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Multivariate Student-¢ Regression Models:

Pitfalls and Inference

By Carmen Fernandez and Mark F.J. Steel !

CentER for Economic Research and Department of Econometrics
Tilburg University, 5000 LE Tilburg, The Netherlands

FIRST VERSION DECEMBER 1996; CURRENT VERSION JANUARY 1997

Abstract

We consider likelihood-based inference from multivariate regression models with in-
dependent Student-t errors. Some very intruiging pitfalls of both Bayesian and classical
methods on the basis of point observations are uncovered. Bayesian inference may be
precluded as a consequence of the coarse nature of the data. Global maximization of the
likelihood function is a vacuous exercise since the likelihood function is unbounded as we
tend to the boundary of the parameter space. A Bayesian analysis on the basis of set
observations is proposed and illustrated by several examples.

KEY WORDS: Bayesian inference; Coarse data; Continuous distribution; Maximum like-
lihood; Missing data; Scale mixture of Normals.

1. INTRODUCTION

The multivariate regression model with unknown scatter matrix is widely used in
many fields of science. Applications to real data often indicate that the analytically con-
venient assumption of Normality is not quite tenable and thicker tails are called for in
order to adequately capture the main features of the data. Thus, we consider regression
error vectors that are distributed as scale mixtures of Normals. We shall mainly emphasize
the empirically relevant case of independent sampling from a multivariate Student-t distri-
bution with unknown degrees of freedom. In particular, we provide a complete Bayesian
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analysis of the linear Student-¢ regression model, and also comment on the behaviour of
the likelihood function.

The Bayesian model will be completed with a commonly used improper prior on the
regression coefficients and scatter matrix, and some proper prior on the degrees of freedom.
Section 3 examines the usual posterior inference on the basis of a recorded sample of point
observations. Even though Theorem 1 indicates that Bayesian inference is possible for
almost all samples (i.e. except for a set of zero probability under the sampling model),
problems can occur since any sample of point observations formally has probability zero of
being observed. In practice, this can become relevant due to rounding or finite precision of
the recorded observations, and we can easily end up with a sample for which inference is
precluded. This incompatibility between the continuous sampling model and any sample of
point observations can have very disturbing consequences: the posterior distribution may
not exist, even if it already existed on the basis of a subset of the sample. New observations
can, thus, have a devastating effect on the usual Bayesian inference. Fernandez and Steel
(1996a) present a detailed discussion of this phenomenon in the context of a univariate
location-scale model.

Section 4 presents a solution through the use of set observations, which have positive
probability under the sampling model, and are, thus, in agreement with the sampling
assumptions. This leads to a fully coherent Bayesian analysis where new observations
can never harm the possibility of conducting inference. A Gibbs sampling scheme [see
e.g. Gelfand and Smith (1990) and Casella and George (1992)] is seen to be a convenient
way to implement this solution in practice. Some examples are presented: a univariate
regression model for the well-known stackloss data [see Brownlee (1965)], and a bivariate
location-scale model for the iris setosa data of Fisher (1936).

The analysis through set observations is naturally extended to the case where some
components of the multivariate response are not observed (missing data). We illustrate
this with the artificial Murray (1977) data, extended with some extreme values in Liu and
Rubin (1995).

In addition, we find that none of the results concerning the feasibility of Bayesian
inference with set observations depend on the particular scale mixture of Normals that we
sample from.

Finally, in Section 5 the Student likelihood function for point observations is analyzed
in some detail: it is found that the likelihood is unbounded as we tend to the boundary
of the parameter space in a certain direction. This casts some doubt on the meaning and
validity of a maximum likelihood analysis of this model [as performed in e.g. Lange, Little
and Taylor (1989), Lange and Sinsheimer (1993) and Liu and Rubin (1994, 1995)]. This
behaviour of the likelihood function is illustrated through the stackloss data example, and
it also explains the source of the problems encountered by Lange et al. (1989) and Lange
and Sinsheimer (1993) when applying the EM algorithm for joint estimation of regression
coefficients, scale and degrees of freedom to the radioimmunoassay data set of Tiede and
Pagano (1979).

All proofs are grouped in Appendix A, whereas Appendix B recalls some matricvariate
probability densities used in the body of the paper. With some abuse of notation, we do not
explicitly distinguish between random variables and their realizations, and p(-) (a density
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function) or P(-) (a measure) can correspond to either a probability measure or a general
o-finite measure. All density functions are Radon-Nikodym derivatives with respect to the
Lebesgue measure in the corresponding space, unless stated otherwise.

2. THE MODEL

Observations for the p-variate response variable y; are assumed to be generated through
the linear regression model

yi =Bz +e, i=1,...,n, (2.1)

where ( is a k X p matrix of regression coefficients, x; is a k-dimensional vector of ex-
planatory variables and the entire design matrix, X = (z1,...,2,)’, is taken to be of
full column rank k [denoted as 7(X) = k|. The error vectors ¢; are independent and
identically distributed (i.i.d.) as p-variate scale mixtures of Normals with mean zero and
positive definite symmetric (PDS) covariance matrix ¥. The mixing variables, denoted by
Ai, © =1,...,n, follow a probability distribution Py,, on R, which can depend on a pa-
rameter v € N (possibly of infinite dimension). Thus, we have n independent replications
from the sampling density

e AP/2 A _
p(yilB, %, v) = /0 W exp {—E(yi — Bz S 7 (i - 5/331‘)} dPy;p-  (2.2)

By changing Py, we cover the class of p-variate scale mixtures of Normals. The latter is a
subset of the elliptical class [see Fang, Kotz and Ng (1990), chap. 2], with ellipsoids in RP
as isodensity sets, while allowing for a wide variety of tail behaviour. Leading examples are
finite mixtures of Normals, corresponding to a discrete distribution on \;, and multivariate
Student-t distributions with v > 0 degrees of freedom, where Py, |, is a Gamma distribution
with unitary mean and both shape and precision parameters equal to v/2. Most of the
subsequent discussion will focus on the empirically relevant case of Student-t sampling.

Special cases of the model in (2.1) are the multivariate location-scale model, where
k =1 and z; = 1, and the univariate regression model for p = 1.

The Bayesian model needs to be completed with a prior distribution for (3,%,v). In
particular, we assume a product structure between the three parameters where

p(B, ) o ||~V (2.3)

and
P, is any probability measure on N. (2.4)

The prior in (2.3) is the “usual” default prior in the absence of compelling prior information
on (3,%). Under fixed v it corresponds to the Jeffreys’ prior under “independence” and is
thus invariant under separate reparameterizations of 8 and of X.

Note that the model in (2.1) implies that all p components of y; are regressed on the
same variables x;. Thus, we treat a special case of Zellner’s (1962) seemingly unrelated
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regression (SUR) model, which allows for different regressors on the p components. Al-
ternatively, our framework can be extended to general SUR models by considering priors
that impose zero restrictions on certain elements of (3.

3. BAYESIAN INFERENCE USING POINT OBSERVATIONS

We now consider the feasibility of a Bayesian analysis of the model in (2.2) — (2.4) on
the basis of the recorded point observations, as is the usual practice. Since the prior in
(2.3) is improper, we clearly need to verify the existence of the posterior distribution. The
following Theorem addresses this issue.

Theorem 1. Consider n independent replications from (2.2) with any mixing distribution
Py, and the prior in (2.3) — (2.4) with any proper P,. Then the conditional distribution
of (6,%,v) given y = (y1,...,yn) exists if and only if n > k + p.

Somewhat surprisingly, neither the mixing distribution nor the prior on v affects the
existence of the conditional distribution of the parameters given the observables (i.e. the
posterior distribution). Thus, whenever n > k + p, the fact that the prior is improper is of
no consequence for the existence of the posterior distribution. However, probability theory
tells us that a conditional distribution is only defined up to a set of measure zero in the
conditioning variables. In other words, Theorem 1 assures us that p(y) < oo except possibly
on a set of Lebesgue measure zero in R"*P. Theoretically, this validates inference since
problems can only occur for samples that have zero probability of being observed. However,
as stressed in Ferndndez and Steel (1996a), any recorded sample of point observations has
zero probability of occurrence under any continuous sampling distribution. Thus, Theorem
1 does not guarantee that p(y) < oo for our particular observed sample, and the latter
has to be verified explicitly. Note that this problem stems from an inherent violation of
the rules of probability calculus, since the recorded observations are in contradiction with
the assumed sampling model, and is in no way linked to the improperness of the prior [see
Ferndndez and Steel (1996a) for a more detailed discussion].

If we complement Theorem 1 by considering any possible point y € R"*P, Lemma 1
in the Appendix shows that both Py, and P, can intervene. It is immediate from Lemma
1 that

for finite mixtures of Normals, p(y) < oo if and only if r(X : y) =k + p, (3.1)

which is the minimal possible requirement for any scale mixture of Normals. In the sequel
of this Section, we shall, therefore, assume that this rank condition holds.

Let us now analyze the more challenging case of Student-¢ sampling, where we shall
use the following Definition:

Definition 1. For a design matrix X and a sample y € R"*P, s;, j = 1,...,p, is the
largest number of observations such that the rank of the corresponding submatrix of X is
k while the rank of the corresponding submatrix of (X :y) isk+p — j.

Clearly, since r(X : y) = k + p, we obtain that k¥ < s, < sp,—1 < ... < s1 < n. Now
we can present the following Theorem.
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Theorem 2. Let y = (y1,...,Yn) be a sample of n independent replications from a p-
variate Student-t distribution in (2.2), and consider the prior in (2.3) — (2.4). Assuming
that r(X :y) = k+ p and defining

Vi)
m= max 1j -per,

j=1,...,p ’n—sj

while recalling Definition 1 for s1,..., sy, we obtain that
(i) if m = 0, then p(y) < oo;
(ii) if m > 0, then p(y) < oo if and only if

m-+p
P,(0,m] =0 and / (v —m)~%dP, < oo, for all p > 0,
where q denotes the number of indices j € {1,...,p} for which m = j#jskj —p.

From Definition 1 we note that s; = k+p — j (which implies m = 0), for all y € R"*P
excluding a set of Lebesgue measure zero. Thus, Theorem 2 (i) will apply and inference
is feasible with almost all samples, as was already clear from Theorem 1. However, as
will be illustrated in the Examples in Section 4, observed samples often lead to values
of m > 0, as a consequence of rounding or the finite precision of the measuring device.
Then, Theorem 2 (ii) indicates that the prior for v can not put any mass on values of
v < m. As an immediate consequence, inference based on samples for which m > 0
is precluded under any prior P, with support including (0, K) for some K > 0. This
negative result even extends to improper priors for v. Thus, popular choices for P, such
as the improper Uniform on R, Jeffreys’ prior [Liu (1995)] or distributions in the Gamma
family [Geweke (1993)] can never lead to a posterior distribution whenever m > 0 for the
particular sample of point observations under consideration. Bounding v away from zero
by some fixed constant [as in Relles and Rogers (1977) or Liu (1995, 1996)] provides no
general solution either, since m is typically updated as sample size grows and can reach an
upper bound of n —k — p (when s; = n —1). This continual updating of m has the rather
shocking consequence that adding new observations can actually destroy the properness of
a posterior which was proper with the previous sample!

In the special case of univariate regression (p = 1), the quantity m in Theorem 2
simplifies to m = (s1 — k)/(n — s1) where s; is the largest number of observations such
that both the corresponding submatrix of X and the corresponding submatrix of (X : y)
have rank k. Now, s; > k will have the interpretation of the largest possible number of
observations for which y; can be fitted exactly by 3'z; for some fixed value of 3. Of course,
q introduced in Theorem 2 (ii) is one in this case.

If we further specialize to k = 1 and take x; = 1, we are in the univariate location-
scale model analyzed in Fernadndez and Steel (1996a). Then, m becomes (s; —1)/(n — s1),
where s; is the largest number of observations that are all the same. In that case, as soon
as the sample contains repeated observations, a Bayesian analysis on the basis of point
observations is precluded if the support of P, is not bounded away from zero.



4. BAYESIAN INFERENCE USING SET OBSERVATIONS

A formal solution to the problem mentioned in Section 3 is to consider set observations
which have positive probability under the continuous sampling model. In practice, it
seems natural to consider a neighbourhood S; of the recorded point observation y; on the
basis of the precision of the measuring device. This avoids the incompatibility between
observations and sampling assumptions and, under a proper prior, posterior inference is
always guaranteed. For the improper prior in (2.3) — (2.4) a formal examination leads to
the following Theorem:

Theorem 3. Consider the Bayesian model (2.2)—(2.4) and n compact sets S;, i =1,...,n,
of positive Lebesgue measure in P. Then P(y; € Si,...,Yn € Sp) < oo if and only if
r(X:y)=k+pforally; € S1,...,yn € Sp.

Remark that neither the mixing distribution Py, |, nor the prior of v, P, , intervene in
Theorem 3, which thus holds for any scale mixture of Normals. Now Bayesian inference is
fully coherent and adding extra observations can never destroy the possibility of conducting
inference.

The condition 7(X :y) = k + p, which was always necessary under point observations
[see (3.1)], becomes both necessary and sufficient when extended to sets as in Theorem 3.
In the case of a location-scale model (k = 1 and z; = 1), the latter condition is equivalent
to the absence of a (p — 1)-dimensional affine space that intersects with all of the sets
Si,...,Sn. Figure 1 graphically illustrates this issue in the bivariate case (p = 2): while
the set observations in Figure 1 (a) allow for posterior inference, the latter is precluded in
Figure 1 (b).

In general, Bayesian inference using set observations can easily be implemented through
a Gibbs sampler on the parameters augmented with y = (y1,...,y,)". We then condition
on the set observations y; € Si,...,y, € Sp, which shall, for convenience, be denoted
as y € S. Let us present this in more detail for Student-¢ sampling. In this case, it will
prove convenient to also augment with the mixing variables A = (A1,...,A,)’ introduced
in (2.2), leading to the following full conditionals:

p|B, S, v, Ay € 8) o fiiw WIXB, T 0 A ) Is(y), (4.1)

where we have used the notation for a matricvariate Normal explained in Appendix B,
A =diag(\1,...,\,) and Ig(-) denotes the indicator function of the set S. Note that from
(4.1) the y;’s are independently drawn from p-variate Normal distributions with mean ('z;
and covariance matrix A; 1Y, truncated to the relevant sets S;.

The second conditional is

p(B, v,y Ny € S) = (813, ® (X'AX) ™) (SI8,n — k), (4.2)

i.e. the product of a matricvariate Normal and an Inverted Wishart density function (as
defined in Appendix B), where 8 = (X’AX) 1 X'Ay and ¥ = ¢/{A —AX(X'AX) 1 X'A}y.
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The conditional distribution of v is absolutely continuous with respect to P, with
Radon-Nikodym derivative proportional to

(B ()} e -], S

1=

For exponential P, (as used in the Examples below), drawings from this non-standard
distribution can be generated following Geweke (1994) and Fernandez and Steel (1996b).

Finally, n independent Gamma distributions constitute the required conditional for
Al

(Ai}y;rp, v+ (g = o) T _M")>, (4.4)

p()‘|5727V7y7y€S):HfG 9

=1

where fg(\i]a,b) oc A%~ exp(—b);) denotes the probability density function (p.d.f.) of a
Gamma distribution.

Using the Gibbs sampler in (4.1) — (4.4), we can easily analyze the following three
Examples under Student-t sampling with the prior in (2.3) — (2.4). In all cases, we take
P, to be exponential with mean 10 and variance 100, .e.

p(”) = fG(V|17 1/10)7 (45)

which spreads the prior mass over a wide variety of tail behaviour. Throughout, results
are based on 250,000 Gibbs drawings with a burn-in of 10,000.

We start with a univariate regression model:

Example 1. Stackloss data

This classical data set, originally presented in Brownlee (1965), has been subjected to
numerous robust methods [e.g. Andrews (1974) and Rousseeuw and van Zomeren (1990)]
and was treated under Student-¢ sampling by Lange et al. (1989) in a classical maximum
likelihood framework. The data consist of n = 21 observations of a univariate response
(stackloss) given an intercept and three other regressors. Thus, p = 1 and k& = 4. Recalling
Definition 1, we can derive that for this data set s; = 8, which means that we can fit eight
observations y; by 3'x; for a certain value of 8 € R*, namely 8 = (—36,0.5,1,0)". Thus,
m in Theorem 2 takes the value (s1 — k)/(n — s1) = 4/13, precluding Bayesian inference
on the basis of these point observations under Student sampling with the prior in (2.3),
(2.4) and (4.5).

Here, we shall conduct inference through set observations in accordance with the preci-
sion implicit in the number of digits recorded. We have verified that these set observations
fulfill the condition stated in Theorem 3, thus allowing for a Bayesian analysis. Figures
2-5 summarize the posterior inference on the regression coefficients fa, ..., 34 (excluding
the intercept) and the degrees of freedom v.

The mixing variables A; in (2.2) can be seen as observation-specific precision factors, so
that unusually small values of A; correspond to “outlying” observations. The EM algorithm
used in Lange et al. (1989) takes the mean of the conditional distribution of \; in (4.4) as
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the weight of observation ¢ [see also Pettitt (1985) and West (1984)]. On the basis of these
weights Lange et al. (1989) identify observations 21, 4, 3 and 1 as outliers, like in the least
squares analysis of Daniel and Wood (1971) and the robust analysis of Andrews (1974).
In a Bayesian setup, we naturally focus on the marginal posterior distribution of the \;’s
and find indeed that the posterior means for these four observations are considerably lower
than that for the others. However, we also note that the posterior distributions of the \;’s
display a substantial spread. e

The second example is a multivariate location-scale model:

Example 2. Fisher’s Iris data

This data set, consisting of n = 50 bivariate measurements (of petal length and
width) for Iris setosa, was analyzed in Fisher (1936) and Heitjan (1989). These data will
simply be modelled as a bivariate location-scale model; thus, p = 2, £k = 1 and x; = 1.
The original measurements were transformed to logarithms [as suggested in Gnanadesikan
(1977) and Heitjan (1989)] and the set observations were transformed accordingly. Heitjan
(1989) advocates the use of grouped likelihood for this example and maximizes a Normal
likelihood integrated over the respective sets S; (i = 1,...,n). For these data, we can
easily ascertain that s; = 35 and sy = 29 (see Definition 1), which implies that m = 8/3
and, thus, Theorem 2 (ii) again indicates that point observations can not form the basis
of a Bayesian analysis under Student sampling with the prior (2.3), (2.4) and (4.5).

The use of set observations leads to the posterior densities plotted in Figures 6-9,
where “correlation” denotes the off-diagonal element of 3 divided by the square root of
the product of the diagonal elements. Posterior inference is quite close to Heitjan’s classical
results. e

A natural extension of our context of set observations is that of missing observations.
In a classical analysis of this problem, the EM algorithm was introduced in Dempster, Laird
and Rubin (1977), while Bayesian approaches rely on data augmentation [see Tanner and
Wong (1987)] or imputation methods [e.g. Rubin (1987) and Kong, Liu and Wong (1994)].

Whereas, sofar, we considered observations consisting of bounded sets S;, the fact
that some components of y; are missing implies that the corresponding set observation
becomes unbounded (in the direction of each missing component). Let us now examine
the case where r < n observations lead to compact sets, while n — r observations contain
unobserved elements.

Theorem 4. Consider the Bayesian model in (2.2) — (2.4). The observations consist of
r < n compact sets S1,...,Sy, whereas Sy41,...,S, are unbounded due to missing com-
ponents. All n sets have positive Lebesgue measure in ®°. Defining X(,) = (z1,...,2;)’
and Yy = (y1,-..,yr), we obtain:

(i) if r(X(p) : yery)) = k+p, forallyy € S1,...,yr € Sy, then P(yy € S1,...,yn € Sp) < 00;
(ii) if we can find values y1 € Si,...,yn € S, for which r(X : y) < k + p, then
P(y1 € S1,...,yn € Sn) = 0.

From Theorems 3 and 4 (i) we immediately deduce that whenever the compact set
observations 51, ..., S, lead to a proper posterior, the same holds if we add the unbounded
set observations Sy1, ..., S, (corresponding to missing data). Clearly, adding observations
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that do not contradict the sampling model can never destroy the existence of an already
well-defined posterior distribution.

Theorem 4 (ii) addresses the situation where the compact set observations do not result
in a posterior [since 7(X () : y()) < k + p for some y(,)], and establishes the necessity of
r(X :y)=k+pforaly €85i,...,y, € Sy, for conducting Bayesian inference. In other
words, Theorem 4 (ii) says that the necessary condition stated in Theorem 3 for compact
sets extends to any sample of sets Si,...,S, (possibly unbounded).

As explained in the discussion of Theorem 3, the assumption of Theorem 4 (ii) is most
easily interpreted in the location-scale case (k = 1 and z; = 1), where (X : y) < 1+p
means that there exists a (p — 1)-dimensional affine space that intersects all of the sets
S1,...,5,. Note that if we can find one such space that, in addition, intersects with all
p coordinate axes, any new set corresponding to missing data will necessarily have an
intersection with this (p — 1)-dimensional affine space. Thus, adding any number of sets
corresponding to observations with missing components can never result in a posterior
distribution. Figure 10 graphically illustrates this point in the bivariate case (p = 2).

Example 3. Extended Murray data

In this Example, we focus on the artificial data originally introduced by Murray (1977)
and extended with four extreme values in Liu and Rubin (1995). This results in the
following bivariate data set:

va —1 -1 1 1 -2 -2 2 2 7 7 7 7 =12 12 7?7 7
7?09

ye —1 1 -1 1 7 ? -2 -2 2 2 7 7 =12 12 (4.6)

where n = 16, p = 2 and 7 denotes a missing value. We use a location-scale model under
Student-¢ sampling, as in the maximum likelihood analysis of Liu and Rubin (1995) and
the Bayesian analysis of Liu (1995). Here, Bayesian inference will be conducted under the
prior (2.3), (2.4) and (4.5), using set observations with a unitary width for the observed
components.

Figure 11 depicts the four compact sets (corresponding to the first four observations),
and from Theorem 4 (i) we can immediately deduce properness of the posterior as no single
line can cross all four sets Si,...,54. Note that deleting any one of these compact set
observations would result in an improper posterior [see Theorem 4 (ii) and the discussion
thereafter] as the dashed line in Figure 11 indicates. Figures 12-13 plot posterior p.d.f.’s
for the correlation (as defined in Example 2) and the degrees of freedom v. Compared to
the same analysis on the basis of the original Murray data [i.e. the first twelve in (4.6)],
the correlation is more extreme and degrees of freedom tend to be substantially smaller.
As expected, the analysis based on all sixteen set observations identifies the four extra
observations [i.e. the last four in (4.6)] as outliers through small values of the mixing
variables \; associated with these observations. In addition, we have found that inference
with this model is remarkably insensitive with respect to the width chosen for the set
observations (in directions where they are bounded). e



5. THE STUDENT-¢t LIKELTHOOD FUNCTION

In this Section, we examine some peculiarities of the likelihood function corresponding
to independent Student-t sampling in a general regression context. We shall only focus
on the use of point observations, and present some classical counterparts of the problems
described in Section 3 under a Bayesian treatment of this model.

In particular, we consider n replications from the following sampling density function
for y; € RP:

» —(v+p)/2
19,0 = o B [ S YR - ) 6)

where 8 € B and g;(-) is a known continuous function from B to R?, possibly depending
on regressors x;. Thus, we extend the linear regression context of the previous Sections to
more general regression functions.

We shall reparameterize the PDS matrix ¥ as (o, V') through

¥ = o2V, (5.2)

where o € 4 and V € C?, which will denote the space of p x p PDS matrices with element
(1,1) equal to one. This reparameterization is useful for presenting the main result of this
Section.

Theorem 5. Let I(3,0,V,v) be the likelihood function corresponding to n independent
replications from (5.1) with the reparameterization in (5.2). Then:

(i) I(B,0,V,v) is a finite continuous function in the entire parameter space B x (0,00) X
CP x (0, 00).

(ii) For given values 8 = (o, V = Vi and v = vy, let 0 < s(6p) < n be the number of
observations for which y; = g;(8o). We obtain:

(iia)

. S .
if vy < %, then ;%l(ﬁo,a, Vo, Vo) = o0;
(iib)
if v = n_(i()()g’o), then Tim 1(80,0, Vo, o) € (0, 00);
(iic)
if vy > %, then Ol'ig%)l(ﬁo,a, Vo, v0) = 0.

From Theorem 5, whenever we can find a value §y such that y; = ¢;(8y) holds for
at least one observation, the likelihood function does not possess a global maximum. In-
deed, for small enough values of v [see (iia)]|, we can make I(8o, o, Vb, 1p) arbitrarily large
by letting o tend to zero. Note that, in practice, we can typically find values (y such



that s(Byp) > 0. For example, in the case of p-variate linear regression with k regressors
(considered in the previous Sections), we can deduce from Definition 1 that

=5, >k 5.3
gmax s(f) =sp 2k, (5:3)

thus precluding global maximization of the likelihood function, irrespectively of the sample.

This finding casts some doubt on maximum likelihood (ML) estimation under Student-
t regression models with unknown degrees of freedom v. In the existing literature, v is
typically allowed to vary in $; [see e.g. Lange et al. (1989) and Lange and Sinsheimer
(1993)]. Reported ML estimates must, therefore, correspond to local and not to global
maxima, although this is not stated in these papers. To our knowledge, the existence
and uniqueness of such local maxima and the asymptotic properties of the corresponding
estimators have not been formally established in the literature. In a pure location-scale
context with fixed degrees of freedom, constrained to be sufficiently large, Maronna (1976)
proves that the likelihood equations have a unique solution that leads to a consistent and
asymptotically Normal estimator of (3,%). However, we have not encountered similar
results for unknown v.

We remind the reader that a Bayesian analysis of the linear regression model based
on point observations breaks down if we assign prior probability to values of v < m, where
m is defined in Theorem 2. From Theorem 5 (ii) with (5.3) the likelihood is unbounded if
v < spp/(n—sp), which can generally be larger or smaller than m. In the case of univariate
linear regression (p = 1), the latter quantity becomes s;/(n — s1), which is always larger
than m = (s; — k)/(n — s1). Thus, in this case, the likelihood is still integrable with the
prior in (2.3) — (2.4) if P, bounds v strictly away from (s; — k)/(n — s1) (Theorem 2), but
is unbounded for values of v smaller than s;/(n—s1). Furthermore, there is a fundamental
difference between classical and Bayesian results: as remarked in the discussion of Theorem
2, m equals zero for all y € R™*P except for a set of Lebesgue measure zero, implying that
a Bayesian analysis is feasible for almost all samples (see also Theorem 1). In practice
problems only occur due to the coarse nature of observed data. From Theorem 5 (iia) and
(5.3), on the other hand, it is immediately clear that global maximization of the likelihood
is precluded for any sample y € R™*P.

In order to illustrate the behaviour of the likelihood function, let us reconsider Exam-
ple 1.

Example 1. (continued) Stackloss data

As explained in Example 1, the value 8y = (—36,0.5,1,0)" allows us to exactly fit
eight of the 21 observations. Thus, from Theorem 5 (iia), taking vy < 8/13 leads to
lim,—0 (0o, 0,1,19) = oo (note that p = 1 implies Vj = 1).

Figure 14 plots the logarithm of (5, 0, 1,19) as a function of the logarithm of o, for
Bo as above and different values of vy, illustrating Theorem 5 (ii). Values of vy smaller than
8/13 clearly lead to an unbounded likelihood, for vy = 8/13 the likelihood converges to a
positive finite value as ¢ — 0, whereas vy > 8/13 leads to a zero limit as ¢ tends to zero.
From the form of the likelihood function it is immediate that for small values of o, the log
likelihood is approximately linear in In(o) with slope coefficient vo{n — s(Bo)} — s(Bo)p,
which is also apparent from Figure 14.



Lange et al. (1989) estimate v to be 1.1, which presumably corresponds to a local
maximum of the likelihood. e

In some cases, numerical optimization procedures (such as the EM algorithm) may
attempt to converge to an area with unbounded likelihood. A case in point is the analysis
of the radioimmunoassay data in Lange et al. (1989) and Lange and Sinsheimer (1993).
This concerns a nonlinear regression model with p = 1 (i.e. univariate) and 4 regression
parameters introduced in Tiede and Pagano (1979), where the n = 14 data points are
listed. Whereas Lange et al. (1989, p.883) already report that “ML estimation of v for
this data is not very satisfactory” and report an ML estimate of v equal to 0.29, Lange
and Sinsheimer (1993) report ML estimates of v equal to 0.05 and of o equal to 0. The
latter also state that 10 of the 14 weights [i.e. the mean of \; in (4.4)] are found to be
zero and the EM algorithm has not converged after 300 iterations. From their estimates of
0 it is clear that they exactly fit four of the observations, while they consider values of v
smaller than 4/10, which takes them to a region of unbounded likelihood. Thus, Theorem
5 provides an immediate explanation for the “potential problems with the ¢” mentioned in
Lange and Sinsheimer (1993, p.195).

When some of the components of the p-variate observations y;, ¢ = 1,...,n are missing,
the resulting likelihood still displays the same type of behaviour as explained in Theorem
5. In particular, the latter Theorem will apply in this more general context if we replace
the bound {s(6o)p}/{n — s(Bo)} for v by the quantity

Ziezpi
n—s(6o)’

where p; < p is the number of observed components of y;, Z is the set of indices for
which the observed components of y; are exactly fitted by the corresponding components
of ¢i(Bo), and s(fp) is the cardinality of Z. Thus, the stationary values reported in Liu
and Rubin (1994, 1995) for Student-¢{ models with unknown v and missing data do not
correspond to global maxima of the likelihood function.

In conclusion, we feel that the use of ML methods for Student-t models with unknown
degrees of freedom can not be advocated without further careful study of the existence
and properties of local maxima. Alternatively, classical inference could be based on effi-
cient likelihood estimation [Lehmann (1983, chap. 6)], grouped likelihoods [see Giesbrecht
and Kempthorne (1976) for a lognormal model and Beckman and Johnson (1987) for the
Student-t case|, sample percentiles [Resek (1976)], modified likelihood [as in Cheng and
Iles (1987)] or spacings methods [as in Cheng and Amin (1979)]. For a general discussion
of non-regular likelihood problems, see Smith (1989) and Cheng and Traylor (1995).

6. CONCLUSION

In this paper we considered likelihood-based inference from multivariate regression
models with errors that are distributed as scale mixtures of Normals. Some very intruiging
pitfalls of both Bayesian and classical methods are uncovered. A fully coherent procedure
is proposed from a Bayesian point of view.



The Bayesian model consists of independent sampling from a linear regression model
with a scale mixture of Normals error distribution, combined with a commonly used im-
proper reference prior. Usually, Bayesian analysis is conducted given a sample of point
observations. We show (Theorem 1) that the conditional distribution of the parameters 0
given the observables y exists if and only if sample size n > k + p, where k is the number
of regressors and p is the dimension of the response variable. Thus, it seems that the
extension of the sampling distribution from multivariate Normal to the entire class of scale
mixtures of multivariate Normals leaves the existence of the posterior entirely unaffected.
There are, however, two crucial facts to be noted: firstly, a conditional distribution is de-
fined up to a set of measure zero in the conditioning variable, and, secondly, any sample yg
of point observations that we record has probability zero of occurring under a continuous
sampling model. Thus, Theorem 1 does not assure us that p(yp) < oo for our particular
sample, and this needs to be verified explicitly. It turns out that the set of measure zero for
which p(y) = oo does depend on the mixing distribution. For the leading case of Student-¢
sampling with unknown degrees of freedom, v, Theorem 2 characterizes the samples for
which p(y) < oo. Many samples that are likely to occur on practice (due to rounding
or finite precision) are seen to require a positive lower bound on v. As this lower bound
changes with each new observation and can get as large as n — k — p, the usual Bayesian
analysis given point observations can not be recommended as a generally applicable pro-
cedure. Once a posterior is found to exist, this does not guarantee inference on the basis
of an extended sample!

This problem, which derives from a fundamental incompatibility between the contin-
uous sampling model and point observations [see Fernandez and Steel (1996a) for a more
detailed discussion], is solved by considering set observations. Instead of on the actually
recorded value, we condition inference on a set around each recorded value. The necessary
and sufficient condition that validates Bayesian inference using set observations is exactly
the same for every member in the class of scale mixtures of Normals (Theorem 3). All we
need is that the full column rank condition on the matrix of regressors and observables,
(X :y), holds for all values of y in the set observations we consider. The analysis is now
fully coherent, in that new observations can never destroy the possibility of conducting
inference.

A simple Gibbs sampling strategy is proposed to implement Bayesian analysis with
set observations and a number of Examples is considered, all under Student sampling with
an Exponential prior on v. A univariate regression model with k = 4 regressors is used for
the well-known stackloss data [Brownlee (1965)], whereas the Fisher iris data are handled
with a bivariate location-scale model. In both cases, we find that a Bayesian analysis using
point observations is precluded if v is not bounded away from zero. Bayesian inference
through set observations is, however, quite feasible and requires only moderate numerical
effort. The identification of outliers is straightforward.

We also consider the case where some components of the p-variate response are not
observed, i.e. missing data. It is seen in Theorem 4 that observations with missing compo-
nents will typically not help in establishing properness of the posterior distribution. The
artificial data set used in Liu and Rubin (1995) is analyzed in Example 3.

A closer look at the likelihood function of a multivariate Student-¢ model with possibly



nonlinear regression leads to the following finding: Using point observations, the likelihood
function is unbounded as we tend to the boundary of the parameter space for small enough
values of v (Theorem 5). This result, which also generalizes to the case with missing
data, raises questions regarding the interpretation and validity of maximum likelihood for
Student models with unknown v. This immediately provides an explanation for problems
such as encountered by Lange et al. (1989) and Lange and Sinsheimer (1993) in the analysis
of the radioimmunoassay data from Tiede and Pagano (1979). Even if local maxima are
found with numerical techniques, such as the EM algorithm, the theoretical properties of
the corresponding estimators seem, as yet, not established in the literature.

Although this behaviour of the likelihood function is, of course, related to the Bayesian
results on existence of the posterior based on point observations, there are some important
differences. The restrictions on v required to avoid the problems in the univariate regression
model (p = 1) are stronger for classical inference than for Bayesian inference. More
importantly, whereas Bayesian inference is only precluded for a set of Lebesgue measure
zero in the observables (and problems may occur in practice due to rounding), the likelihood
will always be unbounded, irrespectively of the sample.

In summary, extending the error distribution of regression models to independent
Student-t sampling is not as innocuous an extension from a theoretical point of view as it
might seem from a merely numerical angle. Whereas computational methods to analyze
such models are readily available [Monte Carlo Markov Chain methods such as Gibbs
sampling for Bayesian inference, and EM-type algorithms for ML|, they should not be
applied blindly, since some theoretical pitfalls may preclude inference in actual practice.

APPENDIX A: PROOFS OF THEOREMS

Throughout the Appendices, |-| will stand for determinant, ¢r(-) will denote trace and
CP the set of p x p PDS matrices. The following Lemma will be instrumental for proving
the Theorems:

Lemma 1. Consider y = (y1,...,yn) € R"*P a sample of n independent replications

from (2.2) and the prior in (2.3) — (2.4). Then p(y) < oo if and only if r(X :y) =k +p

and
k+p

/ ( II W2 ( I w22 arn,,. ) < o (A1)
(0,00)™ Yty .o et i=k+1
where we have defined
Pirg,n) = / (H PM,,) dP, (with a slight abuse of notation), (A.2)
N \i=1

k k
H)‘mi = ma,x{H)\li Ce .| # O} (A.3)

i=1 i=1



and

Zly Lljeyp
yll R ylk+p

k+p k+p
H Am; = mMax H Al
i=1 i=1

Proof: A sample of n independent replications from (2.2) with the prior in (2.3) — (2.4)
leads to

” o} . (A.4)

AP/ tr{S "} (y — XB)'Aly — XB)}
15 [(n+p+1)/2 - XdP
p(y) /EWPXCPX(O’OO)” Sjmepii73 P 5 dBdSdPy, .. a.)»
(A.5)
where A = diag(M1,...,An) and Py, .. »,) was defined in (A.2). The integrand in (A.5)

is proportional to

,A,p/2

tr(271%)
X'AX[P2

|E|(nk+p+1)/QeXp{_ 5

} 2wk (B8, 2 @ (X'AX)7),  (A.6)

where 3 = (X’AX) ' X'Ay, ¥ = y/{A — AX(X’AX) ' X’A}y and we use the notation for
the matricvariate Normal density function introduced in Appendix B. From the expression
in (A.6) we note that § can immediately be integrated out, whereas standard distribution
theory results show that integrating out X requires n > k£ + p and 3 to be a PDS matrix.
Thus, we need to impose that |3 > 0. It is easy to see that

B = L
~ XAX]

with L =AY2(X :y). (A.7)
Since 7(X) = k, |X’AX| > 0; therefore, |S| > 0 if and only if #(L) = k + p, which is
equivalent to 7(X :y) =k + p. In summary, we have obtained that

p(y) < oo requires (X :y) =k + p.

When this rank condition holds, we can integrate out ¥ using an Inverted Wishart distri-
bution, which leaves us with [see (A.6), (A.7) and (B.2)] a constant times

|A|P/2 |A|P/2| XA X |(n—k=p)/2 AR
|X/AX|p/2|i]|(nfk)/2 o |L/L|(n*’€)/2 (A.8)

to be integrated with respect to P, .. x,). Applying the Binet-Cauchy formula [see Gant-
macher (1959, p. 9)] leads to

k
’X’AX| = Z ( )\li> ’:l:ll T 2
i=1

: (4.9)
+p 2 2 2
and |L'L| = > [T yl1 ylk+p
1<hi<..<lpg4p<n \i=1 1 k+p




Thus, |X’AX| has upper and lower bounds both proportional to Hz 1 Am;, defined in

(A.3), whereas |L'L| has upper and lower bounds both proportional to Hk+p Am, , defined
in (A.4). This implies that integrability of the expression in (A.8) with respect to Py, .. x,)
is equivalent to (A.1), thus concluding the proof of the Lemma.

Proof of Theorem 1

The conditional distribution of (3, ¥, v) exists if and only if p(y) < oo for all y € R™*P,
possibly excluding a set of Lebesgue measure zero.

From Lemma 1, it is immediate that p(y) < co always requires n > k + p.

On the other ha,nd if n > k 4+ p, then for all y € R**P excluding a set of Lebesgue
measure zero, (X : y) k +p and max{\; : i # mi,...,Mptp} < min{\,, : i =
E+1,...,k —i—p} [see (A.3) and (A.4)]. This implies a bounded integrand in (A.1), which,
in turn, implies that (A.1) holds since P,, ... x,) is a probability distribution. Sufficiency
of n > k + p is now immediate from Lemma 1.

Proof of Theorem 2

In order to check whether (A.1) holds, we shall decompose the domain of integration,
(0,00)™, into all n! possible orderings of A1, ..., A,. It is enough to focus on those orderings
for which A\(p_s,:n) = Am,,; for all j = 1,...,p [where s; was given in Definition 1 and
A(i:n) denotes the ith order statistic] since they lead to the largest value for the integrand
n (A.1). For any such ordering, we first integrate with respect to [[;"; Py, [where Py,),
is a Gamma(v/2,v/2) distribution| and finally with respect to P,. In each of the steps of
the integration process we shall use the upper and lower bounds

a a

XS Aitt A
exp(—bAit+1) ’;1 < / A7 exp(—bA;)dA; < ZHHL ) for any a,b > 0. (A.10)
0

Iterative use of the lower bound in (A.10) directly shows that a finite integral in (A.1)
requires P,(0,m| = 0, with m as defined in Theorem 2.

If we now assume that P,(0,m] = 0, we can integrate with respect to []"" ; Py}, and,
applying (A.10), we obtain a lower bound proportional to

h(v)n =™/ 2t (A.11)
and an upper bound proportional to
h(W){(n = sp+ v —p(sp — k)} 77, (4.12)

where we have defined

= Fe ey T T o (275 -0)) | (v 02e=d)

j=1 l=n-—s;
(A.13)
(i) m = 0 clearly implies s, = k, and the upper bound in (A.12) is finite for all » > 0 and
has a finite limit as v converges to zero. Thus, integrability over any finite interval (0, K)
is assured under any proper prior P, .
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(ii) If m > 0, the integral condition stated in Theorem 2 (ii) is clearly necessary for
integrability of (A.11), whereas it also guarantees integrability of (A.12) over any finite
interval (m, K).

Finally, we need to examine integrability over an unbounded interval (K,oc0). We
shall consider the following upper bound for the integrand in (A.1):

)\]Targnfkfp)/Q
W, where )\m = maX{)\i ) 7£ mq,... ,mk+p}, )\mk+1 = min{)\mkﬂ, ceey )\mk-‘,-p}'

ME41

Thus, the integral with respect to [, Py}, is bounded from above by

S v v oo o —k— vV v
/0 )\]Torgnfkfp)/zfa ()\m|§7§) d)\m/o )\mis_l k p)/QfG ()\mk+1|§7§) d)\mk+1

:r{”“’(”z_k_p)}r{”_p("z_k_p)}r(g)2.

The latter function of v takes finite values if v > K > p(n — k — p) and has a finite limit
as v tends to oo. This leads to a finite integral over the range (K, oc0) under any proper
prior P, .

Proof of Theorem 3
After integrating out 4 and X as in the proof of Lemma 1, we need to integrate what
remains from the expression in (A.6) over y; € S1,...,yn € S, and, finally, with respect
to P(x,,... ). Since 7(X) = k we assume, without loss of generality, that |z1...zx| # 0.
Defining

/ -1 /

m 1 Y1
n=|...|=y—X|{ ... o, (A.13)
T T Yh
which clearly implies 71 = ... = g = 0 € RP, leads to the following expression for )y

[defined after (A.6)]:

£ =", Q(A)n-k, where
Nk = (155 70) € ROTPand Q(A) = Aoy — Ap X (X'AX) T X! Ay,
with A_g = diag(Akt1,---5An) and X g = (Trr1,---,2n) -

(A.14)

Thus, we are left with
AP X AX P2 |0 QA |~ R, (A.15)
which we need to integrate in y1,..., Yk, Mk+1,--.,Nn Over the appropriate sets [note that

this change of variables has unitary Jacobian], and with respect to Py, . x,)-



Necessity of (X :y) =k +pforally; € S1,...,yn € Su:
Let us assume that there exist y; € S1,...,yn € Sy, for which (X : y) < k+ p. From
(A.7) and (A.14), this condition is equivalent to

", Q(A)n_r| =0, for some y; € S1,...,yn € Sp. (A.16)

In order to integrate out n_j from (A.15), we subsequently consider the following changes
of variables
Tk € ROy €= Q) Ay € RID
— 0 =¢'€ € CP (completed with (n — k)p — {p(p + 1)/2} extra variables)  (A.17)
— T, an upper triangular matrix of order p: § = T'T.

This transformation has Jacobian

9\ 1/2
|Q(A)|fp/2 ﬁtQ t2 £11 51]‘ >|Q(A)’*P/2 (A 18)
27 EEEE > , .
j=1

i oo &Gy

where t;; and &;; respectively denote the (i,7)"" elements of T and ¢, and where the
inequality can be proven by means of the Binet-Cauchy formula. From (A.17) and (A.18),
we see that integrating out 7_j from (A.15) requires that the integral

p
—(n—k
/Htjj( Vdtyy ... dtpy

Jj=1

is finite. This, however, does not hold since, by the assumption in (A.16), there is a point
in the domain of integration where []_, ¢;; = 0.

Sufficiency of 7(X :y) =k +pforally; € Sy,..., Un € Sp:
From the definition of 7 in (A.13), this condition is equivalent to r(X : n) = k+p, which
is, in turn, equivalent to |’ ,n_x| > 0 for all y; € S1,...,y, € Sp. Since we have assumed

that these sets are compact, this implies [n" . n—x] > A > 0 for some positive constant
A and, by the Binet-Cauchy formula, this means that there always exists a submatrix of
n—k of order p with determinant strictly bounded away from zero. Let us e.g. consider the
region where

Mkt1---Nkapl® > B > 0 for some constant B. (A.19)

Direct use of linear algebra shows that (A.15) is proportional to

,A,p/2
| X'AX|P/2|Q(A)|P/2

_ n—k— ~
(|77k+1---77k+p|2) p/zfz(ws p)xp(m(ﬂp)m’R’P’p)’ (4.20)

where we use the notation for the matricvariate Student distribution introduced in Ap-
pendix B, and we have defined 1_(54p) = (Mktpr1,---5Mn) € Rn—k=p)xp,

Q) = (gi g;z> with Q11 of order p x p, (A.21)



h=Mks1s-- - Mhtp)s 1 = —Qap Qa1h, R = 1 (Q11 — Q12Q35 @21)h and P = Q5. From
the definitions of Q(A) in (A.14) and Q22 in (A.21), the latter matrix is clearly PDS,
whereas the assumption in (A.19) implies that R is also a PDS matrix; thus, we can
integrate out 1_ (44 in (A.20) using a proper matricvariate Student distribution. From
(A.19) and the fact that we have a bounded domain of integration, we can also integrate out
Mk+1s-- - Mhtps Y, - - - » Yk, Obtaining a finite integral. Finally, from the definition of Q(A)
in (A.14) we can derive that |Q(A)| o< |A||X’AX| ™!, which, in combination with (A.20),
leads to a constant integrand, and thus a finite integral with respect to the probability
distribution Py, x,)-

Proof of Theorem 4

(i) By Theorem 3, the assumption of Theorem 4 (i) implies that P(y1 € S1,...,y, € Sy) <
oo. Straightforward calculations show that, since r < n, P(y; € S1,...,yn € Sn) < P(y1 €
Siy..yr €5p) < o0,

(ii) Immediate, since the proof of the necessity in Theorem 3 never uses the fact that the
sets are compact.

Proof of Theorem 5
The result follows immediately from writing down the likelihood function.

APPENDIX B: MATRICVARIATE DENSITY FUNCTIONS

Here we present the density functions of the matricvariate distributions used in the
paper.

Matricvariate Normal:

The p x ¢ random matrix A has a matricvariate Normal distribution with mean M €
RP*? and covariance matrix of the column expansion vec(A) given by Q® P, where Q € C?
and P € CP, if the density function of A is:

-1 . ' -1 _
]I\)/[XJ\?(A|M>Q®P) = {(zﬁ)pq|Q|p|P’q}fl/2 exp _tT{Q (A—M)P(A—- M)}

(B.1)

Inverted Wishart:
The random matrix .S € C? has an Inverted Wishart distribution if its density function
is given by:

q . -1 .
A(S|Q,v) = {2’”/%‘“”/“ IIr (LH)} QI/2|S|(+a+D/2 exp {_M} ,

, 2
=1
(B.2)
where Q € C? and v > q — 1.



Matricvariate Student:
The p x ¢ random matrix A has a matricvariate Student-¢ distribution if it has the
following density function:

PUAIM,Q, H,v) =1 P/? ﬁ [T (prﬂ_ﬁ {F (%H> }1] (B.3)

=1

x [QI21H|"?|Q + (A — M) H(A — M)|~ P72,

where M € RP*1, Q€ C9, HecCP and v >q— 1.
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Figure 1(a): Posterior Inference Through Set Observations
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Figure 1(b): No Posterior Inference Through Set Observations
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Figure 10: Set Observations With Missing Components Do Not Help

Figure 11: Compact Set Observations in Murray Data
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