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Abstract 

In this study, a segmentation procedure is proposed based on grey-level and multivariate 

texture to extract spatial objects from an image scene. Object uncertainty was quantified to 

identify transitions zones of objects with indeterminate boundaries. The Local Binary Pattern 
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(LBP) operator, modeling texture, was integrated into a hierarchical splitting segmentation to 

identify homogeneous texture regions in an image. We proposed a multivariate extension of 

the standard univariate LBP operator to describe color texture. The paper is illustrated with 

two case studies. The first considers an image with a composite of texture regions. The two 

LBP operators provided good segmentation results on both grey-scale and color textures, 

depicted by accuracy values of 96% and 98% respectively. The second case study involved 

segmentation of coastal land cover objects from a multi-spectral Compact Airborne Spectral 

Imager (CASI) image, of a coastal area in the UK. Segmentation based on the univariate LBP 

measure provided unsatisfactory segmentation results from a single CASI band (70% 

accuracy). A multivariate LBP based segmentation of three CASI bands improved 

segmentation results considerably (77% accuracy). Uncertainty values for object building 

blocks provided valuable information for identification of object transition zones. We 

conclude that the (multivariate) LBP texture model in combination with a hierarchical 

splitting segmentation framework is suitable for identifying objects and for quantifying their 

uncertainty. 

 

1. Introduction 

Geospatial data quality is a topic frequently covered in recent scientific literature on GIS and 

remote sensing (Foody and Atkinson 2002). An important component of data quality is data 

uncertainty. Poor class definition, gradual transition zones or fuzzy boundaries, mixed pixels, 

and incomplete or imperfect data give rise to uncertainty in remotely sensed image 

classification results. Both fuzzy and probabilistic classification techniques can help to model 

and quantify uncertainty. In recent years, much research has focused on modeling uncertainty 

in remotely sensed image classification (Foody 1996, Hootsmans 1996, Canters 1997, Fisher 

1999, van der Wel 2000, Zhang and Foody 2001, Foody and Atkinson 2002). It mainly 
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focused on uncertainty of spectral classification on a pixel-by-pixel basis. As such, it 

partially ignored potentially useful spatial relations between pixels.  

 

Object-oriented approaches to remotely sensed image processing have become popular with 

the growing amount of high-resolution satellite and airborne imagery. Segmentation 

techniques extract spatial objects from an image (Gorte and Stein 1998, Lucieer and Stein 

2002). It extends classification, as spatial contiguity is an explicit goal of segmentation 

whereas it is only implicit in classification. Uncertainty in a segmented or classified image 

can affect further image processing. In particular, in areas where fuzzy objects or objects 

with indeterminate boundaries dominate, an indication of segmentation uncertainty is 

important.  

 
A straightforward approach to identify fuzzy objects is to apply a fuzzy c-means (FCM) 

classification. This classifier gives membership values of belonging to each class for each 

pixel. A thematic map can be obtained from this result by labeling the pixels according to the 

class with the maximum membership value. However, pixel-based classifiers, like the FCM, 

do not take spatial relations between pixels into account, also known as pattern or texture. 

We argue that a texture-based segmentation approach (i.e. including the spatial component) 

can help to identify fuzzy objects. Texture reflects the spatial structure of pixel values and it 

is therefore indispensable in segmenting an area into sensible geographical units.  

 

Texture analysis has been addressed and successfully applied in remote sensing studies in the 

past. An interesting overview paper concerning texture measures is Randen and Husøy 

(1999). Recently, Ojala and his co-workers have further pursued an efficient implementation 

and application towards texture-based segmentation (Ojala et al. 1996, 2002a; Ojala and 
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Pietikäinen 1999; Pietikäinen et al. 2000). Their Local Binary Pattern (LBP) measure is 

superior to most of the traditional texture measures in segmentation of texture images (Ojala 

et al. 1996). LBP is a rotation invariant grey scale texture measure. 

 

The aim of this study is to develop and apply a supervised multivariate texture segmentation 

technique to identify objects from remotely sensed imagery. It is applied to an image with a 

texture composition and to an airborne multispectral image of a coastal area in northwest 

England. It builds on work of Lucieer and Stein (2002) and Lucieer et al. (2004) and further 

explores the use of multivariate texture. In addition, we focus on quantification of object 

uncertainty to identify transition zones. 

 

2. Methods 

2.1 Texture 

Image texture can provide valuable information for identification of objects. The human 

visual system not only can distinguish objects based on color, but texture plays an important 

role as well. A major characteristic of texture is the repetition of a pattern or patterns over a 

region. The pattern may be repeated exactly, or as a set of small variations, possibly as a 

function of position. There is also a random aspect to texture, because size, shape, color and 

orientation of pattern elements (sometimes called textons) can vary over a region. 

 

A comparative study of texture measures is given in Randen and Husøy (1999). They 

conclude that a direction for future research is the development of powerful texture measures 

that can be extracted and classified with a low computational complexity. A relatively new 

and simple texture model is the Local Binary Pattern operator (LBP) (Pietikäinen et al. 2000, 



 5

Ojala et al. 2002a). It is a theoretically simple yet efficient approach to grey scale and 

rotation invariant texture segmentation based on local binary patterns and non-parametric 

discrimination of sample and reference texture distributions.  

 

2.2 Texture model – the Local Binary Pattern Operator (LBP) 

Ojala et al. (2002a) derived the local binary pattern operator (LBP) by defining texture T in a 

local neighborhood of a grey scale image as the joint distribution of grey levels of P image 

pixels 

 

0 1( , ,..., )
c P

T t g g g −=           (1) 

 

where 
c

g corresponds to the grey-scale value of the center pixel (
c

p ) of the local 

neighborhood and
i

g  ( 0,..., 1i P= − ) corresponds to the grey-scale value of a pixel in the 

neighborhood of
c

p . In this study, we apply a circle of radius R with P equally spaced pixels 

that form a circularly symmetric neighborhood set (Ojala et al. 2002a, Lucieer et al. 2004). A 

circular neighborhood enables a definition of a rotation invariant texture measure. 

 

Invariance with respect to the scaling of pixel values or illumination differences is achieved 

by considering the signs of the differences instead of their numerical values 

  

*
0 1 1( ( ), ( ),..., ( ))

c c P c
T t sign g g sign g g sign g g−≈ − − −      (2) 

 

Ojala et al. (2002a) found that not all local binary patterns describe properties of texture well. 

LBP captures the uniformity of the central pixel towards its neighborhood, but it does not 
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capture the uniformity of the neighborhood itself. Therefore, they introduced a uniformity 

measure U to define uniformity in a neighborhood set. U corresponds to the number of 

spatial transitions or bitwise 0/1 changes in the pattern. With 0P
g g= , 

c
U  is defined as 

 

1
1

( ) ( )
P

C i c i c

i

U sign g g sign g g−
=

= − − −∑         (3) 

 

Patterns with 
c

U j≤  are designated as uniform. Ojala et al. (2002a) found that for 2j =  the 

best texture model is obtained for texture images. This results in the following operator for 

grey scale and rotation invariant texture description 

 

1

0,

( )      if 

1                       otherwise

P

i c C

ic j

sign g g U j
LBP

P

−

=

⎧
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⎪ +⎩

∑        (4) 

 

The ,c j
LBP  operator thresholds the pixels in a circular neighborhood of P equally spaced 

pixels on a circle of radius R, at the value of the center pixel. It allows for detecting uniform 

patterns for any quantization of the angular space and for any spatial resolution. Non-uniform 

patterns are grouped under one label, P+1. 

 

2.3 A measure for texture 

The ,c jLBP  measures the spatial structure of local image texture, but discards contrast, being 

another important property of local image texture. In most cases, its performance can be 

enhanced by combining it with a rotation invariant variance measure that characterizes the 

contrast of local image texture, defined by 
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,c jLBP  and 
c

VAR values are calculated and assigned to each individual image pixel, depicting 

local texture information. Therefore, two new images are derived from the original image 

containing ,c jLBP  and 
c

VAR  values for each pixel. These images form the basis for the final 

texture measure.  

 

Most approaches to texture analysis quantify texture measures by single values (means, 

variances, entropy, etc.). However, much important information contained in the distributions 

of feature values might be lost. In this study, the final texture feature is the histogram of the 

joint ,c j
LBP  and 

c
VAR  occurrence, computed over an image or a region of an image. The 

joint distribution of ( ,c j
LBP ,

c
VAR ) is approximated by a discrete two-dimensional histogram 

of size 2P +  by b, where P is the number of neighbors in a circular neighborhood and b is 

the number of bins for
c

VAR . The number of bins used in quantization of the feature space 

plays a crucial role. Histograms with too modest a number of bins fail to provide enough 

discriminative information about the distributions, however, if we go to the other extreme the 

number of entries per bin is very small and histograms become sparse and unstable. In this 

study following Ojala et al. (1996), the number of bins b is computed by taking the total 

feature distribution of ( ,c jLBP ,
c

VAR ) for the whole image. This distribution is divided into 

32 bins having an equal number of entries. Ojala et al. (2002a) showed that the two-

dimensional ( ,c j
LBP ,

c
VAR ) histogram is a powerful tool for rotation invariant texture 

segmentation. 
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2.4 Texture similarity 

Similarity between different textures is evaluated as a test of goodness-of-fit using a non-

parametric statistic, the log-likelihood ratio statistic, also known as the G-statistic (Sokal and 

Rohlf 1987). The G-statistic compares the bins of a texture sample histogram with a texture 

model histogram. The G-statistic is defined as 

 

, 1 , 1 1

1 , , , 1 , 1

log log

2

log log

tb tb tb

i i i i

s m i s m i i
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i i i i
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f f f f

G

f f f f

= = =

= = =

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
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∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑∑ ∑∑
    (6) 

 

where, the sample s is a histogram of the texture measure distribution of an image block, the 

model m is a histogram of a reference area in the image of a particular texture, tb is the total 

number of bins and fi is the probability for bin i. By using a nonparametric test we avoid 

making any, possibly erroneous, assumptions about the feature distributions. The value of the 

G-statistic indicates the probability that two sample distributions come from the same 

population: the higher the value, the lower the probability that the two samples are from the 

same population. The more alike the histograms are the smaller is the value of G. 

 

Texture is modeled for certain image blocks. The block size should be appropriate for the 

computation of the texture features. As we consider blocks of increased size, however, the 

probability that regions contain a mixture of textures is increased. This can bias the 

comparison, since the reference textures contain only features of individual patterns. On the 

other hand, if the block size is too small it is impossible to calculate a texture measure. 
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Within this constraint, it is impossible to define an optimum size for segmenting the entire 

image. Therefore, segmenting regions of a fixed block size is inappropriate (Aguado et al. 

1998). Alternatively, a top-down hierarchical segmentation process, as discussed in the next 

section, offers a very suitable framework for segmenting image regions based on texture.  

 

2.5 Texture based image segmentation 

Split-and-merge segmentation consists of a region-splitting phase and an agglomerative 

clustering (merging) phase (Haralick and Shapiro 1985, Horowitz and Pavlidis 1976, Gorte 

and Stein 1998, Lucieer and Stein 2002, Lucieer et al. 2004). Supervised segmentation uses 

explicit knowledge about the study area to train the segmentation algorithm on reference 

textures. Aguado et al. (1998) introduced a segmentation framework with a top-down 

hierarchical splitting process based on minimizing uncertainty. In this study, we combine the 

( ,c j
LBP ,

c
VAR ) texture measure and the segmentation framework as suggested by Aguado et 

al. (1998).  

 

Similar to split-and-merge segmentation each square image block in the image is split into 

four sub-blocks forming a quadtree structure. The criterion used to determine if an image 

block is divided is based on a comparison between the uncertainty of the block and the 

uncertainty of the sub-blocks. The image is segmented such that uncertainty is minimized, 

where uncertainty is defined as the ratio between the similarity values (G-statistic), computed 

for an image block B, of the two most likely reference textures (equation 7). The reference 

textures are histograms of ( ,c jLBP ,
c

VAR ) of characteristic regions in the image. To test for 

similarity between an image block texture and a reference texture, the G-statistic is applied. 

Uncertainty 
B

U  is then defined as 
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1

2

B

G
U

G
=            (7) 

 

where G1 is the lowest G value of all textures (highest similarity) and G2 is the second lowest 

G value. Uncertainty is high if G1 and G2 are very similar and 
B

U  is close to one. The 

subdivision of each image block is based on this uncertainty criterion. An image block is split 

into four sub-blocks if 

 

1 2 3 4

1
( )

4B SB SB SB SBU U U U U> + + +         (8) 

 

where the left side of equation 8 defines uncertainty obtained when the sub-blocks are 

labeled according to the reference class obtained by considering the whole block (B). The 

right side of equation 8 defines uncertainty if the sub-blocks (SB1, SB2, SB3 and SB4) are 

labeled by the reference class obtained by the subdivision. Thus, the basic idea is to 

subdivide an image block only if it is composed of several textures. Additionally, 

segmentation is always uncertain at the boundaries, because the image block contains a 

mixture of textures. Accordingly, we subdivide blocks that have at least one neighboring 

region of a different texture (Aguado et al. 1998). Finally, we obtain a partition of the image. 

We consider an image object as a collection of contiguous image blocks sharing the same 

texture label. 

 

The building blocks of each of the objects give information about object uncertainty. We use 

UB to depict uncertainty with which an object block is assigned a texture label. The spatial 
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distribution of block uncertainty values within an object gives information about uncertainty 

of the spatial extent of objects. We expect high uncertainty values for the boundary blocks of 

objects, because of mixed textures and transition zones.  

 

2.7 Texture example 

Figure 1(a) shows a composite of five different textures. The image is derived from the 

Outex framework for testing texture models (Ojala et al. 2002b). These grey-scale textures 

were labeled with the following class names: class NW (granite), class NE (fabric), class SW 

(grass), class SE (stone) and class Center (reed mat). Each of these classes is unique in terms 

of texture. The image shows that the human visual system not only distinguishes image 

regions based on grey-scale or color, but also on texture, as one can clearly distinguish five 

homogeneous regions. A pixel-based classifier does not take into account texture or spatial 

information. Figure 1(b) shows why pixel-based classification techniques might fail. It shows 

the `defuzzified’ result of a pixel-based FCM classifier. In this case, a supervised fuzzy c-

means classification was applied with a Mahalanobis distance measure and an overlap 

parameter of 2.0 (Bezdek 1981, Zhang 2001). Five regions of 40 by 40 pixels were selected 

in the centers of the texture regions to train the classifier. Although, the patterns are still 

visible, no clear spatial partition of classes was obtained. A classification validation provided 

an overall accuracy of 30.00% and a Kappa coefficient of 0.13.  

 

[FIGURE 1 ABOUT HERE] 

 

A much better segmentation was obtained when texture was incorporated by applying the 

unsupervised texture-based segmentation algorithm based on the joint ( ,c j
LBP ,

c
VAR ) 
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distribution. A detailed description of these results can be found in Ojala and Pietikäinen 

(1999) and Lucieer et al. (2004). Additionally, a supervised approach might prove to be 

useful as one can guide the segmentation algorithm with reference texture information. 

Especially in geographical applications, a supervised approach is often feasible, as 

knowledge about the area might improve segmentation. 

 

Figure 2 shows a supervised texture-based segmentation of figure 1(a), applying the 

uncertainty criteria of Aguado et al. (1998). Five references regions of 40 by 40 pixels were 

selected, corresponding to the five different textures in figure 1(a). Values for P and R were 8 

and 1 respectively. An accuracy assessment of the segmentation results provided a very high 

overall accuracy of 96.20% and a Kappa coefficient of 0.95, showing that good segmentation 

results can be obtained with the LBP texture measure. Uncertainty values were highest in 

class SW. This can be explained by the irregularity of this texture, i.e. its pattern is not 

repetitive and the reference area does not fully represent the whole texture area. In addition, 

all small blocks at the boundaries of textures show high (>0.9) uncertainty values, because 

they contain mixtures of different textures.  

 

[FIGURE 2 ABOUT HERE] 

 

2.8 A multivariate texture model 

The ,c j
LBP  texture measure allows a texture description of a single band. Most remote 

sensing images, however, consist of multiple bands. Including multiple bands might improve 

segmentation considerably, as a combination of bands provides more spectral information for 

identification of different land cover types. 
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In their psychophysical study Poirson and Wandell (1996) showed that color and pattern 

information are processed separately by the human visual system. Mojsilovic et al. (2000) 

extracted color-based information from the luminance and chrominance color components. 

The achromatic pattern component was utilized as texture pattern information. Another 

approach was that of Panjwani and Healey (1995) which captured spatial interactions both 

within and between color bands with Markov random fields (MRFs). More recently, 

Pietikäinen et al. (2002) showed that the powerful LBP texture measure can also be applied 

to color images. They processed color information and texture information separately and 

obtained good classification results for color texture images.  

 

Most research on color texture focused on images of different materials with a clear texture. 

In standard color images, the pattern in different bands is often highly correlated. This makes 

it possible to summarize pattern information in a single band and process it separately from 

color information. In remote sensing images, however, information is recorded from different 

parts of the spectrum. Therefore, textures in these bands are not necessarily similar. In 

between band relations should be taken into account when looking at multivariate texture 

measures for remotely sensed imagery. The ,c j
LBP  texture measure is a robust, rotation 

invariant and flexible texture measure. An extension to the multivariate case is expected to 

provide good segmentation results. 

 

In this study, a new multivariate texture measure is introduced and implemented. It is based 

on the univariate ,c j
LBP  measure. The Multivariate Local Binary Pattern operator, 

c
MLBP  

describes local pixel relations in three bands. In addition to the spatial interactions of pixels 
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within one band, interactions between bands are considered. Thus, the neighborhood set for a 

pixel consists of the local neighbors in all three bands (figure 3). The local threshold is taken 

from these bands, which makes up a total of nine different combinations. This results in the 

following operator for a local color texture description 

 

1 1 2 1 3 1

1
1 2 2 2 3 2

0
1 3 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b b b b b b

i c i c i c
P

b b b b b b
c i c i c i c

i
b b b b b b

i c i c i c

sign g g sign g g sign g g

MLBP sign g g sign g g sign g g

sign g g sign g g sign g g

−

=

− + − + − +

= − + − + − +

− + − + −
∑  (9) 

 
where b1 is the first band, b2 is the second band, and b3 is the third band. The first part of the 

equation calculates LBP values for the center pixel of the first band based on relations with 

the neighbors in the first band and the two other bands. The second part of the equation 

calculates LBP values for the center pixel of the second band and the third part of equation 9 

calculates LBP values for the center pixel of the third band. Each of the three central pixels 

is, therefore, compared with neighborhood pixels in the other bands. 
c

MLBP  is not just a 

summation of ,c j
LBP  of individual bands, it also models pixel relations between bands. 

These cross-relations can be important in the distinction of different color textures. A total of 

nine LBP values is obtained and summed to derive 
c

MLBP . The color texture measure is the 

histogram of 
c

MLBP  occurrence, computed over an image or a region of an image. This 

single distribution contains 23P× bins (e.g. 8P =  results in 72 bins). 

 

[FIGURE 3 ABOUT HERE] 

 

c
MLBP  measures the binary color pattern of a texture. To complete this measure with 

contrast and variance information we included the color histogram, RGB-3D. Each 8-bit band 
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is quantized into 32 levels by dividing the pixel values on each band by 8, resulting in a 

three-dimensional histogram with 332  entries. The two histograms of 
c

MLBP  and RGB-3D 

are used to segment a three-band image into objects. In the top-down hierarchical splitting 

process we calculate 
c

MLBP  and RGB-3D  histograms for every image block. G-statistic 

values are calculated to test for similarity between image block and reference texture 

histograms. For two 
c

MLBP  and RGB-3D histograms, two G-statistic values are obtained. 

These values are summed to derive a single similarity measure. Based on this measure, 

uncertainty values are calculated using equation 7 and texture labels are assigned to image 

blocks to form objects 

 

To illustrate the solution for segmenting regions of different color texture, a three-band 

image (512 by 512 pixels) with a composition of six different color textures (figure 4(a)) was 

used. This image was composed of textures from the Outex texture library (Ojala et al., 

2002b). The following textures were used: Upper Left (UL) = fur, Upper Right (UR) = 

carpet, Middle Left (ML) = wood, Middle Right (MR) = pasta, Lower Right (LR) = flour, 

Lower Left (LL) = seeds. It poses a more difficult segmentation problem than the grey-scale 

texture composition of figure 1(a), because of the high variance in color and the different 

texture scales. Six references regions of 40 by 40 pixels were selected, corresponding to the 

six different texture classes. Values for P and R were 8 and 1 respectively.  Figure 4(b) 

shows the segmentation result. All regions were identified correctly. In the lower left object 

(LL), however, some dark spots were (incorrectly) segmented as fur (UL). This was most 

likely caused by high similarity in color distributions. Additionally, in the lower right object 

(LR) some dark shadow spots were (incorrectly) segmented as flour (LL). Uncertainty for 

these incorrectly labeled objects and boundary regions was high (>0.9) (figure 4(c)). 
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An accuracy assessment of the segmentation result provided an overall accuracy of 98.32% 

and a Kappa coefficient of 0.98. The confusion matrix with per-texture accuracy percentages 

is given in table 1. These accuracy values show that good segmentation results can be 

obtained with the multivariate LBP texture measure. 

 

[FIGURE 4 ABOUT HERE] 

 

[TABLE 1 ABOUT HERE] 

 

3. Case study 

3.1 Study area: the Ainsdale Sands 

The study area, known as the Ainsdale Sands, is on the coast of Northwest England 

approximately 25km North of Liverpool. The Ainsdale Sand Dunes National Nature Reserve 

(NNR) totals 508 ha and forms part of the Sefton Coast. The NNR is within the coastal 

Special Protection Area. It contains a range of habitats, including intertidal sand flats, 

embryo dunes, high mobile yellow dunes, fixed vegetated dunes, wet dune slacks, areas of 

deciduous scrub and a predominantly pine woodland. Management of this area consists of 

extending the area of open dune habitat through the removal of pine plantation from the 

seaward edge of the NNR, maintaining and extending the area of fixed open dune by grazing 

and progressively creating a more diverse structure within the remaining pine plantation with 

associated benefits for wildlife (Sefton Coast Partnership, 2004). 

 

In 1999, 2000 and 2001 the Environment Agency, UK, collected fine spatial resolution 
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digital surface models (DSM) by LiDAR, and simultaneously, acquired multi-spectral 

Compact Airborne Spectral Imager (CASI) imagery (one flight each year). The aircraft flew 

at approximately 800 m above ground level, acquiring 2 m spatial resolution LiDAR scenes 

and 1 m spatial resolution CASI imagery. In this study, the CASI image of 2001 was used. 

These images, geometrically corrected by the Environment Agency, were spatial composites 

of multiple flight strips. The area covered by these images was approximately 6km2. 

 

We applied the univariate segmentation algorithm on the LiDAR DSM to derive general 

landform classes (Lucieer et al., 2004). An accuracy assessment of the segmentation results 

provided an overall accuracy of 86%. The results showed that the univariate LBP measure in 

combination with the hierarchical splitting algorithm can provide a meaningful segmentation 

of basic land form classes with an indication of object uncertainty. In this study, we focus on 

segmentation of land cover classes from multispectral CASI imagery. 

 

3.2 Land cover segmentation  

Land cover is obtained from spectral information from the CASI image. Four land cover 

classes can be distinguished: sand, marram grass, willow shrub and woodland. Detailed 

mapping of these units is required, because knowledge about the location and dynamics of 

these object types is important for monitoring the rare habitats in this area, as well as, the 

coastal defense against flooding. 

 

Figure 5(a) shows a subset (512 by 512 pixels) of band 12 of the CASI image of the study 

area. Band 12 at 780 nm (NIR) was chosen for a univariate segmentation based on the joint 

distribution of ,c jLBP  and 
c

VAR  values. It is suitable for discrimination of land cover types, 
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because of large differences in reflectance for different vegetation types. Four reference areas 

of 40 by 40 pixels were selected to train the algorithm. Values for P and R were 8 and 1 

respectively. Figure 6(a) shows a segmentation of band 12 with the ( ,c j
LBP ,

c
VAR ) texture 

measure for four land cover classes.  The woodland area in the southeast corner of the image 

was correctly segmented with uncertainty values between 0.1 and 0.5 (figure 6(b)). The 

northeastern corner of the image and small objects in the northern part of the image were also 

segmented as woodland. However, fieldwork showed that no woodland occurred in this area.  

 

The main part of the dune field was segmented as willow shrub land. Fieldwork showed that 

marram grass was mainly found on the fore dune and on the highest parts of the dune ridges 

in the dune field. Only a few small patches of marram grass can be seen in figure 6(a) in the 

fore dune area. Willow shrub was found all over the dune field, but mainly in the dune 

slacks. Image texture for these two classes, however, is very similar in band 12 of the CASI 

image. High uncertainty values (higher than 0.7 in the dune field and higher than 0.95 in the 

fore dune and dune ridge areas) in figure 6(b) confirm the similarity of these two land cover 

classes. The sand on the beach was correctly segmented, because of its characteristic texture. 

Uncertainty values were lower than 0.2 in this area. Again, a short transition zone can be 

seen from the fore dune to the beach with decreasing marram grass coverage (figure 6(b)). 

This zone is depicted by uncertainty values of 0.95 and higher. Field observations showed 

that the univariate texture-based segmentation algorithm performed unsatisfactorily, 

especially in areas where marram grass was severely under-segmented. Table 2 confirms this 

observation, showing accuracy values for individual land cover classes. The overall 

segmentation accuracy was 70.53% and the Kappa coefficient was 0.61. It can be concluded 

from table 2 that major marram grass areas were incorrectly segmented as willow shrub. 

 



 19

[FIGURE 6 ABOUT HERE] 

 

[TABLE 2 ABOUT HERE] 

 

3.3 Multivariate texture-based land cover segmentation 

Segmentation using only one CASI band discards valuable information in other bands. A 

multivariate approach towards texture segmentation might improve segmentation results. The 

combined 
c

MLBP  and RGB-3D texture measure, models texture in three bands. CASI band 1 

(440 nm), 8 (650 nm)  and 12 (780 nm) explain most of the variance in the image scene and 

characterize land cover classes well. Figure 5(b) shows a color composite of these three 

bands. Figure 7 shows a supervised segmentation based on 
c

MLBP  and RGB-3D. 

Segmentation of the marram grass class improved considerably. The fore dune area and the 

dune ridges were segmented as marram grass, as was observed in the field. The core areas 

showed low uncertainty values, whereas the boundaries showed high uncertainty values. This 

corresponds to observations that marram grass gradually changed to willow shrub land in the 

dune slacks and to sandier terrain towards the beach side. The woodland area was segmented 

correctly. In addition, segmentation of the north-eastern part of the area (marram grass and 

willow shrub) improved, as the segmentation result of a single band (figure 6) showed 

woodland in this area. The beach area was correctly segmented with low uncertainty values. 

Some small incorrectly segmented blocks (marram, willow and woodland) occurred in the 

beach area where the sand was wet with low reflectance values in the image. High 

uncertainty values (>0.9) occurred in all transition areas. These uncertainty values are an 

indication for the occurrence of fuzzy objects with indeterminate boundaries. 
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An accuracy assessment of the segmentation results provided an overall accuracy of 77.09 % 

and a Kappa coefficient of 0.71. The confusion matrix with per-class accuracy percentages is 

given in table 3. It can be concluded from this confusion matrix that segmentation of marram 

grass and willow shrub improved considerably compared to segmentation based on one CASI 

band. 

 

[FIGURE 7 ABOUT HERE] 

 

[TABLE 3 ABOUT HERE] 

 

4. Discussion and conclusions 

In this study, a texture-based supervised segmentation algorithm derived labeled objects from 

remotely sensed imagery. Texture was modeled with the joint distribution of the local binary 

pattern (LBP) operator and local variance. The segmentation algorithm was based on a 

hierarchical splitting technique, reducing uncertainty at the level of the image blocks that 

were obtained. By applying this technique, one does not only obtain a texture-based image 

segmentation, yet also an indication of uncertainty for all object building blocks. The spatial 

distribution of uncertainty values provided information about the location and width of 

transition zones.  

 

The univariate ,c jLBP  texture measure was extended to a multivariate measure,
c

MLBP , to 

model within band and between band pixel relations in three bands. The
c

MLBP  measure was 

further extended with color information using a three-dimensional color histogram, RGB-3D. 

The combination of these texture measures, model color texture as registered on different 
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bands.  

 

 

The univariate LBP measure provided good segmentation results for a test case study with a 

composite image of five different grey-scale textures. An overall accuracy of 96% was 

obtained. An artificial image with a composition of six color textures was used to 

demonstrate the use of 
c

MLBP  and RGB-3D in segmentation. Good segmentation results 

were obtained from this complex texture image, depicted by an overall accuracy of 98%. 

 

To illustrate the algorithm for mapping coastal objects, a CASI image of a coastal area on the 

northwest coast of England was used. Land cover objects derived from band 12 of the CASI 

image showed high uncertainty values and many incorrectly labeled objects. The overall 

accuracy was 71%. Additionally, compared to field observations segmentation results were 

unsatisfactorily. The combination of textural and spectral information from more than one 

CASI band greatly improved segmentation results. The 
c

MLBP  and RGB-3D based 

segmentation was applied to band 12, 8 and 1 of the CASI image of the study area. 

Segmentation results improved considerably, depicted by and overall accuracy of 77%. 

Uncertainty values provided valuable information about transition zones between fuzzy 

objects. 

 

In this study, we applied a texture-based segmentation algorithm on airborne imagery for 

identification of coastal objects. The proposed algorithm, however, can easily be applied to 

other remote sensing images and other study areas. The univariate and multivariate LBP 

measures can also be used in a different context. Contextual classification using the LBP 
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texture measure might provide valuable results from image classification. The computation 

of the multivariate LBP measure was limited to three bands. More image bands could be used 

in the 
c

MLBP  and RGB-3D texture model. It would, however, increase complexity and 

computational demands considerably, whereas extra bands would possibly not add much 

textural information. For multispectral and hyperspectral images, one could include a 

preprocessing step to detect the three bands that explain most variance for a specific 

application 

 

In this study, a uniformity measure is defined for the univariate LBP measure. It depicts 

uniformity of pixel values in a neighborhood set. Ojala et al. (2002) showed that more than 

90% of the patterns in a texture image are uniform. In remote sensing images, however, also 

non-uniform patterns occur. Some of these non-uniform patterns might be characteristic for a 

certain land cover class. An extension of the uniformity measure to the multivariate case 

might provide more information on pattern uniformity in remotely sensed imagery. A 

multivariate uniformity measure could be calculated by summation of uniformity in each 

band or by combining the uniformity measure for each of the nine components in the 

multivariate LBP measure (equation 9). We will assess the effect of a multivariate uniformity 

measure on segmentation of multispectral remote sensing imagery in future research. 

 

The resolution of the neighborhood set applied during segmentation affects the texture 

measure and, therefore, the segmentation result. In this study, a (circular) neighborhood set 

of the nearest eight neighboring pixels was used. Circular neighborhood sets with large radii 

and a large number of neighbors might improve description of large-scale textures. 

Therefore, a multi-resolution approach with different combinations of neighborhood sets 

might provide a meaningful texture description. In future research, the effect of different 
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neighborhood sets on the segmentation result will be assessed.  
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Tables 

Table 1.  Confusion matrix with accuracy values (%) of a multivariate texture-based 

segmentation. Overall accuracy was 98.32% and the Kappa coefficient was 0.98. 

Table 2.  Confusion matrix with per-class accuracy values (%) of a univariate texture-based 

segmentation of band 12 of the CASI image. Overall accuracy was 70.53% and the Kappa 

coefficient was 0.61. 

Table 3. Confusion matrix with per-class accuracy values (%) of a (multivariate) texture-

based segmentation of bands 12, 8 and 1 of the CASI image. Overall accuracy was 77.09% 

and the Kappa coefficient was 0.71. 

 

Table 1 

 Reference 
Class UL UR ML MR LL LR Total 
UL 99.93 0.56 1.31 0.26 1.91 0.38 12.72 
UR 0.02 99.41 0.03 1.59 0.02 0.02 24.11 
ML 0.05 0.00 98.09 0.05 0.12 0.21 9.62 
MR 0.00 0.02 0.02 97.82 0.02 0.09 16.44 
LL 0.00 0.01 0.55 0.10 97.68 2.30 21.77 
LR 0.00 0.00 0.00 0.16 0.26 97.00 15.35 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
 

Table 2 

 Reference 
Class Sand Marram Grass Willow Shrub Woodland Total 
Sand 100.00 0.00 0.00 0.00 26.42 

Marram Grass 0.00 0.00 0.22 0.00 0.06 
Willow Shrub 0.00 98.94 99.78 0.00 41.99 

Woodland 0.00 1.06 0.00 100.00 31.54 
Total 100.00 100.00 100.00 100.00 100.00 

 

Table 3 

 Reference 
Class Sand Marram Grass Willow Shrub Woodland Total 
Sand 100.00 0.00 2.38 0.00 26.96 

Marram Grass 0.00 96.92 20.29 0.00 20.98 
Willow Shrub 0.00 2.11 64.77 0.00 17.34 

Woodland 0.00 0.97 12.55 100.00 34.73 
Total 100.00 100.00 100.00 100.00 100.00 
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Figure Captions 
 

Figure 1. Texture image composition: (a) artificial composition of five different natural 

textures with five reference areas (Ojala et al. 2002b); (b) result of a pixel-based classifier. 

Figure 2. Supervised texture-based segmentation: (a) segmentation based on the joint ,c jLBP  

and 
c

VAR  distribution with five reference classes; (b) related uncertainty for all object 

building blocks. 

Figure 3. The neighborhood set for the multivariate (three band) LBP texture measure 

describes spatial pixel relations within a band and between bands. 

Figure 4. Segmentation of color texture image: (a) artificial composition of five different 

color textures (Ojala et al. 2002b); (b) supervised texture-based segmentation based on the 

multivariate
c

MLBP  distribution and RGB-3D color histogram with five reference classes; (c) 

related uncertainty for all object building blocks. 

Figure 5. CASI image of the Ainsdale sands study area, UK: (a) band 12; (b) color 

composite of band 12, 8 and 1 (RGB).  

Figure 6. Segmentation of land cover from CASI image: (a)  supervised texture-based 

segmentation of band 12 (NIR) of the CASI image with four reference land cover classes, 

based on the joint univariate ,c jLBP  and 
c

VAR  distribution; (b) related uncertainty for all 

object building blocks. 

Figure 7. Multivariate texture-based segmentation of land cover from CASI image: (a) 

supervised segmentation of band 12, 8 and 1 based on 
c

MLBP  distribution and RGB-3D 

color histogram; (b) related uncertainty for all object building blocks. 
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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