
electronics

Article

Multivariate Temporal Convolutional Network:
A Deep Neural Networks Approach for Multivariate
Time Series Forecasting

Renzhuo Wan 1 , Shuping Mei 1 , Jun Wang 1, Min Liu 2 and Fan Yang 1,*

1 Nano-Optical Material and Storage Device Research Center, School of Electronic and Electrical Engineering,

Wuhan Textile University, Wuhan 430200, China
2 State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University,

Changsha 410083, China

* Correspondence: yangfan@wtu.edu.cn

Received: 7 July 2019; Accepted: 5 August 2019; Published: 7 August 2019
����������
�������

Abstract: Multivariable time series prediction has been widely studied in power energy, aerology,

meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns

and are inefficient to capture long-term multivariate dependencies of data for desired forecasting

accuracy. To address such concerns, various deep learning models based on Recurrent Neural

Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve

the prediction accuracy and minimize the multivariate time series data dependence for aperiodic

data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate

Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction

is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel

residual blocks in parallel with asymmetric structure based on deep convolution neural network is

proposed. The results are compared with rich competitive algorithms of long short term memory

(LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate

Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction

accuracy, robust and generalization of our model.

Keywords: deep learning; multivariate time series forecasting; multivariate temporal convolutional

network

1. Introduction

With the explosive growth of Internet of Things (IoT) applications and big data, multivariate

time series is becoming ubiquitous in many fields, e.g., aerology [1], meteorology [2], environment [3],

multimedia [4], power energy [5], finance [6], and transportation [7]. The precise trend forecasting,

as well as for potential hazardous events, based on historical dynamical data are a major challenge,

especially for aperiodic multivariate time series. One of the crucial reasons is aperiodic and nonlinearity

among variables, which is incapable by models to capture and have self-adaption of the complex

data features. Traditional methods such as Autoregressive (AR) [8] models and Gaussian Process

(GP) [9] may fail. As an important part of the field of artificial intelligence, deep neural networks

(DNNs) provide state-of-the-art accuracy on many tasks [10] and has been developed intensively

in natural language processing (NLP), computer vision (CV), time series classifications and time

series forecasting.

Enlightened by algorithms used in NLP (i.e., Sequence to Sequence [11,12] and Attention

mechanism) and CV (i.e., Dilated convolution network [13] and residual structure [14]), in this paper,

the M-TCN model is proposed for aperiodic multivariate time-series prediction, which constructs

Electronics 2019, 8, 876; doi:10.3390/electronics8080876 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2649-4515
https://orcid.org/0000-0002-8119-5318
http://www.mdpi.com/2079-9292/8/8/876?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8080876
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 876 2 of 18

the aperiodic data as sequence-to-sequence and a novel multichannel and asymmetric residual

blocks network. The model is cross validated by a rich set of existing competitive models with

an aperiodic time series dataset. The reminder of the article is organized as follows: Section 2 reviews

the background work. Section 3 presents the methodology of the proposed model. In Section 4,

the experiment is analyzed and discussed. Finally, conclusions and outlook are drawn in Section 5.

2. Background

One of the major challenges of multivariate time series forecasting is nonlinearity and aperiodic

of data originated by short-term and long-term dynamical behavior. Various models have been

established based on classical statistic methods or machine learning algorithms.

The prominent classical univariate time series model is Autoregressive (AR) with classical statistic

algorithms, as well as its progeny. The AR method is well used to stationary time series. The improved

models, such as autoregressive integrated moving average (ARIMA) [15], autoregressive moving

average (ARMA) [16], and vector auto-regression (VAR) [17], were developed by including flexible

exponential smoothing techniques. However, for long-term temporal patterns, these models are

inevitably prone to overfitting and high computational cost, especially for high-dimensional inputs.

Alternative methods by treating the time series forecasting problems as general regression

with time-varying parameters were applied by machine learning models, e.g., linear support vector

regression (SVR) [18], random forest [19], ridge regression [20] and LASSO [21] models. Those models

are practically more efficient due to high quality off-the-shelf solutions in machine learning community.

Still, machine learning based models may be incapable of including complex nonlinearity dependences

of multivariate large datasets.

Meanwhile, the well-built deep neural networks of Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs) have been widely applied in time series forecasting, which

are attributed to the open source deep learning frameworks, such as Keras (Keras, available online:

https://keras.io), TensorFlow (TensorFlow, available online: https://tensorflow.org) and PyTorch

(PyTorch, available online: https://pytorch.org), including flexible and sophisticated mathematical

libraries. Some representative models are long short-term memory (LSTM) [22] and its inheritors,

convolutional LSTM (ConvLSTM) [23] and Multivariate Attention LSTM-FCN (MALSTM-FCN) [24],

which overcome the challenges involved in training a recurrent neural network for a mixture of long

and short-term horizons. However, these models are time consuming and non-robust for aperiodic

data forecasting.

Another novel method for time-series forecasting is a hybrid multiscale approach, such as

empirical mode decomposition (EMD) [25], ensemble EMD (EEMD) [26], multi-level wavelet

decomposition network (mWDN) [27] and variational mode decomposition (VMD) [28]. These methods

are used to decompose data into different frequencies’ components to facilitate forecasting. However,

the pre-design decomposition K value is an essential prerequisite as an input of training models, which

is not versatile for complicated multivariate time series prediction.

Recently, a general architecture for a predictive sequences model by convolutional and recurrent

architecture on sequence modeling tasks, the Temporal Convolution Network (TCN) [29], is proposed.

The prominent characteristics of TCNs are casualness in convolution architecture design and sequence

length. In addition, it is also convenient to build a very deep and wide network by a combination of

residual network and extended convolution. Under this background, our model is designed based on

TCN and tested for PM2.5 and electric power forecasting.

For comparison, Table 1 contrasts the advantages and challenges of some common methods for

multivariate time series prediction.

https://keras.io
https://tensorflow.org
https://pytorch.org

Electronics 2019, 8, 876 3 of 18

Table 1. Summary of advantages and challenges of time series prediction methods.

Method Advantages Challenges

AUTOREGRESSIVE [8] Simple and efficient for lower order models Nonlinear, multivariable and non-stationary
SVR [18] Nonlinear and high-dimensional Selection of free parameters, NOT suitable for big data
Hybrid VMD and ANN [30] Strong explanatory power of mathematics Pre-processing is complex, poor generalization ability
LSTM [22] mixture of long- and short-term memory Huge computing resource
TCN [29] Large scale parallel computing mitigating the gradient of explosion and

greater flexibility in model structure
Long-term memory

Electronics 2019, 8, 876 4 of 18

3. Methodology

In this section, the time series forecasting problem is formulated first. In addition, then the

baseline models, ConvLSTM and Multivariate LSTM FCN are presented to be used as the methods in

our comparative evaluation. Finally, M-TCN model is introduced.

3.1. Sequence Problem Statement

From the nature of machine learning, to minimize the expected error, it requires obtaining an

ideal nonlinear mapping from a historical dataset to a current state, especially for hazard events

forecasting. The prerequisite is to employ enough characteristic parameters to feature the various

phenomena, which makes the current state strictly dependent on the historical dataset. The problem

of multivariable time series prediction is defined as the problem of sequence to sequence in this

paper. Before defining the network structure, more formally, given an input sequence time series

signal X = (x1, x2, · · · , xT) with xt ∈ Rn, where n is the variable dimension, we aim at predicting

corresponding outputs Y = (y1, y2, · · · , yh) at each time. The target of sequence modeling network is

to obtain a nonlinear mapping to the prediction sequence from the current state as:

(y1, y2, · · · , yh) = f (x1, x2, · · · , xT) . (1)

3.2. Baseline Test

To build a baseline test benchmark, the traditional models, naive forecast, average approach

forecast and seasonal persistent forecast models are included for a cross evaluation.

Naive forecast model: It takes the value from the last hour prior to the forecast period (e.g., 24 h)

and uses it as the value of a dataset for each hour in the forecast period (e.g., 1 to 24 h). Using the naive

approach, forecasts are produced that are equal to the last observed value. This model is defined as:

ŷT+1 = yT , (2)

where yT is the past data, and ŷT+1 is the next time value.

Average approach forecast model: In this model, the predictions of all future values are equal

to the mean of the past data. This method can be used for any type of data available in the past and

defined as:

ŷT+1 = y = (y1 + . . . + yT) /T, (3)

where (y1, y2, · · · , yT) is the past data, and ŷT+1 is the next time predicted value.

Seasonal persistent forecast model: It defines the same time period a year ago as the predicted

value. This method accounts for seasonality by setting each prediction to be equal to the last observed

value of the same season. This model is defined as:

ŷT+1 = yT−Y, (4)

where yT−Y is the past data, and ŷT+1 is the next time predicted value.

3.3. ConvLSTM Encoder–Decoder Model

A convolutional LSTM (ConvLSTM) encoder–decoder network is built in this work, which

reconstructs the input sequence and predicts the future sequence simultaneously. The ConvLSTM

input layer is designed to be a 4D tensor [timestep, row, column, channel], where timestep is the number

of subsequences, row is the one-dimensional shape of each subsequence, column is the hours in each

subsequence and channel is the features that we are working with as input. The encoding ConvLSTM

compresses the whole input sequence into a hidden state tensor and the decoding LSTM unfolds this

hidden state to give the final prediction. An overview of the ConvLSTM is shown in Figure 1.

Electronics 2019, 8, 876 5 of 18

C
o

n
v

L
S

T
M

2
D

R
eL

U

C
o

n
v

L
S

T
M

2
D

R
eL

U

Input Encoder Decoder Prediction

LSTM ReLU

Encoder structure

Decoder structure

Figure 1. An overview of the ConvLSTM Encoder–Decoder network (ConvLSTM).

Multivariate ALSTM Fully Convolutional Networks models are comprised of temporal

convolutional blocks and an LSTM block, as depicted in Figure 2. The feature extractor consists of

three stacked temporal convolutional blocks. In addition, the first two convolutional blocks conclude

with a squeeze and excite block.

C
o

n
v

1
D

B
N

 +
 R

eL
U

S
q

u
ee

ze
 a

n
d

 E
x

ci
te

C
o

n
v
1

D

B
N

 +
 R

eL
U

S
q

u
ee

ze
 a

n
d

 E
x

c
it

e

C
o

n
v

1
D

B
N

 +
 R

eL
U

B
N

 +
 R

eL
U

co
n

ca
t

F
C

A
tt

e
n

ti
o

n
 L

S
T

M

D
ro

p
o
u

t

In
p

u
t

Figure 2. Modified multivariate attention LSTM-FCN (MALSTM-FCN) network structure for time

series forecasting.

We consider this model structure as a parallel structure of CNN (temporal convolutional blocks)

and RNN (LSTM block). In order to study the regression problem, the final softmax layer used for

classification is changed to a fully connected layer with 24 nodes.

3.4. M-TCN Model

The main characteristic of CNN is a local feature by convolving filters. For time series forecasting,

the local correlation is reflected in the continuous change over a period of time within a small time slot.

In addition, RNN models, such as LSTM, have always been considered as the best standard method

to solve sequence problems; however, RNNs cannot be parallel, resulting in huge time-consumption

compared to that of CNN. From those considerations, the overall framework of the model is designed

based on CNN. Our aim is to distill the best practices in designing convolutional networks to be flexible

and stable frameworks with a simple architecture and high efficiency for multivariate time series

Electronics 2019, 8, 876 6 of 18

forecasting. The distinguishing characteristics of M-TCN are: (1) the input and output lengths of our

network could be determined to be flexible for various scenarios; (2) M-TCN uses the 1D convolution

instead of causal convolutions; (3) M-TCN augmented with two different asymmetric residual blocks;

(4) M-TCN constructs a sub-model for each feature of input data, and the prediction is accomplished by

a combination of all sub-models. We call this typical structure a multihead model. In this work, what

we emphasize is the methodology on how to build effective networks (i.e., Multihead model) using

a combination of network (augmented with two different residual blocks) and dilated convolutions.

The following are details of the network structure.

3.4.1. 1D Convolutions

TCN uses causal convolutions, where an output at time t is convolved only with elements from

time t and earlier in the previous layer. In Figure 3, causal convolution is used to assume that all

data must have a one-to-one causal relationship in chronological order. Given an input sequence

time series signal X = (x1, x2, x3, x4, x5) with xt ∈ Rn where n is the variable dimension, xt does not

strict causality in chronological order. While x1 and x5 may have a direct logical connection, causal

convolution will make the relationship between x1 and x5 affected by x2, x3, x4. This design was

limited by the absolute order of time-series and inefficient for accurate characteristics learning at a

relative time. Thus, in our model, only a 1D convolutional network is adopted to avoid this situation.

Output

Hidden

layer

Input

Hidden

layer

Hidden

layer

x1 x2 x3 x4 x5

Figure 3. Visualization of a stack of causal convolutional layers.

3.4.2. Dilated Convolutions

The dilated convolutions algorithm [13] is used in our model. Since the traditional convolution

operation process is to convolute the sequence once and then pool, which reduces the size of the

sequence and enlarges the receptive field at the same time. One of the main faults is that some

sequential information will be lost during the pooling process, while the advantage of dilated

convolutions is that they don’t need the pooling process and gradually increase the field of perception

through a series of dilated convolutions, thus leading to the output of each convolution encompasses

rich information for long-term tracking. Thus, the dilated convolutions could be well applied in the

problem of long information dependence of sequence, such as voice and signal processing, environment

forecasting, etc. Dilated convolution is defined as

F(s) = (x ∗d f) (s) =
k−1

∑
i=0

f (i) · xs−d·i, (5)

where d is the dilation factor, k is the filter size, and s − d · i accounts for the direction of the past.

A filter f : {0, . . . , k − 1} → N. Figure 4 depicts dilated 1D convolutions for dilations 1, 2 and 4.

Electronics 2019, 8, 876 7 of 18

d = 1 d = 2 d = 4

Figure 4. Visualization of 1D convolutions with different dilation factors.

3.4.3. Residual Block

A novel structure is designed by a multilayer and sequential residual network and parallel residual

blocks. The core of ResNet [14] is to create a shortcut for information dissemination in front and

back layers. A basic Residual block is used in the TCN network; however, the jump connection in

ResNet, resulting in only a small number of residual blocks’ learning useful information, and thus

the basic residual block structure is not adapted for time series prediction. An alternative way is to

increase the convolution kernel size for a better prediction; however, the computational load increases

sharply. In [31], an asymmetric block structures were introduced both for MobileNetV3-Large and

MobileNetV3-Small. By this way, asymmetric factors will be generated in the whole network structure

and may make a positive impact on the in-depth learning models. The optimal asymmetric structure

needs Neural Architecture Search(NAS) [32,33]; however, it is computationally expensive. In a more

direct way, two asymmetric residual blocks in parallel are constructed. The architectural elements in

our model are shown in Figure 5.

Dilated Conv1D Dilated Conv1D

ReLU ReLU

Input

Output

Input

Unit

Unit

Unit

Output

1×1 Conv1D

(optional)

Input

Unit

Unit

Unit

Output

1×1 Conv1D

(optional)

Unit

Unit Residual Block 1 Residual Block 2

Figure 5. Residual Block in our network. (left) details of the Unit architecture. (middle) Residual

Block 1; (right) Residual Block 2.

The Unit for our model is shown in Figure 5 (left). The Unit has two channels. Each channel

has dilated convolution and nonlinearity, for which we used the rectified linear unit (ReLU) [34].

The residual block 1 is shown in Figure 5 (middle). Within a residual block, the model has three units.

The output is the sum of the results of two channel operations. The residual block 2 is shown in

Figure 5 (right), which has the same basic structure as residual block 1, but one more unit layer is

implemented. To be more precise, a dilated convolution with different dilation factors and filter size

k = 3 are constructed both for residual blocks. In addition, an optional 1 × 1 convolution is introduced

to adjust the dimensions of different feature maps (see Figure 5 (middle, right)) for summation.

The Unit takes the same input with two different convolutions, and then adds up the results.

The convolutional layer consists of multiple kernels with different sizes. The k-th filter sweeps through

the input data X, which can be formulated as:

ReLU(x) = max(0, x), (6)

Electronics 2019, 8, 876 8 of 18

h1k = ReLU (W k ∗ X + bk) , (7)

h2k = ReLU (W k ∗ X + bk) , (8)

hk = h1k + h2k, (9)

where h1k is the result of channel 1, h2k is the result of channel 2, and hk is result of unit. * stands for a

convolutional operation.

A residual block contains a channel, which passes through a series of conversion functions F ,

and the final output is added to the input X of the block:

o = (x +F (x)). (10)

3.4.4. Fully Connected Layers

Fully connected layers can be replaced by global average pooling (GAP) for better efficiency and

accuracy in image recognition tasks. However, fully connected layers are essential in prediction tasks

and can easily change the length of the output sequence. Formally, a statistic z ∈ RC is generated by

shrinking X through its spatial dimensions H × W, such that the output z is calculated by:

z = GAP (xc) =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j). (11)

The whole spatial feature on a channel is averaged as a global feature. Each feature map is averaged

into one value, thus the local information of the whole feature value is lost, which has a negative

impact on the prediction problem.

The full connection layer is shown in Figure 6, which not only establishes the position relationship

between feature maps, but also retains the internal feature information of the same feature map.

This will have a beneficial impact on the prediction problem. The disadvantage is that the parameters

are greatly increased.

feature maps

Fully

connected

layers

Figure 6. Relation between full connection layers and feature maps.

3.4.5. Multi-Head Model

The model is further extended so that each input variable has a separate sub-model, named after

a multi-headed model. This sub-model for each input variable has to be defined first. Each sub-model

learns the information with different features in the sequence separately. In addition, the outputs

of those models are then combined in series to form a very long vector, which is interpreted by

some fully connected layers before the prediction is made. An overview of multi-head temporal

convolutional network (M-TCN) architecture is shown in Figure 7. To provide more detail, an overview

of convolutions is shown in Figure 8.

Electronics 2019, 8, 876 9 of 18

Input Variable 1

Residual Block 1

Residual Block 2

Residual Block 2

Residual Block 1

Flatten

Input Variable 1

Residual Block 1

Residual Block 2

Residual Block 2

Residual Block 1

Flatten

...

...

FC

concat

Figure 7. An overview of the M-TCN network.

timestep

v
ar

ia
b
le

s

filters
filters

...

Submodel

1
st

Submodel

nth

timestep

Input data

Figure 8. An overview of convolutions.

3.5. Training Procedure

The training procedure can be described as Algorithm 1.

Meaning represented by each parameter. min−lr: minimum learning rate; initial−lr: initial

learning rate; factor: factor by which the learning rate will be reduced; wait: number of epochs with no

improvement after which learning rate will be reduced; new−lr: new learning rate; epoch: number of

epochs to train the model; best−score: minimum RMSE.

Electronics 2019, 8, 876 10 of 18

Algorithm 1: Training procedure.

1: min−lr = 1e-4; epoch = 200; initial−lr = initial−lr

2: factor

3: for n < epoch do

4: wait += 1

5: if best−score > RMSE

6: best−score = RMSE

7: save model

8: if wait >= 10

9: if initial−lr > min−lr

10: min−lr = initial−lr × factor

11: new−lr = max(new−lr, min−lr)

12: wait = 0

4. Experiments

In this section, we first describe two datasets for empirical studies. All of the data are available

online. Then, the parameter settings of model and evaluation metrics are introduced in our studies.

Finally, the proposed M-TCN model against different baseline models is compared.

4.1. Datasets

Two benchmark datasets are used which are publicly available. Table 2 summarizes the

corpus statistics.

Beijing PM2.5 Dataset (available online: https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.

5+Data): It contains hourly PM2.5 data and the associated meteorological data in Beijing, China.

The exogenous time series include dew point, temperature, and atmospheric pressure, combined

wind direction, cumulated wind speed, hours of snow, and hours of rain. In total, we have 43,824

multivariable sequences. For this dataset, the hourly PM2.5 data are used as a predictive value.

ISO-NE Dataset (available online: https://www.iso-ne.com/isoexpress/web/reports/load-and-

demand): The time range of the dataset is between March 2003 and December 2014. The ISO-NE

Dataset includes hourly demand, prices, weather data and system load. The dataset contains two

variables, which are hourly electricity demand in MW and dry-bulb temperature in ◦F. For this dataset,

the hourly electricity demand is used as a predictive value.

Table 2. Dataset statistics.

Datasets Length of Time Series Total Number of Variables Sample Rate

ISO-NE 103,776 2 1 h
Beijing PM2.5 43,824 8 1 h

In our experiments, ISO-NE datasets have been split into training set (from 1 March 2003 to

31 December 2012), valid set (the whole year of 2013) and test set (the whole year of 2014) in a

chronological order. In addition, the Beijing PM2.5 Dataset has been split into a training set (from

January 2, 2010 to December 31, 2012), valid set (the whole year of 2013) and test set (the whole year of

2014) in a chronological order.

4.2. Data Processing

According to the characteristics of each dataset, it is necessary to preprocess the data. Each of the

datasets is normalized with a mean of 0 and a standard deviation of 1.

For the Beijing PM2.5 Dataset, PM2.5 is NA in the first 24 h. We will, therefore, need to remove

the first row of data. There are also a few scattered “NA” values later in the dataset, and we use zero

https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand

Electronics 2019, 8, 876 11 of 18

to fill in missing values. The wind speed feature is label encoded (integer encoded). We apply the new

dataset to every algorithm in later experiments.

4.3. Evaluation Criteria

Three evaluation metrics, root mean squared error (RMSE), root relative squared error (RRSE)

and empirical correlation coefficient (CORR) for multivariate forecasting, are used and defined as:

RMSE =

√

√

√

√

1

N

N

∑
i=1

(

yi
t − ŷi

t

)2
, (12)

RRSE =

√

∑(i,t)∈ΩTest
(Yit − Ŷit)2

√

∑(i,t)∈ΩTest
(Yit − mean(Y))2

, (13)

CORR =
1

n

n

∑
i=1

∑t(Yit − mean(Yi))(Ŷit − mean(Ŷi))
√

∑t(Yit − mean(Yi))2(Ŷit − mean(Ŷi))2
, (14)

where Y, Ŷ ∈ Rn×T are ground value and system prediction value, respectively, and Ω Test is the set

of time stamps used for testing. For RMSE and RRSE, the lower value is better, while, for CORR,

the higher value is better for evaluation.

4.4. Walk-Forward Validation

In the test set, the Walk-Forward Validation method is adopted, but the model is not updated.

In this case, a model is needed to predict a period of time, and then the actual data of the current

period is provided to the model, so that it can be used as the basis for the prediction of subsequent

periods. This is not only applicable to the way the model is used in practice, but also conducive to the

model using the best available data.

In the experiment, the output length is set to 24. For multi-step prediction problems, we evaluate

each prediction time step separately. Table 3 summarizes the actual value and predicted value. Models

can be trained and evaluated as follows.

Step 1: Starting at the beginning of the test set, the last set of observations in the training set is used as

input of the model to predict the next set of data (the first set of true values in the validation set).

Step 2: The model makes a prediction for the next time step.

Step 3: Get real observation and add to history for predicting the next time.

Step 4: The prediction is stored and evaluated against the real observation.

Step 5: Go to step 1.

Table 3. Dataset Statistics, where h is hour, d is day.

Input (Actual Value) Output (Predicted Value)

Current 24 h Next, 24 h
1d 1 h–1 d 24 h 2 d 1 h–2 d 24 h
2d 1 h–1 d 24 h 3 d 1 h–2 d 24 h
.

4.5. Experimental Details

To be more specific, most models chose input length from {24, 72, 168}, and the batch size is set to

100. The mean squared error is the default loss function for forecasting tasks. Adam [35] is adopted as

optimization strategy, with an initial learning rate set to 0.001. In addition, the learning rate is reduced

Electronics 2019, 8, 876 12 of 18

by a factor of every 10 epochs of no improvement in the validation score, until the final learning rate

was reached.

For the LSTM model, a single hidden layer with {50, 100, 200} units is defined. The number of

units in the hidden layer is unrelated to the number of time steps in the input sequences. Finally, an

output layer will directly predict a vector with 24 elements, one for each hour in the output sequence.

SGD [36] is adopted as an optimizer. The learning rate is set to 0.05 with a reduction rate by a factor

of 0.3.

In the ConvLSTM Encoder–Decoder model, input data have the shape of [timestep, row, column,

channel]. Timestep is chosen from {1, 3, 7}. Row is set to 1. Column is chosen from {24, 72, 168}. Channel

is chosen from {2, 8}. SGD is adopted as the optimization algorithm. The learning rate is set as the

same in LSTM. For this network, the 1-layer network contains one ConvLSTM layer with 64 hidden

states, the 2-layer network contains one ConvLSTM layer with 128 hidden states, and the 3-layer

network has 200 hidden states in the LSTM layers. All the input-to-state and state-to-state kernels are

of size 1 × 3.

For the MALSTM-FCN network, the optimal number of LSTM hidden states for each dataset was

found via grid search over {8, 50, 100, 200}. The FCN block is comprised of three blocks of 128-256-128

filters. The models are trained using a batch size of 128. The convolution kernels are initialized

following the work of [24].

For the TCN network, the optimal number of hidden units per layer for each dataset was found

via grid search over {30, 50, 100}. The convolution kernels are of size 1 × 3.

In our M-TCN model, Adam is adopted as an optimization strategy with an initial learning rate

set to 0.001(ISO-NE Dataset), while, for Beijing PM2.5, SGD is adopted as an optimization strategy

with an initial learning rate set to 0.05.

The implementations of M-TCN are built based on Keras library with the Tensorflow backend.

We run all the experiments on a computer with a single NVIDIA 1080 GPU (Santa Clara, CA , USA).

4.6. Experimental Results

Table 4 summarizes the results on multivariate testing sets in the metrics RMSE, RRSE and CORR

across all forecast hours. The output sequence length is set to 24, which means that the horizons were

set from the 1st hour to the 24th hour for forecasting over the Beijing PM2.5 and ISO-NE Electricity

data. In the time series forecasting, larger horizons shall make the prediction harder. Thus, our

experiments give a detailed analysis of the results in this large horizon. The best results for each data

and metric pair are highlighted in bold. To demonstrate the effectiveness of the models, the results are

compared with three baseline methods by the Naive, Average and Seasonal persistent model, as well

as four competitive algorithms of LSTM, ConvLSTM, TCN and MALSTM-FCN. For RMSE and RRSE,

the lower value is better, while the higher value is better for CORR. Overall performance of neural

network based models is better than traditional methods. The performance of M-TCN is comparable

with LSTM and MALSTM-FCN and outperforms both of them by about 10%∼20% for both datasets.

Furthermore, the ConvLSTM model has weak generalization ability, and its prediction ability varies

greatly on different datasets.

Figure 9 presents the results on RMSE for both datasets at a larger horizon from the 1st hour to

the 24th hour. It is obvious that M-TCN is better than others and RRSE maintains a steady increase

without obvious fluctuation in the long-term forecasting period.

Electronics 2019, 8, 876 13 of 18

Table 4. Results summary (in RMSE, RSE and CORR) of all methods with two datasets.

Methods Metrics Beijing PM2.5 Dataset ISO-NE Dataset

Length = 24 Length = 24
Naive RMSE 80.55 2823.35

RRSE 0.8608 1.0526
CORR 0.6736 0.5330

Average RMSE 87.89 2363.07
RRSE 0.9393 0.8810
CORR 0.4972 0.4885

Seasonal Persistent RMSE 123.45 1654.38
RRSE 1.3193 0.6168
CORR 0.1722 0.8314

LSTM RMSE 68.07 783.90
RRSE 0.7275 0.2923
CORR 0.6877 0.9573

ConvLSTM RMSE 82.32 687.17
RRSE 0.8798 0.2562
CORR 0.4873 0.9670

TCN RMSE 112.35 720.12
RRSE 1.1453 0.2685
CORR 0.0075 0.9636

MALSTM-FCN RMSE 71.54 680.95
RRSE 0.7646 0.2539
CORR 0.6463 0.9677

M-TCN RMSE 65.35 648.48
RRSE 0.6984 0.2418
CORR 0.7163 0.9707

Figure 9. The RMSE for each lead time from hour 1 to hour 24 vs. different algorithms over Beijing

PM2.5 (left) and ISO-NE Dataset Dataset (right).

4.7. Spectrum Analysis

In order to further study the performance of the model, we analyzed the spectrum of the test set

and the prediction data. Spectrum refers to the representation of a time domain signal in frequency

domain, which can be used for discrete Fourier transform of sequence data. Discrete Fourier Transform

(DFT) of k points are computed as:

X(k) = DFT[X(n)] =
N−1

∑
n=0

X(n)Wnk (0 ≤ k ≤ N − 1), (15)

W = e−j(2π

N), (16)

Electronics 2019, 8, 876 14 of 18

where X(k) is the time series.

More detailed calculations include:

X (k f1) = DFT [x (nTs)] =
N−1

∑
n=0

X (nTs) e−j(2π

N)nk, (17)

f1 =
1

T1
, (18)

Ts =
T1

N
, (19)

where T1 is signal time, f1 is the frequency interval, N is the number of signal sampling, and Ts is the

signal sampling interval time.

The amplitude spectrum analysis of these datasets is performed, so as to check the existence of

repetitive patterns in the datasets. The hourly PM2.5 and ISO-NE data of test set and predictions are

plotted in the frequency domain as shown in Figures 10 and 11 separately, where Freq is the frequency

with a unit of 1/Hour and Am is the amplitude in dB. Sampling frequency is set to 8760 (the same as

test set time variable length). Sampling frequency is set to 8760 (the same as the time variable length

set by the test), which ensures that the frequency and time correspond to each other numerically. Both

figures show that frequency domain is irregular continuous waveform indicating a non-periodic of

PM2.5 and ISO-NE datasets. As can be clearly seen, PM2.5 data have no periodicity, which brings great

errors to accurate prediction. Since the ISO-NE data change regularly from 1 to 1000 h, the prediction

effect is the best.

Figure 10. Amplitude Spectrum of Beijing PM2.5 Dataset. Freq: the hourly data in frequency domain

(1/Hour); Am: the amplitude of data in both datasets.

Electronics 2019, 8, 876 15 of 18

Figure 11. Amplitude Spectrum of ISO-NE Dataset. Freq: the hourly data in frequency domain (1/Hour);

Am: the amplitude of data in both datasets.

4.8. Ablation Tests

Furthermore, to demonstrate the efficiency of our model structure, a careful further study is

performed. Specifically, we add each component one at a time in our framework. M-TCN with

different components are defined as follows:

Model/w/BN: The model adds a Batch Normalization (BN) [37] component. In this test, Batch

Normalization was applied to the input of each nonlinearity, in a convolutional way, while keeping

the rest of the architecture constant. Figure 12 (left) describes this model in detail.

Model/r/GAP: In the model, the full connection layer is replaced by the global average pooling.

Figure 12 (right) describes this model in detail.

Dilated Conv1D Dilated Conv1D

ReLU ReLU

Input

Output

Batch

Normalization

Batch

Normalization

Input Variable 1

Residual Block 1

Residual Block 2

Residual Block 2

Residual Block 1

Global Average

Pooling

Figure 12. (left) Model/w/BN: detail architecture of the Unit. (right) Model/r/GAP: the full connection

layer is replaced by the global average pooling.

Electronics 2019, 8, 876 16 of 18

The test results measured using RRSE are shown in Figure 13. Comparing the results, we see that,

in both datasets, BN cannot help the network achieve higher accuracy. Adding the BN components in

(Model/w/BN) caused big performance drops on both datasets. All of the components of the M-TCN

model together lead to the robust performance of our approach on the Beijing PM2.5 dataset.

Figure 13. (left) RRSE of models over the Beijing PM2.5 dataset. (right) RRSE of models over the

ISO-NE dataset.

4.9. Model Efficiency

s/epoch denotes the time required for each epoch (in seconds). Boldface indicates the best result.

In Table 5, M-TCN proves to be quite competitive.

Table 5. Model training efficiency.

Methods Beijing PM2.5 Dataset ISO-NE Dataset

s/epoch s/epoch
M-TCN 29 39
LSTM 95 270

ConvLSTM 33 99

5. Conclusions

The multivariate time series forecasting is investigated by introducing a novel M-TCN model, in

order to compare with traditional models and especially deep learning (generic recurrent architectures

such as LSTM; generic convolutional architecture such as TCN; hybrid architectures such as ConvLSTM

and MALSTM-FCN.). In M-TCN, the dilated network is employed as a meta-network and asymmetric

residual blocks are constructed. The proposed approach significantly improved the results in time

series forecasting on benchmark datasets of Beijing PM2.5 and ISO-NE. Our research focuses on the

trade-off between implementation complexity and prediction accuracy. With in-depth analysis and

empirical evidence, the results indicate a prominent efficiency of M-TCN.

For future research, we will focus on the extraction technology based on higher-order statistical

features instead of fully connected layers, which can reduce the parameters of the model and

training time.

Author Contributions: Conceptualization, R.W. and S.M.; methodology, R.W.; software, S.M.; validation, S.M.
and J.W.; formal analysis, S.M.; investigation, R.W. and F.Y.; resources, M.L.; data curation, R.W. and F.Y.;
writing—original draft preparation, S.M.; writing—review and editing, R.W. and F.Y.; visualization, S.M.;
supervision, R.W.; project administration, F.Y.; funding acquisition, R.W. and M.L.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11505130 and
21872174), the Project of Innovation-Driven Plan in Central South University (2017CX003), State Key Laboratory

Electronics 2019, 8, 876 17 of 18

of Powder Metallurgy, Shenzhen Science and Technology Innovation Project (JCYJ20180307151313532), Thousand
Youth Talents Plan of China and Hundred Youth Talents Program of Hunan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Seyed, B.L.; Behrouz, M. Comparison between ANN and Decision Tree in Aerology Event Prediction.

In Proceedings of the International Conference on Advanced Computer Theory & Engineering, Phuket,

Thailand, 20–22 December 2008; pp. 533–537. [CrossRef]

2. Simmonds, J.; Gómez, J.A.; Ledezma, A. Data Preprocessing to Enhance Flow Forecasting in a Tropical River

Basin. In Engineering Applications of Neural Networks; Springer: Cham, Switzerland, 2017; pp. 429–440.

3. Mohamad, S. Artificial intelligence for the prediction of water quality index in groundwater systems.

Model. Earth Syst. Environ. 2016, 2, 8.

4. Amato, F.; Castiglione, A.; Moscato, V.; Picariello, A.; Sperlì, G. Multimedia summarization using social

media content. Multimed. Tools Appl. 2018, 77, 17803–17827. [CrossRef]

5. Kadir, K.; Halim, C.; Harun, K.O.; Olcay, E.C. Modeling and prediction of Turkey’s electricity consumption

using Artificial Neural Networks. Energy Convers. Manag. 2009, 50, 2719–2727.

6. Wu, Y.; José, M.H.; Ghahramani, Z. Dynamic Covariance Models for Multivariate Financial Time Series.

arXiv 2013, arXiv:1305.4268.

7. Yu, R.; Li, Y.; Shahabi, C.; Demiryurek, U.; Liu, Y. Deep learning: A generic approach for extreme condition

traffic forecasting.In Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, TX,

USA; 27–29 April 2017; pp. 777–785.

8. Akaike, H. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 1969, 21, 243–247. [CrossRef]

9. Frigola, R.; Rasmussen, C.E. Integrated pre-processing for bayesian nonlinear system identification with

gaussian processes. In Proceedings of the IEEE Conference on Decision and Control, Florence, Italy,

10–13 December 2013; pp. 552–560.

10. Alom, M.; Tha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; Hasan, M.; Essen, B.; Awwal, A.; Asari, V.

A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]

11. Liu, L.; Finch, A.M.; Utiyama, M.; Sumita, E. Agreement on Target-Bidirectional LSTMs for

Sequence-to-Sequence Learning. In Proceedings of the Thirtieth Aaai Conference on Artificial Intelligence,

Phoenix, AZ, USA, 12–17 February 2016; pp. 2630–2637.

12. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning.

arXiv 2017, arXiv:1705.03122.

13. Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 472–480.

[CrossRef]

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;

pp. 770–778. [CrossRef]

15. Ediger, V.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35,

1701–1708. [CrossRef]

16. Rojas, I.; Valenzuela, O.; Rojas, F.; Guillen, A.; Herreraet, L.; Pomares, H.; Marquez, L.; Pasadas, M.

Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 2008, 71, 519–537.

[CrossRef]

17. Kilian, L. New introduction to multiple time series analysis. Econ. Rec. 2006, 83, 109–110.

18. Sapankevych, N.; Sankar, R. Time Series Prediction Using Support Vector Machines: A Survey. IEEE Comput.

Intell. Mag. 2009, 4, 24–38. [CrossRef]

19. Hamidi, O.; Tapak, L.; Abbasi, H.; Abbasi, H.; Maryanaji, Z. Application of random forest time series,

support vector regression and multivariate adaptive regression splines models in prediction of snowfall

(a case study of Alvand in the middle Zagros, Iran). Theor. Appl. Climatol. 2018, 134, 769–776. [CrossRef]

20. Lima, C.; Lall, U. Climate informed monthly streamflow forecasts for the Brazilian hydropower network

using a periodic ridge regression model. J. Hydrol. 2010, 380, 438–449. [CrossRef]

http://dx.doi.org/10.1109/ICACTE.2008.121
http://dx.doi.org/10.1007/s11042-017-5556-2
http://dx.doi.org/10.1007/BF02532251
http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.1109/CVPR.2017.75
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.enpol.2006.05.009
http://dx.doi.org/10.1016/j.neucom.2007.07.018
http://dx.doi.org/10.1109/MCI.2009.932254
http://dx.doi.org/10.1007/s00704-017-2300-9
http://dx.doi.org/10.1016/j.jhydrol.2009.11.016

Electronics 2019, 8, 876 18 of 18

21. Li, J.; Chen, W. Forecasting macroeconomic time series: LASSO-based approaches and their forecast

combinations with dynamic factor models. Int. J. Forecast. 2014, 30, 996–1015. [CrossRef]

22. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

23. Shi, X.; Chen, Z.; Wang, H.; Yeung, DY.;Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine

Learning Approach for Precipitation Nowcasting. In Proceedings of the Neural Information Processing

Systems Conference, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810.

24. Karim, F.; Majumdar, S.; Darabi, H.; Harforda, S. Multivariate LSTM-FCNs for Time Series Classification.

Neural Netw. 2019, 116, 237–245. [CrossRef]

25. Huang, N.E.; Zheng, S.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.

The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series

analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

26. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.

Adv. Adapt. Data Anal. 2009 1, 1–41. [CrossRef]

27. Wang, J.; Wang, Z.; Li, J.; Wu, J. Multilevel Wavelet Decomposition Network for Interpretable Time Series

Analysis. In Proceedings of the 24th ACM SIGKDD International Conference, London, UK, 19–23 August

2018; pp. 2437–2446. [CrossRef]

28. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.

[CrossRef]

29. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks

for Sequence Modeling. arXiv 2018, arXiv:1803.01271.

30. Dou, C.; Zheng, Y.; Yue, D.; Zhang, Z.; Ma, K. Hybrid model for renewable energy and loads prediction

based on data mining and variational mode decomposition. IET Gener. Transm. Distrib. 2018, 12, 2642–2649.

[CrossRef]

31. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan,

V.; et al. Searching for MobileNetV3. arXiv 2018, arXiv:1905.02244.

32. Cai, H.; Zhu, L.; Han, S. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware.

arXiv 2018, arXiv:1812.00332.

33. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. arXiv 2018, arXiv:1808.05377.

34. Nair, V.; Hinton, G. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th

International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010;

pp. 807–814.

35. Kingma, D.; Ba, J. Adam:A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

36. Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G. On the importance of initialization and momentum in

deep learning. In Proceedings of the 30th International Conference on International Conference on Machine

Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147.

37. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate.

In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015;

pp. 448–456.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijforecast.2014.03.016
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1145/3219819.3220060
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1049/iet-gtd.2017.1476
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Methodology
	Sequence Problem Statement
	Baseline Test
	ConvLSTM Encoder–Decoder Model
	M-TCN Model
	1D Convolutions
	Dilated Convolutions
	Residual Block
	Fully Connected Layers
	Multi-Head Model

	Training Procedure

	Experiments
	Datasets
	Data Processing
	Evaluation Criteria
	Walk-Forward Validation
	Experimental Details
	Experimental Results
	Spectrum Analysis
	Ablation Tests
	Model Efficiency

	Conclusions
	References

