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Abstract

A multivariate statiatical patterm recognition
system for reuctor noise malysis was developed. The
basis of the system is a transformation for decoupling
correlated variables and algorithms for inferring
probability density functions. The system is adapt~
eble to a variety of statistical properties of the
data, and it has learning, tracking, and updating cap-
abilities. System design erpnasizes control of the
false~qlurm rate. The ability of the aystem to leam
normal patterms of reactor behavior and to recognize
deviations from these patterms was evaluated by exper-
iments at the ORNL High-Flux Isotope Reactor (HFIR).
Power perturbations of less than 0.1% of the mean
value in selected frequency ranges were detected by
the system.

Index Terms: pattern recognition, multivariate, noise
analysis, reactor, statistical, algorithms.

1. Introduction

The extraction and use of information from noise
signals originating within a nuclear power plant for
assessing the operational status of the plant has been
advocated for a number of years.l™® Reactor incidents
that resulted in a partial loss of core mechanical in-
tegrity or of fuel element cooling have been reported
vhere a conspicuous change in the nature of a randomly
fluctuating variable preceded the incidents.®-8 yri-
lization of pattern recognition techniquesg in a com~
prehensive noilse analysis system could eliminate the
chief impediment to widespread implementation of noige
diagnosis in nuclear power plants by providing a tool
for on-line, unattended computer monitoring and inter-
pretation of large quantities of operational data
needed for detecting anomalous reactor performance.
These same pattern recognition techniques also provide
a basis for developing learning, adaptive computer
procedures that could establish the normal behavior
patterns of a reactor and compensate for plant pattern
changes introduced by aging, plant alterations, or
changed operating procedures. Such a noise analysis
system could perform data logging, cataloging, sand
signature analysis automatically, thus eliminating
the need for a trained reoise analyst in all but ex-
ceptional circumstances.

In the system described in this paper, 3 linear
transformation is used to reduce multidimensional,
correiated input observations to a set of uncer-
related samples that can be processed independently
and then fed to a learning, adaptive system that esti-
mates (or updates) the probability density function
of each variable. Using the resulting densities, the
system establishes alarm thresholds in accordance
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with false-alarm criteria determined by the plant
operator. This ability to set the false-alarm rate

to a statistical level that is acceptable to the plant
operator is important in assuring reliable operation
of the system and its acceptance by industry. Since
it must adapt to a changing environment, the system
provides the capability for parameter tracking and
updating to detect and compensate for slowly occurring
changes of the normal operating characteristics of the
plant. Because the system algorithms are formulated
as recursive relationships, the system parameters can
be iteratively updated as new samples become avail-
able, thus eliminating the need for storing a complete
set of previous data.

2. Problem Formulation

Figure 1 shows the basic problem considered in
this paper, Observations, such as noise measurements,
are obtained from a plant and are fed into a pre-
processing stage whose function is to convert the raw
signal measurements into a form suitable for the rec-
ognition stage. In our experiments at the HFIR,
these signals were derived from a neutron-flux noise
sensor. The preprocessor consists of a set of com-
puter Yrograms based on the fast Fourjfer transform
(FFT).1% 1t yields an ensemble~averaged, discrete
power spectral density {PSD) function F(uy), 1 =1,
2, ..., p, where w1, wy, ..., wy,; are freguencies
uniformly distributed in the interval 0 to (n-1) Hz.
A given PSD function will be represented throughout
this paper as an n-dimensional column vector

X1
x2

@

where x, = F(ui) .

Finally, the output from the preprocessor is fed
into a pattern recognition stage whose function is to
yield a decision concerning the status of the portionm
of the plant being monitored. The nature of the HFIR
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and preprocessor has been covered in detail else-~
where.5»10 The remainder of this paper is devoted to
a description of the design and implementation of the
pattern-recognition system.

3. Pattern Recognition System Structure

The design of the system was based on the follow-
ing constraints: (1) adaptability to the statistical
properties of th¢ data; (2) learning, tracking, and
updating capabilities; (3) time-varying memory; and
(4) control over the false-alarm rate.

The first constraint indicates that the system
should be independert of specific data characteristics;
that is, its applicability should not be limited to
data of specific types, such as, for example, Gaussian,
log-normal, Rayleigh, etc.

The second set of constraints indicates that the
system should be capable of learning (i.e., estimat-
ing) the required operational parameters from repre-
senzive data with as little operator assistance as
possible. It should track changes in operating condi-
tions, and update the system parameters to take into
account significant changes in the data characteris-
tics.

Time~varying s.2mory means that the system shauld
be capable of "forgetting” operating conditions that
no longer represent the plant's status. Finally, the
system should have variable alarm thresholds that can
be set at statistical levels by the operator.

The pattern recognition stage is expanded in
Fig. 2, which illustrates how the functions interact
tc yield the system output. Each output x of the pre-
processor is multiplied by an n x n decoupling trans-
formation matrix A (box 1) to yield a vector y whose
elements are uncorrelated. This transformation (dis~
cussed in Sect. 4) allows processing of each element
of y independently, which reduces the problem to a set
of one-dimensional varfables. (The reason for this
procedure is that considerable difficulty is encoun-
tered in statistically characterizing the original,
correlated variables in an n-dimensional gpace.)

The learning or estimating process (boxes 2 and
3) involves the transformation matrix 4 and the prob-~
ability density functions pj(y;), P2{(¥2)» .«+s Pn(yn)
of the elements of y. All learning algorithms require
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Figure 2. Diagram of the recognition stage.

a sct of representative samples, called a “"training
data set” (box 4), which is derived from the plant
sensors duringz r..rmal operations.

Once the initial learning has been completed, the
system parameters are tracked (box 5) to detect sig-
nificant changes in the data characteristics. These
results are used to validate the classification re~
sults and to determine whether to update the parame-
ters. The updating criteria are stored in the memory
(box 6).

The pattern classifier (box 7) 1s fed three
inputs: decoupled observations, the latest tracking
results, and the latest estimates of the probability
density functfons pj(yi)s 1 =1, 2, ..., n. These
functions are used for classification in the following
manner. If the Zth component y; of the vector y has
the probability densfty function Pi(yi)’ the prob-
ability that any y4 is less than or equal to a value
aj is

a

1
P(y; <ay) = f pyly,) dy, . (€3]

Similarly, the probability of yj being equal to or
exceeding a value bi is

Py, > by = fb P (v dy, - ®
1

Any observatior. ¥4 that is outside the interval
[ag,b;] is, by definition, abnormal. The thresholds
aj and by are obtained by specifying values for

P(yy < ajy) and P(y; #* by) and then by solving Egs.

(2) and (3) for aj and bj by numerical integration
methods. Thus, the probability ¢i an alarm {i.e., the
probability of yi outside [aj,by]) can be controlled
at will by the operator by specifying P(y; € aj) and
P(yyq 2 by).

4. Decoupling Transformation

From a set of random vector variables of the form
x = (%X}, X2, «-+» %Xp)T, we shall obtain corresronding
vectors ¥ = (¥1s ¥2» +o+» Yn)T by means of a linear
transformation

Yy =4, (%)

where 4 1s an n x n matrix. This transformation must
produce a set of y vectors whose elements are uncor=-
related.!!

The mean or average vector for the z's is
My = E{z} ., )

vhere E indicates the expected value with respect to
x. Similarly, the covariance matrix is

T
€, = Elz-m) (= -m) }. 6)

Since y = Ax, we have

m, = E{dx} = AB{x} = am, . (€)]

where m, = AE{z} 1s true because 4 is constant.



The covariance matrix of the ¥ vectors is
T
¢ = E{(y - - .
Y {&y m) @ my) } (8)

Using ¥ = Az and my = Amp results in the following

expression for Cy in terms of C, :

T
cy = E{(4x - am_) (Az - Am) }.,
= AE{(x - m) (z - mz)T}AT .
T
=ac At . 9

Since C, is a symmetric matrix, its eigenvectors
corresponding to distinct eigenvalues are orthogonal.
1f the eigenvalues of (, zre distinct (which is nor-
mally the case in practice), and if the rows cf 4 are
chosen as the normalized eigenvectors of (., the
resulting vectors y will have components that are un-
correlated and their variances will be given by the
eigenvalues of C&.ll This implies that the covariance
matrix C,, has the following properties: (1) the off-
diagonal” elements cjj (1 # j) are zero; and (2) the
element cjj is equal to the variance of the ith compo-
nent of the transformed vectors.

By using Eq. (4) to decorrelate the components
of x and by working in the transformed space, each
element of y can be treated independently, as far as
first- and second-order statistics are concerned.
This allows utilization of several one-dimensional
algorithms for testing and estimating one-dimensional
probability density functions. (This approach is
analogous to the second-order approximation used
frequently in the design of control systems.)

5. Estimation of the Probability Density Functions

In Section 3 a signal vector y was defined as
abnormal if any of its components y; is outside its
corresponding interval {aj,bj]. Three approaches will
be discussed for obtaining the threshold values aj and
bj from the density function pj(yy), 1 =1, 2, ..., m.
Since the densities pj(yj) are estimated independently
of each other, we simplify the notation considerably
by dropping the subscripts and letting y represent any
component of y and p(y) its corresponding probability
density function.

Histogram Approach

A histogram of each component y can be used to
determine the threshold parameters a and b. Suppose
the ©Zth component of a set of N vector observations
varies between O and ygax. The interval [0, ymax] is
divided into I subintervals, and each of the N obser-
vations of y is assigned to the subinterval into which
it falls. Dividing the total number of observations
that fall in each subinterval by N yields a histogram
of the values of y. Since a histogram is a discrete
approximation to p(y), the values of a and b can be
obtained directly from the histogram by replacing the
integral with a summation sign in Eqs. (2) and (3).

Statistical Inference Approach

Suppose that a certain form of the densities p(y)
is postulated. It is possible to test this hypothesis
statistically by usin§ the Kolmogorov-Smirnov (K-S)
goodness-of-fit test.l3 Let Y = {yx} be a set of
N sample values of an element of the vector y, and
define

1 if % >0
ulyy) = » (10)
[4] if Vg < 0
where k = 1, 2, ..., N . The empirical distribution

function Fy(y) is given by

N
1
RO) =y Y oy - %) - (11)
k=1
The continuous distribution function is, by definition,

y
HORN TR a2)

vhere p(y) is the assumed probability density function
of the component y. The K-S one-sample statistic is
defined as

Dy = max | Ry - | (13)

which is the maximum of the differences between the
postulated and empirical distribution functions over
the entire sample set Y.

The K-5 goodness-of-fit test is to reject, with
significance level &, the hypothesis that the sample
set is governed by the specified density function 1if
Dy > DN,q - Values of Dy g, such that P{Dy > Dy o) =
a, have been tabulated for numerous values of N and
@.}3,1%,1% A5 an illustration, suppose that a = 0.05.
For N = 50, the tables in ref. 13 give Dy o = 0.1884.
Then the hypothesis that a postulated p(y) charac-
terizes the given set is rejected if Dy > 0.1884.
What this implies is that the probability of rejecting
the hypothesis when it is true is 0.05. Another im-
portant property of tha K-S test is that it can be
used to determine the number of samples (N) needed to
approximate F(y) by the empirical distribution Fy(y),
such that the error Dy does not exceed an acceptable

value DN, q. 8

Direct Estimation by the Potential Function Method

Use of the K-S test requires that a form be
specified for the density p(y). In many cases it may
be desirable to estimate p(y) directly from the sample
set Y. The method of potential functions?» 15,18
developed in the following discussion can be used to
formulate an iterative procedure for the estimation
of these densities.

Let the unknown probability density function be
represented by the M-term series expansion

M
P(y) = El . (14)

vhere the ¢p(y)'s, m=1, 2, ..., M, are a set of
orthonormal functions (e.g.6 Hermite, Legendre, or
trigonometric polynomials).

Given any sample yy from the set Y, the potential
function of this sample is definad by the. expression



M
K(y, ) = '21 W 0 - as)
o

After the appearance of L samples from Y, an estimate
of p(y), denoted by p(y), is formed, as follows:

L
arey o L
B = ;);1 K@y, y,) - (16)

It can be shown!® that the average squared error

f o) - 512 oy an
¥

decreases as a function of increasing L. Equation
(16) can be expressed in a variety of recursive forms
that are useful for updating purposes.”s

Each of the approaches previously described has
inherent advantages and disadvantages in its implemen-
tation. The histogram is one of the simplest methods
for obtaining an estimate of a probability density
function. If the histogram requires periodic updating,
however, there must be a way of storing a histogram
value for each specified subdivision of every variabie
in the vector ¥. 1€ y is n-dimensional, and I divi-
sions are specified for each component, then nl histo~
gram values must be kept either in the system memory
or in some peripheral storage device.

The K-S approach is suitable for applications
where a form of each density can be specified. It can
also be used in conjunction with a method that esti-
mates the densities directly, such as the potential
function technique, in which case the K~S test can be
used to evaluate the quality of the estimates. The
advantagas of being able to statistically evaluate a
specified (or cazalculated) density are many. For exam-
ple, if a Gaussian or a log-~normal density assumption
passes the K-5 test, a significant reduction in storage
over the histogram approach can be realized because
only rwo parameters--the mean and the variance--need
to be stored for each component of y.

Direct estimation using potential functions is,
in principle, the most powerful of the three ap-
proaches. Application of this method requires specifi-
cation of a set of orthonormal functions and selection
of specific values for M and L. Once the orthonormal
functions have been specified, the potential function
approach can be implemented ia a recursive framework
that uses the K-S test to establish the quality of the
approximation for any values of M and L.

6. Classification of Multivariate Gaussian
Data in the Transformed Space

Implementation of the pattern recognition system
requires estimation of the mean vector m, and covar-
iance matrix C. of the vectors x. These parameters
completely define rhe multivariate Gr.ssian probabil~
ity density function

1
(dez[c, 1)1/2

P (@) = —— exp(~1/2( - ”:’Tc;:l

{27)

x (z - m:)] . (18)

Since m, and C,, are available, it is of interest to
compare the classification capabilities in the
original and transformed space if the data are (or
are assumed to be) Gaussian,

By using Eqs. (4), (7), and (9), it can be shown
that pq(y) = pr{x). Consequently, the linear trans-
formation y = Ax does not affect the form of the
Gaussian density. Since the elements of y are uncor-~
related, it follows in the Gaussian case that

P&) = p1(y1) p2lya) ... pn(yn) ’ (19)

where pj{yj), £ = 1, 2, ..., n, are one~dimensional
Gaussian densities. The importance of Eq. (19) is
that each function pj(y;) can be evaluated separately,
using the K-S test to assess how closely it approxi-
mates the Gaussian assumption. To the authors’
knowledge, no test exists to do this in the original
multivariate space.

The decoupled variables can be classified by
using the techniques described in the previous sec-~
tions. If the data pass the Gaussian test, however,
an alternative classification method based on the
Mahalanobis distance concept may be used.%s17 This
distance measure is defined as

- m )Yz -
D) = (x - m ) C iz ~m) (20)
for the original variables, and as

a(y -m)c! @ -
DY) =~ (y my) c; ] '"y) (21)

for the transformed varisbles.

By using Eqs. (4), (7), and (9), it can be showm
that D(y) = D(x), indicating that identical results
are obtained in both spaces. However, it is a simpler
procedure to implement Eq. (21) because Cy is a
diagonal matrix whose inverse can be obtained with
little computational effort.

Using the Mahalanobis distance, an observation
y is said to be abnormal if

Dy) > T, (22)

where T is a nonregative threshold. Setting D(y) = T
defines the equation of a hyperellipse in n-
dimensional space., Use of Eq. (21), therefore, can
be interpreted as enclosing the region of normality
by this surface. Then, any point y outside the hyper-
ellipse (i.,e., D{y) > T) is treated as abnormal.

To set T at a statistical level, we note that
Eq. (21) is a chi~square distribution with n deg;eel
of freedom;!7 that is,

2 m - T -1, _
X (y my) Cy (¢7] my) N (23)

Values of Xn are available in standard statistical
tables. For example, if n = 30 and a 0.99 inteerl
of confidence is desired, the result is that X350

50.89. 1t follows that by lettirg T = x3 a ntathti-
cal level of confidence can be associated with the
chosen threshold. The tightness of the fit can be
controlled by using



Tey: , (c20), (24)

since x% increases with increasing n. The decoupled-
variable approach also offers an alternative method
for setting the threshold T based on the training data.
This technique is to specify thresholds aj and by for
each density pj(y4) using Gaussian densities in

Eqs. (2) and (3). The training pattorns are classified
using these thresholds, and, for each pattern that is
classified as normal, the distance D(¥) 1is computed.
At the end of the procedure, T is set equal to
eDpay(y), where ¢ is a positive number and Dy,,(y) 1is
the maximum of D(y) computed during the learning phase.
Factor ¢ controls the degree of tightness of the
surface that encloses the region defined as normal.

Although this discussion is limited to a Gaussian
assumption, a similar argument co.ld be developed for
a larger class of ellipsoidally symmetric probability
density functions that would include the Gaussian
density as a special case.?

7. Parameter Tracking and Data Labeling

fhe principal parameters required to implement
the pattern recognition system are the mean vector,
the covariance matrix, and the probability density
functions. These parameters are estimated initially
with a block of training data. During normal opera-
tion, however, changes in the initial estimates over
long periods should be expected, and there must be a
way to track and update the systeh parameters.

Development of an unattended monitoring system
must accommodate changes producecd in signals being
monitored by routine changes in the operating condi-
tions of the plant. For example, neutron noise PSD
measurements at the HFIR show that there is a strong
corrslation between PSD amplitude at some frequencies
and the withdrawal position of the control rods. Un~-
like the tracking problem, these effects are generally
predictable and should be taken into account in the
design of the system.

Parameter Tracking

As an illustration of the paramater tracking
problem, let N denote the number of samples in the
training set. The mean vector is given by Eq. (5),
which can be approximated by the relation

N

1

m (N) =& > z (25)
. i=1

where my(N) denotes the estimate obtained with N sam-

ples. 1If one sample is added to the set, Eq. (25)
becomes

1 N1
MWD - FIT L T

i=1
whicli can be expressed in terms of mz(N) as follows:®
1
mz(u +1) T (N’"z(u) + zN+1) . (26)

This recursive expzession is a convenient method for
updating the mean vector as new samples become avail-
able.

When Eq. (26) is used over a long updating
sequence, the accuracy of the estimates is affected
by round-off error. To minimize this effect, the
parameters are updated in "blocks" rather than a
sample at a time. Thus, a mean vector mp(M) computed
from Eq. (25) with M samples can be added to the orig-
inal N-sample estimate by using the relation

1

A

[N (N) + Mo (M)], @n

which can be easily derived from Eq. (26). A similar
expression can be obtained for the covariance matrix.?

A more sophisticated tracking method is described
in ref. 18 where the tracking algorithms developed ac-
count for the nature of the parameter variations and
potentially can yield better estimates of the mean
vector and covariance matrix in a variety of dynamic
conditions.

Data Labeling Approach

Thus far, the discussion has been limited to one
transforma-ion matrix for all observations, which
assumes that the data are raasonably clustered about
some region in the vector space of x. In practice,
there may be more than one such cluster because of
changes in operating conditions of the plant. In the
HFIR, for example, it is not unusual to have several
distinct data clusters during the course of a fuel
cycle.5 This precludes the use of a single transfor-
mation matrix to describe the behavior of the plant
for all operating conditions.

The basic idea behind data labeling is to asso-
ciate with each observed sample a set of identifying
parameters, or labels, L = {L;, Lp, ..., Lr} which
depend on the operating conditions of the plant when
the sample is taken. To minimize the number of differ~
ent elements in L, each component Ly, i =1, 2, ..., R,
can be made to correspond to a range of operating con-
ditions. In the HFIR a minimum set of two parameters
can be used, where L; represents increments of sta-
tionary rod position, and L, denotes increments of
operating power level.

Once a set of labels has been specified for a
particular plant, the training samples are divided in-
to groups according to their label specification. The
design prucedure previously discussed is applied to
each of the data groups. Sample z with label set L
is classified by using the transformation function and
decision thresholds associated with this label set.

Our experience with labeling has been limited
to a formulation of the concert. As the recognition
system is exercised in practical applications, how-
ever, we expect that labeling techniques will have
considerable impact on classification performance.

8. Experimental Results

The pattern recognition system was implemented
on a minicomputer with 32K words of core memory, two
1,25 M-word disks, and analog-to-digital (A/D) con-
verters. The computer is also equ'pped with a video
graphics display unit which, although not essential
for on-line operation, does facilitate the presenta-
tion =f recogaition results. A smaller configuration
consisting of 28K words of core, onc disk, and A/D
converters would be sufficient to implement all the
necessary algorithms.



The data for testing recognition performance were
recorded at the HFIR during rod-perturbation experi-
ments (Fig. 3) in wvhich a 4 *+ 0.5-Hz noise signal
was injected into the control rod servo demand system.
(The noise signal was obtained by bandpass filtering
a white noise signal from a generator.) The control
rod moved in response to *he fluctuating demand,
causing perturbaticns of less than 0.1% about a 98-MW
mean level in the signal from the neutron detector.
This signal was amplified and recorded, and its PSD was
computed with and without the 4-Hz perturbatisn. The
PSDs without the perturbation constituted the training
set; those with the perturbation were used as “abnor-
mal" observations to test the recognition sensitivity
of the system after the training phase was completed.
The training set contained 357 PSDs from a 12-hr
continuous learning period. The abnormal set had

51 PSDs.
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Figure 3. Diagram of the HFIR experimental setup.

Each pattern r was formed as the logjg of a
30-dimensional vector: components 2-19 contained
PSDs from 0.5 to 5 Hz at 0.25-Hz intervals, components
20~30 contained PSDs from 5.5 to 10 Hz at 0.5~Hz in-
tervals, and component 1 was the square root of the
average of the other 29 cocpopents.

The system was first trained using histograms
with probabilities of 0.005 to establish thresholds
a and b for each of the 30 components of the pattern
vectors. After training was completed, each of the
51 abnormal patterns was input for classification,
and all were flagged as falling outside the bounds
of normal operation.

After detection of an abnormality, the system
displays a set of data analysis options (Fig. 4a) to
aid the operator in interpreting the aabnormality.
The following descriptions of these options are based
on the first pattern in the abnormal set.

Option 1 ("code 1" of Fig. 4a) displays graphs
on the same coordinate system of the average PSD (as
determined from the training set) amd the abnormal
PSD input pattern. Option 1(A) plots the patterns
before their transformation, and flags abnormal indi-
vidual components (Fig. 4b). Option 1(B) plots the
mean and abnormal pattern after their transformation
(Fig. 4c). Exercise of option 1(C) yields a plot

of the abnormal components of the transformed pattern,
such that their distances from the cozresponding com-
ponent of the average plot are relative to the number
of standard deviations that each component lies out-
side the thresholds of abnormality (Fig. 4d).

Option 2(A) lists the limits (aj, bj) for each
abnormal component, the value of each abnormal compo-
nent, and the vrelative dis-.ance outside the normal
limits in units of standard deviations. Although
data classification is carried out in the transforsed
space, interpretition is made easier by knowledge of
which components in the untransformed space contrib-
uted most to a given abnormality. One way to obtain
this information is the following. After training is
completed, a variable vector r is set equal to the
mean of the training patterns. Then, a single com-
ponent xj is incremented by some Axy, transformed,
and tested for abnormality by using the limits in the
transformed space. When the pattern is sufficiently
distorted to be classified as abnormal, that value of
%y becomes the upper limit of normality for the com~
ponent in the untransformed space. The lower limit is
determined in the same manner by decrementing xi from
its mean value. This procedure can be used to deter-
mine the linmits of normality for every component sim~
ilar to the limits (ai, bj) calculated in the trans-
formed space. However, since the limits in the
untransformed space do not account for correlation
effects they are not used for classification. The
results of this procedure constitute cption 2(B)
(Fig. 4f). Components 13-16, corresponding to the
frequency range from 3.25 to 4.0 Hz, are labeled as
abnormal, which corresponds approximately to the 4-Hz
noise perturbation. Option 2(C) is analogous to
option 2(B), except that the technique for determining
abnormal comnonents in the original space is based om
the Mahalanobis distance (Fig. 4g).

Option 3 displays both the Mahalanobis distance
of the observed pattern and the base Mahalanvbis
distance Upax(y). The Mahalanobis distance of the
observed, abnormal pattern is much greater than the
maximum Mahalanobis distance for any of the training
patterns, indicating that, in this case, the Mahalano-
bis distance and the histogram approaches agree that
the observation is abnormal. This agreement held for
all patterns in the abnormal set.

Option 4 displays a histogram of any component of
the training set in the transformed space, along with
the corresponding limits (ai, bj). The histogram of
component 30 (Fig. 41i), for example, shows that this
component is well outside the upper limit.

Options 5-8 give the user latitude in obtaining
other observations. Option 5, which allows the user
to recall a pattern that has been processed, might be
desirable for checking the conditions just prior to
the occurrence of an abnormality. With option 6, the
user can observe the next pattern without losing
control of the surveillance program, and option 7
returns control to the surveillance program to con~
tinue monitoring. Finally, option 8 terainates the’
monitoring process.

As a second experiment, the system was trained
by statistical inference. The K~S test was applied
to the training data, assuming that each transformed
component was characterized by a log-normal probabil-
ity density function. Since the training data were
formed from the logarithms of PSD values, the problem
was to test these data against a Gaussian assumption.
With a = 0.01 and K = 357, the tables ol ref. 19 gave
0.055 for Dy,o- Only component 30 failed the test
at the a = 0.01 level of significance. This overall
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Figure 4.
(c) optiom 1(B), (d) option 1(C), (e) option 2(A), (£) option 2(B), (g) option 2(C), \h) option 3, and
(1) option (4).

Analysis options:

agreenent with the log-normal assumption explains the
similarjity of claszification results cobcained with
the histogram and Mahalanobis distance approaches.

The limits for each component were determined
by integrazing the corresponding log-normal densities
[Eqs. (2) and (3)], and the classification experiment
was repeated. Although the limits were generally
different than those in the histogram experiment,
each of the abnormal patterns in the set was also
flagged by the system when log-normal densities were
used. Figure 5 shows the transformed limits for the
same abnormal pattern described earljer. Comparison
of this figure with Fig. 4(e) shows that the largest
discrepancy in classification is in component 30,
as expected.

9. Concluding Remarks

The foregoing experimental results show that it
is feasible to implement a recognition syscem that
will (1) learn the characteristics of normal operation
in a reactor, and (2) detect smali variations from the
normal pattern. Future work will test a larger data
base to determine with greater certitude the recogni-
tion capabilities of the system and to refine its
tracking ‘and label.rg procedures.
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(a) system output following detection of an abnormality, (b) cption 1(A),
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Figure 5. Traneformed limits of abnormality
by statistical inference approach.
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