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Abstract 

Performance prediction can play an important role 

in improving the efficiency of multicomputers in ex- 

ecuting scalable parallel applications. An accurate 

model of program execution time must include de- 

tailed algorithmic and architectural characterizations. 

The exact values for critical model parameters such as 

message latency and cache miss penalty can often be 

dificult to determine. This research uses multivariate 

data analysis to estimate the values of these coeffi- 

cients in an analytical model. Representing the coefi- 

cients as random variables with a specified mean and 

variance improves the utility of a performance model. 

Confidence intervals for predicted execution time can 

be generated using the standard error values for model 

parameters. Improvements in the model can also be 

made by investigating the cause of large variance val- 

ues for a particular architecture. 

1 Introduction 

Although the peak performance of distributed 

memory multicomputers continues to increase, their 
acceptance and use is still limited to a small part of 
the potential market. One reason for the underutiliza- 
tion of these machines is that they are more difficult 
to program and use than traditional supercomputers. 
The programmer must often study the architecture of 
the machine and become familiar with detailed com- 
piler transformations in order to make appropriate de- 
sign decisions. An analytical model can simplify the 
process of program development by providing essen- 
tial information about the relative performance of al- 
ternate implementations. System architects can also 
use predicted execution times to evaluate the relative 
merits of future hardware implementations. 
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Applications with scalable problem sizes are par- 
ticularly well suited to execution on Massively Paral- 
lel Processing (MPP) systems, because the number of 
parallel operations can be increased as a larger num- 
ber of processors are used. The High-Performance 
Computing and Communications (HPCC) program 
has identified scalable applications, which are impor- 
tant to making progress in the fields of fuel com- 
bustion, ocean modeling, ozone depletion and several 
other areas where sequential processing power is not 
sufficient [7]. 

Performance prediction is particularly impor- 
tant for scalable applications because they are not 
amenable to traditional performance debugging tech- 
niques. Given a sample application that runs for one 
hour on 1000 processors, it is impractical to gather 
trace data or to perform a simulation of the program 
to gather performance information. If we assume that 
accurate trace-based analysis requires 2 Mbytes/set 
of data [14] then our sample application would gen- 
erate 6 Tbytes of trace data. This data volume is 
clearly impractical, even if the data could be written 
in real time without significant performance pertur- 
bation. Simulation techniques would require in excess 
of 1000 hours to emulate the execution of 1000 proces- 
sors for a one hour job. This would exceed the maxi- 
mum acceptable overhead for performance debugging. 
With multiple MPP systems becoming available to a 
single researcher, performance prediction is also an 
important tool in matching the appropriate hardware 
platform to a specific application. 

This research uses an instrumented run of a tar- 
get application to build an analytical model which 
is adaptable to machine specific characteristics of a 
given multicomputer platform. In order to calculate 
coefficients for this model, the characteristics of the 
hardware, operating system and compiler must all be 
determined. Although lower bounds on specific hard- 
ware parameters can be obtained from technical spec- 

446 
1060-3425/95$4.00 0 1995 IEEE 

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95) 
1060-3425/95 $10.00 © 1995 IEEE 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

ifications, exact access times from user programs can 
be difficult to determine. This is especially true for 
workstation clusters where network access times can 
vary depending on network traffic and system load. 
For many of these variables, however, the coefficients 
can be approximated by random variables with a nor- 
mal distribution. 

Multivariate data analysis techniques are used 
widely in the behavioral and biological sciences to an- 
alyze the effect of several variables on a measurable 
outcome. Software packages make it possible to an- 
alyze large quantities of complex data with relative 
ease. Using statistical techniques to estimate the co- 
efficients for an analytical model has several advan- 
tages: 

l Statistical packages provide standard error values 

for each of the prediction variables. These con- 
fidence intervals allow us to specify a confidence 
interval as well as an expected value for predicted 
performance on a target architecture. 

l The model can be fit in an automated and struc- 
tured way using real applications similar to the 
expected load for a parallel system. 

l Standard information available from statistical 
software packages assess the correlation of the 
model to experimental data. This information 
allows us to tune the model in order to reduce 
prediction error. Extraneous variables can also 
be eliminated when a model parameter is statis- 
tically indistinguishable from zero. Models with 
smaller numbers of variables can often achieve 
higher accuracy. 

Multivariate statistical analysis often requires a 
larger number of samples than other fitting methods. 
Scalable applications are good candidates for this en- 
vironment because multiple samples can be obtained 
from a single program using different problem sizes. 
Our results indicate that a reasonably accurate fit can 
be obtained from a limited number of applications. 
Statistical methods for finding coefficients are also ap- 
plicable to non-scalable applications if a larger number 
of sample applications are available. 

In Section 2 we describe the symbolic performance 
model used to gather algorithmic information for our 
statistical analysis. Section 3 applies multivariate 
analysis to the problem of determining coefficients for 
the model. Experimental results are detailed in Sec- 
tion 4 and related research into performance predic- 
tion is examined in Section 5. 

2 Symbolic Performance Prediction 

The symbolic performance prediction system we 
describe here is designed to make use of statistical 
analysis in determining model coefficients. Multivari- 
ate techniques are an essential part of the overall mod- 
eling system. 

Many of the goals of this research were motivated 
by meetings with a commercial MPP vendor to de- 
termine requirements for a performance analysis tool. 
Members of the programming tools and system archi- 
tecture groups suggested the following specifications 
for a performance prediction system. 

l The model should allow a user to predict perfor- 
mance for larger problem sizes and larger num- 
ber of processors than the machine used during 
performance debugging. This allows smaller par- 
allel machines or workstations to be used during 
program development with large MPP machines 
being reserved for solving computational prob- 
lems. It also speeds up instrumentation runs of a 
program since smaller problem sizes can be used 
during performance debugging. 

l One means of determining the portability of an 
application is to determine the sensitivity of a 
program to changes in critical system parame- 
ters. A performance model should allow the user 
to view the sensitivity to system parameters as 
the problem size and number of processors vary. 
The validity of the model can also be determined 
through analyzing the sensitivity of the model to 
a particular parameter and the confidence level 
for that parameter. 

l Several of the MPP systems currently in produc- 
tion support advanced operating systems with 
virtual memory. An effective performance pre- 
diction model should account for paging activity 

as the data size grows to the point that it does 
not fit in physical memory. 

The symbolic performance prediction model described 
here meets these requirements as well as allowing the 
user to determine the relative contribution of each ba- 
sic block in application code. 

Figure 1 shows a block diagram of the performance 
prediction system. Our implementation focuses on 
analysis for the Dataparallel C parallel programming 
language [13]. The basic constructs can be extended 
to other explicitly data-parallel languages, such as 
Fortran 90, High Performance Fortran and C*.. We 
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Figure 1: Block diagram for performance prediction 
system 

have found that programs written in high level paral- 
lel languages enable more accurate and complete per- 
formance analysis techniques than code written in an 
imperative language with message passing. This oc- 
curs because the communication patterns are more 
predictable and recognizable. The data access pat- 
terns can also be determined more easily for programs 

written in a high level parallel language. 
Given Dataparallel C source code, instrumentation 

code is inserted to determine execution characteris- 
tics which will be used to build a call graph for the 
application. Architecture specifications for the tar- 
get machine are then passed to a linearization phase 
which outputs operation counts for significant system 
parameters. These counts are then combined with 
costs in time for each operation type, resulting in a 
symbolic equation for execution time. Since the re- 
sult of this model is an equation rather than a time 
estimate for a given problem size, the execution time 
can be differentiated with respect to a given system 
parameter. The resulting equation can be used to de- 
termine the sensitivity of the application to changes 
in that parameter as the problem is scaled up. 

2.1 Instrumentation Run 

Instrumentation required by the performance pre- 
diction system can be inserted by a source-to-source 
compiler. It consists of static declarations of prede- 
fined data types and calls to a prediction library rou- 
tine. Execution time for the instrumentation run is 
used to refine the estimate for the number of compu- 
tations involved in the application. 

2. If a symbolic value cannot be found, then a sim- 
plified fit is attempted to determine if the number 
of iterations found in the instrumentation run is 
an even multiple of the problem size. 

3. If the initialization or termination expression can- 
not be scaled to problem size, then it is assumed 
to be constant. 

Dataparallel C replicates scalar values on all pro- This instrumentation strategy is effective in struc- 

cessors and distributes parallel variables across the tured programs where the iteration variables are not 
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nodes of the system. Total data volume for scalable 
applications will be dominated by parallel variables. 
The instrumentation code accounts for the size of par- 
allel variables through declaring a shape descriptor 
structure which specifies the number of dimensions in 
a shape and the number of positions in each dimen- 
sion. 

Iteration constructs are instrumented with a loop 
descriptor structure which specifies the symbolic name 
of the iteration variable along with the initialization, 
termination and increment expressions. This symbolic 
information will be used to analyze complex iteration 
constructs. Conditional code is also instrumented to 
determine the true ratios. Related research has shown 

that true ratios often remain constant as the problem 
size for an application is scaled up [lo]. Virtual pro- 
cessor emulation loops are instrumented with shape 
instance descriptor structures which are organized in 
a linked list. Information on the data size accessed 
during each virtual processor loop will be used to de- 
termine the number of cache misses. The type of com- 
munication and the size of the data instance to be 
transferred are also accounted for in each communi- 
cation block. 

At the conclusion of the instrumentation run, the 

performance prediction library builds a call graph 
data structure which is used to scale the number of 
loop iterations and the size of each shape to the prob- 
lem size. A sample call graph is shown in Figure 2. 
The instrumentation library code recursively descends 
the call graph and for each loop construct the follow- 
ing attempts are made to determine the complexity of 
the loop. 

1. The most accurate results occur when the number 
of loop iterations can be determined from sym- 
bolic information. A search is made beginning 
from the parent node of the loop under analysis 
to the top of the call graph tree. If the initial- 
ization or termination values for the loop are it- 
eration variables for an enclosing loop, then that 
symbolic value is used in subsequent analysis. 

448 

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95) 
1060-3425/95 $10.00 © 1995 IEEE 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

Figure 2: Call Graph Data Structure 

modified within the loop body. It is also restricted to 
non-recursive applications without “goto” statements. 
In a survey of 112 supercomputer applications from 
the College of Oceanographic and Atmospheric Sci- 
ences at Oregon State University, 98% of the loop con- 
structs were amenable to this analysis strategy. Par- 
allel variable descriptor structures are also scaled to 
the problem size in a similar manner. Since the call 

graph structure is constructed symbolically, program 
complexities which can not be analyzed computation- 
ally can be entered by a programmer in symbolic form 
if additional accuracy is required. This manual speci- 
fication of loop complexity has not been necessary for 
any of the applications we have examined. 

2.2 Architectural Linearization 

The architectural linearization phase of symbolic 
performance prediction reduces complex machine 
characteristics to equations linear with respect to the 
speed of hardware subsystems. Statistical inference 
can then be used to determine the coefficients using 
linear modeling techniques. The major architectural 
features we analyze here are: 

a On-chip cache and page fault behavior. 

l Message startup times for interprocessor commu- 
nications. 

l Bandwidth characteristics for different communi- 
cation patterns. 

References to parallel variables in virtual processor 
emulation loops have a highly sequential access pat- 
tern, enabling accurate prediction of the number of 
cache misses and page faults which will occur during 
the execution of a scalable application. For our anal- 
ysis we assume that if the size of all data accessed 
during a virtual processor emulation loop is greater 
than the cache size, then the processor will miss in 
the cache for the whole data array. Otherwise there 
is no cache miss penalty. This applies to both on-chip 
cache and virtual memory. As a result of this lin- 
earization step, expressions for the number of cache 
misses can be derived. 

Interprocessor communication can have a signifi- 
cant impact on the performance of a parallel appli- 
cation. We have found that modeling the number of 
message startup times necessary for a communication 
and the number of bytes transmitted results in an 
accurate estimation of the total communication cost. 
For each communication type, we model the number 
of messages which must be initiated to perform the 
transfer. Neighbor communications require a single 
message while broadcasts using a binomial tree algo- 
rithm require time logarithmic in the number of pro- 
cessors. The complexity of the other communication 
patterns for Dataparallel C has been thoroughly inves- 
tigated previously [13] and is included in our model of 
the application. Equations for message startup cost 
and available bandwidth must be altered to model 
different topologies, but will be constant for architec- 
tures with similar communication networks. 

As a result of the architectural linearization phase, 
expressions for operation counts are computed as a 
function of the problem size and the number of pro- 

cessors utilized. 

2.3 Linear Parameter Model 

Given counts for each operation and the cost for 
that operation on a given system, total execution time 
can bc 
Let 

x= 

predicted for the application being modeled. 

J&l &PO XL10 Xst, XBwo 

XOPSI &PI XL11 xst, XBwl 

XOPS2 XVP, XL12 xst, xBw2 
and 

XOPSS XVP, XL13 xst, XBws 1 
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where each row of X corresponds to counts of arith- 
metic operations (XO,~), virtual processor emula- 
tion loops (Xvp), level one cache misses (XL~), mes- 
sages sent (Xst) and the number of bytes transmit- 
ted through a communication channel on a processor 

(xBw> for P ar icu ar values of N and P. This ar- t 1 

ray can be built automatically given the equations re- 
sulting from the linearization phase by the Maple [4] 
symbolic computation system. The cost vector /3 rep- 
resents the cost in seconds for each system parameter. 
The predicted execution time vector T = PX contains 
the time in seconds for the algorithm to execute for 
particular values of N and P. Multivariate techniques 
can be used to obtain these costs given a statistically 
significant number of experimental runs with different 
problem sizes and numbers of processors. 

3 Statistical Approximation of System 

Parameters 

Multivariate statistics refers to a group of inferen- 
tial techniques that have been developed to handle 
situations where sets of variables are involved as pre- 
dictors of performance [12]. In classical scientific ex- 
periments, an effort is made to eliminate all but one 
causal factor through experimental control. The vari- 
ables in our analytical model are difficult to isolate, 
and more complex methods are needed to estimate 
the value of model coefficients. Statistical software 
packages allow large quantities of multivariate data 
to be analyzed with relative ease. The use of the S- 
PLUS [19] multivariate statistical package allows us 
to quantify the contribution of each system parame- 
ter to execution time and provides confidence intervals 
on the resultant predictions [3]. 

The performance prediction model developed in 
this research was designed to create a linear model 
with respect to the important system characteristics 
we have identified. The following assumptions have 
been made in order to apply statistical techniques to 
this model: 

l Both the predictor variables and the model errors 
are statistically independent. As the number of 
mathematical operations performed by a parallel 
application increases there will not necessarily be 
a corresponding increase in the number of cache 
misses or communications performed by the ap- 
plication. The independence of these variables is 
important to the application of linear regression 
methods. This assumption is approximately true 
within runs of a single application as the problem 

size is varied. The assertion that the X values 
are independent is even stronger when multiple 
applications are included in the set of programs 
used to fit the model. 

The X matrix is able to characterize important 
performance indicators equally well from applica- 
tion to application. Given an application A which 
we would like to make predictions for, and a set 
of applications S used in fitting the model, where 
A # S, we assume that the X matrix represents 
algorithmic characteristics equally well for A as 
for the other applications in S. This assertion is 
particularly strong among programs addressing a 
single computational problem. A supercomput- 
ing site may have several researchers developing 
fluid dynamics applications, and a model fit to 
existing fluid flow programs will generalize well 
to other applications in this class. Our experi- 
ence has shown that as long as S contains sam- 
ples from several different types of parallel appli- 
cations the fit is quite good for other programs. 

The true relationship between the predicted time 
and model variables is linear, and the algorith- 
mic measurements are accurate. Inaccuracies in 
X values can degrade the validity of regression 
results. Our results indicate that accurate op- 
eration counts can be obtained through an in- 
strumented run of a scaled down version of an 

application. 

Errors are normally distributed with zero mean 
and a constant standard deviation. The shape 
of the quantile-quantile curve can be used to de- 
termine the correlation of residuals to a normal 
distribution. The quantile plot of Figure 3 indi- 
cates that the residuals for the Meiko CS-2 have 
slightly longer tails than a normal distribution. 

Multiple linear regression techniques model a nu- 
meric response variable, y, by a linear combination 
of p predictor variables xj for j = 1, . . . , p. The pre- 
dicted values are the sum of coefficients pj multiplied 
by the corresponding xj. 

Linear least-squares models (LSQ) estimate the coeffi- 
cients to minimize the squared sum of errors between 
predicted and experimental values. If the response 
and predictors corresponding to the ith of R observa- 
tions are y;, xii, xi2, . . , xio, then the fittine: criterion 
chooses the ,8j to minimize Cy=“=,(yi - (CT=; /?jxij))’ 

[31. 
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Figure 3: Quantile plot of model errors for experi- 
mental data derived from 5 example programs on the 
Meiko CS-2 vs. a normal distribution of residuals. 

One side effect of using the LSQ criterion is that 
outliers (experimental values with a large error) tend 
to have a big effect on the derivation of p values. 
From one perspective, this is reasonable, because the 
seriousness of an error in prediction goes up much 
faster than linearly with the magnitude of the error. 
Although we would like to have all predicted values 
within a certain percentage error of the experimental 
value, it is more important to estimate values cor- 
rectly when the execution time is in thousands of sec- 
onds than it is with millisecond run times. In order 
to minimize the effects of erroneous measurement we 
have manually removed outliers which were suspect. 
The technique of “ridge regression” could also be used 
which would allow some bias in the estimated p values 
in exchange for a potentially large decrease in variabil- 
ity in the presence of “wild” observations [12]. 

Our analytical performance model uses counts of 
critical operations generated from the linearization 
module as predictor variables for multivariate analy- 
sis. The /? values generated by the statistical package 
are estimates of the actual values for system param- 
eters in a particular parallel architecture. A number 
of real data-parallel applications are run on an ex- 
isting parallel machine in order to fit the model. At 
this point the prediction system can make predictions, 
with confidence intervals, for other parallel applica- 
tions on the selected platform. 

Table 1: Output of statistical parameters for the 
nCUBE 3200 multicomputer. 

4 Experimental Results 

Several sets of experiments are described here to 
validate the performance prediction system using mul- 
tivariate analysis. Instrumentation is added to the 
intermediate code of several significant scientific ap- 
plications. The applications are then run with an ex- 
tremely small problem size in order to produce the 
analytical model. This instrumentation run takes less 
than 10 seconds for each application. The output from 
the instrumentation run is then reduced by the Maple 
[4] program into expressions which are functions of 
the fundamental architectural features of a particular 
parallel implementation. The model is fit using ac- 
tual runs on the Intel iPSC/860, nCUBE 3200 and 
Meiko CS-2 multicomputers. We use a “Systematic 
Sampling” approach to selecting experimental values 
for the fitting process [18]. The S-PLUS [19] software 
package is then used to predict performance for two 
ocean modeling applications. We also discuss several 
ways in which this prediction system can be used to 
analyze performance. 

4.1 Multivariate Model Analysis 

Our initial experiments were run with the nCUBE 
3200 multicomputer. The model was fit using three 
applications (Gaussian elimination, matrix multipli- 
cation and the “shallow-water” model) with several 
different problem sizes for a total of 58 experimental 
runs. The resulting p values are shown in Table 1. 

The coefficient of determination (Multiple R- 
squared term) for this regression is 0.9978 indicating 
that over 99% of the total variation in the response 
is accounted for by variation in the fitted values [3]. 
Values in Table 1 are given in microseconds. Given 
the system clock cycle time of 125nsec, the pop value 
indicates that it takes approximately 5 clock ticks for 
an average operation. The ,&p value suggests that it 
takes approximately 120 cycles to set up a virtual pro- 
cessor emulation loop. The startup time of 367psec 
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is similar to that found in previous research on the 
nCUBE [6]. 

The standard error column in Table 1 is an esti- 
mate of how much the regression coefficient ,f3 will 
vary from sample to sample. If multiple samples of the 
same size were taken from the same population and 
used to calculate the regression equation, this would 
be an estimate of how much the regression coefficient 
would vary from sample to sample [15]. The large 
standard error value for the message startup cost in- 
dicates that a more detailed model needs to be in- 
vestigated for this parameter. The “Significance” col- 
umn describes the result of an F-test to determine 
the probability that the variance accounted for by the 
coefficient could come from a F distribution. Small 
values indicate that the variable is important in ex- 
plaining variance. All of the entries in this column 
indicate that the coefficients are highly significant in 
accounting for variance in the experimental data. 

Figure 4 and Figure 5 illustrate predicted output 
for the “ocean circulation model” on the nCUBE 
3200. The program models wind-driven circulation 
in a density-stratified ocean [13]. The problem scales 
up by increasing the number of segments modeled in 
the east-west direction. The vertical bars join the up- 
per and lower twice-standard-error points, meant to 
represent approximately 90% confidence intervals for 
the mean response. Since the standard error value for 
communications is higher than that for computations, 
the confidence interval in Figure 4 is larger than the 
predicted interval in Figure 5. This occurs because 
communication costs make up a higher fraction of to- 
tal execution time for the smaller problem in Figure 4. 

Figure 6 examines predicted output for the “shal- 
low water model” application on the Intel iPSC/860. 
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2 4 8 16 32 
Processors 

Figure 6: Predicted and experimental values for the 
“shallow water” model with a 64X64 grid and 1200 
iterations for an Intel iPSC/860 multicomputer. 

The National Center for Atmospheric Research has 
developed this application for use in benchmarking 
the performance of MPP systems. The program solves 
a set of nonlinear shallow-water equations in two hor- 
izontal dimensions [13]. For this experiment we rely 
exclusively on previous experimental data for execu- 
tion times in order to fit the model. The instrumen- 
tation run for the applications was performed on a 
single processor workstation and yet accurate results 
were still obtained. 

The Meiko G-2 multicomputer consists of SPARC 
processors connected in an Omega network configura- 
tion [16]. Each node is equipped with two vector pro- 
cessors to improve floating point performance. A copy 
of the multi-user Solaris operating system executes on 
each node increasing the variability of successive runs 
of the same program on the machine. Figure 7 and 
Figure 8 show the predicted results obtained for the 
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Figure 7: Experimental and predicted execution time 
in seconds for the “ocean circulation model” on the 
Meiko CS-2 multicomputer with 640 segments in the 
east-west direction. 
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Figure 8: Experimental and predicted execution time 
in seconds for the “ocean circulation model” on the 
Meiko CS-2 multicomputer with 1280 segments in the 
east-west direction. 

“ocean circulation model.” The experimental data 
has a much larger number of outliers than were found 
on the other two machines. Some of this variability 
can be attributed to the multi-user nature of the ma- 
chine. The current implementation of Dataparallel C 
on the Meiko relies on libraries written for the Intel 
iPSC/860 which use the NX message passing interface 
provided on the Meiko. This extra level of software 
indirection may also account for some of the inaccura- 
cies in the model. Future work will focus on adapting 
this modeling technique to networks of workstations 
where high levels of variability exist in the message 
passing latency. This work on the Meiko is a first 
step in that direction. 

Performance analysis is used by system architects 
in order to improve the performance of next genera- 
tion machines. It can also be used by programmers 

in performance debugging and by customers to assist 
in making procurement decisions. The symbolic per- 
formance prediction system described here performs 
analysis on scalable applications where other analy- 
sis techniques cannot be used. The following exam- 
ples show how this performance prediction system has 
been used to analyze performance as a problem is 
scaled up. 

4.2 Analysis Using Performance Predic- 
tion Results 

The performance of parallel applications is affected 
by many factors which need not be considered with se- 
quential programs. Consequently, performance analy- 
sis for parallel applications much take more of a multi- 
dimensional approach [17]. The following examples il- 
lustrate the utility of this symbolic performance model 
in analyzing the impact of several effects on a scalable 
application. 

A major use of performance prediction results is 
in the area of performance debugging. Figure 9 illus- 
trates the percentage of time spent in broadcasting the 
pivot row for the Gaussian elimination application on 
an nCUBE 3200. For extremely small problem sizes, 

the execution time is dominated by message startup 
costs for the communications. Since all communica- 
tions in the application grow linearly with P, the per- 
centage of time spent in this basic block is constant. 
As the problem size is scaled up, the fraction of time 
grows logarithmically with P, due to the number of 
messages required for the binomial tree broadcast al- 
gorithm. For larger problem sizes the communication 
ratio grows linearly with the number of processors. 

The ability to predict the sensitivity of an algo- 
rithm to changes in system parameters is critical to 

determining its portability. As architects are able to 
predict the sensitivity of applications to changes in 
system parameters, the efficiency of parallel hardware 
should increase. Since the result of this performance 
prediction system is a symbolic expression for exe- 
cution time, the equation can be differentiated with 
respect to critical system parameters in order to view 
the effect modifications will have on performance as 
the problem size is scaled up. In Figure 10, the execu- 
tion time was differentiated with respect to message 
startup cost. The vertical scale shows the increased 
execution time in seconds for each increase of 10psec 
in message startup cost. The sensitivity increases 
linearly with problem size, since a constantly grow- 
ing number of communications must be performed as 
problem size increases. The sensitivity grows logarith- 
mically as the number of processors increases due to 

453 

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95) 
1060-3425/95 $10.00 © 1995 IEEE 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

Broadcast 96 

Figure 9: Percentage of execution time spent in broad- Figure 10: Sensitivity to changes in message startup 
casting the pivot row for Gaussian elimination on an cost as a function of problem size and number of pro- 
nCUBE 3200. cessors. 

the complexity of the binomial tree broadcast algo- 
rithm. used to predict performance on scalable applications. 

The multivariate techniques described here should be 
particularly applicable to this model because of the 
large number of samples which are already being ob- 
tained. 

5 Related Work 

Several different approaches have been taken in 
predicting performance for parallel systems. To our 
knowledge this research is the first to employ multi- 
variate statistical analysis in finding coefficients for 
parallel performance models. The linearization phase 
of our algorithm produces a model which can be used 
to analyze the impact of system parameters on appli- 

cations. 
Several analysis techniques have been investigated 

which incorporate information from the source code or 
from an instrumentation run of a target application. 
These methods provide accurate prediction results for 
applications with a fixed problem size and allow a pro- 
grammer to view the effects of modifications to an al- 
gorithm and implementation [l, 2, 5, 8, 111. These 
methods combine effects from all basic blocks in an 
application into a total count of the number of critical 
operations performed. The cost of these operations is 
then estimated using a training set of benchmark pro- 

grams, or by using specifications provided by system 
manufacturers. The statistical techniques described 
in this paper could also be applied to these systems. 

Research into lost cycle analysis has attempts to fit 
a curve to the number of communications and compu- 
tations using multiple runs of an application [9]. Sev- 
eral runs are made to determine the coefficient for each 
variable in the model and the resultant equations are 

0.3 

Sensitivity 

0.2 

The combination of symbolic performance predic- 
tion coupled with the application of statistical analysis 
is unique to this research. 

6 Conclusions 

MPP systems users, programmers and designers 
are all interested in performance analysis, since their 
goal is to achieve the highest possible performance 
at the lowest cost. Multivariate data analysis tech- 
niques simplify the performance prediction process by 
deriving system parameters from experimental runs of 
sample applications. The utility of prediction data is 
also increased as users are able to evaluate the confi- 
dence interval for estimated execution time. Improve- 
ments to the underlying analytical model can be made 

through focusing on predictor variables which have a 
large variance in the statistical analysis. Multivariate 
statistical techniques improve the utility and accuracy 
of performance prediction models. The use of perfor- 
mance prediction systems by system architects and 
programmers should increase the efficiency of MPP 
systems in general and scalable applications in partic- 
ular. 
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