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Abstract

In this paper, we perform multivariate time series analysis from a Bayesian machine learning

perspective through the proposed multivariate Bayesian time series (MBTS) model. The

multivariate structure and the Bayesian framework allow the model to take advantage of

the association structure among target series, select important features, and train the data-

driven model at the same time. Extensive analyses on both simulated data and empirical

data indicate that the MBTS model is able to, cover the true values of regression coefficients

in 90% credible intervals, select the most important predictors, and boost the prediction

accuracy with higher correlation in absolute value of the target series, and consistently yield

superior performance over the univariate Bayesian structural time series (BSTS) model,

the autoregressive integrated moving average with regression (ARIMAX) model, and the

multivariate ARIMAX (MARIMAX) model, in one-step-ahead forecast and ten-steps-ahead

forecast.

Keywords Multivariate analysis · Bayesian inference · Structural time series ·

Feature selection · Prediction

Mathematics Subject Classification (2010) 62H86 · 62M10 · 62F15 · 62F07

1 Introduction

A time series consists of a series of data points on the same variable(s) collected over

time, and occurs frequently in statistics (see, for example, [3]), signal processing (see, for
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example, [7]), pattern recognition (see, for example, [25]), econometrics (see, for example,

[32]), mathematical finance (see, for example, [27]), control engineering (see, for exam-

ple, [23]), to name a few. Time series analyses focus on extracting meaningful statistics and

other characteristics of the data, with the primary goal of forecasting future values given

previously observed values, which is extremely hard especially for multivariate target time

series with a great number of contemporary explanatory variables. Nowadays, machine

learning algorithms have become all pervasive and accomplished tasks that until recently

only experts could perform. The world is gradually being reshaped by machines possess-

ing “intelligence” and making our lives easier. Machine learning is encompassing every

significant aspect of our lives and becoming an integral part of it.

Applying machine learning techniques on time series forecast is very hard in general,

mainly because common machine learning techniques assume sample independence, but the

time series data do not qualify. While there is success in applying deep learning techniques

on time series forecast in recent years (see, for example, [37]), theoretical support for deep

learning is still in its infancy (see [12] for a selective overview). On one hand, deep learn-

ing models suffer from over-parametrization and nonconvexity. Specifically, the number of

parameters in deep learning models is often much larger than the sample size (see Table 1

of [12]) giving them the potential to overfit the training data; even with the help of GPUs, in

the worst-case deep learning models is still NP-hard (see [1]) due to the highly nonconvex

loss function to minimize. On the other hand, for most successful deep learning algorithms,

there is no clear answer on how deep the network should be designed for general classes

of problems. For example, in [37], the authors used 1 layer of 128 neurons, while there are

no rules on why is the 128 neurons on each layer and how many layers should be used (or

suggested to attempt to use).

1.1 Multivariate Bayesian time series (MBTS) model

In this paper, we perform multivariate time series analysis from a Bayesian machine learn-

ing perspective through the proposed multivariate Bayesian time series (MBTS) model. The

MBTS model as a structural time series model belongs to state space models, which refer to

a class of probabilistic graphical models that describe the probabilistic dependence between

the latent state variable and the observed measurement. Graphical models as a tool for deal-

ing with the problems of uncertainty and complexity, play an increasingly important role

in the design and analysis of machine learning algorithms. They combine probability the-

ory and graph theory, under the idea that is a complex system is built by combining simpler

parts, upon which probability theory ensures that the system as a whole is consistent and

provides ways to interface models to data. Interested readers are referred to a classical book,

[14], for mathematical and algorithmic properties of graph theory on practical problems.

In the MBTS model, multiple time series are decomposed to trend, seasonal, cyclical,

and regression components. In the regression part, after removing the effects of other com-

ponents, we consider the usual multivariate regression setup in that these multiple target

series are affected by the same set of predictors but with different coefficients for each

target series. We conduct feature selection among those candidate predictors under the spar-

sity assumption that only a few predictors are crucial among a large number of predictors.

The multivariate structure and the Bayesian framework allow the model to take advantage

of the association structure among target series, and enable us to do feature selection and

model training at the same time. Although a great deal of multiple time series are obviously

correlated, most of the existing works about time series analysis focus on univariate target
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series analysis. By using the multivariate structure, our model takes into account the cor-

relations among multiple target series and forecasts them as a whole instead of predicting

them individually.

Technically, the MBTS model contains three main features: Kalman filter (see [11, 16,

30]), “spike and slab” variable selection (see [13], and [26]), and Bayesian model averaging

(see [20]). Specifically, we handle feature selection through the Bayes selection technique

via Markov chain Monte Carlo (MCMC) methods, among a set of contemporary predictors

which enables online learning. A different set of predictors can be selected in each MCMC

iteration, and important predictors will be selected according to their overall frequency of

numbers being selected over the total numbers of MCMC iterations. The posterior inclusion

probability of each predictor can serve as an indicator that shows its importance to the

target series. Through Bayesian model averaging, we do not commit to any particular set of

covariates or to point estimates of their coefficients, which helps avoid arbitrary selections,

prevents overfitting, and avoids the problem of collinearity.

1.2 Related existing results

In recent years, feature selection is a popular machine learning technique that has wide

applications in many areas. [29] provided an efficient feature selection methodology via

ℓ2,0-norm Constrained Sparse Regression. [24] generalized uncorrelated regression with

adaptive graphs for unsupervised feature selection. [41] performed feature selection under

regularized orthogonal least square regression with optimal scaling. [39] established the

link between local regression and global information-embedded dimension reduction. [40]

investigated generalized uncorrelated ridge regression with nonnegative labels for unsu-

pervised feature selection. [21] proposed a framework for unsupervised feature selection

through joint embedding learning and sparse regression.

Significant progresses of advanced artificial intelligence techniques on multi-

dimensional regression analysis of time-series data ([6, 36]), include, but are not limited to,

the following: [34, 35] introduced and explored a univariate Bayesian structural time series

(BSTS) model, a new Bayesian machine learning technique to explore a given time series

along with possible covariates; [8] adopted multi-scale convolutional neural networks for

time series classification; [9] achieved texture classification and retrieval using shearlets and

linear regression; [4] explored efficient ant colony optimization for image feature selection;

[5] automatically decomposed features for single view co-training.

1.3 Superior performance of theMBTSmodel

Extensive analyses on both simulated data and empirical data verified that the MBTS model

gives superior performance over the univariate BSTS model, the autoregressive integrated

moving average with regression (ARIMAX) model, and the multivariate ARIMAX (MARI-

MAX) model. Specifically, through numerical analysis on simulated data, we examine

model accuracy in three aspects including parameter estimation, feature selection, and fore-

castability, by creating several datasets with different correlations among two target series.

The MBTS model is used to select predictors for each target series during each MCMC

iteration, to investigate its performance on generated datasets and explore its strengths over

other models. We demonstrated that the 90% credible interval contains the true value of a

specific regression coefficient, the MBTS model can select the most important predictors

and ignore those that do not significantly contribute to the target series, and the higher the

correlation in absolute value the better the prediction accuracy.
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In our empirical study we used the MBTS model to analyze data of three most commonly

followed equity indices: Dow Jones Industrial Average (DJIA), Nasdaq Composite Index

(Nasdaq), and Standard & Poor’s 500 (S&P 500), each of which is considered as one of the

best representations of the U.S. stock market and a bellwether for the U.S. economy. The

feature selection is conducted upon a pool of 23 economic leading indicators and 27 domes-

tic Google trends, all of which are able to provide unique economic insights. The daily data

sample (from 03/05/2007 to 02/13/2018) obtained from Google Finance, Yahoo! Finance

and Federal Reserve Economic Data (FRED) in the U.S. region, is split for cross-validation

into a training set and a validation set (tuning hyperparameters), and then further exam-

ined in a test set. Empirical results demonstrate that MBTS outperforms several benchmark

models, in several ways including one-step-ahead forecast and ten-steps-ahead forecast.

1.4 Structure of the paper

The rest of the paper proceeds as follows: In Section 2, we explain the functions of different

time series components of the MBTS model, rigorously derive the mathematical formu-

las underlying the whole framework, and further provide the exact algorithms for model

training and forecasting; In Section 3, simulated data are used to analyze the estimation

accuracy and forecast performance, and establish the positive relationship with target time

series’ correlations in absolute value; In Section 4, an empirical study on a portfolio of

three most commonly followed equity indices demonstrates that MBTS outperforms the

other benchmark models; In Section 5, we conclude and remark on further extensions and

applications.

2 TheMBTSmodel

In this section, based on the Structural Time Series (STS) model and “spike and slab” regres-

sion, a new model-based approach is introduced to do feature selection and forecast among

multiple target time series in the multivariate context.

2.1 Structural time series

As a special case of the state-space representation, the STS model is formulated in terms of

unobserved components, which have direct interpretations. One of the obvious advantages

that the STS model has, over the widely used autoregressive integrated moving average

(ARIMA) representations, can be easily seen from the following facts: data can be easily

and structurally modeled with slowly changing trends and further superimposed short-

term movements; differencing is a standard stationary and/or de-trend technique in other

time series models, however the differenced observations usually become non-invertible,

together with long lags, many parameters, and unfavorable results in unit root or cointegra-

tion test (see [18]); analyses based on autoregressive integrated moving average (ARIMA)

models can also be misleading, if such models are built up primarily on grounds of parsi-

mony (see [17]). On the contrary, structural time series models are able to provide a very

useful framework within which to present stylized facts on time series.

A typical structural model decomposes time series into four components: trend (level

and slope), seasonal effects, cyclical, and an irregular component (or the error term).

Here, to allow for the effects of covariates on target series, a regression component is
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also added. Thus, a multiple response series, representing m target time series ỹt =

[y
(1)
t , . . . , y

(i)
t , . . . , y

(m)
t ]T , may be expressed in the following structural form:

ỹt = μ̃t + τ̃t + ω̃t + ξ̃t +
ǫ
∼t , ǫ̃t

iid
∼ Nm(0, �ǫ), (2.1)

where μ̃t , τ̃t , ω̃t , ξ̃t and ǫ̃t are all m-dimension vectors, representing linear trend compo-

nents, seasonal components, cyclical components, regression components, and observation

error terms respectively, for t = 1, 2 . . . , n observations. The variance of the error term

�ǫ is a m × m-dimensional variance-covariance matrix, positive definite and constant

over time for simplicity. In the model, all state components are assembled independently

(their variance-covariance matrices are diagonal), with each component yielding an additive

contribution to ỹt .

2.2 Components of the time series

The first component μ̃t in (2.1), is a general local linear trend (GLLT). A trend is the long-

term growth of the time series, and it can be further decomposed into two components:

level and slope. Level represents the actual mean value of the trend and slope represents the

tendency to grow or decline from the trend. Whether to include the slope depends on the

features shown in the series under investigation and any prior knowledge. More specifically,

a slope component is often used when we have data with at least locally continuous growth

or decay such as GDP, population, oil reserves, etc. The GLLT is described as:

μ̃t+1 = μ̃t + δ̃t + ũt , ũt
iid
∼ Nm(0, �μ), (2.2)

δ̃t+1 = D̃ + ρ̃(δ̃t − D̃) + ṽt , ṽt
iid
∼ Nm(0, �δ). (2.3)

Here, δ̃t is a m-dimensional vector and models the expected increase or decrease in μ̃t ,

which can be thought of as the local slope at time t . ũt stands for the error term in (2.2)

and ṽt stands for error term in (2.3). In the dynamics of δ̃, the m-dimensional vector D̃

models the long-term slope, and the parameter ρ̃ is a m × m-dimensional diagonal matrix,

whose diagonal entry ρii ∈ [0, 1] represents the learning rate. That is, the slope captures

and balances short-term information and long-term information through the value of ρii , for

example the new information dominates the slope when ρii = 1.

The second component τ̃t in (2.1), is the one describing seasonality, a characteristic of a

time series in which the data experiences regular and predictable changes that recur every

period. Equivalently, any predictable change or pattern in a time series that recurs or repeats

over equal length periods can be said to be seasonal, such as weather fluctuations or the

Christmas effect. A seasonal component may be necessary when we have quarterly, monthly

or daily time series. One frequently used model for the seasonal component (see, for exam-

ple, Example 2.16 in [10] and the terminology “seasonally adjust” on page 8 therein, for

reference), is of the form:

τ
(i)
t+1 = −

Si−2
∑

k=0

τ
(i)
t−k + w

(i)
t , i = 1, · · · ,m,

τ̃t = [τ
(1)
t , · · · , τ

(m)
t ]T , w̃t = [w

(1)
t , · · · , w

(m)
t ]T

iid
∼ Nm(0, �τ ), (2.4)

where Si represents the number of seasons for y(i) and the m-dimensional vector τ̃t denotes

their joint seasonal contribution to the observed response ỹt . Here, w̃t = [w
(1)
t , · · · , w

(m)
t ]T
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stands for the error term in the seasonal component, and w
(i)
t stands for the error term of

each time series i for i = 1, · · · , m. There are Si seasonal factors for each response series

y(i), and the expected sum of the total seasonal effects is zero. Another obvious strength

of the structural model is that, it can be used to model multiple time series data displaying

several different seasonal components with their own periods.

The third component ω̃t in (2.1), is the one accounting for the cyclical effect in the series,

which refers to regular or periodic fluctuations around the trend, revealing a succession of

phases of expansion and contraction. In contrast to seasonality that is always of fixed and

known periods, a cyclic pattern exists when data exhibits ups and downs that are not of

fixed periods. Therefore, a model with the cyclical component is capable of reproducing

commonly acknowledged essential features, such as the presence of strong autocorrelation,

the existence of recurrence and alteration of phases, the dampening of fluctuations, to name

a few. A cyclical component can capture the short-term movement of serially correlated

stationary series (see, [19]). Specifically, the cycle component is formulated as a fully-

coupled dynamical system, in that ω̃ is defined with ω̃⋆ and ω̃⋆ is defined with ω̃:

ω̃t+1 = ˜̺ ĉos(λ)ω̃t + ˜̺ ŝin(λ)ω̃⋆
t + κ̃t , κ̃t

iid
∼ Nm(0, �ω),

ω̃⋆
t+1 = −˜̺ ŝin(λ)ω̃t + ˜̺ ĉos(λ)ω̃⋆

t + κ̃⋆
t , κ̃⋆

t

iid
∼ Nm(0, �ω),

(2.5)

where ˜̺ , ŝin(λ), and ĉos(λ) are m×m diagonal matrices with diagonal entries ̺ii , sin(λii),

and cos(λii) respectively. κ̃ stands for the error term in the dynamic of ω̃ and κ̃ stands for

error term in the dynamic of ω̃⋆. Here, λii = 2π/qi is the frequency with qi being the period,

and ̺ii is the corresponding damping factor for target series y(i), such that 0 < λii < π

and 0 < ̺ii < 1. The value of this damping factor determines the decaying speed of the

amplitude of the cycle, in that a larger value generating slower decay and vise versa. The

boundary values are not in the consideration for the following reasons: The two boundary

values of 0 and π of λii will degenerate the model to the AR(1) process; The boundary

value 0 of ̺ii will fully regenerate the model to white noise and 1 will cancel restrictions

on the cyclical movement which results in extending the amplitude of the cycle.

The fourth component ξ̃t in (2.1), is the regression component with static coefficients

formulated as

ξ̃t = BT x̃t , (2.6)

where B = [β1, . . . , βi, . . . , βm] denotes a k × m-dimensional matrix with βi =

[β1i , . . . , βki]
T representing static regression coefficients, and x̃t = [xt1, . . . , xtk]

T is a

pool of regressors. Although all predictors are supposed to be contemporaneous, a known

lag can be easily included by shifting the corresponding covariate in time. In this study, we

focus on variable selection and a high degree of sparsity is expected, in the sense that coef-

ficients for the vast majority of massive predictors will be zero. In the Bayesian paradigm,

a natural way to represent sparsity is through the “spike and slab” technique, which will be

covered next.

2.3 Spike and slab regression

To facilitate our analysis and obtain a neat form for the natural conjugate prior for the

regression coefficients, we rewrite the model in a matrix form as

Y = M + T + W + XB + E, (2.7)
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where Y = [ỹ1, . . . , ỹn]
T , M = [μ̃1, . . . , μ̃n]

T , T = [τ̃1, . . . , τ̃n]
T , W = [ω̃1, . . . , ω̃n]

T

and E = [ǫ̃1, . . . , ǫ̃n]
T are n × m-dimensional matrices, and X = [x̃1, . . . , x̃n]

T is the

n × k-dimensional matrix of n observations on k common predictors.

2.3.1 Prior distribution and elicitation

We consider the case that the set of selected predictors at each iteration is the same for

different target series, and then set the inclusion indicator γ = [γ1, · · · , γj , · · · , γk] for

these k common predictors, that is γj = 1 then βji �= 0 and γj = 0 then βji = 0, for all

i = 1, . . . , m target series. Let Bγ denote the subset of rows of B where βji �= 0 for all i

and Xγ represents the subset of columns of X where γj �= 0. A spike and slab prior for the

joint distribution of regression coefficient matrix B, variance-covariance matrix for error

terms �ǫ and inclusion indicator γ can be factorized into several conditional and marginal

distributions as

p(B,�ǫ, γ ) = p(B|�ǫ, γ )p(�ǫ |γ )p(γ ), (2.8)

where p(·) stands for the probability density function and p(γ ) is the prior distribution in

Bayesian inference terminology.

The prior distribution p(γ ) is the so-called “spike”, since it sets positive probability mass

to zero. For simplicity, a spike prior may be written as an independent product of Bernoulli

probabilities

γ ∼

k
∏

j=1

π
γj

j (1 − πj )
1−γj , (2.9)

where πj is the prior inclusion probability of the j -th predictor. πj can be easily elicited

by asking the researcher for an “expected model size”, so that if one expects q nonzero

predictors, then πj = q/k for all i = 1, . . . , m target series, where k is the total number

of common predictors. πi could be set as 0 or 1 for some specific values of i under some

circumstances, which decides whether to include certain variables. Note that, another prior

probability could be assigned to γ if necessary.

Given knowledge of which coefficients are nonzero, or simply say, given γ , a prior for

the values of the nonzero coefficients gives the so-called “slab”, which can be expressed

through the conjugate multinormal inverse Wishart distribution of βγ = vec(Bγ ) and �ǫ :

βγ |�ǫ, γ ∼ Nm·k(bγ , �ǫ ⊗ �−1
γ ), �ǫ |γ ∼ IW(v0, V0), (2.10)

where ⊗ is the Kronecker product. In line with [34] and the references therein, the full-

model prior information matrix �−1
γ can be set in the Zellner’s g prior way as �−1

γ =

κXT
γ Xγ /n, where κ is the number of observations worth of weight on the prior mean bγ . In

the case that the positive definite property for XT
γ Xγ is violated, an alternative version can

be used as �−1
γ = κ

n
(ωXT

γ Xγ + (1 − ω)diag(XT
γ Xγ )). In the inverse Wishart distribution

of �ǫ |γ , the number of degrees of freedom is denoted as v0, and V0 is a m×m-dimensional

scale matrix, both of whose values can be set based on researchers’ desired R2. More

specifically, v0 can be specified based on the number of observations worth of weight, and

V0 = (v0 − m − 1) × (1 − R2) × �y with �y being the variance-covariance matrix for

multiple target series Y .

The prior distribution of other variance-covariance matrices can be expressed as:

�u ∼ IW(wu,Wu), for u ∈ {μ, δ, τ, ω}. (2.11)
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By assuming that these matrices are diagonal, the prior distribution in multivariate case

degenerates to the corresponding univariate case, i.e., diagonals of these matrices follow

inverse gamma distributions.

2.3.2 Posterior inference

Now, let us focus on the regression part and subtract out the time series components (trend,

seasonality, and cycle) from Y . That is, we consider Y ⋆ = [ỹ⋆
1, . . . , ỹ⋆

t , . . . , ỹ
⋆
n]

T where

ỹ⋆
t = ỹt − μ̃t − τ̃t − ω̃t . By the law of total probability, we have

p(Y ⋆, B, �ǫ, γ ) = p(Y ⋆|B,�ǫ, γ ) × p(B|�ǫ, γ ) × p(�ǫ |γ ) × p(γ ), (2.12)

p(Y ⋆|B,�ǫ, γ ) ∝ |�ǫ |
−n/2 exp

(

Tr

(

−
1

2
(Y ⋆ − Xγ Bγ )T (Y ⋆ − Xγ Bγ )�−1

ǫ

))

, (2.13)

p(B|�ǫ, γ ) ∝ |�γ |m/2|�ǫ |
−k/2 exp

(

Tr

(

−
1

2
(Bγ − B̄γ )T �γ (Bγ − B̄γ )�−1

ǫ

))

,

(2.14)

p(�ǫ |γ ) ∝ |�ǫ |
−(v0+m+1)/2 exp

(

Tr

(

−
1

2
V0�

−1
ǫ

))

, (2.15)

where Tr(·) stands for the trace of a matrix. Let us combine terms from the natural conjugate

prior to produce a posterior, which is a product of an inverse Wishart and a “matrix” normal

kernel. That is, we combine the two terms in exp (Tr(·)) involving B:

(Bγ − B̄γ )T �γ (Bγ − B̄γ ) + (Y ⋆ − Xγ Bγ )T (Y ⋆ − Xγ Bγ )

= (Z − WBγ )T (Z − WBγ )

= (Z − WB̃γ )T (Z − WB̃γ ) + (Bγ − B̃γ )T W T W(Bγ − B̃γ ).

Here, W is a matrix built up by placing the matrix X on the top of the matrix U , for U being

the Cholesky decomposition of �γ , as follows:

W =

(

X

U

)

, �γ = UT U .

Z is a matrix built up by placing the matrix Y ⋆ on the left of the matrix UB̄γ , as follows:

Z =
(

Y ⋆, UB̄γ

)

, B̃γ = (XT
γ Xγ + �γ )−1(XT

γ Y ⋆ + �γ B̄γ ).

Then the posterior density can be written as:

p(B,�ǫ, γ |Y ⋆) ∝ p(γ ) × |�ǫ |
−(v0+n+m+1)/2 exp

(

Tr
(

− 1
2
(V0 + Sγ )�−1

ǫ

))

×|�γ |m/2|�ǫ |
−k/2 exp

(

Tr
(

− 1
2
(Bγ − B̃γ )T W T W(Bγ −B̃γ )�−1

ǫ

))

,

(2.16)

with

Sγ = (Z − WB̃γ )T (Z − WB̃γ )

= (Y ⋆ − Xγ B̃γ )T (Y ⋆ − Xγ B̃γ ) + (B̃γ − B̄γ )T �γ (B̃γ − B̄γ )

and

W T W = XT
γ Xγ + �γ .
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Note that, the term involving Bγ is a density expressed as a function of an arbitrary k × m-

dimensional matrix, which can be converted from a function of Bγ to a function of βγ =

vec(Bγ ) using standard results on vectorization:

Tr((Bγ − B̃γ )T W T W(Bγ − B̃γ )�−1
ǫ )

= vec(Bγ − B̃γ )T vec(W T W(Bγ − B̃γ )�−1
ǫ )

= vec(Bγ − B̃γ )T (�−1
ǫ ⊗ W T W)vec(Bγ − B̃γ )

= (βγ − β̃γ )T (�−1
ǫ ⊗ W T W)(βγ − β̃γ ),

where β̃γ = vec(B̃γ ). Thus, the posteriors are in the form of conjugacy:

�ǫ |Y
⋆, γ ∼ IW(v0 + n, V0 + Sγ ), (2.17)

βγ |Y ⋆, �ǫ, γ ∼ Nm·k(β̃γ , �ǫ ⊗ (XT
γ Xγ + �γ )−1). (2.18)

Because of the conjugacy properties, one can analytically marginalize over βγ and �ǫ to

obtain the posterior of γ

p(γ |Y ⋆) = C(Y ⋆)
|�γ |

m
2

|XT
γ Xγ + �γ |

m
2

p(γ )

|V0 + Sγ |
v0+n

2

, (2.19)

where C(Y ⋆) is a normalizing constant that depends on Y ⋆ but not on γ . The (2.19) places

positive probabilities on coefficients being zero, leading to the sparsity incorporated in the

model.

The error terms for time series components follow a multivariate normal distribution

with mean equal to zero, and variance follows an inverse Wishart distribution based on

(2.11). Thus, the posterior of variances of the error terms for time series components can be

easily derived based on the conjugate property of multivariate normal and inverse Wishart

distribution. That is, given the draw of time series components, the posterior distribution

will remain inverse Wishart distributed with parameters depending on residuals of these

components, according to

�u|u ∼ IW(wu + n, Wu + AAT ), for u ∈ {μ, δ, τ, ω}, (2.20)

where A = [Ã1, . . . , Ãn] is a m × n-dimensional matrix, representing a collection of

residues for each time series component.

2.4 Algorithms

In this section, we introduce two algorithms for model training using the Markov chain

Monte Carlo (MCMC) technique and prediction using the Bayesian model averaging tech-

nique respectively, incorporated perfectly to select important features in a fully data-driven

way and avoid overfitting together. During model training, the “spike and slab” regres-

sion selects important regression predictors, by removing redundant variables and keeping

important variables during each iteration. The relative importance of each predictor depends

on its corresponding empirical inclusion probability, which can be obtained by the propor-

tion of draws with the inclusion indicator γ = 1. As is typical in Bayesian data analysis,

forecasts are based on the posterior predictive distribution. Given draws of model param-

eters and latent states from their posterior distributions, we can draw samples from the

posterior predictive distribution indirectly.
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2.4.1 Model training

Denote the set of state component parameters as θ = (�μ, �δ, �τ , �ω) and denote γ−i as

the vector whose elements are those of γ other than γi for i ∈ {1, · · · , k}. Based on Algo-

rithm 1 of model training, we draw samples from posterior distributions for corresponding

parameters at each step. Step 1 is the data augmentation step using the Kalman filter tech-

nique. The draw of θ in step 2 depends on which state components are presented in the

model. The SSVS algorithm used in step 3 is a Gibbs sampling algorithm, where each

element of γ is drawn from its conditional posterior distribution, proportional to (2.19).

Although a closed form of the distribution is not possible to be derived, it is not neces-

sary actually in that by calculating the probability of the only two possible values for each

γi , we can get rid of the unknown constant value C(Y ⋆) not involving γ in (2.19). Then

we need to loop over all elements of γ in random order during each MCMC iteration. Let

ψ̃ = (α, θ, γ,�ǫ, β) represent all parameters and latent states. Based on Algorithm 1,

sequential draws ψ̃ (1), ψ̃ (2), ψ̃ (3) . . . are simulated by going through the five steps in Algo-

rithm 1 repetitively, which forms the empirical stationary posterior distribution p(ψ̃ |Y ).

Algorithm 1 Model Training.

1: Draw the latent state α = (μ̃, δ̃, τ̃ , ω̃) from given model parameters and Y , namely

p(α|Y, θ, γ,�ǫ, β), using the posterior simulation algorithm from [11].

2: Draw state component parameters θ given α, namely simulating θ ∼ p(θ |Y, α) based

on (2.20).

3: Loop over i in random order, draw each γi

∣

∣

∣

∣

{γ−i, Y, α,�ǫ}, namely simulating γ ∼

p(γ |Y ⋆) one by one, using the stochastic search variable selection (SSVS) algorithm

from [13], based on (2.19).

4: Draw �ǫ given γ , α and Y , namely simulating �ǫ ∼ p(�ǫ |γ, Y ⋆) based on (2.17).

5: Draw β given �ǫ , γ , α and Y , namely simulating β ∼ p(β|�ǫ, γ, Y ⋆) based on (2.18).

2.4.2 Forecasting

Under the situation that the posterior inclusion probability density function has no closed-

form expression, we turn to the empirical posterior inclusion probability computed by the

number of the proportion of the number of one predictor being selected to the total number

of MCMC iterations. That is, if one predictor was selected 100 times in 200 MCMC itera-

tions, the empirical posterior inclusion probability is 100/200 = 0.5. The chance that each

predictor will be selected relies on (2.19). With each MCMC draw from model training, a

forecast value is generated according to steps 1 − 3 of Algorithm 2. The samples drawn

in this way have the same distribution as those simulated directly from posterior predictive

distribution. Through Bayesian model averaging, we commit neither to any particular set of

covariates nor to point estimates of their coefficients, which helps avoid arbitrary selections

and prevents overfitting. By using the multivariate model, we also take into account the cor-

relations among multiple target series, when sampling for predicted values of several target

series, that is forecasting multiple target series as a whole instead of predicting them indi-

vidually. In particular, the point prediction values could be formed by taking the average
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of drawn samples, and prediction intervals could be formed by computing corresponding

quantiles of drawn samples, as in step 4 of Algorithm 2.

Algorithm 2 Model Forecast.

1: Draw the next latent time series states αt+1 = (μ̃t+1, δ̃t+1, τ̃t+1, ω̃t+1) given cur-

rent latent time series states αt = (μ̃t , δ̃t , τ̃t , ω̃t ) and component parameters θ =

(�μ, �δ, �τ , �ω), based on (2.2), (2.3), (2.4) and (2.5).

2: Based on indicator variable γ , compute the regression component given the information

about predictors at time t + 1 by (2.6).

3: Draw a random error in multivariate normal distribution with variance equal to �ǫ and

sum them up using (2.1).

4: Sum up all the predictions and divide by the total number of MCMC iterations

to generate the point prediction; establish the prediction intervals according to the

corresponding quantile of predictors.

3 Application to simulated data

In this section, we examine model accuracy in three aspects including parameter estimation,

feature selection, and forecastability, by creating several datasets with different correlations

among two target series. The data are generated by a model containing a general linear trend

component, seasonal component and a static regression component with eight predictors,

while two of these components do not affect multiple target series, i.e. with zero coefficient.

MBTS model will be used to select the same set of predictors for each target series during

each MCMC iteration, to investigate its performance on generated datasets and explore its

strengths over other models, specifically to answer questions such as, how likely the 90%

credible interval will contain the true value of a specific regression coefficient, and how

possible the model will select the most important predictors or ignore some that do not

significantly contribute to target series.

3.1 Model setup and data generation

We consider a general linear trend component having a global slope 0.02, and consider a

seasonal component with a period of 4, initialized at μ̃0 = [3,−2]T , δ̃0 = [0.01,−0.01]T ,

τ̃1,−2 = −4, τ̃2,−2 = 4, τ̃1,−1 = −3, τ̃1,−1 = 3, τ̃1,0 = −2, and τ̃2,0 = 2. The model

applied to the generated data is described as follows:

ỹt = μ̃t + τ̃t + BT x̃t + ǫ̃t , for t = 1, 2, · · · , 3000,

μ̃t+1 =

[

μ1,t+1

μ2,t+1

]

=

[

μ1,t

μ2,t

]

+

[

δ1,t

δ2,t

]

+

[

u1,t

u2,t

]

,

τ̃t+1 =

[

τ1,t+1

τ2,t+1

]

=

[

−
∑2

k=0 τ1,t−k

−
∑2

k=0 τ2,t−k

]

+

[

w1,t

w2,t

]

,

B =

[

2 −1 −0.5 0 1.5 −2 0 3.5

−1.5 4 2.5 0 −1 −3 0 0.5

]T

and x̃t = [xt1 , xt2 , · · · , xt8 ]
T ,
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where the distributions are given as
[

u1,t
u2,t

]

iid
∼ N2

( [

0
0

]

,

[

0.52 0
0 1

] )

,

[

δ1,t
δ2,t

]

iid
∼ N2

([

0.8δ1,t−1 + 0.2 ∗ 0.02
0.5δ2,t−1 − 0.5 ∗ 0.02

]

,

[

0.082 0

0 0.162

] )

,

xt1

iid
∼ N(5, 52), xt2

iid
∼ Poi(10), xt3

iid
∼ Bin(1, 0.5), xt4

iid
∼ N(2, 52),

xt5

iid
∼ N(−5, 52), xt6

iid
∼ Poi(15), xt7

iid
∼ Poi(20), xt8

iid
∼ N(0, 10),

ǫ̃t
iid
∼ N2(0, �ǫ) with �ǫ =

[

1.1 0.7

0.7 0.9

]

,

[

w1,t

w2,t

]

iid
∼ N2

( [

0

0

]

,

[

0.012 0

0 0.012

])

.

We also create variables (x⋆
t2

, x⋆
t5

, x⋆
t8

), whose values are obtained by rearranging a par-

tial portion of data values for (xt2 , xt5 , xt8 ). We are going to use (x⋆
2, x⋆

5, x⋆
8) instead of

(x2, x5, x8) in model training, therefore regression coefficients for (x2, x5, x8) used for tar-

get series generation are expected to not able to reflect the true linear relationship between

yi and (x⋆
2, x⋆

5, x⋆
8).

3.2 Estimation accuracy

After model training, we draw 6000 sample values from MCMC iterations to build the sam-

ple posterior distribution for each parameter, and discard the first 1000 samples as burn-in.

Firstly, we use the absolute values of differences between true values and MCMC results

as the metric to measure estimation errors of regression coefficients. To visualize the dis-

tribution of estimation errors for regression coefficients, we construct a box plot in Fig. 1a,

whose top and bottom represent the upper bound and lower bound of the 90% credible

interval respectively and only shows regression coefficients of important predictors. Sec-

ondly, we create a bar plot in Fig. 1b to specially check the feature selection performance,

another important characteristic of our model, based on inclusion probabilities for all candi-

date predictors, which are computed by the empirical posterior distribution of the indicator

variable γ .

From Fig. 1a, we can see that zero falls within the two endpoints of all boxplots, implying

that all 90% credible intervals contain true values of the regression coefficients, verifying

accurate estimation. Furthermore, boxes for regression coefficients of category variable x3

are much wider than those for numerical variables x1, x6 generated from the normal distri-

bution and the Poisson distribution. The estimated regression coefficients of x1, x6 are also

closer to true values than that of x3. Figure 1b clearly shows that x1, x3 and x6 are important

predictors selected almost every time during 5000 MCMC iterations with inclusion proba-

bilities 1, 0.95 and 1 respectively. The sample inclusion probabilities are almost zero for x4

and x7, which indicate their corresponding coefficients are zero and these two should not be

included as predictors. The posterior inclusion probabilities of the remaining variables x2,

x5 and x8 vary depending on the relationship between partially reshuffled values and target

series, and in general they are all below 60%. In sum, our approach is capable of precisely

estimating regression coefficients and the same as identifying the most important variables

as well.

3.3 Model comparison

From the last section, we see that when a predictor is significant in the target series, the

estimation accuracy is extremely high, no matter the signs of one predictor are the same

or opposite. Therefore, one can expect better prediction results when the target series have
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(a)  Estimation accuracy (b)  Feature selection

Fig. 1 a displays posterior distribution of estimation errors for regression coefficients and b shows proportion

of variables to be selected during MCMC iterations

a high correlation in absolute value. In this section, we verify this conjecture in ten one-

step-ahead predictions, using a growing window approach, which simply adds one new

observation in the test set and obtains a new model with fresher data to constantly forecast a

new value in the test set. We use the same model to generate multiple datasets with various

correlations (ρ = 0, 0.2,−0.5, 0.8) between error terms of two target series, in order to

check the effects of correlation on model forecast performance.

We evaluate the prediction performance in terms of cumulative one-step-ahead abso-

lute forecast errors computed by formula
∑t=10

t=1

∑2
i=1 |y

(i)
t − ŷ

(i)
t |, and compare with two

benchmark models: BSTS and seasonal ARIMAX (SARIMAX). Here, since BSTS (resp.

SARIMAX) is a univariate model, we applied it to one time series and then to another time

series, after which we added their errors up in the error computation formula. Figure 2 pro-

vides a clear picture that a strong correlation between the two target series contributes to

better forecast performances of the MBTS model. Figure 2a and b indicate that there is

no significant difference among three models in terms of forecast errors, but Fig. 2c and d

demonstrate that the higher the correlation in absolute value the better the prediction accu-

racy. Therefore, the MBTS model is a great choice to be applied in the multivariate analysis

of several target series with strong correlations.

4 Application to real data

Here we are concerned with financial time series, and empirical time series of stock returns

clearly contain uncertainties. With the help of some known contemporaneous series, our

approach sheds light on machine learning based multivariate financial time series analysis.

More specifically, it allows one to improve the understanding and prediction of multivari-

ate financial time series (for instance, a portfolio of stock returns), which are extremely

crucial to Wall Street practitioners for investment and/or risk management purposes. In the

following, we train the MBTS model, do one-step and ten-steps ahead forecast respectively,

and then compare its performance with three benchmark models: ARIMA, ARIMAX, and

BSTS.

4.1 Data and predictors description

In this section, we analyze the data of three major stock market indices (Dow Jones

Industrial Average, Nasdaq Composite Index, and S&P 500), using 23 economic leading
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Fig. 2 The effect of correlation on cumulative forecast errors (CFEs). The black curve marked with • repre-

sents the CFEs generated by the BSTS model. The blue curve marked with � represents the CFEs generated

by our MBTS model. The red curve marked with � represents the CFEs generated by the SARIMAX model

indicators and 27 domestic Google trends as predictors. Computed from the prices of rep-

resentative stocks, these stock market indices are widely acknowledged measurements of

specific sections of the stock market that is directly affected by economic conditions. The

daily data samples from 03/05/2007 to 02/13/2018 are obtained from Google Finance,

Yahoo! Finance, and Federal Reserve Economic Data (FRED) in the U.S. region. The

dataset is split into training set (from 03/05/2007 to 01/16/2018), validation set (from

01/17/2018 to 01/30/2018), and test set (from 01/31/2018 to 02/13/2018). We note that

the portion of data to allocate to these sets may vary among different empirical examples,

while enough data samples should be used to train MBTS to guarantee its performance.

4.1.1 Target time series

It is crucial to keep an eye on the fluctuations of financial markets in order to beat the

wisdom in Wall Street. In this study, we dig into the monthly returns yt for three major stock

market indices (Dow Jones Industrial Average, Nasdaq Composite Index, and S&P 500),

whose values are mainly influenced by general economic activities. The daily close quotes

are used to compute arithmetic monthly returns defined as

yt =
Ct+30

Ct

− 1,

where Ct is the close quote for day t . Visualization of the daily values time series and

corresponding monthly return yt for Dow Jones Industrial Average, can be seen in Fig. 3.
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Fig. 3 Index values and monthly return of Dow Jones Industrial Average

4.1.2 Predictors

Well known, markets may incorrectly price a financial product in the short run but will

eventually correct that mistake. Therefore, profits can be achieved by purchasing the under-

valued product and then waiting for the market to recognize its “mistake” and bounce back

to the fundamental value. Since macroeconomy has a significant effect on the financial mar-

ket, economic analysis plays an important role in giving accurate stock return predictions,

especially in forecasting values of stock market indices. Therefore, we collect 27 Google

domestic trends and 23 economic leading indicators as predictors representing general

economic conditions or trends in the U.S. market.

Google domestic trends, developed and maintained by Google since 2004 through col-

lecting the daily volume of searches for related queries to a specific segment, allows users to

look at various sectors of the U.S. economy based on how they are performing in Google’s

search index. [31] showed the existence of correlations between Google domestic trends

and the equity market, which motivates us to use this trend data as a representation of the

public interest in various macroeconomic factors. In this study, we include 27 domestic

trends which are listed in Table 1 with their abbreviations. Economic leading indicators are

measurable economic factors that change before the economy starts to follow a particular

pattern or trend, and they are often used to predict changes in the economy. We select 23

important and popular economic leading indicators which are listed in Table 2 with their

abbreviations.

4.2 Training results

Visually checking three target series, no obvious upward or downward trend is found, but

a non-constant variance pattern with a stronger fluctuation at the beginning of the business

cycle is detected. Therefore, we decide to include a local trend component without slope δ

using (2.2) and a cycle component using (2.5). Through spectral analysis, the cycle period

is determined to be 82 transaction days (about 4 months), and parameters for the cyclic

component ̺ii for i = 1, 2, 3 are selected to be 0.98 based on prediction accuracy in the

validation set. Then we ran the MCMC algorithm with 6000 iterations, and discarded the

first 1000 as burn-in. It is worth noting that all predictors do not show obvious trends and

most of them are stationary in the sense that their unit-root null hypotheses have p-values
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Table 1 Google domestic trends

Trend Abbr. Trend Abbr.

Advertising & marketing advert Air travel airtvl

Auto buyers auto Auto financing autoby

Automotive autofi Business & industrial bizind

Bankruptcy bnkrpt Commercial Lending comlnd

Computers & electronics comput Construction constr

Credit cards crcard Durable goods durble

Education educat Finance & investing invest

Financial planning finpln Furniture furntr

Insurance insur Jobs jobs

Luxury goods luxury Mobile & wireless mobile

Mortgage mtge Real estate rlest

Rental rental Shopping shop

Small business smallbiz Travel travel

Unemployment unempl

less than 0.05 in the augmented Dickey-Fuller test (see [33]). The prior inclusion probability

is set to 0.1 in that we expect model size to be 5 (= 50 predictors ×0.1). We suppose that

three stock market indices are affected by the same set of predictors during each MCMC

iteration.

4.2.1 Feature selection

The “spike and slab” regression component in our model allows feature selection to be done

during model training. It can reduce the model to user desired size by removing redun-

dant variables and keeping important ones during each MCMC iteration, which in general

prevent overfitting and solve the problem of collinearity. Besides, the posterior inclusion

Table 2 Economic leading indicators

Trend Abbr. Trend Abbr.

Business confidence index BCI Consumer confidence index CCI

Consumer expectation index CEI Average weekly working hours AWH

Average hourly earnings AHE Unemployment rate UR

Weekly jobless claims for unemployment insurance JCU Purchasing managers’ index PMI

Manufacturer’s new orders for consumer goods OCG Interest rate spread IRS

Manufacturers’ new orders for all manufacturing industries OMI Bond yield spreads BYS

Manufacturer’s new orders for non-defense capital goods OAG Industrial production index IPI

Building permits for new private housing units BPH Real retail sales RRS

Level of new business startups NBS Money supply M2S

Money zero maturity MZM Currency strength CST

Diffusion index (New York) DIN Diffusion index (Texas) DIT

Diffusion index (Philadelphia) DIP
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probability can be used to indicate the importance of its corresponding predictor in explain-

ing the fluctuation of the target series. A threshold can be set to select the most important

variables for further analysis. Due to the lack of a closed-form expression of the posterior

inclusion probability density function, we turn to empirical posterior inclusion probability

computed.The chance that each predictor will be selected relies on (2.19).

In this study, we set the user desired model size to 6 out of a pool of 50 candidate predic-

tors. From Fig. 4, we can see that the median model size is 5 in the sparse models generated

by the sampling algorithm in each iteration, which matches our desired model size in the

prior setting. That is to say, there are only five variables that contribute to the variation of

monthly return for three indices significantly, with each predictor having different relation-

ship with the target series. More specifically, increasing in OMI (manufacturers’ new orders

for all manufacturing industries) and OAG (manufacturer’s new orders for non-defense cap-

ital goods) sends a positive signal for higher monthly returns of DJIA and S&P 500, whereas

negative for that of Nasdaq. This might be due to the fact that these two predictors reveal new

orders for manufacturing industries, but the composition of the Nasdaq is heavily weighted

towards information technology companies. In addition, PMI (purchasing managers’ index)

has negative effects on three stock market indices. PMI provides information about cur-

rent business conditions, and apparently high price values of indices at present are usually

harder to achieve high future returns. BYS (bond yield spreads) pushes up monthly returns

(a) Size (b) DJIA

(c) S&P 500 (d) Nasdaq

Fig. 4 a shows histogram of model size for 5000 MCMC iterations. b, c, and d display empirical posterior

inclusion probabilities of important predictors for DJIA, S&P 500, and Nasdaq respectively, with colors

indicating signs of estimated values
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of these three indices. A higher BYS value indicates higher returns in the financial market,

and positive relationships with these three indices returns can be easily understood. Out of

27 Google domestic trends, we only find “comput” (computers & electronics) is significant,

and it has negative relationships with S&P 500 and Nasdaq, whereas positive with DJIA.

4.2.2 Contribution of components

In this section, we use DJIA as an example to further explore the relationship between the

target series and its corresponding state components. The fitted target series is decomposed

into three components: trend (local level in this example) component, cycle component and

regression component, whose posterior distributions can be seen in Fig. 5 with shaded area

indicating the 90% confidence bands based on MCMC draws. Compared with the other two

components, the regression component has a wider confidence band due to larger dispersion

of MCMC draws for regression coefficients B. The local level displays the long-run move-

ments of target series with a nadir around 2009, while cyclical component captures several

large variations from external shocks especially around 2009. As the effects of shocks

diminish, the cyclical component shows relatively smoother fluctuation. As a whole, includ-

ing these two components enable our approach to explain both short-term and long-term

movements of the target series. In general, the regression component fluctuates at basically

the same time as the cyclical component, however in the opposite direction and with more

variation. Unlike the trend component, it shows several obvious peaks accounting for some

variations not captured otherwise. In sum, decomposition of response series into three com-

ponents provides us enough information on how each component contributes to explaining

the variations in target series.

(a) Time series components

(b) Regression component

Fig. 5 Dynamic posterior distribution of three state components (DJIA)
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4.3 Target series forecast

Time series forecasting is a model-based approach to predict future values based on previ-

ously observed values, and is extremely challenging when it comes to multivariate response

series. Our approach allows users to model multiple target series with a great number of

contemporaneous predictors and make a prediction of future values. In addition, Bayesian

model averaging with spike-and-slab regression takes sparsity and model uncertainty into

account, thus improves prediction accuracy. Based on cumulative one-step and ten-steps

ahead prediction errors, we investigate forecast performances of our model and compare

with the univariate BSTS model and two traditional benchmark time series models (ARIMA

and ARIMAX). The prediction error at each step PEt is defined by summing up each target

series’ absolute value of difference between true value y
(i)
t and predicted value ŷ

(i)
t , i.e.

PEt =

m
∑

i=1

∣

∣

∣
y

(i)
t − ŷ

(i)
t

∣

∣

∣
.

Figure 6a illustrates the cumulative one-step-ahead forecast errors using four different

models (ARIMA, ARIMAX, BSTS, and MBTS) which all have short running times (2.19

seconds, 7.09 minutes, 4.29 minutes, and 4.35 minutes, respectively, in this empirical exam-

ple). Clearly, the BSTS model and our MBTS model beat the traditional time series models,

verifying the crucial role of the Bayesian machine learning setting in capturing variations of

target series that can not be explained by other time series models. Precisely, on one hand,

through feature selection, we can keep important predictors while drop redundant predictors

from a pool of candidate predictors; on the other hand, Bayesian moving average provides

great flexibility in that we commit neither to any particular set of predictors which avoids

model uncertainty issues, nor to point estimates of regression coefficients which bypasses

overfitting problems. Moreover, benefiting from the multivariate setting in fully incorpo-

rating the strong correlations among error terms of target series, our MBTS model shows

much better forecast performances than the univariate BSTS model trained by each response

series individually. Figure 6b illustrates the cumulative ten-steps-ahead forecast errors of

four trained models, among which our MBTS model is still the best in terms of cumulative

ten-steps-ahead forecast errors, which further confirms its obvious strength in time series

forecasting. In contrast to the cases of one-step-ahead forecasting, all ten-steps-ahead pre-

dicted values over time show very similar patterns for these three indices and are much

smoother without significant variation.

(a) Model comparison (b) Model comparison

Fig. 6 Comparison of four models’ prediction accuracy
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5 Conclusions

In this paper, we have proposed the MBTS model, which is a multivariate generalization

of the BSTS model discussed earlier in the literature, to take advantage of the relationship

among multiple target series, based on the assumption that each target series is affected by

the same subset of predictors chosen from all candidate predictors. The “spike and slab”

framework allows the model to do feature selection and model training at the same time.

First, we examined the estimation accuracy and forecast performance using simulated data

and found a positive relationship with correlations of error terms in the target time series.

Then the empirical analysis on a portfolio of equity indices (DJIA, Nasdaq, and S&P 500),

with feature selection among a pool of contemporary predictors including 23 leading eco-

nomic indicators and 27 domestic Google trends, further confirmed that the MBTS model

outperforms benchmark models such as pooling the results from univariate BSTS, ARIMA,

and ARIMAX, in both one-step-ahead forecast and ten-steps-ahead forecast.

Our proposed methodology of feature selection on the regression component of time

series can naturally extend the univariate analysis to multivariate analysis, extend the dimen-

sion of predictors by means of feature selection, and extend the corresponding analysis to

the time-dependent case which is more realistic in many situations. Other extensions regard-

ing methodology improvement may be seen from the following perspectives, such as adding

on spatial analysis to generate a spatio-temporal framework (see [2]), boosting conditional

probability estimators (see [15]), generalizing to universal probability-free prediction (see

[38]), extending linear regression to nonlinear regression (see [22]), extending state space

model (also named hidden Markov model) to hidden semi-Markov model (see [28]).
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