-

turn level is underestimated by about 50 % (not shown).
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Figure 7. Unconditional model. Return levels of the impact h with associated 95 % uncertainty intervals. The return level computed on hobs

is shown in red (uncertainty shown in light red). The model-based return level is shown in black (uncertainty is in grey).

6.2 Conditional (five-dimensional) model

This model allows for assessment of the change in the risk

of compound floods due to temporal variations of the me-

teorological predictors of the contributing variables Y . We

calibrate the model to the period 2009–2015. After validat-

ing the model for the period 2009–2015, we use predictors

of the period 1979–2015 to extend the analysis of compound

flood risk to the past. The selected pair-copula construction

and fitted pair-copula families are shown in Appendices B1

and C. We assess the quality of the model by comparing pre-

dictions with observations. Specifically we look at its overall

accuracy by considering the root-mean-square error between

model predictions and observed data. Moreover, we look at

the accuracy of the model when predicting extreme values

of the impact h (defined as values of h larger than the 95th

percentile of hobs), using the Brier score (see Appendix F).

To assess the quality of the model, avoiding overfitting, we

perform a 6-fold cross-validation (see Appendix G).

The cross-validation time series of the impact h is visually

compared with hobs in Fig. 8. The average of the simulated

cross-validation time series in general follows the temporal

progression of hobs (Fig. 8), and about 94 % of the observed

impact values lie within the 95 % prediction interval. In par-

ticular, the highest flood observed is well predicted and lies

inside the prediction interval. The Brier score based on the

cross-validation time series is BSCV = 0.029, while that rel-

ative to the reference model, i.e. the climatology (see Ap-

pendix F), is BSCL = 0.046. The resulting Brier skill score

is BSS = 1 − BSCV/BSCL = 0.38, which indicates that the

model is more accurate than the reference model in predict-

ing extreme values of the impact h. In general, the skill of

the model, both in terms of root-mean-square error and Brier

score, does not change much when the cross-validation is not

performed. This underlines that no artificial skill is present in

the model. These positive results provide good confidence for

extending the impact time series to the period 1979–2015. It

also makes the model potentially interesting for flood fore-

casting and warning.

In Fig. 9a we show the return levels of the impact h.

As in the unconditional model, return levels are stationary,

i.e. estimated by fitting a stationary GEV distribution to an-

nual maximum values. The discrepancy between model- and

observation-based return levels for the conditional model is

smaller than for the unconditional one, in particular for high

return periods. It may happen that the dependencies between

river and sea levels are not considered in some analyses when

assessing the risk of flooding. Kew et al. (2013) show in Rot-

terdam, which is affected by floods driven both from surge

and river discharges, that the boundary conditions used to

build the protection barrier were determined assuming inde-

pendence between sea level and river discharge. Here we ob-

serve that ignoring such a dependence may result in an un-

derestimation of the estimated risk. The expected return pe-

riod of the highest compound flood observed (3.19 m), com-

puted over the period 2009–2015, is 20 years (the 95 % con-

fidence interval is [4.9,∞] years). When not considering the

dependencies between river and sea levels, the expected re-

turn period of the highest compound flood observed increases

to 32 years (the 95 % confidence interval is [6.7,∞] years).

Figure 9b shows that the return level estimates are reduced

by about 0.2 m when not considering such dependencies be-

tween sea and river levels. In particular, at the 95 % confi-

dence level, the return levels are underestimated when not

considering these dependencies for return periods smaller

than about 40 years. The same, however, cannot be clearly

concluded for return periods larger than 40 years because

of the large uncertainties (Fig. 9b). A similar result is ob-

tained from the unconditional model (not shown). There-

fore, although there is not a large difference in the return

levels when treating sea and rivers independently or not, in

Ravenna it may be relevant to incorporate their dependencies

into the flood risk estimation. An imprecise risk assessment

may bring negative societal consequences due to inadequate

information provided for infrastructural adaptation.

To estimate the risk based on predicted values of the im-

pact during the past, we run the simulations by condition-

ing on predictors of the period 1979–2015. This allows us

to get a more robust estimation of the risk compared to that

Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017 www.hydrol-earth-syst-sci.net/21/2701/2017/
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Figure 8. Validation time series of the conditional model obtained by 6-fold cross-validation. hobs is shown in red. The average and 95 %

prediction intervals of 104 simulated time series are respectively shown in black and grey.

obtained considering only the period 2009–2015. The return

levels in Fig. 9a (dashed line) are similar to that estimated

when analysing the period 2009–2015. Although this result

suggests a stationarity of the risk during the period 1979–

2015, we investigate whether there has been any trend in the

risk during the recent past. To do this, we computed time-

dependent return levels. Specifically, we computed station-

ary return levels on moving temporal windows of 6 years

during the period 1979–2015, based on hsim values obtained

by conditioning on predictors belonging to these windows.

However, we did not observe any long-term trend in the risk.

Moreover, analysing the return levels computed on moving

temporal windows during the period 1979–2015, we did not

observe any long-term trend, either in the risk of storm surge

or in that of river floods (not shown).

During the period 1979–2015, there has not been any long-

term trend in the risk due to a variation of the marginal dis-

tributions of the predictors or in their dependence. To study

this, we computed the return levels on moving temporal win-

dows in the cases described below. First, we simulated the

impact by conditioning the Y sim variables on predictors hav-

ing the observed marginal distributions of the period 1979–

2015, but fixing the dependence to that observed during

2009–2015. Secondly, we simulated the impact by condition-

ing on predictors having the observed dependence of the pe-

riod 1979–2015, and fixed marginal distributions to the ones

observed during 2009–2015. In both cases we did not find

any long-term trend in the return levels (not shown).

7 Discussion and conclusions

Compound events (CEs) are multivariate extreme events in

which the contributing variables may not be extreme them-

selves, but their joint – dependent – occurrence causes an

extreme impact. Conventional univariate statistical analysis

cannot give accurate information regarding the multivariate

nature of CEs and therefore the risk associated with these

events.

We develop a conceptual model, implemented via pair-

copula constructions (PCCs), to quantify the risk of CEs as

well as the associated sampling uncertainty. This model in-

cludes predictors, which could represent for instance meteo-

rological processes. The inclusion of predictors in the model

(1) provides insight into the physical processes underlying

CEs, as well as into the temporal variability of CEs, and

(2) allows for statistical downscaling of CEs and their im-

pacts. The model is in principle extendable to any number of

contributing variables and predictors, given a large enough

sample of data for calibration.

Downscaling may be used to statistically extend the risk

assessment back in time to periods where observations of the

predictors are available but not of the contributing variables

and impacts, or to assess potential future changes in CEs

based on climate models. The conceptual model is particu-

larly useful for downscaling large-scale predictors from cli-

mate models in cases where the local contributing variables

driving the impacts of CEs are either not realistically sim-

ulated or not simulated at all by the available climate mod-

els. As such, the model can straightforwardly be used to as-

sess future risk of CEs based on multi-model ensembles as

available from the CMIP (Taylor et al., 2012) and CORDEX

(Giorgi et al., 2009) archives.

The model makes use of PCCs, a very powerful statistical

method to model multivariate dependencies. PCCs are partic-

ularly useful for modelling CEs, when the contributing vari-

able pairs have different dependence structures, e.g. when

only some of them are characterized by tail dependence. To

model such types of structures, even multivariate paramet-

ric copulas, which have been introduced in climate science

to overcome some difficulties in modelling multivariate den-

sity distributions (e.g. Schölzel and Friederichs, 2008), lack

flexibility. PCCs are more convenient: by decomposing the

dependence structure into bivariate copulas, they give high

flexibility in modelling generic high-dimensional systems.

We suggest considering the use of PCCs for modelling com-

pound events which involve more than two contributing vari-

ables, or when predictors are included in the system as addi-

tional variables.

The model allows for a straightforward quantification of

sampling uncertainties. In many cases, such risk uncertain-

ties might be substantial as observed data are often limited,

www.hydrol-earth-syst-sci.net/21/2701/2017/ Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017
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Figure 9. Conditional model. (a) Return levels of the impact h with associated 95 % uncertainty intervals. The return level computed on hobs

is shown in red (uncertainty shown in light red). The model-based return level computed for the period 2009–2015 (black) is based on hsim

values simulated for days where the observed data were available (uncertainty is shown in grey). The model-based return level computed

for the period 1979–2015 (black dashed) has an uncertainty of similar amplitude to that of period 2009–2015 (not shown). (b) Difference

between the model-based return level obtained when considering the realistic dependence between sea and river levels, and when assuming

that they are independent. To make the dependencies between the sea and the river levels independent but keep the dependence between the

two rivers, we shuffled the sea level data after each simulation, which guarantees random association between sea data and each of the rivers

(e.g. Van den Hurk et al., 2015). The black line represents the median of the bootstrap samples.

and should thus be quantified. In fact, uncertainty estimates

are essential to avoid drawing conclusions that may be mis-

leading when uncertainties are large (as also recently dis-

cussed by Serinaldi, 2015).

We adapt the developed conceptual model to study com-

pound floods in Ravenna, which are floods driven by the

joint occurrence of storm surge and high river level. In other

words, the contributing variables of the compound floods are

the river and sea levels, whose combination drives the im-

pact, i.e. the water level in between the river and the sea.

We used the specific adaptation of the model to statisti-

cally downscale the river and sea level from meteorologi-

cal predictors, and therefore estimate the impact of the com-

pound floods as a function of the downscaled sea and river

levels. The accuracy of the estimated impact appears satis-

factory, such that the model is potentially interesting for use

in both flood forecasting and warning. Also, the model-based

expected return levels of the impact are about the same as

those directly computed on observed data of the impact. Al-

though the model-based uncertainty in these return levels is

very large (due to the shortness of the available data), for re-

turn period smaller than about 60 years it is smaller than that

obtained by computing the risk directly on the observed data

of the impact.

We calibrate the model over the period 2009–2015, and

by including meteorological predictors obtained from the

ECMWF ERA-Interim reanalysis dataset, we extend the

analysis of compound flooding to the full period of 1979–

2015, to obtain a more robust estimation of the risk. The ex-

pected return period of the highest compound flood observed,

computed over the period 1979–2015, is 19 years (the 95 %

confidence interval is [3.7,∞] years). Moreover, we did not

observe any long-term trend in risk during the period 1979–

2015.

Ignoring the estimated dependence between sea and river

levels may lead to an underestimation of risk. Specifically,

assuming independence between sea and river levels, the ex-

pected return period of the highest compound flood observed

– computed over the period 2009–2015 – is 32 years (the

95 % confidence interval is [6.7,∞] years). When assuming

the estimated dependence between sea and river levels, it de-

creases to 20 years (the 95 % confidence interval is [4.9,∞]

years). In other cities affected by sea surges and river flood-

ing, e.g. in Rotterdam, protection barriers were designed as-

suming independence between sea level and river discharge

(Kew et al., 2013), a decision which is still debated (Van Den

Brink et al., 2005; Kew et al., 2013; Klerk et al., 2015). In

Ravenna, it may be relevant to incorporate these dependen-

cies into the flood risk estimation. An imprecise risk assess-

ment may harm the population at risk due to inadequate in-

formation provided for infrastructural adaptation. In general,

when considering generic CEs, their associated risk may be
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substantially influenced by the dependence between the con-

tributing variables, and so this dependence should be consid-

ered.

In the context of compound floods, only a few studies

have explicitly quantified the impact and the associated risks

(Zheng et al., 2015, 2014; Van den Hurk et al., 2015). This

might be due to the practical difficulties in quantifying the

impact. For example, to quantify the impact of compound

floods in the river mouth, it is necessary to have water level

data at a station where both the influence of sea and river

are seen. However, we have found few locations where these

stations exist as, maybe in part, stakeholders are usually in-

terested in data where only the influence of the river or the

sea is seen. Also, for places where data show both the in-

fluence of sea and river, the measurements can be affected

by human influences such as pumping stations between river

and sea stations. Moreover, while compound floods involve

a dependence between sea and river levels (Leonard et al.,

2014), places where there are stations detecting both the in-

fluence of sea and river may not present such dependence.

Therefore, we argue that to obtain more in-depth knowledge

of these events, it may be very useful to create an archive

containing data for locations where compound floods have

been recorded and eventually increase the effective number

of measurements in places which are supposed to be at risk

of compound floods.

Code availability. The developed routines for working with condi-

tional joint probability density functions decomposed as D- or C-

vines are publicly available via the CDVineCopulaConditional R

package (Bevacqua, 2017) (more details are given in Appendix B2).

Other routines from this study are available from the authors upon

request.

Data availability. Sea level data of the Ravenna-Porto Corsini sta-

tion were downloaded from the Italian National Institute for Envi-

ronmental Protection and Research (ISPRA), and are available un-

der the link www.mareografico.it. River data can be downloaded

from Arpae Emilia-Romagna, via the link www.arpae.it/dettaglio_

generale.asp?id=3284&idlivello=1625 (the names of the used sta-

tions are S. Marco, S. Bartolo and Rasponi, where the latter is that

used for the impact). Meteorological predictors were obtained from

the ECMWF ERA-Interim reanalysis dataset, which is available

via the link http://apps.ecmwf.int/datasets/data/interim-full-daily/

levtype=sfc/.

www.hydrol-earth-syst-sci.net/21/2701/2017/ Hydrol. Earth Syst. Sci., 21, 2701–2723, 2017
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Appendix A: Homogenization of river level data

The zero reference level of river measurements is the water

level in the river defined as zero in the measurements. In gen-

eral, such a zero reference level may change during differ-

ent periods of observation, for technical reasons. As the zero

reference level of rivers Y2River and Y3River varied in the first

3 years but remained constant in the second 3, we homoge-

nized the former with respect to the latter at both rivers. We

performed such homogenization assuming that the precipita-

tion falling into the catchment during 1 year is responsible

for the average river level in the same year. For each river

YiRiver , we fitted the linear model Y annual
iRiver

= aiP
annual
i + bi in

the last 3 years (those having a constant zero reference level),

where Y annual
iRiver

is the annual average of YiRiver and P annual
i is

the annual cumulated precipitation over the river basin (data

from the ECMWF ERA-Interim reanalysis dataset). Finally,

for each river, we translated the zero reference level of the

first 3 years, such that the linear model was valid in these

years as well.

Appendix B: Vines and sampling procedure

In this appendix we show more details about vines, focusing

on C- and D-vines. Moreover, we discuss the sampling pro-

cedure, showing the algorithms to perform the conditional

sampling from C- and D-vines.

B1 Vines

Shown below are the general expressions to decompose an

n-dimensional pdf via a PCC as a C-vine (Eq. B2) or D-vine

(Eq. B1) (Aas et al., 2009):

fY1,...,Yn(y1, . . .,yn) =
n

∏

k=1

f (yk)

n−1
∏

j=1

n−j
∏

i=1

ci,i+j |i+1,...,i+j−1{F(yi |yi+1, . . .,yi+j−1),

F (yi+j |yi+1, . . .,yi+j−1)}, (B1)

fY1,...,Yn(y1, ..,yn) =
n

∏

k=1

f (yk)

n−1
∏

j=1

n−j
∏

i=1

cj,j+i|1,...,j−1{F(yj |y1, . . .,yj−1),

F (yj+i |y1, . . .,yj−1)}. (B2)

The five-dimensional vine that we use for the conditional

model is shown in Eq. (6). The graphical representation of

that decomposition is shown in Fig. B1A, where the concept

of a tree is introduced. We show below the vines that we use

for the unconditional model.

B1.1 Three-dimensional vine

In total, a three-dimensional copula density can be decom-

posed in three different ways, and each of these vines is both

a D-vine and a C-vine. For this application we use the fol-

lowing vine.

f123(y1,y2,y3) =f1(y1) · f2(y2) · f3(y3)

· c12(u1,u2) · c23(u2,u3)

· c13|2(u1|2,u3|2).

(B3)

This decomposition is represented graphically in Fig. B1b.

We underline that, in Eq. (B3), the rigorous expression of the

conditional copula density c13|2, of the pair (U1,U3), given

U2 = u2, would be c13|2(u1|2,u3|2;u2). In Eq. (B3), c13|2 is

written under the assumption of a simplified PCC; i.e. the

parameters of c13|2 are the same for all values of u2 ∈ (0,1).

The simplified PCC may be a rather good approximation,

even when the simplifying assumption is far from being ful-

filled by the actual model (Hobæk Haff et al., 2010; Stöber et

al., 2013). Copula parameters that are functions of the con-

ditioning variables, and thus violate the simplifying assump-

tion, are approximated by the average over all values of the

conditioning variables. The effect of this approximation on

the estimated impact is likely to be small (Hobæk Haff et al.,

2010; Stöber et al., 2013).

In this study of compound floods, the variables (Y1,Y2,Y3)

of Eq. (B3) are the (ε1Sea ,ε2River ,ε3River) introduced in Ap-

pendix E. Specifically, the vine of Eq. (B3) represents that

used at the first step of the procedure in Appendix D. The

vine that we use at the third step of the procedure in Ap-

pendix D is

f123(y1,y2,y3) =f3(y3) · f1(y1) · f2(y2)

· c31(u3,u1) · c12(u1,u2)

· c32|1(u3|1,u2|1),

(B4)

where (Y1,Y2,Y3) = (Y1Sea ,Y2River ,Y3River).

B2 Sampling procedure

To simulate a vector Y = (Y1, . . .,Yn) of random variables,

with marginal CDFs F1(y1), . . .,Fn(yn), whose joint pdf is

modelled via a copula, we first simulate from the copula the

uniform variables Ui for i = 1, . . .,n (ui := Fi(yi)), and then

transform them into Yi for i = 1, . . .,n (yi := F−1
i (ui)).

B2.1 Sampling and conditional sampling from vines

The simulation of the uniform variables from vines is dis-

cussed in Bedford and Cooke (2001a, b) and Kurowicka and

Cooke (2005). Aas et al. (2009) show the algorithms to sam-

ple uniform variables from C- and D-vines. Due to the na-

ture of PCCs, the sampling procedure works as a cascade.

Once the first variable is simulated from a uniform distribu-

tion, each following variable is simulated as conditioned on

the previous group of simulated variables.

It is clear then that to sample from the conditional distribu-

tion of UNcond+1, . . .,Un given values for U1, . . .,UNcond (i.e.
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Figure B1. (a) Representation of the five-dimensional D-vine in

Eq. (6). There are 4 trees (T1,T2,T3,T4) and 10 edges. Each edge

represents a pair-copula density, and the label indicates the subscript

of the corresponding copula. For example, the edge 43|5 represents

the copula density c43|5. The decomposition of the joint pdf related

to the represented vine is obtained by multiplying all the represented

pair-copula densities (10 in this case) and the marginal pdfs of each

variable. For more details, see Aas et al. (2009). (b) Representation

of the three-dimensional vine in Eq. (B3). There are two trees (T1

and T2) and three edges.

fUNcond+1,...,Un|U1,...,UNcond
), it is possible to follow this pro-

cedure by simply fixing the first Ncond variables at the con-

ditioning values. The approach used here to execute such a

procedure is to select vines from which the conditioning vari-

ables would be sampled as first when following the sampling

algorithms from Aas et al. (2009). For example, using the

D-vine represented in Fig. B1a (or in Eq. 6), we could sim-

ulate by fixing the pairs (U4,U5) or (U2,U1) in case we are

interested in conditioning the simulation on two variables.

Following this approach, for D-vines the number of n-

dimensional decompositions which allow for conditioning

on Ncond variables is Ncond! × (n − Ncond)!. For C-vines the

number of decompositions which allow for such a condi-

tioning is Ncond! × (n − Ncond)!/2 for n − Ncond > 1, and

Ncond! for n − Ncond = 1. For example, in this study we

model a five-dimensional system with two conditioning vari-

ables (the meteorological predictors), that is, n = 5 and

Ncond = 2. Considering that there are no five-dimensional

vines which belong to both the C-vine and D-vine cate-

gories (Aas et al., 2009), the choice of the vine used for the

model is done among (2!/2× (5−2)!)+ (2!× (5−2)!) = 18

vines. Furthermore, we need to condition on values (y4,y5);

therefore, we simulate from the copula by conditioning on

(u4 = F4(y4),u5 = F5(y5)), where F4 and F5 are the fitted

marginals in the calibration period, while (y4,y5) could the-

oretically be any value.

To apply such a sampling procedure, we developed Al-

gorithms 1 and 2, which are modified versions of Algo-

rithms 1 and 2 shown in Aas et al. (2009). The developed al-

gorithms allow for conditional sampling from a C- or D-vine

from which the conditioning variables would be sampled as

first when following the sampling algorithms from Aas et

al. (2009). Specifically, given a C- or D-vine of the vari-

ables (X1, . . .,XNcond ,XNcond+1, . . .,Xn), Algorithms 1 and

2 allow for the conditional sampling of (XNcond+1, . . .,Xn)

given (X1 = xcond
1 , . . .,XNcond = xcond

Ncond
), where Ncond is the

number of conditioning variables. When conditioning vari-

ables are not given (Ncond = 0), Algorithms 1 and 2 reduce

to the special cases of Algorithms 1 and 2 shown in Aas et al.

(2009). Both routines relative to Algorithms 1 and 2 are pub-

licly available via the CDVineCopulaConditional R package

(Bevacqua, 2017). CDVineCopulaConditional includes tools

to select the best vine (based on information criteria) among

those which allow for such conditional sampling, and there-

fore to fit the pair-copula families.

Algorithm 1 Algorithm to simulate uniform variables X =

(X1, . . .,XNcond ,XNcond+1, . . .,Xn) from a C-vine. Generates

one sample xNcond+1, . . .,xn conditioned on given values

xcond
1 , . . .,xcond

Ncond
. The h-function is defined as in Aas et al.

(2009). 2j,i is the set of parameters of the copula density

cj,j+1|1,...,j−1.

Sample wNcond+1, . . .,wn independent uniform on [0,1].

if Ncond 6= 0 then

for i in (1, . . .,Ncond) do

wi = xcond
i

end for

end if

x1 = v1,1 = w1

for i in (2, . . .,n) do

vi,1 = wi

if i > Ncond then

for k in (i − 1, i − 2, . . .,1) do

vi,1 = h−1(vi,1,vk,k,2k,i−k)

end for

end if

xi = vi,1

if i == n then

Stop

end if

for j in (1, . . ., i − 1) do

vi,j+1 = h(vi,j ,vj,j ,2j,i−j )

end for

end for

Finally, we underline that this is not the only way to pro-

ceed for the conditional simulation (Bedford and Cooke,

2001b), but despite the fact that the best vine is selected

among a fraction of all those possible, it can provide very

satisfying results, as we show in this study. Also, we refer
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Algorithm 2 Algorithm to simulate uniform variables X =

(X1, . . .,XNcond ,XNcond+1, . . .,Xn) from a D-vine. Generates

one sample xNcond+1, . . .,xn conditioned on given values

xcond
1 , . . .,xcond

Ncond
. The h-function is defined as in Aas et al.

(2009). 2j,i is the set of parameters of the copula density

ci,i+j |i+1,...,i+j−1.

Sample wNcond+1, . . .,wn independent uniform on [0,1].

if Ncond 6= 0 then

for i in (1, . . .,Ncond) do

wi = xcond
i

end for

end if

x1 = v1,1 = w1

if Ncond < 2 then

x2 = v2,1 = h−1(w2,v1,1,21,1)

else

x2 = v2,1 = w2

end if

v2,2 = h(v1,1,v2,1,21,1)

for i in (3, . . .,n) do

vi,1 = wi

if i > Ncond then

for k in (i − 1, i − 2, . . .,2) do

vi,1 = h−1(vi,1,vi−1,2k−2,2k,i−k)

end for

vi,1 = h−1(vi,1,vi−1,1,21,i−1)

end if

xi = vi,1

if i == n then

Stop

end if

vi,2 = h(vi−1,1,vi,1,21,i−1)

vi,3 = h(vi,1,vi−1,1,21,i−1)

if i > 3 then

for j in (2, . . ., i − 2) do

vi,2j = h(vi−1,2j−2,vi,2j−1,2j,i−j )

vi,2j+1 = h(vi,2j−1,vi−1,2j−2,2j,i−j )

end for

end if

vi,2i−2 = h(vi−1,2i−4,vi,2i−3,2i−1,1)

end for

to Brechmann et al. (2013) and Liu et al. (2015) as other

works where conditional joint pdfs decomposed as C-vines

were used for statistical modelling.

Appendix C: Statistical inference of the joint pdf

Statistical inference on a pdf decomposed via a PCC is in

principle computationally very demanding. As can be seen

from Eq. (B3), the arguments of the copulas are influenced

by the choice of the marginals (because of ui = Fi(xi)), and

the argument of the copula in each level is influenced by

the fit of the copulas in the previous levels too. As a conse-

quence of this, the estimation of the parameters of the full pdf

(marginals and pair-copulas) should be performed together.

Moreover, the structure of the vine has to be chosen, increas-

ing the demands of computational resources.

To overcome these obstacles, some techniques have been

developed. The complications regarding the dependence of

the copula parameters from the marginals estimation can be

overcome using empirical marginals (Genest et al., 1995).

This allows for the estimation of copula parameters without

the need to consider the marginals. However, to take into ac-

count that the estimation of the parameters of each pair cop-

ula depends on those of the upper levels, the estimation of the

parameters of all the pairs should be performed at the same

time. This way of estimating the parameters is called semi-

parametric (SP). The estimator we use here is the stepwise

semiparametric (SSP). It was proposed by Aas et al. (2009)

and then Hobæk Haff (2013), and despite being asymptoti-

cally less efficient than the SP (Hobæk Haff, 2013), it pro-

duces very satisfactory results and speeds up the procedure

considerably (Hobæk Haff, 2012). As in SP, the PCC param-

eters are estimated independently of the marginals, but the

estimation of the PCC parameters is performed level by level,

plugging in the parameters from previous levels at each step

(Hobæk Haff, 2012).

In this study of compound floods, for each marginal pdf

we use a mixture distribution composed of the empirical and

generalized Pareto distribution (GPD) for the extreme. For

each predictor X, the GPD is fitted to data above a thresh-

old defined here as their respective 95th percentile. For each

of the contributing variables Y , this threshold was chosen re-

quiring that the mean of the simulated extreme values from

the joint pdf was as near as possible to the maximum ob-

served value of the variable Y we were fitting. Adding the

GPD to the empirical marginal for the extremes is necessary

so as not to constrain the model to simulate values of the

variables Y with maximum values that never exceed those

observed during the calibration period.

We use the AIC to select the best vine structure among

C- and D-vines (those selected are shown in Sects. B1.1 and

4.3). In particular, for every possible C- and D-vine, we fit all

possible families through the maximum likelihood estima-

tion, and then we select the best family according to the AIC.
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Then, we select the best vine according to the AIC for the

full model. The pair-copula families are chosen among those

available in the VineCopula R package (Schepsmeier et al.,

2016). In particular, for the unconditional model, all of the

available families are considered during the selection, while

for the conditional model we restricted the choice to the first

31 families listed in the documentation file of the package.

This is because of technical issues regarding the simulation

of data from the conditional pdf of the conditional model.

Once the vine is selected, to better assess the quality of the

fit of each pair-copula, we use the K-plot (Fig. C1). This is a

plot of the Kendall function K(w) = P(Ci,j (Ui,U,j) ≤ w)

computed with the fitted copula against K(w) computed with

the empirical copula obtained from the observed uniform

data. This diagnostic plot indicates a good quality of the fit

when the points follow the diagonal (Genest et al., 2007;

Hobæk Haff et al., 2015). We note that the K(w) of the fit-

ted copula is computed using Monte Carlo methods (long

simulations allow for neglect of the associated sampling er-

ror). In Fig. C1 we show the resulting K-plots and the se-

lected copulas with their respective parameters for the five-

dimensional PCC (K-plots for the three-dimensional PCC are

not shown). The families chosen for copulas c43|5(u4|5,u3|5)

and c42|135(u4|513,u2|513) according to the AIC were describ-

ing slightly negative dependencies (< 0.1), but for physical

reasons we expect these copulas to describe slightly positive

dependencies. We argue that this result is due to uncertain-

ties of the model. Therefore we choose independent copulas

for these pairs, which is a compromise between the expert

knowledge we have about the data and the result of the fit.

When assuming independent copulas for these two pairs, the

corresponding K-plots show only a small deviation from the

diagonal (right side of Fig. C1). Moreover, these K-plots are

mostly inside the 95 % confidence interval of the K-plots,

which confirms the reasonability of choosing these two inde-

pendent copulas.

The CDVineCopulaConditional (Bevacqua, 2017) and

VineCopula (Schepsmeier et al., 2016) R packages were used

to work with copulas. The GPDs for the marginal distribu-

tions were fitted through the gpd.fit function of the ismev R

package (Heffernan and Stephenson, 2016).

C1 Selected pair-copula families

In the case of the unconditional model, the fitted pair-copula

families to the observed contributing variables Y – relative

to the vine of Eq. (B4) – are Survival BB1 (parameters:

0.49, 1.15) for c31(u3,u1), BB8 (parameters: 4.01, 0.6) for

c12(u1,u2), and Tawn type 1 (parameters: 2.59, 0.73) for

c32|1(u3|1,u2|1). The selected families relative to the vine

of Eq. (B3), i.e. the one fitted to (ε1Sea ,ε2River ,ε3River) in-

troduced in Appendix E, are t-copula (parameters: 0.15,

3.44) for c12(u1,u2), Tawn type 2 (parameters: 2.85, 0.71)

for c23(u2,u3), and Survival Gumbel (parameter: 1.13) for

c13|2(u1|2,u3|2). In the case of the conditional model, the se-

lected pair-copula families with relative parameters, fitted to

the observed data of contributing variables Y and predictors

X, are shown in Figure C1.

Appendix D: Model and risk uncertainty estimation via

parametric bootstrap

The flexibility of copula theory in modelling multivariate

distributions has determined its spread in the literature, and

more recently in climate science. However, once the model

is fitted to observed data, we stress that procedures to get an

estimate of the uncertainties, both in the parameter estimates

and the choice of the model, should be considered. This is

particularly important, as it often happens that because of the

limited sample size of the available data, these uncertainties

are large and so cannot be neglected (Serinaldi, 2015). Prac-

tically they have a direct influence on the uncertainties of risk

analysis. In particular, we observed that the uncertainties are

also controlled by the dependence values between the mod-

elled pairs (not shown).

In this study, we find model uncertainties in the joint pdf

which propagate into large uncertainties when assessing the

risk of compound floods. This does not mean that such mod-

els are not useful, but instead that the results should be inter-

preted being aware of these existing uncertainties. Also, even

if large, the obtained uncertainties in the risk are smaller than

those obtained computing the risk analysis directly on the ob-

served data of the impact, underlining another advantage of

applying such procedures.

For both the unconditional and conditional models, we use

a parametric bootstrap to assess the model and subsequent

risk uncertainty, as follows.

1. Select and fit a model that can reproduce the statisti-

cal characteristics of Y
obs ((Y obs,Xobs) for the condi-

tional model), i.e. the dependence among the variables

and their marginal distributions. For the unconditional

model we also include the serial correlation as described

in Appendix E.

2. Simulate B = 2.5×103 samples of the contributing vari-

ables Y (as well as predictors X for the conditional

model) with the same length as the observed data.

3. On each of the B = 2.5×103 samples, fit a joint pdf via

PCCs (the structure of the PCC is the same as that fitted

on the observed data, while the pair-copula families are

re-selected for each sample).

4. From each of these B = 2.5 × 103 models, simulate a

sample of contributing variables Y of length equal to

200 times the observed (for the conditional model the

contributing variables Y are simulated as conditioned

on the predictors X).

5. For each sample, compute the simulated impact se-

quence as hsim = h(Y sim
1Sea

,Y sim
2River

,Y sim
3River

) and estimate
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Figure C1. K-plots of the pair-copula families selected for the five-dimensional model (names of the families and parameters are shown in

the top left of each plot). In abscissa the empirical K-function and in ordinate the K-function based on fitted copula. The 95 % confidence

interval (shown in light red) is obtained from 104 K-plots computed on simulated pairs (with the same length as the observed data) from the

selected pair-copula families.

the corresponding return level curves. Return levels

are estimated by fitting the generalized extreme value

(GEV) distribution on annual maximum values. We

simulated samples of length 200 times the length of the

observed data (6 years), to get – for each sample – 1200

annual maximum values on which we fit the GEV dis-

tribution. This allows us to neglect the uncertainty of the

return levels driven by the sampling because the uncer-

tainties of the GEV distribution parameters are negligi-

ble.

6. Estimate the uncertainties in the return levels by iden-

tifying the 95 % confidence interval (i.e. the range 2.5–

97.5 %) of the B = 2.5 × 103 return level curves.

As underlined in step 1, for the unconditional model, we ex-

plicitly model the serial correlations of the contributing vari-

ables Y when computing the uncertainties. This was done

to avoid an underestimation of the risk uncertainties (see

Appendix E). For the conditional model, step 3 is a rigor-

ous bootstrap procedure, while for the unconditional model

this step is an approximation. In fact, for the unconditional

model, at step 3 we should have fitted the same type of model

as fitted in step 1, i.e. that could include the serial correla-

tions. Unfortunately, such a procedure was not feasible be-

cause of computational limitations, and we had to proceed by

approximation, i.e. fitting a pdf via a PCC without consider-

ing the autoregressive processes. In particular, the computa-

tional limitations were due to the tuning procedure explained

in Appendix E. Therefore we used the best method possible

to avoid underestimation of the risk uncertainties, but we un-

derline that we used such an approximation.

The uncertainty in the return levels obtained via the ob-

served data hobs is computed by propagating the parame-

ter uncertainties of the GEV distribution fitted to the an-

nual maxima of hobs (Fig. 7). In particular, the fitted GEV

distribution is a function of the parameters µ (location), σ

(scale) and η (shape) (Coles, 2001). The GEV-based return

level RLt associated with the return period t is a function of

the three parameters (µ,σ,η) (Coles, 2001). We obtained the

standard deviations of the three parameters (µ,σ,η), respec-

tively sµ, sσ , and sη, via the gev.fit function of the ismev R

package (Heffernan and Stephenson, 2016). To estimate the

standard deviation of the return level RLt , we propagated

the standard deviations of the three parameters (µ,σ,η) us-

ing the formula

sRLt
=

√

(

∂RLt

∂µ

)2

· s2
µ +

(

∂RLt

∂σ

)2

· s2
σ +

(

∂RLt

∂η

)2

· s2
η, (D1)

where sRLt is the standard deviation of the return level RLt .

The final 95 % interval of uncertainty of the return level RLt

is obtained as RLt ± 2sRLt .

Appendix E: Incorporation of the AR(1) into the

unconditional model

Given a statistical model describing time series with serial

correlations, to avoid an underestimation of the model un-

certainties computed via the bootstrap procedure, it is nec-

essary to use a model which can reproduce the serial corre-

lation. During the bootstrap procedure, simulating samples

without serial correlation, and then re-fitting the model to

each of them, would mean assuming that the data carry more

information than they actually do. In fact, it is as if the effec-

tive sample size of data with serial correlation is smaller than
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Figure E1. ACF of the observed time series (shown in red) against the ACF 95 % confidence interval (grey) of the model (obtained through

the Monte Carlo procedure). The dashed lines contain the 95 % confidence interval defined by the ACF of a white noise process; i.e. outside

this interval the ACF of the contributing variables Y is significant.

those without (Serinaldi, 2015). Here we introduce the pro-

cedure we used to build a multivariate statistical model that

can represent the serial correlation and the marginal pdf of

the variables, and the statistical dependencies between them.

The steps taken follow below.

1. Fit a linear Gaussian autoregressive model of order 1,

AR(1),

Yi(t) = c + ϕYi(t − 1) + εi(t) (E1)

on the ith marginal time series (i = 1,2,3), i.e.

(Y1Sea ,Y2River ,Y3River). The chosen AR(1) requires that

the modelled variable is Gaussian distributed; so, be-

fore the fit, we transformed the river variables via the

loge function, which guarantees more similar behaviour

to the Gaussian. The observed sea variable was not

transformed because it already had behaviour similar to

Gaussian.

2. Assured via the autocorrelation function (ACF) that

εi(t) no longer has a significant serial correlation, fit the

joint pdf via PCCs on the residual variables (ε1,ε2,ε3).

We observe that the dependencies of these modelled

pairs via PCCs are not the usual physical dependencies

between the contributing variables (i.e. sea and river

levels), but between their residuals with respect to the

AR(1) models.

3. Simulate the residuals (εsim
1 ,εsim

2 ,εsim
3 ) and plug into the

ith autoregressive model. Finally, to get the simulated

contributing variables Y , the river variables were trans-

formed via the exp function.

We observe here that when selecting the fitted pair-copulas

and parameters for the residuals via the AIC, the simu-

lated contributing variables Y had a smaller dependence with

respect to the observed variables. We therefore proceeded

through a tuning procedure; i.e. we built a routine to auto-

matically tune the parameters of the fitted families, requiring

that the Kendall rank correlation coefficients among the con-

tributing variables Y were well simulated.

In Fig. E1, the autocorrelation functions of the Y obs vari-

ables are compared with those of Y sim simulated from the

fitted model. Because of the gaps in the Y obs time series, not

all the observations are usable for computing the ACF (in

particular, the percentage of usable data decreases when in-

creasing the lag at which the ACF is computed). We therefore

computed the ACF up to a lag of about 25 days, which guar-

antees the use of at least the 35 % of data from the observed

time series. Up to a lag of about 15 days, except for a very

few cases with the variable Y3River , the ACFs of the observed

data are always inside the 95 % interval of the ACFs obtained

from the fitted model.

We consider this result satisfying because our target is to

include the serial correlation of the contributing variables Y

in the model, and we can see that even for the variable Y3River ,

the values of the ACFs have a significant serial correlation.

Also, considering that the ACF is only slightly misrepre-

sented for just one of the three time series, we argue that this

is likely to have only a small effect on the final assessment of

the model uncertainties.

Appendix F: Brier score for extreme values

We employ the Brier score to assess the accuracy of the prob-

abilistic predictions of the conditional model when predict-

ing extreme values of the impact h (e.g. Maraun, 2014). We

defined an extreme of h as a value larger than the 95th per-

centile of hobs. The Brier score is

BS =
1

N

N
∑

t=1

(pt − ot)
2, (F1)

where pt is the probability of getting an extreme value h from

the model at time t , while ot is 1 if hobs(t) is extreme and

0 otherwise. We get the value of pt through a Monte Carlo

procedure.
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The Brier skill score (BSS) measures the relative accuracy

of the model under validation over a reference model, and is

defined as

BSS = 1 −
BS

BSref
, (F2)

where BSref is the Brier score of the reference model. Here

we consider the climatology of h as the reference model, i.e.

an empirical model such that pt = 0.05 ∀t . A significant pos-

itive value of BSS indicates that when predicting extreme

values, the model under validation is more accurate – accord-

ing to the BS – than the reference model.

Appendix G: Cross-validation procedure

To assess the quality of the conditional model, avoiding over-

fitting, we perform a 6-fold cross-validation. Therefore, the

original sample of data (X,Y ) is randomly partitioned into

six equally sized subsamples. Of the six subsamples, five

subsamples (the training data) are used in fitting the model

that is then validated against the remaining subsample. For

each training subsample we fit (1) new predictors X for the

contributing variables Y , (2) a new joint pdf fY |X(Y |X) and

(3) a new h-function. For each validation subsample, we sim-

ulated 104 realizations of the Y values by conditioning on

the concurring predictors. Finally, by combining the simula-

tions of each validation subsample, 104 cross-validation time

series of the contributing variables Y and the impact h are

obtained.
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