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Multi-vehicle Control in a Strong Flowfield

with Application to Hurricane Sampling
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A major obstacle to path-planning and formation-control algorithms in

multi-vehicle systems are strong flows in which the ambient flow speed is

greater than the vehicle speed relative to the flow. This challenge is espe-

cially pertinent in the application of unmanned aircraft used for collecting

targeted observations in a hurricane. The presence of such a flowfield may

inhibit a vehicle from making forward progress relative to a ground-fixed

frame, thus limiting the directions in which it can travel. Using a self-

propelled particle model in which each particle moves at constant speed

relative to the flow, this paper presents results for motion coordination in

a strong, known flowfield. We present the particle model with respect to

inertial and rotating reference frames and provide for each case a set of con-

ditions on the flowfield that ensure trajectory feasibility. Results from the

Lyapunov-based design of decentralized control algorithms are presented

for circular, folium, and spirograph trajectories, which are selected for their

potential use as hurricane sampling trajectories. The theoretical results are

illustrated using numerical simulations in an idealized hurricane model.

Nomenclature

N Number of particles in the system

k Particle index k = 1, . . . , N

rk Position of kth particle with respect to inertial frame

r̃k Position of kth particle with respect to rotating frame
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ṙk Velocity of kth particle with respect to inertial frame

˙̃rk Velocity of kth particle with respect to rotating frame

fk Flow velocity at rk

f̃k Flow velocity at r̃k relative to rotating frame

θk Orientation of kth flow-relative velocity with respect to an inertial frame

θ̃k Orientation of kth flow-relative velocity with respect to a rotating frame

γk Orientation of kth total velocity with respect to an inertial frame

γ̃k Orientation of kth total velocity with respect to a rotating frame

uk Flow-relative steering control of kth particle with respect to an inertial frame

νk Total steering control of kth particle with respect to an inertial frame

ũk Flow-relative steering control of kth particle with respect to a rotating frame

ν̃k Total steering control of kth particle with respect to a rotating frame

sk Total speed of kth particle with respect to an inertial frame

h̃k Total speed of kth particle with respect to a rotating frame

s̃k Flow-relative speed of kth particle with respect to a rotating frame

ck center of the kth particle’s trajectory

Ω Constant angular rate of rotating frame

κk Curvature of kth particle’s trajectory

ω0 Constant curvature of a circle of radius |ω0|
−1

K Control gain

n Number of lobes in a folium figure

a Radius of folium lobe

i Imaginary unit

vmax Maximum wind speed in idealized hurricane model

rmax Radius of maximum wind speed in idealized hurricane model

I. Introduction

Unmanned vehicles have shown great value in their ability to explore extreme environ-

ments that are too dangerous for manned vehicles. Autonomous underwater vehicles have

shed light on some of the deepest trenches of the sea,25 while the Mars rovers continue to

explore expanses of the martian landscape. Recently, autonomous vehicles have been pro-

posed as a safe and effective way to penetrate extreme weather systems such as hurricanes

and tornados.4 In 2006, an Aerosonde unmanned aircraft successfully penetrated a typhoon

eyewall while streaming temperature, pressure, and windspeed data to a remote command

center.16 In 2010, the Global Hawk UAV passed over Hurricane Earl.15 In addition smaller
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aerial vehicles are being utilized to sample within tornadic supercell thunderstorms.5

The assimilation of data from previously inaccessible regions of a storm presents the pos-

sibility of more accurate forecasts of both the intensity and trajectory of a weather system.

For hurricanes, existing data sampling methods include the use of satellite imagery, manned

flights, and more recently, remotely piloted unmanned flights. New data assimilation tech-

niques are in development for remotely piloted Global Hawk flights,7 which loiter above the

winds associated with a hurricane at altitudes of up to 65,000 ft.10 In manned flights, the

aircraft eject one-time-use dropsondes to collect data at lower altitudes where it is too dan-

gerous to fly. By deploying hundreds of dropsondes, meteorologists obtain vertical profiles

of atmospheric data in the storm.

Autonomous unmanned aircraft have been proposed as a safer, more efficient alterna-

tive to manned flights for low-altitude penetration of hurricanes;16 collecting observations of

temperature, humidity, and wind at altitudes lower than manned aircraft can safely fly. Re-

placing dropsondes with a smaller number of unmanned, reusable aircraft flying in a moving

formation provides continuous, dynamic data from the hurricane. Unmanned platforms are

designed to withstand the severe winds within the storm and may operate autonomously,

using automatic control algorithms.

To sample a circulating flowfield for forecasting purposes requires azimuthal and radial

sampling densities such that resulting measurements concisely characterize global properties.

In the case of hurricane sampling, manned flights traverse figure-four patterns in order to

sample each quadrant of the storm while minimizing the overall track length.26 To emulate

this sampling strategy requires the development of control algorithms that drive sampling

vehicles in non-convex formations. In addition, these trajectories must be feasible for the

sampling platform in the presence of a strong wind.

In order to design steering algorithms for unmanned aircraft in a hurricane, we study a

planar, self-propelled Newtonian particle model in a strong flowfield (i.e., a flow speed equal

to or exceeding the vehicle speed relative to flow). We provide decentralized Lyapunov-based

control algorithms that stabilize moving formations of multiple vehicles, extending previous

work for moderate18 (flow speeds between 10% and 99% of vehicle speed) and flow-free

models.1,2,21,27 In the flow-free model (flow speeds <10% of vehicle speed), Sepulchre et al.21

provided theoretically justified algorithms for stabilization of synchronized, circular, and

circular symmetric formations. Arranz et al. expanded this result to the family of radially

contracting and expanding2 as well as spatially translating1 circular formations. Moreover,

with the use of curvature functions, Paley et al.17 extended the multi-vehicle formation result

to convex loops; Zhang27 used orbit functions to stabilize formations on smooth curves.

In the moderate flow regime, Frew et al.9 utilized Lyapunov analysis to generate guidance

vector fields that globally stabilize circular loitering patterns. Paley and Peterson18 extended
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the stability of synchronized and circular formations to known, spatially-varying flowfields

as well as circular symmetric formations in uniform flows. Peterson and Paley19 also ex-

tended synchronized and circular formation control to unknown and time-varying flowfields

by implementing onboard flowfield estimators.

The results described below are applicable to more than environmental sampling of ex-

treme weather systems. This work has applications in path planning for autonomous under-

water gliders navigating strong currents6 and in navigation of fixed-wing aircraft in significant

and unknown windfields.3,20 The presence of a strong flow inhibits a vehicle from making

forward progress in some areas of the flowfield, thus limiting the range of directions in which

it can travel. This presents an obstacle to formation control of multi-vehicle systems in that

formations may not be feasible due to spatial or temporal variability in the flow.

The results of this paper rely on the use of Lyapunov-based control design, which uti-

lizes scalar artificial potential functions whose value is minimized by the desired formation.13

We design state-feedback control laws that ensure negative semi-definiteness of the poten-

tial function’s time derivative, invoking the invariance principle to establish the stability

properties of the closed-loop system.13

The contributions of this paper are as follows: (1) we derive self-propelled particle dy-

namics in a strong flow with respect to inertial and rotating reference frames; (2) we provide

kinematic conditions such that a particle can follow a desired trajectory in a strong, known

flowfield; and (3) we present theoretically justified multi-vehicle control laws to stabilize

hurricane sampling formations including circular, folium, and spirograph patterns. These

results extends previous results for convex loops in a uniform moderate flow to closed curves

with non-zero curvature in a spatially varying strong flow.

This paper is organized in the following manner. In Section II, we present a dynamic

model of planar, self-propelled particle motion, first with respect to an inertial reference

frame and then in a reference frame rotating at a constant angular rate. In Section III we

derive the kinematic constraints a strong flowfield must satisfy such that a desired trajectory

is feasible with respect to an inertial frame. In addition, we derive the kinematic constraints

a trajectory must satisfy to be feasible with respect to a rotating reference frame. In Section

IV we present Lyapunov-based decentralized multi-vehicle control algorithms for vehicles

traveling in a strong flow. Section V assesses the feasibility of sampling trajectories in an

idealized hurricane model and, when feasible, we simulate the particle motion under closed-

loop control. Section VI summarizes the paper and provides insight into ongoing work.
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II. Self-Propelled Particle Dynamics in a Strong Flowfield

In this section we review the inertial motion of a self-propelled particle subject to a

strong external flowfield. We derive a model of self-propelled particle motion with respect

to a reference frame rotating at a constant angular rate relative to an inertial frame. The

rotating-frame dynamics form the foundation for analysis of prospective hurricane sampling

patterns, discussed in Section V.

A. Particle Motion With Respect to an Inertial Reference Frame

This paper extends an existing dynamic model common to many works on collective mo-

tion.2,11,17,18,23 The model consists of a collection of N self-propelled Newtonian particles.

Each particle is subject to a control force normal to its velocity and travels at a constant speed

relative to an external flowfield. We assume without loss of generality that the flow-relative

speed is unity. Given a ground-fixed inertial reference frame I (which we identify with the

complex plane), the kth particle’s position is represented by the vector rk = xk + iyk ∈ C.

We represent the kth particle’s velocity by cos(θk) + i sin(θk) = eiθk , where θk is a point on

the unit circle. The control force uk determines the particle’s turn rate, i.e., θ̇k = uk. The

equations of motion for the kth particle area

ṙk = eiθk

θ̇k = uk (r,θ) , k = 1, . . . , N.
(1)

In the presence of a known, time-invariant flowfield, fk = f (rk) ∈ C, each particle’s

velocity is represented by the vector sum of its velocity relative to the flow and the flow

velocity relative to the inertial frame I, as illustrated in Figure 1. The kth particle’s motion

is governed by the equations

ṙk = eiθk + fk

θ̇k = uk (r,θ) , k = 1, . . . , N.
(2)

In this paper we allow |fk| to exceed one, which is the speed of the particle relative to

the flow. Let γk represents the orientation of the kth particle’s inertial velocity and sk its

magnitude. Previous work with moderate flows,18 i.e., where |fk| < 1, utilized the following

coordinate transformation:

γk = arg(eiθk + fk) (3)

sk = |eiθk + fk|. (4)

aWe use bold fonts to represent an N × 1 matrix, e.g., r = [r1 r2 ... rN ]
T
and θ = [θ1 θ2 ... θN ]

T
.
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Figure 1. Illustration of particle motion in (a) moderate flow and (b) strong flow.

Under this transformation, the equations of motion are represented by

ṙk = ske
iγk

γ̇k = νk,
(5)

where νk is the control relative to the fixed inertial frame I. Controls uk and νk are related

byb

uk =
νk − 〈f ′

k, i〉

1− s−1
k 〈eiγk , fk〉

=
skνk − sk〈f

′
k, i〉

sk − 〈eiγk , fk〉
, (6)

where f ′
k = ∂fk

∂rk
. Figure 1 illustrates the particle model in both moderate and strong flow

regimes. Note that a unit circle centered at the tip of fk represents the possible values of

ṙk = eiθk + fk.

Paley and Peterson18 showed that in a moderate flow the transformation (6) defines a

one-to-one mapping between uk (the control relative to the flow) and νk (the control relative

to the ground), since the denominator is never zero. This result allowed development of

control laws for (2), extending those developed for the flow-free model (1). However, for

flow speeds greater than or equal to the vehicle speed, the transformation in (5) is no longer

one-to-one. To see this, consider a particle at position rk subject to a strong flow. The unit

circle ṙk = eiθk + fk is not guaranteed to enclose rk, which implies that the set of possible

inertial velocity orientations is a subset of S1, similar to the cone of admissable directions

presented by Bakolas and Tsiotras.3 That is, any given θk maps to a single γk, but any given

γk maps to one of two possible θk’s. The speed sk is required to determine θk as shown in

Figure 1(b). We identify two singularities in the control transform (6) in Lemma 1.

b〈x, y〉 , Re (x∗y) where x∗ is the complex conjugate of x, denotes the inner product of complex numbers
x and y.
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Lemma 1. For |fk| ≥ 1, the control transform (6) is singular when θk = arg(fk) ±

cos−1(|fk|
−1).

Proof. See Appendix.

Lemma 1 shows that strong flows introduce singularities in the coordinate transform (6),

resulting in an unbounded turn rate. However, the design of the vehicle and the medium in

which it travels dictate the maximum turn rate a vehicle can have. This constraint can be

modeled as a saturation function on uk such that (2) becomes

ṙk = eiθk + fk

θ̇k = sat{uk (r,θ) ; umax},
(7)

where

sat{u; umax} =















umax, u > umax

u, −umax ≤ u ≤ umax

−umax, u < −umax.

(8)

The model (7) allows us to use (5) to design νk and (6) to map νk to uk. umax can be

chosen arbitrarily large, and must be chosen large enough so that νmax = νmax(umax) >

|κmaxsmax|, where κmax is the maximum desired curvature of the particle trajectory and

smax the maximum particle speed along the trajectory. (The relation between umax and

νmax is discussed by Peterson and Paley.19) We represent the upper bound on νk using

γ̇k = sat{ν (r, θ) ; νmax}. Using (7), as θk approaches a singularity, θ̇k remains bounded,

passing through the singular point at a constant rate ±umax.

B. Particle Motion with Respect to a Rotating Reference Frame

To achieve adequate radial and azimuthal sampling within a circulating flowfield, a proposed

sampling formation is that of a spirograph. When viewed with respect to a frame rotating

at constant angular rate, a spirograph trajectory is simply a circular trajectory. The control

algorithms producing circular trajectories and formations in a non-rotating frame are well

studied,21 and reviewed in Section IV. Here, we develop a dynamic model of self-propelled

particles in a rotating reference frame. The control variable ũk regulates the turn rate of the

kth particle. We return to the design of a spirograph control in Section IV.

Let I = (O, e1, e2, e3) represent an inertial reference frame with origin O and B =

(O,b1,b2,b3), where b3 = e3, represent a rotating reference frame with angular velocity
IωB = Ωe3. (When convenient we use complex notation to represent cartesian coordinates in

I and B.) The orientation α = Ωt+α(0) of frame B with respect to I satisfies e1 ·b1 = cosα,

as shown in Figure 2(a). The inertial kinematics of the kth particle with respect to O are
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Figure 2. The orientation of the kth particle’s velocity (a) in no flow and (b) in flow f̃ .

described by rk/O and Ivk/O =
Id
dt
(rk/O), where rk = [rk/O]I is the position expressed in

(complex) coordinates with respect to frame I. We define a path frame C = (k, c1, c2, c3),

where c3 = e3, c1 =
Ivk/O/sk and sk = ‖Ivk/O‖ is the speed of the particle, equal to one when

no flow is present. Let θk be the orientation of the inertial velocity so that e1 · c1 = cos θk.

Since frame B shares its origin with I, the kinematics of k in frame B are given by

rk/O and Bvk/O =
Bd
dt
(rk/O). Similarly, this gives rise to the path frame D = (k,d1,d2,d3),

where d3 = e3, d1 = Bvk/O/s̃k and s̃k = ‖Bvk/O‖ represents the speed of the particle

relative to frame B. In B-frame coordinates, (xk, yk)B, we have rk/O = xkb1 + ykb2 and
Bvk/O = ẋkb1 + ẏkb2, which implies s̃k =

√

ẋ2k + ẏ2k. Let θ̃k be the orientation of Bvk/O

relative to b1, so that b1 · d1 = cos θ̃k.

The transport equation12 Ivk/O = Bvk/O + IωB × rk/O gives the kinematic relationship

skc1 = s̃kd1 + Ωb3 × (xkb1 + ykb2) = s̃kd1 + Ω(xkb2 − ykb1). (9)

Noting that c1 = cos θke1 + sin θke2, (9) can be written

sk cos (θk − αk)b1 + sk sin (θk − αk)b2 =
(

s̃k cos θ̃k − Ωyk

)

b1 +
(

s̃k sin θ̃k + Ωxk

)

b2. (10)

The inertial derivative of (9), assuming sk is constant, gives

skθ̇kc2 = ˙̃skd1 + s̃k

(

˙̃θk + Ω
)

d2 −
(

Ωẏk + Ω2xk
)

b1 +
(

Ωẋk − Ω2yk
)

b2, (11)

which by utilizing c2 = − sin (θk − α)b1 + cos (θk − α)b2 results in the scalar equations of
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motion relative to frame B:

−skuk sin(θ − α) = ˙̃sk cos θ̃k − s̃k(
˙̃θk + Ω) sin θ̃k − xkΩ

2 − ẏkΩ

skuk cos(θk − α) = ˙̃sk sin θ̃k + s̃k(
˙̃θk + Ω) cos θ̃k − ykΩ

2 + ẋkΩ.

Note that substituting ẋk = s̃k cos θ̃k and ẏk = s̃k sin θ̃k into (10) to eliminate θk − α and

sk gives

−uks̃k sin θ̃k − ukΩxk = ˙̃sk cos θ̃k − s̃k(
˙̃θk + Ω) sin θ̃k − xkΩ

2 − s̃k sin θ̃kΩ

uks̃k cos θ̃k − ukΩyk = ˙̃sk sin θ̃k + s̃k(
˙̃θk + Ω) cos θ̃k − ykΩ

2 + s̃k cos θ̃kΩ.
(12)

Solving (12) for ˙̃sk and
˙̃θk, respectively, with complex notation r̃k = xk+iyk = [rk/O]B results

in the equations of motion of the kth particle relative to frame B:

˙̃rk = s̃ke
iθ̃k

˙̃sk = (Ω2 − ukΩ)〈r̃k, e
iθ̃k〉

˙̃θk = uk − 2Ω + s̃−1
k (Ω2 − uΩ)〈r̃k, ie

iθ̃k〉 , ũk.

(13)

We define the flow-relative control variable with respect to the rotating frame, ũk, such that

the mapping to the inertial control uk is

uk =
ũk s̃k+2Ωs̃k−Ω2〈r̃k,ie

iθ̃k 〉

s̃k−Ω〈r̃k,ie
iθ̃k 〉

. (14)

Equations (13) and (14) are the equations of motion of an inertially unit-speed vehicle

represented in coordinates relative to frame B rotating with constant angular rate Ω.

Note that the mapping from ũk to uk is singular when s̃k = Ω〈r̃k, ie
iθ̃k〉. The following

result establishes the singular conditions with respect to the inertial speed sk.

Lemma 2. The control transform (14) is singular when the speed of the particle in a flow-free

inertial frame is sk = Ω〈r̃k, e
iθ̃k〉.

Proof. See Appendix.

The singularity identified in Lemma 2 occurs when the speed of the vehicle is zero with

respect to frame B. For example, when eiθ̃k is normal to r̃k the singular condition simplifies

to Ω−1 = |r̃k|, which for a unit speed particle is equivalent to the familiar equation of the

velocity of a rotating particle constrained to a circle.

In the presence of an external flowfield, the dynamics presented in (13) must also include

flow terms. With respect to the rotating frame, the inertial flowfield is represented via the

9 of 27



transport equation12 such that

fk = f̃k +
IωB × r̃k, (15)

where f̃k represents the flowfield relative to the rotating frame. Similar to (2) the flowfield

is incorporated into (13) such that we achieve

˙̃rk = s̃ke
iθ̃k + f̃k

˙̃sk = (Ω2 − ukΩ)〈r̃k, e
iθ̃k〉

˙̃θk = ũk,

(16)

where uk is calculated from ũk using (14).

We desire to control the direction of the total velocity of the particle rather than the

flow-relative velocity. For this reason let

h̃k , |s̃ke
iθ̃k + f̃k|

γ̃k , arg(s̃ke
iθ̃k + f̃k),

such that ˙̃rk = h̃ke
iγ̃k . Figure 2(b) illustrates the following relations

h̃k cos γ̃k = s̃k cos θ̃k + 〈f̃k, 1〉

h̃k sin γ̃k = s̃k sin θ̃k + 〈f̃k, i〉,
(17)

which after division yield

tan γ̃k =
s̃k sin θ̃k+〈f̃k,i〉
s̃k cos θ̃k+〈f̃k,1〉

. (18)

Taking the time derivative of (18) and using (17) gives

˙̃γk =
〈
˙̃
fk,ie

iγ̃k 〉−(Ω2−uΩ)[〈r̃k,h̃ke
iγ̃k 〉−〈r̃k,f̃k〉]〈f̃k,ieiγ̃k 〉s̃−2

k
+(h̃k−〈f̃k,e

iγ̃k 〉)νk
h̃k

, ν̃k, (19)

where ν̃k represents control of the total velocity orientation with respect to the rotating

frame and ˙̃fk =
∂f̃k
∂r̃k

˙̃rk. Using (19) with (14) yields the following mapping between uk and ν̃k

necessary for implementing a control designed in the rotating frame for use in the inertial

frame:

uk =
h̃k ν̃k−〈

˙̃
fk,ie

iγk 〉+2Ω(h̃k−〈f̃k,ie
iγk 〉)+Ω2〈r̃k,h̃ke

iγk−f̃k〉〈f̃k,ie
iγ̃k 〉s̃−2

k
−Ω2(h̃k−〈f̃k,e

iγ̃k 〉)〈r̃k,ieiθ̃k 〉s̃−1

k

h̃k−〈f̃k,e
iγ̃k 〉−Ω|f̃k|

2

s̃−2

k
〈r̃k,ie

iγ̃k 〉+Ωh̃k s̃
−2

k (〈r̃k,if̃k〉+〈r̃k,e
iγ̃k 〉〈f̃k,ie

iγ̃k 〉+〈f̃k,e
iγ̃k 〉〈r̃k,ie

iγ̃k 〉)−Ωh̃k s̃
−2

k
〈r̃k,ie

iγ̃k 〉

(20)

We now write the equations of motion of particle k with respect to a rotating frame

10 of 27



fk

C

e
iγk

ie
iγk

rk

Im{rk}

Re{rk}

fke
iγk

ie
iγk

I

(a)

C

r̃k

Im{r̃k}

Re{r̃k}

e
iθ̃k

B

|Ω|−1

r̃k
e
iθ̃k

α
∗

(b)

Figure 3. Feasibility constraint for (a) inertial frame and (b) rotating flow-free frame.

subject to a flowfield:

˙̃rk = h̃ke
iγ̃k

˙̃sk = (Ω2 − ukΩ) 〈r̃k, h̃ke
iγ̃k − f̃k〉s̃

−1
k

˙̃γk = ν̃k,

(21)

where uk is given by (20). Similar to the inertial-frame dynamics, saturation is used to avoid

singularities between control mappings (14) and (20).

For a known, spatially varying flowfield h̃k can be calculated as follows.18 Let f̃k = αk+iβk

represent the flowfield at position r̃k where αk = 〈f̃k, 1〉 and βk = 〈f̃k, i〉 represent the real

and imaginary parts of the flow respectively. By definition,

h̃k =
√

s̃2k − α2
k − β2

k + 2h̃k (αk cos γ̃k + βk sin γ̃k). (22)

Squaring this result and utilizing the quadratic formula to solve for h̃k gives

h̃k = 〈eiγ̃k , f̃k〉+
√

s̃2k − 〈ieiγ̃k , f̃k〉2, (23)

where we take the positive root since h̃k > 0.

III. Trajectory Feasibility in a Strong Flow

Strong flows present the possibility that a desired trajectory or formation is not feasible.

In this section, we derive the kinematic conditions a flowfield must satisfy to ensure trajectory

feasibility. Conditions are derived with respect to both inertial and rotating reference frames.

These results have similarities to that of Bakolas and Tsiotras in assessing the reachability of
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two points within a flowfield for a kinematic model of an aircraft,3 but we consider flowfields

that can vary continuously through space rather than flowfields that are assumed to be

regionally uniform.

A. Feasibility With Respect to an Inertial Reference Frame

As a motivating example, in a strong uniform flow, a vehicle has no recourse but to be swept

downwind. This presents a challenge to coordinated motion in that individual vehicles may

not be able to reach the desired formation. Moreover, the desired trajectory itself may not

be achievable if even a portion of the trajectory opposes the flow. The following analysis

describes a set of constraints the flow must satisfy such that a given desired trajectory is

feasible.

For a unit-speed vehicle to travel along C, the flow at every point on the path must be

such that the vehicle can maintain forward progress with velocity tangent to C. That is,

for every point on the desired trajectory, the component of the flow normal to C must be

less than or equal to one. Mathematically, this implies that the absolute value of the inner

product of the normal vector ieiγk and the flow must satisfy |〈ieiγk , f〉| ≤ 1. If 〈eiγk , fk〉 < 0,

then the flow opposes the direction of the trajectory and must therefore have magnitude less

than one for the vehicle to make forward progress along C. If 〈eiγk , fk〉 ≥ 0, then the flow

must only satisfy the normal constraint. This result is summarized as follows:

Theorem 1. Trajectory C is feasible in flowfield f if for all rk ∈ C, fk = f (rk) satisfies

〈eiγk , fk〉 < 0 and |fk| < 1, or

≥ 0 and |〈ieiγk , fk〉| ≤ 1,
(24)

where eiγk is tangent to C at rk.

Theorem 1 implies that the flow vector at a given point on the trajectory must lie within

a U-shaped envelope oriented along the trajectory, shown by the green-shaded region in

Figure 3(a). Trajectories that do not satisfy (24) are not feasible. In a known, time-invariant

flowfield Theorem 1 allows one to quantify regions of the flowfield in which parametric families

of feasible trajectories are found.

To illustrate Theorem 1 we evaluate (24) for a family of circular trajectories in a strong

flowfield. Analysis over the entire space of candidate circle centers produces a map of regions

in which feasible trajectories can be achieved. This analysis is shown in Figure 4 for an

arbitrary, strong flowfield. Circles whose center lie in a shaded region are not feasible;

unshaded regions are feasible. Three sample trajectories are plotted. Red arrows indicate

where the flow fails the constraints given in Theorem 1.
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(a) (b)

Figure 4. Feasible regions for counterclockwise circular trajectories (a) radius |ω0|
−1

= 20 and

(b) |ω0|
−1

= 30.

B. Feasibility with Respect to a Rotating Reference Frame

In Section II we derive the dynamics of a self propelled particle with respect to a rotating

reference frame. The equations of motion in (13) reveal that the speed of the particle in

the rotating frame is a dynamic variable whose time derivative depends on the position and

velocity of the particle. In this subsection we define the kinematic constraints on motion

with respect to a rotating reference frame in a flow-free setting.

In the absence of an external flow, the kinematic terms arising from the rotating reference

frame affect the speed s̃k of the vehicle with respect to the rotating frame. For a constant-

speed particle traveling in the direction of rotation, the speed of the particle with respect

to a rotating reference frame is a decreasing function of the rotation rate and the distance

to the center of rotation. For a given trajectory to be feasible with respect to the rotating

frame, a particle must maintain forward progress over the entire trajectory, which implies

the following result.

Lemma 3. Trajectory C is feasible with respect to (13) if, for all r̃k ∈ {r̃k ∈ C| |r̃k| ≥ |Ω|−1},

Ω〈r̃k, ie
iθ̃k〉 > 0 and |Ω〈r̃k, e

iθ̃k〉| ≤ 1. (25)

where eiθ̃k is tangent to C at r̃k.

Proof. Summing the squared components of (10) and using sk = 1 yields

1 = s̃2k + Ω2
(

x2 + y2
)

+ 2Ωs̃k.
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Completing the square to solve for s̃k and simplifying with r̃k = xk + iyk gives

s̃k = Ω〈r̃k, ie
iθ̃k〉+

√

1− Ω2〈r̃k, eiθ̃k〉2, (26)

where the positive root is taken since s̃k > 0 is required to maintain forward progress. Notice

that the inner products 〈r̃k, ie
iθ̃k〉 and 〈r̃k, e

iθ̃k〉 differ in phase by π/2 which implies that for

|r̃k| < |Ω|−1, (26) is strictly greater than zero. A trajectory is infeasible if Im(s̃k) 6= 0 or

s̃k < 0, implying that for |r̃k| ≥ |Ω|−1 a feasible trajectory must satisfy (25).

Lemma 3 is illustrated for Ω > 0 in Figure 3(b). Feasible trajectories with |r̃k| ≥ |Ω|−1

must travel in a direction opposing the rate of rotation in order to maintain forward progress

with respect to the rotating frame. An infeasible path is shown in red. The range of

feasible directions of travel is determined by the position of the vehicle and rate of rotation

of the rotating frame. Notice that in complex notation (10) can be written ei(θk−α) =

s̃ke
iθ̃k + iΩr̃k. Therefore, we can represent the velocity with respect to the rotating frame as

s̃ke
iθ̃k = ei(θk−α) − iΩr̃k. Thus, the range of feasible velocities with respect to the rotating

frame is defined by a unit circle drawn about the tip of −iΩr̃k. It can be shown that

for |r̃k| > |Ω|−1 the range of feasible directions of travel α∗ about arg(−iΩr̃k) is given by

α∗ = 2 sin−1 (|Ωr̃k|
−1).

IV. Multi-vehicle Control in a Strong Flowfield

In this section we review the design of multi-vehicle control for a moderate flowfield and

derive circular and folium control laws for the particle model (2) in a strong flowfield. The

results of this section are also applicable to the model (16) for a rotating reference frame as

discussed in Section V.

A. Review of Curvature Control in a Moderate Flowfield

In this section we describe individual particle curvature control in a moderate flow, following

the work of Paley et al.,17 who produced decentralized algorithms to stabilize the family of

convex loops called superellipses in a flow-free environment and Techy et al.,23 where the

convex-loop results were first extended to the vehicle model with flow (5).

Our goal is to drive the kth particle about a smooth, closed curve C with definite, bounded

curvature, κk. To do so, C is parameterized by its center ck. In a ck-centered reference frame

the particle position ρk is parameterized by the central or polar angle, φk. For a closed curve

C, completion of one rotation about sweeps through 2π radians. Thus, ρk (φ) ∈ C where

φk ∈ [0, 2π). The orientation of the particle’s inertial velocity relative to the ck centered

frame is γk and we assume a smooth mapping γk 7→ φ (γk) exists. The derivative dρk
dφk

is
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tangent to C, implying the constraint eiγk =
∣

∣

∣

dρk
dφk

∣

∣

∣

−1
dρk
dφk

.

The local curvature is

κk (φk) = ±
dγk
dσ

(27)

where

σ (φk) =

∫ φk

0

∣

∣

∣

∣

dρ

dφ

∣

∣

∣

∣

dφ (28)

is the arc length along the curve. Note that the sign of κk determines the direction of rotation

about the curve—clockwise or counterclockwise. Equations (27) and (28) imply

κ−1
k = ±

dσk
dφk

dφk

dγk
= ±

∣

∣

∣

∣

dρk
dφk

∣

∣

∣

∣

dφk

dγk
. (29)

Under the tangent constraint, (29) can be written

eiγkκ−1
k = ±

dρk
dφk

dφk

dγk
=
dρk
dγk

.

In a reference frame not centered at ck, C has center ck = rk ∓ ρk. The time derivative

along solutions of (3) gives the velocity of the center

ċk = ske
iγk ∓

dρk
dγk

dγk
dt

= eiγk
[

sk ∓ κ−1
k νk

]

. (30)

From (30) we see that the curvature control algorithm

νk = ±κksk (31)

forces ċk = 0, implying that the kth particle drives about a stationary C.

We use Lyapunov analysis to design a decentralized control to collectively steer the

particles such that they achieve coincident centers, i.e., c = [c1 c2 ... cN ]
T = c01, where

c0 ∈ C and 1 ∈ R
N . Consider the Lyapunov function23

S (r,γ) =
1

2
〈c,Pc〉 (32)

where P is an N ×N projection matrix, P = IN×N − 1
N
11T . P defines the communication

topology of the system and in this paper corresponds to all-to-all communication.8 (Exten-

sions of the flow-free model to limited communication topologies is possible.22) Equation

(32) is positive semi-definite with equality to zero occurring when c = c01, c0 ∈ C. Using
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(30), the time derivative of (32) is

Ṡ (r,γ) =
N
∑

k=1

〈ċk, Pkc〉 =
N
∑

k=1

〈eiγk ,Pkc〉
(

sk ∓ κ−1
k νk

)

, (33)

where Pk is the kth row of P. Notice that the control

νk = ±κk
(

sk +K〈eiγk ,Pkc〉
)

(34)

substituted into (33) gives

Ṡ (r,γ) = −K

N
∑

k=1

〈eiγk ,Pkc〉
2 ≤ 0. (35)

The invariance principle stipulates that solutions of (5) with control (34) converge to the

largest invariant set Λ where

〈eiγk ,Pkc〉 ≡ 0. (36)

Since eiγk 6= 0, then Pkc = 0 in Λ, which is satisfied when the centers are coincident.

Moreover, when (36) is satisfied the control in (34) simplifies to (31) which implies ċ = 0.

A simple example of this control strategy is that of a circular formation. A circle has

constant curvature, κk = ω0 for all k, which defines a radius of |ω0|
−1. A particle traversing

a circular trajectory has inertial velocity tangent to the radius of the circle. Thus, the center

of the kth particle’s trajectory with control νk = ω0sk is

ck = rk + ω−1
0

ṙk
|ṙk|

= rk + ω−1
0 eiγk . (37)

The vector c is then used to calculate the control of kth particle according to (34) with

κk = ω0.

B. Decentralized Multi-vehicle Control in a Strong Flowfield

In this section we describe the design of a multi-vehicle control law that steers individual

particles to a desired feasible formation in a strong flowfield. We establish the stability of

multi-vehicle formations in a strong flow when the initial formation centers lie in a feasible

region. We use the notation B (x, a) to represent a ball of radius a centered about x ∈ C.

Theorem 2. Let F be a feasible region and c0 ∈ C. If B (c0, |ck (0)− c0|) ⊂ F , the model

(2) with the control algorithm (6) where

νk = sat
(

ω0

(

sk +K〈eiγk , ck − c0〉
)

; νmax

)

(38)
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and

νmax > max
k

|ω0sk|

forces convergence of the kth particle to a circular formation of radius |ω0|
−1 centered at c0.

Proof. Consider the candidate Lyapunov function

V =
1

2
|ck − c0|

2, (39)

where ck is given by (37). The time derivative of (39) is

V̇ = 〈ck − c0, ċk〉 = 〈ck − c0, e
iγk〉

(

sk − ω−1
0 νk

)

. (40)

Note from (38) that for |νk| < νmax

〈ck − c0, e
iγk〉 =

νk − ω0sk
Kω0

. (41)

Substituting this result into (40) gives

V̇ =

(

νk − ω0sk
Kω0

)

(

sk − ω−1
0 νk

)

= −
(νk − ω0sk)

2

Kω2
0

≤ 0. (42)

When |νk| = νmax, V̇ < 0 since νmax > maxk |ω0sk|. Consequently, ck is bounded within

B (c0, |ck (0)− c0|) ⊂ F . Moreover, solutions converge to the largest invariant set in which

V̇ = 0. From (38) and (40) this set contains solutions for which νk = ω0sk, which implies

ck = c0.

Theorem 2 shows that an individual particle will converge to a reference center provided

that the reference center and initial particle center lie within a feasible region. We call this

reference center a prescribed center and any particle with information of the prescribed center

an informed particle. The following result shows that a multi-vehicle system having initial

centers in a feasible region and at least one informed particle will converge to a prescribed

center in the same feasible region.

Theorem 3. The model (2) with the control algorithm (6) and

νk = sat
(

ω0

[

sk +K
(

〈eiγk ,Pkc〉+ ak0〈e
iγk , ck − c0〉

)]

; νmax

)

, K > 0, (43)

where ak0 = 1 if the kth particle is informed of c0 and zero otherwise, forces convergence to
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the circular formation of radius |ω0|
−1 centered at c0 if

B(c0,max
j

|cj (0)− c0|) ⊂ F , (44)

ak0 6= 0 for at least one particle, and

νmax > max
k

|ω0sk| .

Proof. Consider the composite Lyapunov function21

S = 1
2
〈c,Pc〉+ 1

2

∑N
k=1 ak0 |ck − c0|

2 . (45)

The time derivative of (45) along solutions of (2) is

Ṡ =
N
∑

k=1

(

〈eiγk , Pkc〉+ ak0〈e
iγk , ck − c0〉

) (

sk − ω−1
0 νk

)

.

For νk < νmax notice from (43)

νk − ω0sk
Kω0

= 〈eiγk , Pkc〉+ ak0〈e
iγk , ck − c0〉

giving

Ṡ = −K
∑N

k=1
(νk−ω0sk)

2

Kω2

0

≤ 0. (46)

When νk = νmax, Ṡ < 0 since νmax > maxk |ω0sk|. Therefore the collection of particle centers

is bounded within the ball (44). Solutions converge to the largest invariant set for which

Ṡ = 0, which occurs when νk = ω0sk for all k, implying from (43)

〈eiγk ,Pkc〉+ ak0〈e
iγk , ck − c0〉 = 0 (47)

for all k.

If ak0 = 0 for at least one and at most N − 1 particles, then (47) is satisfied only if

Pkc = 0, which occurs when ck = cj for all k and j. For k with ak0 = 1, (47) is satisfied

only if ck = c0. Therefore, c must satisfy c = c01.
18

Simulation results for an arbitrary flowfield are shown in Figure 5(a) for ω−1
0 = 20,

K = 0.1, and c0 = −50+40i. Particle trajectories are shown in blue and the final formation

is shown in black. The reference center was chosen to be consistent with the feasibility

analysis of Figure 4(a).

18 of 27



−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

Re(r)

Im
(r

)

(a)

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Re(r)

Im
(r

)

(b)

Figure 5. (a) Simulation of N = 10 particles with circular control algorithm (43) in a strong
flowfield; (b) quadrifolium formation in moderate flowfield.

C. Stabilization of Folium Formations

One method for data collection in a hurricane is to fly a figure-four pattern through the

center of the hurricane. A flight path with a continuous first derivative covering similar

spatial densities is that of the n-petalled folium, or polar rose, where n ≥ 3. Specifically,

the quadrifolium (n = 4) is a pattern similar to a figure-four with continuous curvature. In

polar coordinates, the equation of the n-folium is ρ = a sin (g (n)φ), where ρ is the distance

from the origin, n is the number of lobesc, φ ∈ [0, 2π] is the central or polar angle, a is the

maximum radius of the lobes, and

g(n) =







n, n odd

n/2, n even.

We showed in Section IV.A that curvature control νk = κksk, where κk = κk (γk) is the

curvature, drives the particle along the desired curve. Previous work required the curvature

to be nonzero and the figure to be convex.17,23,27 Here we relax the convexity assumption.

The n-folium is not convex; however, its curvature is strictly positive (or negative). In

traversing one rotation about the figure the particle velocity rotates through 2π (g (n)− 1)

radians for n odd and 2π (g (n) + 1) radians for n even. Using a curvature control νk = κksk

requires γk to be defined over 2π (g (n)± 1) radians. To accomplish this, we augment our

state-space equations with a lobe-counter, lk, which determines the number of lobes a particle

has traversed. As a particle’s velocity orientation crosses 2π, lk increases by one, giving the

cn must be odd or divisible by four to be considered a folium.24
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following hybrid state-space equations of the kth particle:

ṙk = eiθk + fk

θ̇k = uk

lk (t+∆t) = lk + ⌊γk(t)
2πlk

⌋,

(48)

where ⌊x⌋ is the largest integer less than x and lk is an integer. Then, by utilizing the

curvature control as a function of γk and lk we have

νk = κk (γk (θk) + 2πlk) sk. (49)

Equation (49) drives the kth particle about a non-convex figure with strictly positive (nega-

tive) curvature.

In the case of the folium, the curvature as a function of the polar angle, φk, is the polar

curvature formula24

κk (φk) =
|ρ2k + 2ρ′2k − ρkρ

′′
k|

(ρ2k + ρ′2k )
3/2

=
n2 + n2 sin2 (nφk) + cos2 (nφk)

a
[

cos2 (nφk) + n2 sin2 (nφk)
]3/2

. (50)

In order to provide state feedback, one must specify the central angle as a function of

the relative orientation such that the curvature control law is valid. This relation for the

quadrifolium is24

γk (φk) =
1

2
π + φk − tan−1 (cotφk − tanφk) + π⌊2φk/π⌋. (51)

Note the tangential angle is a function of the central angle, not vice versa. To implement

(51) we use a look-up table. From (50) and (51) we numerically calculate the curvature as a

function of the inertial orientation, such that the control (49) drives the particle around the

quadrifolium trajectory. We have the following result, which extends Theorem 3 to curves

with definite curvature.

Proposition 1. Consider the quadrifolium with curvature κk given by (50) and γk given by

(51). For the model (2), the control algorithm (6) with

νk = κk
[

sk +K
(

〈eiγk ,Pkc〉+ 〈eiγk , ck − c0〉
)]

. (52)

where ck = ck(γk) is the instantaneous center of the quadrifolium, drives the kth vehicle about

a quadrifolium formation centered at c0.

Simulation results for N = 10 particles in a quadrifolium formation centered at c0 = 0
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Figure 6. (a) Regions of achievable centers for counterclockwise circular trajectories of radius

|ω0|
−1

= 30; (b) simulation of the control (43) for N = 10 particles with c0 = 0.

are shown in Figure 5(b). This simulation utilized a moderate flowfield

f (rk) = q0 (sin (2πωxk − ψ0)− i cos (2πωyk − ψ0)) ,

with q0 = −0.5, ω = 0.0014, and ψ0 = 3. Particle trajectories are plotted in blue and the

final formation configuration is shown in black.

V. Design and Stabilization of Hurricane Sampling Patterns

In this section, we consider a Rankine vortex model of a hurricane.14 A Rankine vortex is

azimuthally symmetric. The tangential windspeed varies linearly with radius to its maximum

vmax at radius rmax and exponentially decreases for radii greater than rmax with exponential

decay constant α. The Rankine vortex model is14

|f(r)| =







vmax (|r|/rmax) , 0 < |r| < rmax

vmax (|r|/rmax)
−α , |r| > rmax.

The radius r = rmax represents the eyewall of an idealized hurricane.

Circular formations are an attractive sampling option in a circulating flowfield because

large regions of the flowfield are feasible centers of rotation. Figure 6 shows the result of

evaluating the kinematic constraint (24) for a circular trajectory of radius |ω0|
−1 = 30. A

drawback of this formation is that there is a fundamental tradeoff between azimuthal and

radial sampling densities for a given radius of rotation. For example, a circular formation

centered at the origin of a vortex provides good azimuthal sampling but measurements at
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Figure 7. (a) Regions of achievable centers for quadrifolium trajectories of radius a = 20; (b)
simulation of (43) with N = 10 particles.

only one radius. A formation not centered at the origin of the vortex provides measurements

at multiple radii at the expense of sampling some quadrants of the vortex less frequently

than others.

Simulation results of the control algorithm in (43) is shown in Figure 6(b) for Rankine

vortex parameters vmax = 1.5, rmax = 30, and α = 0.6. Notice that the control is calculated

based on the inertial variable γk, which corresponds to two values of θk. This implies that

the control does not differentiate between aligning or opposing the flowfield.

The same analysis can be used on quadrifolium formations. Figure 7(a) illustrates anal-

ysis of the feasibility over a space of centers contained within the Rankine vortex. Figure

7(b) illustrates simulation of the control (43) with N = 10 particles. The particle trajec-

tories are shown in blue and the formation after convergence is shown in black. Feasibility

analysis reveals that feasible folia are centered close to the origin. With a = 20, rmax = 30,

and vmax = 1.5, quadrifolia centered about the origin are in a moderate flow regime for the

majority of the trajectory.

An alternative to circular and folia trajectories that achieve good sampling density and

are feasible in a Rankine vortex are spirographs. Spirograph formations are achieved by

traversing a circle with respect to a rotating frame. This family of formations combines

the advantages of circular and folia formations in that they generally align with the vortex

while criss-crossing the eyewall. The feasibility of various spirograph parameter sets in the

presence of a Rankine vortex is the subject of ongoing work.

Simulation of the steering control (43) used in the equations of motion (21) for N = 10

particles is shown in Figure 8. The formation parameters are Ω = 0.0125 rad/s, ω−1
0 = 40,

and ρ = 30. A circular formation with respect to a rotating reference frame produces a

spirograph formation in an inertial reference frame. Spirograph trajectories provide better

radial and azimuthal sampling densities when compared to the circular and quadrifolium
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Figure 8. Spirograph formation produced by utilizing circular control with respect to rotating
frame with flow; trajectory in (a) inertial reference frame and (b) rotating reference frame.

formations of Figures 6 and 7.

VI. Conclusion

A strong flow presents challenges to multi-vehicle autonomous formation control. The

presence of strong flows limit the authority of the vehicle to completely dictate its inertial

direction of travel, making path planning and collective formation control laws more difficult

to design. However, in certain flows, decentralized multi-vehicle control algorithms driving

particles to desired formations are feasible. In this paper, we utilize a homogenous vehicle

model consisting of unit-speed Newtonian particles with gyroscopic steering control in a

flowfield whose flowspeeds can exceed that of the particles. Assuming a known flow, we

address the properties a flowfield must satisfy such that given trajectory is feasible. We show

that circular formations will converge to a reference center as long as the reference center

is feasible. The main results are applied in simulation to an idealized hurricane model. In

addition, by using a lobe counting variable, we numerically derive and illustrate a control law

driving a collection of particles to a family of non-convex curves called folia, specifically the

quadrifolium. These curves closely match that of current hurricane sampling trajectories of

manned, and remotely piloted vehicles. Finally, we develop the dynamics of an inertially unit

speed particle with respect to a rotating frame to produce spirograph sampling formations.

We derive the kinematic feasibility constraints of motion with respect to the rotating frame

and simulate vehicle motion in an idealized hurricane model. In ongoing work, we seek to

derive control laws converging to a wider set of strong flows, and continue investigation of

general flowfield properties which dictate the convergence of multi-vehicle formations.
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Figure 9. Orientation relations corresponding to singularities of (6).

Appendix

Proof of Lemma 1: Substituting (3) and (4) into the denominator of (6) implies that uk

is singular when

sk = 〈eiγk , fk〉 = |eiθk + fk|
−1
〈eiθk + fk, fk〉 = sk

−1
(

〈eiθk , fk〉+ |fk|
2
)

. (53)

If one considers the flow, fk, in its polar form, fk = |fk|e
iφk , where φk = arg (fk), substitution

into (53) and solving for 〈eiθk , eiφk〉 gives

〈eiθk , eiφk〉 = cos(φk − θk) = |fk|
−1

(

s2k − |fk|
2
)

= |fk|
−1

(

|eiθk + fk|
2 − |fk|

2
)

(54)

Notice in Figure 9 that when eiθk is drawn such that
∣

∣eiθk + fk
∣

∣ is tangent to a unit circle

drawn about fk, a right triangle is formed with hypotenuse |fk|, and sides
∣

∣eiθk + fk
∣

∣ and
∣

∣eiθk
∣

∣. Since the vector triad forms a right triangle let ξ = sin−1
(

|fk|
−1), and since the sum

of the interior angles of a triangle are supplementary,

ξ + α +
π

2
= π. (55)

By projecting fk note also that

θk − φk + α = π. (56)

Equating (56) and (55) and taking the cosine of the result implies

cos (θk − φk) = −|fk|
−1, (57)

which when substituted into (54) gives the Pythagorean Theorem, |eiθk + fk|
2 + 1 = |fk|

2.

Thus, when sk = 〈eiγk , fk〉, θk is such that eiθk , fk, and e
iθk +fk form a right triangle. Solving
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(57) for θk while noting cos (θk − φk) = cos (φk − θk) completes the proof.

Proof of Lemma 2: The absolute value of (9) squared gives

s2k = s̃2k + Ω2〈r̃, r̃〉 − 2Ω〈r̃, ieiθ̃k〉. (58)

Substituting the singular condition s̃k = Ω〈r̃k, ie
iθ̃k〉 into (58) yields

s2k = Ω2〈r̃k, ie
iθ̃
k 〉

2 + Ω2〈r̃k, r̃k〉 − 2Ω2〈r̃k, ie
iθ̃k〉2

= Ω2〈r̃k, e
iθ̃k〉2,

revealing a relation between the speed of a particle and its position such that the mapping

can become singular

sk = Ω〈r̃k, e
iθ̃k〉. (59)

Specifically, if the vehicle is assumed to travel at unit speed in the inertial frame the mapping

is singular if Ω−1 = 〈r̃k, e
iθ̃k〉.

Acknowledgments

The authors would like to acknowledge Angela Maki, Doug Koch, and Sharan Majumdar

for discussions contributing to the results of this work. This material is based upon research

supported by the National Science Foundation under Grant No. CMMI0928416 and the

Office of Naval Research under Grant No. N00014-09-1-1058.

References

1L. Arranz, A. Seuret, and C. Canudas de Wit, Translation control of a fleet circular formation of

AUVs under finite communication range, Conference on Decision and Control (Shanghai, China), December

2009, pp. 8345–8350.

2 , Contraction control of a fleet circular formation of AUVs under limited communication range,

American Control Conference (Baltimore, MD), June 2010, pp. 5991–5996.

3E. Bakolas and P. Tsiotras, Minimum-time paths for a light aircraft in the presence of regionally-

varying strong winds, In AIAA Infotech at Aerospace (Atlanta, GA), AIAA Paper 2010-3380, April 2010.

4J. Elston, B. Argrow, E. Frew, and A. Houston, Evaluation of UAS concepts of operation for se-

vere storm penetration using hardware-in-the-loop simulations, AIAA Guidance, Navigation, and Control

Conference (Toronto, Canada), August 2010, pp. 8178–8193.

5Jack Elston, Semi-autonomous small unmanned aircraft systems for sampling tornadic supercell thun-

derstorms, Ph.D. thesis, University of Colorado, 2011.

6D. R. Thompson et al., Spatiotemporal path planning in strong, dynamic, uncertain currents, IEEE

International Conference on Robotics and Automation (Anchorage, AK), 2010, pp. 4778–4783.

25 of 27



7Ruba A. Amarin et al., Estimates of hurricane wind speed measurement accuracy using the airborne

hurricane imaging radiometer, Proceedings of the 29th Conference on Hurricane and Tropical Meteorology

(Tucson, AZ), May 2010.

8J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE

Transactions on Automatic Control 49 (2004), no. 9, 1465–1476.

9E. Frew, D. Lawrence, and S. Morris, Coordinated standoff tracking of moving targets using Lyapunov

guidance vector fields, AIAA Journal of Guidance, Control, and Dynamics 31 (2008), 290–306.

10W. Ivancic and D. Sullivan, Delivery of unmanned aerial vehicle data, Earth Science Technology Forum

(Arlington, VA), June 2010.

11E. W. Justh and P. S. Krishnaprasad, Equilibria and steering laws for planar formations, Systems and

Control Letters 52 (2003), 25–38.

12N. Kasdin and D. A. Paley, Engineering dynamics: A comprehensive introduction, Princeton University

Press, 2011.

13H. K. Khalil, Nonlinear systems, 3rd ed., Prentice Hall, 2002.

14A. Krener and K. Ide, Measures of unobservability, IEEE Conference on Decision and Control (Shang-

hai, China), December 2009, pp. 6401–6406.

15Lihua Li, G. Heymsfield, J. Carswell, D. Schaubert, M. McLinden, M. Vega, and M. Perrine, Develop-

ment of the NASA high-altitude imaging wind and rain airborne profiler, 2011 IEEE Aerospace Conference,

March 2011, pp. 1–8.

16P. Lin, Observations: The first successful typhoon eyewall-penetration reconnaissance flight mission

conducted by the unmanned aerial vehicle, Aerosonde, Bulletin of the American Meteorological Society 87

(2006), 1481–1483.

17D. A. Paley, N. Leonard, and R. Sepulchre, Stabilization of symmetric formations to motion around

convex loops, Systems and Control Letters 57 (2006), 209–215.

18D. A. Paley and C. Peterson, Stabilization of collective motion in a time-invariant flowfield, AIAA

Journal of Guidance, Control, and Dynamics 32 (2009), 771–779.

19C. Peterson and D. A. Paley, Multi-vehicle coordination in an estimated time-varying flowfield, AIAA

Journal of Guidance, Control, and Dynamics 34 (2011), 177–191.

20R. Rysdyk, Course and heading changes in significant wind, AIAA Journal of Guidance, Control, and

Dynamics 30 (2007), 1168–1171.

21R. Sepulchre, D. A. Paley, and N. E. Leonard, Stabilization of planar collective motion: All-to-all

communication, IEEE Transactions on Automatic Control 52 (2007), 811–824.

22 , Stabilization of planar collective motion with limited communication, IEEE Transactions on

Automatic Control 53 (2008), 706–719.

23L. Techy, D. A. Paley, and C.A. Woolsey, UAV coordination on closed convex paths in wind, AIAA

Journal of Guidance, Control, and Dynamics 33 (2010), 1946–1951.

24Eric C. Weisstein, “quadrifolium”, http://mathworld.wolfram.com/Quadrifolium.html, January 2011.

25L.L. Whitcomb, M.V. Jakuba, J.C. Kinsey, S.C. Martin, S.E. Webster, J.C. Howland, C.L. Taylor,

D. Gomez-Ibanez, and D.R. Yoerger, Navigation and control of the Nereus hybrid underwater vehicle for

global ocean science to 10,903 m depth: Preliminary results, Robotics and Automation (ICRA), 2010 IEEE

International Conference on, May 2010, pp. 594–600.

26H. Willoughby and S. Majumdar, personal communication, July 2011.

26 of 27



27F. Zhang and N. E. Leonard, Coordinated patterns of unit speed particles on a closed curve, Systems

and Control Letters 56 (2007), 397–407.

27 of 27


