
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Mult ivariat e Statist ical Techniques
for Parallel Performance Prediction +

Mark J. Clement
Computer Science Department

Brigham Young University

Provo, Utah 84602-6576

Abstract

Performance prediction can play an important role

in improving the efficiency of multicomputers in ex-

ecuting scalable parallel applications. An accurate

model of program execution time must include de-

tailed algorithmic and architectural characterizations.

The exact values for critical model parameters such as

message latency and cache miss penalty can often be

dificult to determine. This research uses multivariate

data analysis to estimate the values of these coeffi-

cients in an analytical model. Representing the coefi-

cients as random variables with a specified mean and

variance improves the utility of a performance model.

Confidence intervals for predicted execution time can

be generated using the standard error values for model

parameters. Improvements in the model can also be

made by investigating the cause of large variance val-

ues for a particular architecture.

1 Introduction

Although the peak performance of distributed

memory multicomputers continues to increase, their
acceptance and use is still limited to a small part of
the potential market. One reason for the underutiliza-
tion of these machines is that they are more difficult
to program and use than traditional supercomputers.
The programmer must often study the architecture of
the machine and become familiar with detailed com-
piler transformations in order to make appropriate de-
sign decisions. An analytical model can simplify the
process of program development by providing essen-
tial information about the relative performance of al-
ternate implementations. System architects can also
use predicted execution times to evaluate the relative
merits of future hardware implementations.

t This research was supported by Intel Foundation and NSF
grant ASC-9208971.

Michael J. Quinn

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331-3202

Applications with scalable problem sizes are par-
ticularly well suited to execution on Massively Paral-
lel Processing (MPP) systems, because the number of
parallel operations can be increased as a larger num-
ber of processors are used. The High-Performance
Computing and Communications (HPCC) program
has identified scalable applications, which are impor-
tant to making progress in the fields of fuel com-
bustion, ocean modeling, ozone depletion and several
other areas where sequential processing power is not
sufficient [7].

Performance prediction is particularly impor-
tant for scalable applications because they are not
amenable to traditional performance debugging tech-
niques. Given a sample application that runs for one
hour on 1000 processors, it is impractical to gather
trace data or to perform a simulation of the program
to gather performance information. If we assume that
accurate trace-based analysis requires 2 Mbytes/set
of data [14] then our sample application would gen-
erate 6 Tbytes of trace data. This data volume is
clearly impractical, even if the data could be written
in real time without significant performance pertur-
bation. Simulation techniques would require in excess
of 1000 hours to emulate the execution of 1000 proces-
sors for a one hour job. This would exceed the maxi-
mum acceptable overhead for performance debugging.
With multiple MPP systems becoming available to a
single researcher, performance prediction is also an
important tool in matching the appropriate hardware
platform to a specific application.

This research uses an instrumented run of a tar-
get application to build an analytical model which
is adaptable to machine specific characteristics of a
given multicomputer platform. In order to calculate
coefficients for this model, the characteristics of the
hardware, operating system and compiler must all be
determined. Although lower bounds on specific hard-
ware parameters can be obtained from technical spec-

446
1060-3425/95$4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

ifications, exact access times from user programs can
be difficult to determine. This is especially true for
workstation clusters where network access times can
vary depending on network traffic and system load.
For many of these variables, however, the coefficients
can be approximated by random variables with a nor-
mal distribution.

Multivariate data analysis techniques are used
widely in the behavioral and biological sciences to an-
alyze the effect of several variables on a measurable
outcome. Software packages make it possible to an-
alyze large quantities of complex data with relative
ease. Using statistical techniques to estimate the co-
efficients for an analytical model has several advan-
tages:

l Statistical packages provide standard error values

for each of the prediction variables. These con-
fidence intervals allow us to specify a confidence
interval as well as an expected value for predicted
performance on a target architecture.

l The model can be fit in an automated and struc-
tured way using real applications similar to the
expected load for a parallel system.

l Standard information available from statistical
software packages assess the correlation of the
model to experimental data. This information
allows us to tune the model in order to reduce
prediction error. Extraneous variables can also
be eliminated when a model parameter is statis-
tically indistinguishable from zero. Models with
smaller numbers of variables can often achieve
higher accuracy.

Multivariate statistical analysis often requires a
larger number of samples than other fitting methods.
Scalable applications are good candidates for this en-
vironment because multiple samples can be obtained
from a single program using different problem sizes.
Our results indicate that a reasonably accurate fit can
be obtained from a limited number of applications.
Statistical methods for finding coefficients are also ap-
plicable to non-scalable applications if a larger number
of sample applications are available.

In Section 2 we describe the symbolic performance
model used to gather algorithmic information for our
statistical analysis. Section 3 applies multivariate
analysis to the problem of determining coefficients for
the model. Experimental results are detailed in Sec-
tion 4 and related research into performance predic-
tion is examined in Section 5.

2 Symbolic Performance Prediction

The symbolic performance prediction system we
describe here is designed to make use of statistical
analysis in determining model coefficients. Multivari-
ate techniques are an essential part of the overall mod-
eling system.

Many of the goals of this research were motivated
by meetings with a commercial MPP vendor to de-
termine requirements for a performance analysis tool.
Members of the programming tools and system archi-
tecture groups suggested the following specifications
for a performance prediction system.

l The model should allow a user to predict perfor-
mance for larger problem sizes and larger num-
ber of processors than the machine used during
performance debugging. This allows smaller par-
allel machines or workstations to be used during
program development with large MPP machines
being reserved for solving computational prob-
lems. It also speeds up instrumentation runs of a
program since smaller problem sizes can be used
during performance debugging.

l One means of determining the portability of an
application is to determine the sensitivity of a
program to changes in critical system parame-
ters. A performance model should allow the user
to view the sensitivity to system parameters as
the problem size and number of processors vary.
The validity of the model can also be determined
through analyzing the sensitivity of the model to
a particular parameter and the confidence level
for that parameter.

l Several of the MPP systems currently in produc-
tion support advanced operating systems with
virtual memory. An effective performance pre-
diction model should account for paging activity

as the data size grows to the point that it does
not fit in physical memory.

The symbolic performance prediction model described
here meets these requirements as well as allowing the
user to determine the relative contribution of each ba-
sic block in application code.

Figure 1 shows a block diagram of the performance
prediction system. Our implementation focuses on
analysis for the Dataparallel C parallel programming
language [13]. The basic constructs can be extended
to other explicitly data-parallel languages, such as
Fortran 90, High Performance Fortran and C*.. We

447

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Memory Hierarchy
[Instrume;tation Run)

Network Topology
Architectural Linearization

System Parameters

t
inear Parameter Model

+
Equation for Execution Time

Figure 1: Block diagram for performance prediction
system

have found that programs written in high level paral-
lel languages enable more accurate and complete per-
formance analysis techniques than code written in an
imperative language with message passing. This oc-
curs because the communication patterns are more
predictable and recognizable. The data access pat-
terns can also be determined more easily for programs

written in a high level parallel language.
Given Dataparallel C source code, instrumentation

code is inserted to determine execution characteris-
tics which will be used to build a call graph for the
application. Architecture specifications for the tar-
get machine are then passed to a linearization phase
which outputs operation counts for significant system
parameters. These counts are then combined with
costs in time for each operation type, resulting in a
symbolic equation for execution time. Since the re-
sult of this model is an equation rather than a time
estimate for a given problem size, the execution time
can be differentiated with respect to a given system
parameter. The resulting equation can be used to de-
termine the sensitivity of the application to changes
in that parameter as the problem is scaled up.

2.1 Instrumentation Run

Instrumentation required by the performance pre-
diction system can be inserted by a source-to-source
compiler. It consists of static declarations of prede-
fined data types and calls to a prediction library rou-
tine. Execution time for the instrumentation run is
used to refine the estimate for the number of compu-
tations involved in the application.

2. If a symbolic value cannot be found, then a sim-
plified fit is attempted to determine if the number
of iterations found in the instrumentation run is
an even multiple of the problem size.

3. If the initialization or termination expression can-
not be scaled to problem size, then it is assumed
to be constant.

Dataparallel C replicates scalar values on all pro- This instrumentation strategy is effective in struc-

cessors and distributes parallel variables across the tured programs where the iteration variables are not

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

nodes of the system. Total data volume for scalable
applications will be dominated by parallel variables.
The instrumentation code accounts for the size of par-
allel variables through declaring a shape descriptor
structure which specifies the number of dimensions in
a shape and the number of positions in each dimen-
sion.

Iteration constructs are instrumented with a loop
descriptor structure which specifies the symbolic name
of the iteration variable along with the initialization,
termination and increment expressions. This symbolic
information will be used to analyze complex iteration
constructs. Conditional code is also instrumented to
determine the true ratios. Related research has shown

that true ratios often remain constant as the problem
size for an application is scaled up [lo]. Virtual pro-
cessor emulation loops are instrumented with shape
instance descriptor structures which are organized in
a linked list. Information on the data size accessed
during each virtual processor loop will be used to de-
termine the number of cache misses. The type of com-
munication and the size of the data instance to be
transferred are also accounted for in each communi-
cation block.

At the conclusion of the instrumentation run, the

performance prediction library builds a call graph
data structure which is used to scale the number of
loop iterations and the size of each shape to the prob-
lem size. A sample call graph is shown in Figure 2.
The instrumentation library code recursively descends
the call graph and for each loop construct the follow-
ing attempts are made to determine the complexity of
the loop.

1. The most accurate results occur when the number
of loop iterations can be determined from sym-
bolic information. A search is made beginning
from the parent node of the loop under analysis
to the top of the call graph tree. If the initial-
ization or termination values for the loop are it-
eration variables for an enclosing loop, then that
symbolic value is used in subsequent analysis.

448

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Figure 2: Call Graph Data Structure

modified within the loop body. It is also restricted to
non-recursive applications without “goto” statements.
In a survey of 112 supercomputer applications from
the College of Oceanographic and Atmospheric Sci-
ences at Oregon State University, 98% of the loop con-
structs were amenable to this analysis strategy. Par-
allel variable descriptor structures are also scaled to
the problem size in a similar manner. Since the call

graph structure is constructed symbolically, program
complexities which can not be analyzed computation-
ally can be entered by a programmer in symbolic form
if additional accuracy is required. This manual speci-
fication of loop complexity has not been necessary for
any of the applications we have examined.

2.2 Architectural Linearization

The architectural linearization phase of symbolic
performance prediction reduces complex machine
characteristics to equations linear with respect to the
speed of hardware subsystems. Statistical inference
can then be used to determine the coefficients using
linear modeling techniques. The major architectural
features we analyze here are:

a On-chip cache and page fault behavior.

l Message startup times for interprocessor commu-
nications.

l Bandwidth characteristics for different communi-
cation patterns.

References to parallel variables in virtual processor
emulation loops have a highly sequential access pat-
tern, enabling accurate prediction of the number of
cache misses and page faults which will occur during
the execution of a scalable application. For our anal-
ysis we assume that if the size of all data accessed
during a virtual processor emulation loop is greater
than the cache size, then the processor will miss in
the cache for the whole data array. Otherwise there
is no cache miss penalty. This applies to both on-chip
cache and virtual memory. As a result of this lin-
earization step, expressions for the number of cache
misses can be derived.

Interprocessor communication can have a signifi-
cant impact on the performance of a parallel appli-
cation. We have found that modeling the number of
message startup times necessary for a communication
and the number of bytes transmitted results in an
accurate estimation of the total communication cost.
For each communication type, we model the number
of messages which must be initiated to perform the
transfer. Neighbor communications require a single
message while broadcasts using a binomial tree algo-
rithm require time logarithmic in the number of pro-
cessors. The complexity of the other communication
patterns for Dataparallel C has been thoroughly inves-
tigated previously [13] and is included in our model of
the application. Equations for message startup cost
and available bandwidth must be altered to model
different topologies, but will be constant for architec-
tures with similar communication networks.

As a result of the architectural linearization phase,
expressions for operation counts are computed as a
function of the problem size and the number of pro-

cessors utilized.

2.3 Linear Parameter Model

Given counts for each operation and the cost for
that operation on a given system, total execution time
can bc
Let

x=

predicted for the application being modeled.

J&l &PO XL10 Xst, XBwo

XOPSI &PI XL11 xst, XBwl

XOPS2 XVP, XL12 xst, xBw2
and

XOPSS XVP, XL13 xst, XBws 1

449

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

where each row of X corresponds to counts of arith-
metic operations (XO,~), virtual processor emula-
tion loops (Xvp), level one cache misses (XL~), mes-
sages sent (Xst) and the number of bytes transmit-
ted through a communication channel on a processor

(xBw> for P ar icu ar values of N and P. This ar- t 1

ray can be built automatically given the equations re-
sulting from the linearization phase by the Maple [4]
symbolic computation system. The cost vector /3 rep-
resents the cost in seconds for each system parameter.
The predicted execution time vector T = PX contains
the time in seconds for the algorithm to execute for
particular values of N and P. Multivariate techniques
can be used to obtain these costs given a statistically
significant number of experimental runs with different
problem sizes and numbers of processors.

3 Statistical Approximation of System

Parameters

Multivariate statistics refers to a group of inferen-
tial techniques that have been developed to handle
situations where sets of variables are involved as pre-
dictors of performance [12]. In classical scientific ex-
periments, an effort is made to eliminate all but one
causal factor through experimental control. The vari-
ables in our analytical model are difficult to isolate,
and more complex methods are needed to estimate
the value of model coefficients. Statistical software
packages allow large quantities of multivariate data
to be analyzed with relative ease. The use of the S-
PLUS [19] multivariate statistical package allows us
to quantify the contribution of each system parame-
ter to execution time and provides confidence intervals
on the resultant predictions [3].

The performance prediction model developed in
this research was designed to create a linear model
with respect to the important system characteristics
we have identified. The following assumptions have
been made in order to apply statistical techniques to
this model:

l Both the predictor variables and the model errors
are statistically independent. As the number of
mathematical operations performed by a parallel
application increases there will not necessarily be
a corresponding increase in the number of cache
misses or communications performed by the ap-
plication. The independence of these variables is
important to the application of linear regression
methods. This assumption is approximately true
within runs of a single application as the problem

size is varied. The assertion that the X values
are independent is even stronger when multiple
applications are included in the set of programs
used to fit the model.

The X matrix is able to characterize important
performance indicators equally well from applica-
tion to application. Given an application A which
we would like to make predictions for, and a set
of applications S used in fitting the model, where
A # S, we assume that the X matrix represents
algorithmic characteristics equally well for A as
for the other applications in S. This assertion is
particularly strong among programs addressing a
single computational problem. A supercomput-
ing site may have several researchers developing
fluid dynamics applications, and a model fit to
existing fluid flow programs will generalize well
to other applications in this class. Our experi-
ence has shown that as long as S contains sam-
ples from several different types of parallel appli-
cations the fit is quite good for other programs.

The true relationship between the predicted time
and model variables is linear, and the algorith-
mic measurements are accurate. Inaccuracies in
X values can degrade the validity of regression
results. Our results indicate that accurate op-
eration counts can be obtained through an in-
strumented run of a scaled down version of an

application.

Errors are normally distributed with zero mean
and a constant standard deviation. The shape
of the quantile-quantile curve can be used to de-
termine the correlation of residuals to a normal
distribution. The quantile plot of Figure 3 indi-
cates that the residuals for the Meiko CS-2 have
slightly longer tails than a normal distribution.

Multiple linear regression techniques model a nu-
meric response variable, y, by a linear combination
of p predictor variables xj for j = 1, . . . , p. The pre-
dicted values are the sum of coefficients pj multiplied
by the corresponding xj.

Linear least-squares models (LSQ) estimate the coeffi-
cients to minimize the squared sum of errors between
predicted and experimental values. If the response
and predictors corresponding to the ith of R observa-
tions are y;, xii, xi2, . . , xio, then the fittine: criterion
chooses the ,8j to minimize Cy=“=,(yi - (CT=; /?jxij))’

[31.

450

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Figure 3: Quantile plot of model errors for experi-
mental data derived from 5 example programs on the
Meiko CS-2 vs. a normal distribution of residuals.

One side effect of using the LSQ criterion is that
outliers (experimental values with a large error) tend
to have a big effect on the derivation of p values.
From one perspective, this is reasonable, because the
seriousness of an error in prediction goes up much
faster than linearly with the magnitude of the error.
Although we would like to have all predicted values
within a certain percentage error of the experimental
value, it is more important to estimate values cor-
rectly when the execution time is in thousands of sec-
onds than it is with millisecond run times. In order
to minimize the effects of erroneous measurement we
have manually removed outliers which were suspect.
The technique of “ridge regression” could also be used
which would allow some bias in the estimated p values
in exchange for a potentially large decrease in variabil-
ity in the presence of “wild” observations [12].

Our analytical performance model uses counts of
critical operations generated from the linearization
module as predictor variables for multivariate analy-
sis. The /? values generated by the statistical package
are estimates of the actual values for system param-
eters in a particular parallel architecture. A number
of real data-parallel applications are run on an ex-
isting parallel machine in order to fit the model. At
this point the prediction system can make predictions,
with confidence intervals, for other parallel applica-
tions on the selected platform.

Table 1: Output of statistical parameters for the
nCUBE 3200 multicomputer.

4 Experimental Results

Several sets of experiments are described here to
validate the performance prediction system using mul-
tivariate analysis. Instrumentation is added to the
intermediate code of several significant scientific ap-
plications. The applications are then run with an ex-
tremely small problem size in order to produce the
analytical model. This instrumentation run takes less
than 10 seconds for each application. The output from
the instrumentation run is then reduced by the Maple
[4] program into expressions which are functions of
the fundamental architectural features of a particular
parallel implementation. The model is fit using ac-
tual runs on the Intel iPSC/860, nCUBE 3200 and
Meiko CS-2 multicomputers. We use a “Systematic
Sampling” approach to selecting experimental values
for the fitting process [18]. The S-PLUS [19] software
package is then used to predict performance for two
ocean modeling applications. We also discuss several
ways in which this prediction system can be used to
analyze performance.

4.1 Multivariate Model Analysis

Our initial experiments were run with the nCUBE
3200 multicomputer. The model was fit using three
applications (Gaussian elimination, matrix multipli-
cation and the “shallow-water” model) with several
different problem sizes for a total of 58 experimental
runs. The resulting p values are shown in Table 1.

The coefficient of determination (Multiple R-
squared term) for this regression is 0.9978 indicating
that over 99% of the total variation in the response
is accounted for by variation in the fitted values [3].
Values in Table 1 are given in microseconds. Given
the system clock cycle time of 125nsec, the pop value
indicates that it takes approximately 5 clock ticks for
an average operation. The ,&p value suggests that it
takes approximately 120 cycles to set up a virtual pro-
cessor emulation loop. The startup time of 367psec

651

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

350

300

250

200

150

100
50

0

-50

90% confidence intervals - -
Predicted-.- _

Experimental -

90% confidence intervals -
Predicted ---------

4 8 16 32 64 2 4 8 16 32 64
Processors Processors

2500 ,v I

Figure 4: Experimental and predicted execution time Figure 5: Experimental and predicted execution time
in seconds for the “ocean circulation model” on the in seconds for the “ocean circulation model” on the
nCUBE 3200 multicomputer with 128 segments in the nCUBE 3200 multicomputer with 640 segments in the
east-west direction. east-west direction.

is similar to that found in previous research on the
nCUBE [6].

The standard error column in Table 1 is an esti-
mate of how much the regression coefficient ,f3 will
vary from sample to sample. If multiple samples of the
same size were taken from the same population and
used to calculate the regression equation, this would
be an estimate of how much the regression coefficient
would vary from sample to sample [15]. The large
standard error value for the message startup cost in-
dicates that a more detailed model needs to be in-
vestigated for this parameter. The “Significance” col-
umn describes the result of an F-test to determine
the probability that the variance accounted for by the
coefficient could come from a F distribution. Small
values indicate that the variable is important in ex-
plaining variance. All of the entries in this column
indicate that the coefficients are highly significant in
accounting for variance in the experimental data.

Figure 4 and Figure 5 illustrate predicted output
for the “ocean circulation model” on the nCUBE
3200. The program models wind-driven circulation
in a density-stratified ocean [13]. The problem scales
up by increasing the number of segments modeled in
the east-west direction. The vertical bars join the up-
per and lower twice-standard-error points, meant to
represent approximately 90% confidence intervals for
the mean response. Since the standard error value for
communications is higher than that for computations,
the confidence interval in Figure 4 is larger than the
predicted interval in Figure 5. This occurs because
communication costs make up a higher fraction of to-
tal execution time for the smaller problem in Figure 4.

Figure 6 examines predicted output for the “shal-
low water model” application on the Intel iPSC/860.

70

60

50

40

30

20

10

I 0 I

90% confidence intervals -

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

2 4 8 16 32
Processors

Figure 6: Predicted and experimental values for the
“shallow water” model with a 64X64 grid and 1200
iterations for an Intel iPSC/860 multicomputer.

The National Center for Atmospheric Research has
developed this application for use in benchmarking
the performance of MPP systems. The program solves
a set of nonlinear shallow-water equations in two hor-
izontal dimensions [13]. For this experiment we rely
exclusively on previous experimental data for execu-
tion times in order to fit the model. The instrumen-
tation run for the applications was performed on a
single processor workstation and yet accurate results
were still obtained.

The Meiko G-2 multicomputer consists of SPARC
processors connected in an Omega network configura-
tion [16]. Each node is equipped with two vector pro-
cessors to improve floating point performance. A copy
of the multi-user Solaris operating system executes on
each node increasing the variability of successive runs
of the same program on the machine. Figure 7 and
Figure 8 show the predicted results obtained for the

452

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

40
90% confidence intervals -

Predicted--
Experimental - _ 2

5
8 [/1

1 2 3 4 5 6 7 8 9
Processors

Figure 7: Experimental and predicted execution time
in seconds for the “ocean circulation model” on the
Meiko CS-2 multicomputer with 640 segments in the
east-west direction.

Predicted .----
Experimental -

15
1 2 3456789

Processors

Figure 8: Experimental and predicted execution time
in seconds for the “ocean circulation model” on the
Meiko CS-2 multicomputer with 1280 segments in the
east-west direction.

“ocean circulation model.” The experimental data
has a much larger number of outliers than were found
on the other two machines. Some of this variability
can be attributed to the multi-user nature of the ma-
chine. The current implementation of Dataparallel C
on the Meiko relies on libraries written for the Intel
iPSC/860 which use the NX message passing interface
provided on the Meiko. This extra level of software
indirection may also account for some of the inaccura-
cies in the model. Future work will focus on adapting
this modeling technique to networks of workstations
where high levels of variability exist in the message
passing latency. This work on the Meiko is a first
step in that direction.

Performance analysis is used by system architects
in order to improve the performance of next genera-
tion machines. It can also be used by programmers

in performance debugging and by customers to assist
in making procurement decisions. The symbolic per-
formance prediction system described here performs
analysis on scalable applications where other analy-
sis techniques cannot be used. The following exam-
ples show how this performance prediction system has
been used to analyze performance as a problem is
scaled up.

4.2 Analysis Using Performance Predic-
tion Results

The performance of parallel applications is affected
by many factors which need not be considered with se-
quential programs. Consequently, performance analy-
sis for parallel applications much take more of a multi-
dimensional approach [17]. The following examples il-
lustrate the utility of this symbolic performance model
in analyzing the impact of several effects on a scalable
application.

A major use of performance prediction results is
in the area of performance debugging. Figure 9 illus-
trates the percentage of time spent in broadcasting the
pivot row for the Gaussian elimination application on
an nCUBE 3200. For extremely small problem sizes,

the execution time is dominated by message startup
costs for the communications. Since all communica-
tions in the application grow linearly with P, the per-
centage of time spent in this basic block is constant.
As the problem size is scaled up, the fraction of time
grows logarithmically with P, due to the number of
messages required for the binomial tree broadcast al-
gorithm. For larger problem sizes the communication
ratio grows linearly with the number of processors.

The ability to predict the sensitivity of an algo-
rithm to changes in system parameters is critical to

determining its portability. As architects are able to
predict the sensitivity of applications to changes in
system parameters, the efficiency of parallel hardware
should increase. Since the result of this performance
prediction system is a symbolic expression for exe-
cution time, the equation can be differentiated with
respect to critical system parameters in order to view
the effect modifications will have on performance as
the problem size is scaled up. In Figure 10, the execu-
tion time was differentiated with respect to message
startup cost. The vertical scale shows the increased
execution time in seconds for each increase of 10psec
in message startup cost. The sensitivity increases
linearly with problem size, since a constantly grow-
ing number of communications must be performed as
problem size increases. The sensitivity grows logarith-
mically as the number of processors increases due to

453

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Broadcast 96

Figure 9: Percentage of execution time spent in broad- Figure 10: Sensitivity to changes in message startup
casting the pivot row for Gaussian elimination on an cost as a function of problem size and number of pro-
nCUBE 3200. cessors.

the complexity of the binomial tree broadcast algo-
rithm. used to predict performance on scalable applications.

The multivariate techniques described here should be
particularly applicable to this model because of the
large number of samples which are already being ob-
tained.

5 Related Work

Several different approaches have been taken in
predicting performance for parallel systems. To our
knowledge this research is the first to employ multi-
variate statistical analysis in finding coefficients for
parallel performance models. The linearization phase
of our algorithm produces a model which can be used
to analyze the impact of system parameters on appli-

cations.
Several analysis techniques have been investigated

which incorporate information from the source code or
from an instrumentation run of a target application.
These methods provide accurate prediction results for
applications with a fixed problem size and allow a pro-
grammer to view the effects of modifications to an al-
gorithm and implementation [l, 2, 5, 8, 111. These
methods combine effects from all basic blocks in an
application into a total count of the number of critical
operations performed. The cost of these operations is
then estimated using a training set of benchmark pro-

grams, or by using specifications provided by system
manufacturers. The statistical techniques described
in this paper could also be applied to these systems.

Research into lost cycle analysis has attempts to fit
a curve to the number of communications and compu-
tations using multiple runs of an application [9]. Sev-
eral runs are made to determine the coefficient for each
variable in the model and the resultant equations are

0.3

Sensitivity

0.2

The combination of symbolic performance predic-
tion coupled with the application of statistical analysis
is unique to this research.

6 Conclusions

MPP systems users, programmers and designers
are all interested in performance analysis, since their
goal is to achieve the highest possible performance
at the lowest cost. Multivariate data analysis tech-
niques simplify the performance prediction process by
deriving system parameters from experimental runs of
sample applications. The utility of prediction data is
also increased as users are able to evaluate the confi-
dence interval for estimated execution time. Improve-
ments to the underlying analytical model can be made

through focusing on predictor variables which have a
large variance in the statistical analysis. Multivariate
statistical techniques improve the utility and accuracy
of performance prediction models. The use of perfor-
mance prediction systems by system architects and
programmers should increase the efficiency of MPP
systems in general and scalable applications in partic-
ular.

454

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

References

[l] M. Annaratone and R. Ruhl. Balancing in-

terprocessor communication and computation on

torus-connected multicomputers running compiler-

paraIIeIized code. In Proceedings SHPCC 92, pages

358-365, March 1992.

[2] V. BaIasunderam, G. Fox, K. Kennedy, and U. Kre-

mer. A static performance estimator to guide data

partitioning decisions. SIGPLAN Notices, 26(7):213

- 223, July 1991.

[3] J. M. Chambers and T. J. Hastie. Statistical Models

in S. Wadsworth & Brooks/Cole Advanced Books &

Software, Pacific Grove, California, 1992.

[4] B. W. Char, K. 0. Geddes, G. H. Gonnet, B. L.

Leong, M. B. Monagan, and S. M. Watt. Maple V

Language Reference Manual. Springer-Verlag, New

York, 1991.

[5] M. J. Clement and M. J. Quinn. Analytical per-

formance prediction on multicomputers. In Proceed-
ings of Supercomputing ‘93, pages 886-905, November

1993.

[6] M. J. Clement, M. J. Quinn, and B. Baxter. Medium

grain size applications on distributed memory mul-

ticomputers. Technical Report 93-80-13, Depart-

ment of Computer Science, Oregon State University,

September 1993.

[7] Committee on Physical, Mathematical, and Engi-

neering Sciences Federal Coordinating Council for

Science, Engineering, and Technology. Grand Chal-
lenges 1993: High Performance Computing and Com-

munications. National Science Foundation, Washing-

ton, D.C., 1993.

[8] M. CroveIIa, R. Vianchini, T. LeBlanc, E. Markatos,

and R. Wisniewski. Using communication-to-

computation ratio in parallel program design and per-

formance prediction. In Proceedings of the Fourth

IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 238-245, December 1992.

[9] M. E. Crovella and T. J. LeBlanc. The search for lost

cycles: A new approach to parallel program perfor-

mance evaluation. Technical Report 479, Computer

Science Department, University of Rochester, Dec.

1993.

[lo] T. Fahringer. Automatic Performance Prediction for
Parallel Programs on Massively Parallel Computers.

PhD thesis, University of Vienna, 1993.

[ll] T. Fahringer and H. P. Zima. A static parameter

based performance prediction tool for parallel pro-

grams. Technical Report ACPC/TR 93-1, University

of Vienna Department of Computer Science, January

1993.

[la] R. J. Harris. A Primer of Multiuariate Statistics. Aca-

demic Press Inc., New York, 1985.

P31

1141

(151

P61

I171

P31

P91

P. J. Hatcher and M. J. Quinn. Data-Parallel Pro-
gramming on MIMD Computers. The MIT Press,

Cambridge, Massachusetts, 1991.

J. K. HoIIingsworth, B. P. Miller, and J. CargiIIe.

Dynamic program instrumentation for scalable per-

formance tools. In Scalable High Performance Com-

puting Conference, Knoxville, Tennessee, May 1994.

J. Joseph F. Hair, R. E. Anderson, and R. L. Tatham.

Multivariate Data Analysis with Readings. Macmillan

Publishing Company, New York, 1987.

Meiko World Incorporated. Computing Surface I

Overview Documentation Set, 1993.

C. M. Pancake. Software support for parallel com-

puting: Where are we headed? Communications of

the ACM, 34(11):53-64, November 1991.

M. R. Sampford. An Introduction to Sampling The-

ory. Oliver and Boyd Ltd., Tweeddale Court, Edin-

burgh, 1962.

Statistical Sciences Inc. S-PLUS Users Manual,
September 1991.

455

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

