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Multivariate Two-Sample Tests Based on 

Nearest Neighbors 

MARK F. SCHILLING* 

A new class of simple tests is proposed for the general 
multivariate two-sample problem based on the (possibly 
weighted) proportion of all k nearest neighbor comparisons 
in which observations and their neighbors belong to the 

same sample. Large values of the test statistics give evi- 

dence against the hypothesis H of equality of the two un- 

derlying distributions. Asymptotic null distributions are ex- 

plicitly determined and shown to involve certain nearest 

neighbor interaction probabilities. Simple infinite-dimen- 

sional approximations are supplied. The unweighted ver- 

sion yields a distribution-free test that is consistent against 

all alternatives; optimally weighted statistics are also ob- 

tained and asymptotic efficiencies are calculated. Each of 

the tests considered is easily adapted to a permutation 
procedure that conditions on the pooled sample. Power 

performance for finite sample sizes is assessed in simula- 

tions. 

KEY WORDS: Distribution-free; Kth nearest neighbor; 
Infinite-dimensional approximation. 

1. INTRODUCTION 

A substantial number of nonparametric methods based 

on nearest neighbors have been developed in recent years 

for various multivariate situations. The popularity of these 

procedures has increased because of new theoretical de- 

velopments, the expanding capabilities of modern high- 

speed computers, and efficient algorithms for nearest 

neighbor calculations, which mitigate to a great extent the 

computational obstacles involved. Classification, density 

estimation, and regression are areas that have received 

particular attention; more recently, distribution-free tests 

for multivariate goodness of fit based on nearest neighbors 
have been developed (see Bickel and Breiman 1983; Schill- 

ing 1983a,b) along with procedures for assessing multivari- 

ate association (Friedman and Rafsky 1983). 

This article presents a new class of distribution-free tests 

for the general multivariate two-sample problem along with 

a related procedure for testing specific hypotheses. The 

tests are natural, require only mild assumptions, and are 

easy to implement. The basic setup is given in Section 2, 

followed by a brief history of related work. In Section 3 

the elemental version of the test is introduced. The test 

statistic is simply the proportion of all k nearest neighbor 

comparisons in which a point and its neighbor belong to 

the same sample. The asymptotic null distribution is es- 

tablished and found to exhibit marked stability across both 

dimension and the number of neighbors used. Consistency 
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against all alternatives is proven. Weighted versions are 
considered in Section 4. Optimal weights are found, and 

the question of asymptotic power is studied. The nondis- 
tribution-free weighted test appears nearly as efficient, when 
weighted properly for specific distributional models, as the 

(optimal) likelihood ratio test. Conditional tests are dis- 

cussed in Section 5. Monte Carlo experiments support the 

various analytical results (Section 6). 

2. PROBLEM AND HISTORY 

Let Xl, . . ., X,, and Yl, . . , Y,2 be independent ran- 

dom samples in Rd from unknown distributions F(x) and 

G(x), respectively, with corresponding densities f(x) and 

g(x) assumed to be continuous on their supports. The two- 
sample problem treated here is to test the hypothesis H: F(x) 
= G(x) against the completely general alternative K: F(x) 
# G(x). No knowledge of F or G is proclaimed by H- 
only their equivalence. 

Take n = n1 + n2, Dl = {1, . . ., ni}, Q2 = {Iln + 1, 
n}, and label the pooled sample as Zl, , Zn, 

where 

Zi= X, i fl 

=Yl nli i( EQ2- 

Let 11 11 be a norm, and define the kth nearest neighbor to 

Z, as that point Z, satisfying llZ, - Z,11 < IlZj - Zj1j for 

exactly k - 1 values of j' (1 j' S n, j' # i, j). Ties are 

neglected, since they occur with probability zero. When 

ties occur in practice, however, because of rounding, lim- 

ited resolution in measurement scales, and so forth, they 

can be easily handled by ranking neighbors in the following 

manner: Whenever exactly Q of the observations are equi- 

distant from Z,, with k - 1 other points strictly closer to 

Zi, assign a random permutation of the appropriate ranks 

k, k + 1, .. ., k + Q - I to these Q points in forming 
the nearest neighbor list for Zi. This procedure has no 

effect on the validity of the results below. 

Let I[-] represent the indicator function. Friedman and 

Steppel (1974) proposed two-sample tests for this frame- 

work based on the number of points C, among the k nearest 

neighbors of each point Z, that belong to (say) the first 

sample {Xl, . . . , Xn}. Separate frequency distributions 

can be compiled from the counts for i E Ql and i E Q2* 

When F = G these counts {C,; i = 1, . . . , n} are de- 

pendent hypergeometric variables with parameters n - 1, 

n, - I[i E Ql], and k, and the frequency distributions have 

virtually identical expectations. For large n, Friedman and 

Steppel suggested contrasting {C,, i E Qll} with {Ci, i E 

f12} either by means of a t statistic or by comparing the 
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frequency distribution of all of the counts C1, . . ., C, 

(here each point is regarded as one of its own nearest 
neighbors) with the binomial distribution having param- 

eters k and nlln. The latter idea can be implemented by a 

goodness-of-fit test of the x2 type. Since the Ci's are de- 

pendent because of the overlap of k nearest neighbor- 
hoods, the significance level a of such a test cannot be 

determined by ordinary binomial theory. Friedman and 

Steppel used a permutation procedure to estimate a. 

Further results were obtained by Rogers (1976) under a 

different formulation. Let Sa,j represent the number of points 

Zi (i E fla) for which exactly j of the k nearest neighbors 

have a common sample identity to Zi for a = 1, 2; j = 1, 

. k. These quantities are directly obtainable from the 

aforementioned frequency distributions. Rogers showed 

that the vector of Sa,,j values, appropriately centered and 

scaled, is asymptotically multivariate normal under H with 

limiting covariance structure independent of F = G. Un- 

fortunately, the asymptotic covariance matrix is analyti- 

cally intractable and must be estimated via Monte Carlo 

methods. Rogers discussed tests based on linear combi- 

nations of the Sa,jIS. 

Friedman and Rafsky (1979) introduced procedures for 

the nonparametric two-sample problem that are based on 

the minimal spanning tree (MST) of the pooled sample- 

the graph of minimal length that provides a path between 

any two sample points. The graph connecting each point 
to its nearest neighbor is a subgraph of the MST. Friedman 

and Rafsky's tests are multivariate analogs of the Wald- 

Wolfowitz and Smirnov univariate two-sample tests. Con- 

ditional results are derived and power performance is es- 

timated through Monte Carlo experiments. 

3. THE UNWEIGHTED TEST 

The tests that follow are modeled after those proposed 

by Friedman and Steppel (1974) and Rogers (1976). They 

are not only extremely simple conceptually but possess 

analytically tractable null distributions as well, which, it 

will be shown, are quite stable with regard to both the 

dimension of the observation space and number of neigh- 
bors used. Take 1111 to be the Euclidean norm, and let 

NNi(r) represent the rth nearest neighbor to the sample 

point Zi. Define 

Ii(r) = 1 if NNi(r) belongs to the same sample as Z, 

= 0 otherwise. 

The statistic considered initially for testing H is the quantity 

I n k 

Tk,n = - 
I E Ii(r), 

which is simply the proportion of all k nearest neighbor 

comparisons in which a point and its neighbor are members 

of the same sample. One would expect Tk,n to achieve a 

larger value under K than under H because of a lack of 

complete mixing of the two samples when the parent dis- 

tributions are not identical; hence large values of Tk,n are 
significant. 

3.1 Asymptotic Null Distribution 

Assume that nl, n2 tend to infinity in such a way that Ai 
= limn-ni/n exists for i = 1, 2. Consider the following 

events: 

(i) NNI(r) = Z2, NN2(s) = Z1. 

(ii) NNi(r) = NN2(s). 

We shall say that Z1 and Z2 are mutual neighbors if case 

(i) occurs for some r and s and that they share a neighbor 

if case (ii) occurs. Write pi(r, s), i = 1, 2, respectively, for 

the null probabilities of the preceding events. 

The values of pI(r, s) and p2(r, s) in finite samples depend 

on the underlying density and are most difficult to com- 

pute. It is intuitively clear, however, that each is O(n-1). 

It turns out that both npl(r, s) and np2(r, s) approach limits 

that are independent of f = g. Denote these limits by p' (r, 

s), i = 1, 2, and write 

k k 

k- - k2 ,p'(r, s), i = 1,2. 
r=l s=l 

The main result is that the asymptotic distribution of Tk,n 

depends only on k, Al, A2, and p5, ji' 

Theorem 3.1. If nl, n2 _> ox with niln tending to Ai for 

i = 1, 2, then (nk)"12(Tk,n - /Uk)/uk has a limiting standard 

normal distribution under H, where 

Pk = lim EH(Tk,n) = A2 + A2 (3.1) 

and 

k = lim nk varH(Tk,n) 

= '1'2 + 4A2A2kpl - 
l2(l 

- 2)2k(1 - 2) 

(3.2) 

The proof of Theorem 3.1 is given in the Appendix. 

Expressions for the quantities p (r, s) for p'(r, s) for 

general r and s are furnished in Schilling (1986) and are 

rather complex (though computable), particularly for the 

neighbor-sharing values p (r, s). The quantities kpj and 

k(l - ji2) that appear in oj, however, are extremely stable 

in both k and d, which suggests the possibility of replacing 

them with limiting values. Support for this claim is provided 

by Schilling (1986, theorems 4.2 and 4.3), and numerical 

results for small k and d are also given there. The theorems 

are reproduced here for easy reference. 

Theorem 3.2. For all d, limk,. kpj- exists and equals 1. 

Theorem 3.3. For all positive integers r and s, limd,. 

p'(r, s) exists and equals 1. 

The convergence indicated in Theorem 3.3 is very rapid. 

The asymptotic variance takes particularly simple forms 

in the two cases given next. When Al = 2= .5, as is 

common in practice, the neighbor-sharing values p2(r, s) 

are not involved and (3.2) yields ojk = (1 + kji1)I4. For 
general Al and X2 and d = ??, p2 is again absent (Theorem 

3.3) and kjil takes a simple combinatorial form (Schilling 
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Table 1. a 2for Al = A2 = .5 and l= .25, )2 = .75, for 
Selected k and d 

A 1 = 2 = .5 A, = .25, A2 =.75 

d k= 1 k=2 k=3 k=oo k= 1 k=2 k=3 k=oo 

1 .417 .435 .445 .258 .268 .274 
2 .405 .428 .439 .257 .268 .275 
3 .398 .423 .435 .257 .269 .275 
4 .393 .419 .432 .257 .270 .276 
5 .389 .416 .430 .257 .271 .278 

10 .380 .410 .425 .257 .273 .282 
00 .375 .406 .422 .500 .258 .275 .284 .328 

1986); this yields 

k = 2lA2 + 4 2{1 -2 k ( k )2k] _ 2122 + 42122 

(3.3) 

for k not too small. Note that the quantity 21l2 arises from 
the binomial character of Tk,,; the additional term is the 
result of the dependence between the nearest neighbor- 
hoods of the sample points and roughly doubles the asymp- 
totic variance when the sample sizes are not too disparate. 

The marked stability in both d and k of the asymptotic 
variance is demonstrated in Table 1 for Al = )2 = .5 and 
Al = .25, 22 = .75. It is evident that the infinite-dimen- 
sional variances in (3.3) are quite adequate replacements 
for the more complex finite-dimensional variances for 
most d. 

4.0! 
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Figure 1. Sepal Measurements for Iris Versicolor and Iris Virginica 

(n, = n2 = 50). 

It is interesting to note the similarity of this distributional 
phenomenon (stability across dimension, simple infinite- 
dimensional limit) to that found for nearest neighbor good- 
ness-of-fit tests (Schilling 1983b). 

Limited simulation studies indicate that the asymptotic 
distribution in Theorem 3.1 serves well for small d (-3) 
with moderate n (?50-100) and adequately for higher val- 
ues of d (- 10) using larger n (:200). Difficulties arise 
when the dimension grows, because of fringe effects and 
the increasing emptiness of high-dimensional space; this 
leads to J3 overestimating and P' underestimating the ac- 
tual mutual neighbor and neighbor-sharing frequencies, 
respectively. Particular caution is in order for nonsmooth 
densities such as the d-dimensional uniform. 

As an example of the utility of the preceding procedure 
for real data, Tk,n tests with k = 3 and k = 10 were applied 
to a subset of the well-known iris data (Fisher 1936). The 
two similar species, Versicolor and Virginica, were com- 
pared using only the two variables (sepal length and sepal 
width) on which they are most alike (see Figure 1). The 
proportion of k nearest neighbors belonging to the same 
sample as their reference point was found to be Tk,n = 

.600 for k = 3 (z = 2.746) and Tk,n = .615 for k = 10 
(z = 5.541), highly significant values in both cases. The 

infinite-dimensional approximation to the asymptotic 
distribution of Tk,n based on (3.3) yields z = 2.801 and 
z = 5.425 for k = 3 and k = 10, respectively. 

3.2 Consistency and Asymptotic Power 

Theorem 3.4. The test based on Tk,n is consistent against 

any alternative K. 

To prove Theorem 3.4 it must be shown that lim 

infflEK(Tk,,) > limfloEH(Tk,,). Only the case k = 1 will 

be described; the situation for k > 1 follows similarly. We 
have 

EK(Tk,n) = (n1/n)PK(Il(1) = 1) 

+ (n21n)PK(In,+l(1) = 1) (3.4) 

It must be shown that lim infnflPK(Il(l) = 1) > Al and 
lim infnf.PK(In,+1(1) - 1) > A2. Now 

P(I(1) = 1) = (n, - 1)P(NN1(1) = Z2) 

(n- i)f f(xi) f(x2){ I f(x)dx4 

x {1 - f g(x)dx} dx2dx1, 

where S is the sphere centered at xl having radius I x2 - 

xlll. Using first-order approximations to fsf(x)dx and fsg(x)dx 
and putting w = nlld(x2 - xl) for the integral in x2 produces 

lim P(1l(l) = 1) 
n-o 

= fR f 2(XI) fR exp{- [ f(i() +L ]f (x)KIII}ddl 

where Kd is the volume of a d-dimensional sphere of radius 
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1. Setting p = 11(lld then yields 

lim P(1l(l) = 1) = AjEf[l/(Xl + X2g(Z)/f(Z))]. (3.5) 
n--+ 

Similarly, one can obtain 

lim P(In,+1(1) = 1) = X2Eg[1/(X2 + X1f(Z)/g(Z))]. 

(3.6) 

The result follows from considering the random variable 
g(Z)/f(Z) and applying Jensen's inequality. 

After using (3.4)-(3.6), the asymptotic mean under K is 

found to be 

lim EKTk,nl = 1 - 2~.1X2 
f f(x)g (x)dx 

n-o J(Xi X) + X2g(x) 

This expression remains unchanged for general k. 

We can get an indication of the large sample power per- 
formance of Tk,n by means of its efficacy coefficient 

= (lim EKTk,n - ,k)/(lim n varH(Tk,n)). 

n--- n--- 

For the simplest case, j = 2 = .5, 

= (llk + T')-1/2 f f2(X) + g2(X) dx. (3.7) 
J f (x) + g (x) 

Note from Theorem 3.2 that - O(k). 

4. WEIGHTED VERSIONS 

The statistic Tk,n can be generalized in various ways in 

the hope of improving performance by weighting the con- 

tribution of each point by its value or by the ranks or values 

of those neighbors having the same sample identity. The 

search for asymptotically optimal weights will involve the 

following model: Let the null hypothesis H be that the 

common density of the observations is f0, and consider a 

directional sequence of alternatives {Kn} to H in which the 

densities f = fn and g = gn belong to a regular parametric 
family {q(, 0), 0 E R} with f(x) = q(x, 0, + A) and g(x) 
= q(x, 00 - A), where A = An approaches 0 as n -* o 

and f0(x) = q(x, 0o). Assume further that the first two 

derivatives of q with respect to 0 (written as q', q") exist 
at 00 and that derivatives can be passed under the integral 
sign when necessary. 

The goal is to find weights that maximize power for the 

particular sequence of alternatives specified but still main- 

tain adequate performance against other possible devia- 

tions from H. 

4.1 Weighting by Rank of Neighbor 

One possibility is to weight the contribution of each 

neighbor according to its rank in distance among neighbors 
and the sample membership of the reference point. To this 

end let w1 = (w1(1), . . . , w1(k))T andw2 = (w2(1), . . . 

W2(k))T be vectors of weighting constants, write w = (wT, 

w2T)T, and define 

=1 2 k 

-knS = wa(r)lI(r). nk =1 iEQ< r=l 

When w is a vector of ones, Uk,n,w reduces to the un- 
weighted proportion statistic Tk,n. The asymptotic distri- 

bution of Uk,n,w can be obtained by a simple extension of 

the methods used for Tk,n l 

A direct extension of calculations in Section 3.2 reveals 

that the optimal system of weights w* does not depend on 

K and thus cannot be tuned for particular alternatives to 

H. Furthermore, regardless of the choice of weights, the 

asymptotic power of the Uk,n,w test is equal to the level of 

the test for alternative sequences [K11} in which 0 - 00 - 

o(n- 1/4), which includes the O(n- 1/2) contiguous alternative 

models ordinarily used in calculating Pitman efficiencies. 

This observation parallels results for goodness-of-fit tests 

based on nearest neighbors (Bickel and Breiman 1983; 

Schilling 1983a). In view of the results of Le Cam (1973) 
and Birge (1983) concerning optimal rates of convergence, 

one cannot hope to find a procedure achieving simulta- 

neous power for densities converging at rate O(n -1/2) for 

models as general as those used here; the metric entropy 

of the space of all continuous densities is too large. 
The fourth power of the ratio of the efficacies of Uk,nw* 

to Tk,n, a natural analog to Pitman efficiency that measures 

the asymptotic ratio of sample sizes necessary for Tk,n and 

Uk,n,w* to achieve the same limiting power for sequences of 

density pairs converging at rate n-1/4, turns out to be 
{eT(P + I)-le eT(P + I)e/k2}2, where e is a k vector of 

ones, I is the k x k identity matrix, and P' is the k x k 

matrix with elements P'(r, s); r, s = 1, . . ., k. This 

quantity was computed for the values k = 2, 3, 5, and 10 

across dimensions d = 1, 2, 3, 5, 10, and oc, and it fell into 

the extremely narrow range from 1.017 to 1.026 in all cases, 

leading to the conclusion that the weighted statistic Uk,nw* 
is not sufficiently superior to Tk,, to be worth pursuing 

further. 

4.2 Weighting by Reference Point Location 

An alternative approach to weighting incorporates de- 

pendency on the actual position of each sample point with 

a statistic of the form 

1 2 k 

Vk,n,W = I E : Wa(Zi) E Ii(r) (4.1) 
nk a= iECa r=1 

for continuous weight functions w = (wl, w2) Vk,n,w can 

be designed to perform well against specific types of al- 

ternatives but unfortunately is not distribution-free. 

Asymptotic normality is supported by simulations. 

The Vk,n,w test appears to achieve asymptotic power against 

any desired sequence of 0(n-1/2) alternatives to H when 

properly weighted. A procedure that has consistency against 
all fixed alternatives and asymptotic power in a chosen 

direction can be obtained consequently through a combi- 

nation of the Tk,n (or Uk,n,w) and Vk,nw tests (e.g., reject H 

if either Tk,n or Vkn,w rejects H at level a/2). By the first 

Bonferroni bound, the level of the combined test does not 

exceed a. 

Using the same model assumptions and expansions for 
alternatives as for Uknw the efficacy coefficient of VknS 
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Table 2. Efficiencies of Vkn,w* Relative to the Optimal Test for 
A1 = A2 = .5 

d k= 1 k=2 k=3 

1 .89 .94 .96 
2 .86 .93 .96 
5 .83 .91 .94 

10 .81 .90 .93 
00 .80 .89 .92 

can be calculated and the Lagrange technique may be ap- 
plied to find optimal weights for specific alternatives. This 
leads eventually to the optimal weight functions 

W*(X) = Ci(Al, A2, k) (log q(x, 0)) = i = 1, 2, 

where 

Ci(Al, A2, k) = (-l)i+1[(l + 2A3-i)(Ai + A3-ik) 

- i3-k(Aip + (23-i - A)i)NO], i = 1, 2. 

Note that these weight functions now depend on {Kn} and 
are proportional to the first-order approximation to the 
likelihood ratio glf; if each indicator function in the spec- 
ification of Vk,,,W were set equal to 1 and the preceding 
weight functions were used, the Vk,n,w test would be vir- 
tually equivalent to the likelihood ratio test of H versus 

{Kn}l 

The test statistic using these weight functions is denoted 
by Vk,n,W*. The limiting null moments of Vk,n,W* are 

Uk,n,w* = lim EH(Vk,n,W*) = 0 

and 

a2w= lim nk varH(Vk,n,W*) 
= (Alk + A2)var(Ajw*(Z)) 

+ (.2k + Al)var(A2w2*(Z)) 

+ ,l2 2kpjvar(w * (Z) + w2* (Z)) 

+ AlA2k(-2 + 2)var(Ajw*(Z) - A2W2*(Z)), 

where Z - F = G. The asymptotic variance is again well 
approximated by its infinite-dimensional limit. In the im- 
portant special case Al = 2 = .5, we have w*(x) = 

-wl*(x) and U2,w* = .25((3 + Th)k + 1)var w*. The 
expression for the efficacy of Vk,n,w* against {Kn} is complex, 
but for Al = 2= .5 it reduces to 

= 2Aj112(00)I{3 + P2 + llk}l12, (4.2) 

where I(OO) = f(q'(x, 00))2q-1(x, OO)dx is the Fisher in- 
formation number. The (optimal) likelihood ratio test for 
the case when q, 00, and A are known has an efficacy of 
A1112(00) and thus the asymptotic efficiency of Vk,n,w* rela- 
tive to the optimal test of H versus {Kn} when Al = X2 is 
4/(3 + -' + llk). Since -3 is generally near 1 (see Theorem 
3.3 and Schilling 1986, table 3), efficiencies are quite high, 
as indicated in Table 2. It must be kept in mind, however, 
that for alternatives in other directions than that for which 
w* was designed, power may be quite low. 

5. CONDITIONAL TESTS 

An alternative approach to nonparametric two-sample 
testing is to condition on the combined sample and use a 
permutation procedure. With conditioning, the distribu- 
tions of the statistics previously considered now depend 
only on the graph-theoretical properties of the k nearest 
neighbor digraph that can be formed over the pooled sam- 
ple by connecting each observation to its neighbors in the 
common sample, rather than requiring an intrinsic dimen- 
sionality for the data. 

Consider, for example, (4.1), conditional on the values 
of Z1, . . ., Z,. Defining scores 

2 

aij= (nk)1 E I(i, j E a), 
a=1 

2 k 

bij > I(i E fQa) E wa(Zi)I(NNi(r) = Z) 
a=1 r=1 

(4.1) can be expressed as the generalized correlation coef- 
ficient (Daniels 1944) 1l.=1 1j%=1 aijbij. As a result, condi- 
tional asymptotic normality holds under condition (18) of 
Friedman and Rafsky (1983); in particular, if k is either 
fixed or grows linearly with n, asymptotic normality holds 
in both the null and alternative cases. 

The conditional null moments can be easily seen to be 
identical to those for the corresponding unconditional tests 
except that the neighbor configuration probabilities 
p1(r, s) and p2(r, s) are now replaced by the proportions 
of pairs (Zi, Z1), i $ j, for which a mutual neighbor or 
shared neighbor relationship holds. Inasmuch as the quan- 
tities np1(r, s) and np2(r, s) have distribution-free limits, 
the asymptotic distributions obtained earlier are appro- 
priate as approximations for conditional tests as well. In- 
deed, in those simulations in which both the conditional 
and unconditional normalized statistics were computed, 
the values were invariably quite close. Thus there appears 
to be little difference between the two approaches in prac- 
tice. For those who object to permutation tests altogether 
on what may be termed philosophical grounds (see Basu 
1980), this point may be reassuring. 

6. MONTE CARLO RESULTS AND SUMMARY 

6.1 Simulations 

The performance of the various techniques introduced 
in the preceding sections was assessed for finite sample 
sizes by means of Monte Carlo experiments in d = 1, 2, 
5, and 10 dimensions. The primary computational task is 
the identification of the k nearest neighbors of each sample 
point. This can be accomplished in O(kn log n) steps by 
means of an algorithm developed by Friedman, Bentley, 
and Finkel (1975); it should be noted, however, that com- 
putation time also grows rather significantly with d. 

Tables 3 and 4 present Monte Carlo powers obtained for 
the Tk,fl UknW*, and VkflW* tests at level ae = .05 for multi- 
variate normal samples differing in either location or scale, 
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Table 3. Monte Carlo Powers for Normal Location Alternatives [F = N(O, I), G = N((A, 0, . 0), I)] at Level a = 5%, 

Based on 100 Trials Each (n, = n2 = 100) 

d = 1, A = .3 d = 2, A = .5 d = 5, A = .75 d = 10, A = 1.0 

Statistic k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k =3 k = 1 k = 2 k = 3 

Tk,n 5 9 12 (11) 7 21 26 (29) 38 50 66 (73) 43 61 67 (97) 
Tk,n (C) 5 9 12 7 22 27 41 57 74 47 67 76 
Uk,n,w* 5 9 12 7 21 30 38 52 70 43 61 71 
Vk,n,w* 71 68 72 (67) 100 100 100 (97) 99 99 97 (100) 100 100 100 (100) 

Vk,n,w* (C) 71 68 72 100 100 100 99 99 97 100 100 100 
Combined 68 62 61 (55) 99 100 99 (93) 97 97 96 (100) 100 100 100 (100) 

NOTE: Tests that condition on the pooled sample are indicated by (C). Power values in parentheses are theoretical values obtained from the asymptotics in Sections 3 and 4. 

generated by means of the IMSL subroutine GGNOF. Also 
provided are the powers of the combined test (Section 4.2), 
which rejects if either Tk,n or Vk,n,w* rejects at level a/2. 

Both the unconditional and conditional (permutation test) 
versions were used, with the conditional tests indicated by 
(C) in Tables 3 and 4. Each number triplet gives the powers 
obtained by using k = 1, 2, and 3 neighbors, respectively. 
The parameters A and a were selected to match those of 
Friedman and Rafsky (1979, table 1) in order to facilitate 
comparisons with their MST tests and standard parametric 
competitors. Values in parentheses indicate the corre- 
sponding theoretical powers for k = 3, obtained from the 
asymptotic developments outlined in Sections 3 and 4. 

Several observations can be made based on the results 
shown in Tables 3 and 4. Weighting by rank of neighbor 
(Uk,n,w*) produced only slightly more detections overall than 
did the unweighted test Tk,n, which supports the efficiency 
remarks of Section 4.1. The performance of Tk,n was gen- 
erally comparable to that of Friedman and Rafsky's MST 
analog of the Wald-Wolfowitz runs test. Arguments similar 
to those in Section 4 suggest strongly that these tests, as 
with Tk,n and Ukn,w also have asymptotic power only against 
sequences of alternatives converging to H at rate O(n- 14) 

or faster. Letting k = k(n) -* oo as n -* oo would presumably 
yield power against somewhat faster converging sequences 
of alternatives for each of the tests under discussion; how- 
ever, the problem of choosing the optimal rate for k(n) is 
a difficult one that needs further study. 

The Vk,n,w* test achieved extremely high power in every 
case. Since Vk,n,w is designed for a much more restrictive 
model than the completely general situation appropriate 
to Tk,n and Uk,n,w*, it is natural that Vk,,,,w* would perform 
substantially better within that model. 

Powers computed by means of the infinite-dimensional 
approximating distributions (not shown) were never more 
than 3% different from the tabled values and in most cases 
agreed with the finite-dimensional powers exactly. 

Asymptotic powers agree closely with the Monte Carlo 
results for low dimensions but are higher than the realized 
powers for d = 5 and 10. This can be understood by noting 
that k nearest neighborhoods are not sufficiently local in 
large-dimensional spaces, because of the sparsity of the 
sample points, to accurately reflect the relationship of f to 
g in the vicinity of the reference point unless k is quite 
small and the number of observations is quite large. Spe- 
cifically, the diameter of k nearest neighborhoods is of 
order 0((k/n)lId). This is also reflected in the fact that the 
gain in power for Tk,,, and Uk,n,w* as k increases is less in 
higher dimensions than in the low-dimensional cases. It is 
probable, however, that choosing k > 3 would have pro- 
duced higher powers than those shown in Tables 3 and 4 
in all cases and particularly for d = 1 and 2. 

The efficacy formulas (3.7) and (4.2) for Tk nand Vk,n,w*, 

respectively, along with Theorems 3.2 and 3.3, indicate 
that increasing k is much less important for Vk,nfw* than for 
Tk,n. In fact, the simulations in Tables 3 and 4 show Vl,n,w* 
generally outperforming V3,nw*. This can again be attrib- 
uted to the phenomenon discussed before. 

Results for the tests that condition on the pooled sample 
are similar to those for their unconditional counterparts. 
The agreement between the p1(r, s) and p2(r, s) counts 
and their limiting values was generally very good, although 
as d increases a tendency occurs for Pi values to be smaller 
and P2 values to be larger than their respective asymptotic 
limits, presumably because of the magnitude of fringe ef- 
fects in large dimensional samples. 

Table 4. Monte Carlo Powers for Normal Scale Alternatives [F = N(O, I), G = N(0, g21)] at Level a = 5%, 

Based on 100 Trials Each (n, = n2 = 100) 

d = 1,a= 1.3 d = 2, a= 1.2 d = 5,a= 1.2 d = 10, a=1.1 

Statistic k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k =1 k = 2 k = 3 

Tk,n 9 17 16 (14) 9 13 17 (15) 13 18 19 (41) 5 7 7 (20) 
Tk,n (C) 9 16 16 9 15 17 14 20 23 5 8 7 
Uk,n,w* 9 16 19 9 15 16 13 19 21 5 8 6 
Vk,n,w* 86 83 84 (82) 78 77 72 (81) 93 90 90 (99) 73 69 70 (90) 
Vk,n,w* (C) 85 83 85 78 77 72 93 90 90 64 65 62 
Combined 79 74 74 (73) 66 66 65 (71) 87 87 87 (98) 50 52 52 (83) 

NOTE: Tests that condition on the pooled sample are indicated by (C). Power values in parentheses are theoretical values obtained from the asymptotics in Sections 3 and 4. 
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The combined test, which "robustifies" the optimally 
weighted test Vk,,,W*, appears to be not greatly inferior to 

Vk,n,w* itself. 

6.2 Summary 

Intuitively simple nearest neighbor proportions tests are 
available for both the general model H: F = G (unknown) 
versus K: F # G and for models specifying a null distri- 
bution. In contrast to previous nearest neighbor and MST 

tests, explicit unconditional null distributions are available, 
along with extremely simple and accurate infinite-dimen- 
sional approximating distributions [see (3.3) and Table 1]. 
A corollary advantage is that power and efficiency can be 
assessed. 

Asymptotic results provide a good fit to experiments 
with moderate sample sizes if d is not too large. The un- 
weighted test is consistent against all alternatives and ap- 
pears to achieve good power for the general model. Tests 
for specific distributions have power close to that of the 
likelihood ratio test. 

Both classes of tests can be performed either as condi- 
tional or unconditional tests with little difference in the 
results. Computational requirements are moderate. 

Extensions can be made in straightforward fashion to 
the p-sample problem for p > 2. It might also be possible 
to use Tk,n as an estimator of the discrepancy between F 
and G-for example, by searching for a "reasonable" 
transformation of (say) Y1, . . ., Y2 to Y1, , Y'2 that 

yields Tk,fl(Xl . * * ,XX1 Y1, . . ., Yt2) = .5, thus making 
the samples X1, . . , Xnl and Y', . . ., Yn2 "well-mixed" 

in that sense. 

APPENDIX: PROOF OF THEOREM 3.1 

The statistic Tk,n can be written in terms of the Rogers statistics 
as 

12 k 

Tk,n = n E E is.,I, 
nka=j= 

Hence the limiting null distribution of Tk,n is normal. 
It is necessary to find the first two null moments. Only the 

variance requires any real effort. The mean is given by 
1 n k 

EH(Tk,n) = E E PH(I(r) = 1). nk 1=1 r=1 

Since PH(I (r) = 1) = (na - 1)/(n - 1) for iEfla, a = 1, 2, 
r = 1, . . . X k, we easily obtain 

1 
2 

EH(Tk,n) = 1 lE na(na - 1). (A.1) 
n(n - 1) a=1 

The variance is considerably more complex. We have 

varH(nkTk,n) 

n n k k 

= 
PH(I(r) = 

I,(s) 
= 1) - {nkEH(Tk,n)}2. 

=1 j=1 r=1 s=1 

For terms in which i = ] E fla (a = 1, 2), we readily obtain 

PH(I(r) = Il(s) = 1) = n _a (l +fn j)lr)S( 

(A.2) 

When i ] j various nearest neighbor geometries come into play, 

with five mutually exclusive and exhaustive cases involved: (i) 

NN,(r) = Z,, NN,(s) = Z,; (ii) NN,(r) = NN,(s); (iii) NN,(r) 
= Z,, NN,(s) $ Z,; (iv) NN,(r) $ Z,, NN,(s) = Z,; (v) NN,(r) 
$ Z,, NN,(s) $ Z,, NN,(r) $ NN,(s). These cases affect how 

many points are required to be from matching samples-either 

two or three, or two pairs. In particular, Z, and Z, are mutual 

neighbors if case (i) occurs for some r and s, and they share a 

neighbor if case (ii) occurs. 

Let the null probabilities of these events be denoted by Pi 

(r, s), ... , p,(r, s), respectively. Note that these probabilities 

are independent of the sample identities of the points involved 

and symmetric to the arguments. It is easy to see that for i ] j, 

PH(I,(r) = Ij(s) = 1) = Capa(r, s), (A.3) 
a=1 

where 

2 

Cl = E I[i, j E qa] 
a=1 

na -L2 
C2 =2 C4 (Ij E flal - 3) 

2 (na 2)(na -3) 

+ E I[i E fa,] i E3-a] (( - 2)( 3) 4) 

Now usingpI(r, s) = (n - 1'-1PH(NN,(s) = Z, NN,(r) = Z,) 

we easily obtain 

p3(r, s) = p4(r, s) = 1/(n - 1) - p1(r, s) (A.5) 

and 

p5(r, s) = (n - 3)/(n - 1) + p1(r, s) - p2(r, s). (A.6) 

Thus varH(Tk,n) depends on F = G only through p1(r, s) and 

p2(r, s), the probabilities associated with mutual neighbors and 

shared neighbors, respectively. 

Using (A.3)-(A.6) and numerous algebraic manipulations, the 

following expression can be obtained for the variance: 

varH(nkTk,n) = [kn1n2/(n - 1)][1 - {kl(n - 1)} 

x {(nj - n2)2/(n - 2) + 1}] 

nin F4(n,1)(n - 
1)k 

k 

+ 12 - 
n )2 E E pi(r, s) 

-2 1i??P2(r, s)1 
{n- 2 }r=1 s=1 

(A.7) 

Theorem 3.1 follows directly upon taking limits in (A.1) and 
(A.7). 

[Received March 1983. Revised October 1985.1 
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