
Multiversioned Decoupled Access-Execute: The Key to
Energy-Efficient Compilation of General-Purpose Programs

Konstantinos Koukos

Uppsala University, Sweden

konstantinos.koukos@it.uu.se

Per Ekemark

Uppsala University, Sweden

Per.Ekemark.8846@student.uu.se

Georgios Zacharopoulos

Switzerland Università della Svizzera
italiana, Switzerland

georgios.zacharopoulos@usi.ch

Vasileios Spiliopoulos

Uppsala University, Sweden

vasileios.spiliopoulos@it.uu.se

Stefanos Kaxiras

Uppsala University, Sweden

Stefanos.kaxiras@it.uu.se

Alexandra Jimborean

Uppsala University, Sweden

alexandra.jimborean@it.uu.se

Abstract

Computer architecture design faces an era of great challenges in
an attempt to simultaneously improve performance and energy ef-
ficiency. Previous hardware techniques for energy management
become severely limited, and thus, compilers play an essential role
in matching the software to the more restricted hardware capabili-
ties. One promising approach is software decoupled access-execute
(DAE), in which the compiler transforms the code into coarse-
grain phases that are well-matched to the Dynamic Voltage and
Frequency Scaling (DVFS) capabilities of the hardware. While this
method is proved efficient for statically analyzable codes, general-
purpose applications pose significant challenges due to pointer
aliasing, complex control flow and unknown runtime events. We
propose a universal compile-time method to decouple general-
purpose applications, using simple but efficient heuristics. Our so-
lutions overcome the challenges of complex code and show that
automatic decoupled execution significantly reduces the energy
expenditure of irregular or memory-bound applications and even
yields slight performance boosts. Overall, our technique achieves
over 20% on average energy-delay-product (EDP) improvements
(energy over 15% and performance over 5%) across 14 bench-
marks from SPEC CPU 2006 and Parboil benchmark suites, with
peak EDP improvements surpassing 70%.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages, Processors, Compilers

Keywords Decoupled access-execute, Energy efficiency, DVFS,
Compile-time transformations, Multi-versioning

1. Introduction

Energy has become the limiting factor in computer systems, with
power and cooling cost limiting server performance, and battery
runtime limiting mobile and embedded systems performance. One
of the primary tools for improving power efficiency of applications
has been the use of dynamic voltage and frequency scaling (DVFS).
DVFS relies on the quadratic relationship between voltage and
power, and the linear relationship between voltage - frequency and
performance. This provides quadratic power savings with at most
linear performance loss and, has allowed processors to achieve
lower power consumption with only a small penalty in performance
for the past decade.

However, the effectiveness of DVFS has been significantly hurt
by the increasingly small voltage ranges of modern silicon transis-
tors as the supply voltage approaches the threshold voltage (known
as the end-of Dennard scaling [9]). As the effect of voltage scaling
diminishes, we are left only with the ability to reduce frequency to
control processor power. While reducing voltage used to provide
quadratic energy savings for at most linear performance degrada-
tion, frequency scaling alone only provides linear energy savings
for a linear performance degradation.

To continue reducing energy while maintaining performance,
a promising opportunity exists in exploiting the performance gap
between the processor and memory system [11, 25, 31, 38]. Ide-
ally, frequency would be scaled down while waiting for data to
be fetched from memory, i.e. upon a cache miss, and scaled up
while performing computations. Nevertheless, adjusting frequency
at such a fine granularity is not possible on current processors and
furthermore, such frequent changes would incur prohibitive over-
heads. To adapt to this new reality, recent work has demonstrated
that compilers have become the modern means for further provid-
ing high performance at low energy, by adjusting software to match
DVFS capabilities.

Background: A key example is the software decoupled access-
execute (DAE) technique [21, 26] demonstrated on task-based par-
allel programs. This approach splits task execution into coarse-
grained memory bound-phases, executed at low frequency to save
energy since the processor is waiting for data and does not benefit
from a higher frequency, and compute-bound phases, executed at
high frequency to preserve performance. As a result, DAE is able
to achieve significant energy savings with negligible impact on per-
formance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...$15.00

http://dx.doi.org/10.1145/2892208.2892209

121

Splitting applications in memory-bound and compute-bound
phases with coarse granularity is challenging. To address this, a
compiler pass was designed to automatically generate access and
execute phases for each task in task-based parallel programs [21].
The compiler built a memory-bound version derived from the orig-
inal task, called the access phase, designed to prefetch the data in
the cache, and used the original task as the execute phase. This
approach demonstrated a 25% energy savings without hurting per-
formance.

However, the compiler techniques designed for scientific appli-
cations exploited the benefits of statically analyzable, affine code
to model the memory accessing behavior of a task in the polyhe-
dral model. Sequential, general-purpose applications rarely exhibit
affine behavior, thus they are not amenable to a polyhedral repre-
sentation. Non-affine codes were handled in DAE [21] with heuris-
tics for balancing the effectiveness and the overhead of the access
phase. More precisely, to simplify the control flow, DAE prefetches
only accesses which are not guarded by conditionals. Moreover,
DAE prefetches the last indirection of memory accesses performed
through indirections. Applying these heuristics on general purpose
code with highly complex control flow would lead to a highly inef-
ficient access phase, since the delinquent loads often reside within
conditionals. On the other hand, duplicating the entire control flow
in the access phase would introduce a prohibitive overhead. Simi-
larly, prefetching the last indirection has the potential to generate
heavy access phases, since in general purpose codes it is common
to encounter up to 20 indirections. This could significantly slow-
down the application.

Contributions: To overcome these limitations, we introduce a
new approach to automatically transform legacy sequential codes
at compile time for enabling energy-efficient execution via decou-
pled access execute. General-purpose code abounds in statically
unknown events, calling for new compiler techniques to deliver the
right balance between lightweight and efficient access phases. Even
in case DAE is successful in generating access phases for the com-
plex general-purpose code, it is impossible to determine statically
the effect on performance. The compiler must consider the trade-
off between the overhead of computing the address to prefetch
(which may depend on other memory accesses or conditionals,
cache content, input data, etc.) and the benefits obtained from
prefetching the data. These issues are addressed through a sim-
ple, but efficient, software multi-versioning strategy (SMVDAE),
which is build upon statically generating a number of access ver-
sions ranging from very lightweight (and potentially less effective
at prefetching the data into the cache) to more complex (and poten-
tially more effective, but with higher overhead). The best perform-
ing access phase is selected dynamically, thus overcoming the lim-
itations of static analysis. The advantage is twofold: (i) SMVDAE
can explore the search space of optimized access versions at run-
time, and (ii) it achieves this efficiently —that is, SMVDAE incurs
no runtime overhead in generating optimized code, since multi-
versioning is done statically, and adds only a minimal overhead for
selecting the optimal version dynamically.

One characteristic of DAE, and implicitly of SMVDAE as a suc-
cessor, is that access phases are side-effect free, namely, no writes
to variables that escape the scope of the access phase are allowed.
Yet, in some situations, to generate the access phase, a number of
stores are required, whose addresses cannot be always statically
disambiguated and may alias with globally visible data. Such stores
are identified through detailed pointer analysis. We provide three
solutions to handle statically unknown memory aliasing: (1) a hard-
ware solution employing Hardware Transactional Memory (HTM)
in an innovative manner for sequential applications; (2) a purely
software approach, to ensure generality and compatibility with ar-

Runtime

libVER libDVFS

Version
selection

Time
profiling

IPC
profiling

Frequency
selection

LLVM

Version Generation

Lower Layer (OS, frequency governors, etc.)

Platform Independent Platform Specific

Access v.0

Access v.1

…

Access v.N

User Application

Figure 1: The overall system design demonstrating all system
components to support multi-versioning

chitectures that do not provide support for HTM; and, finally, (3) a
conservative approach where the original code is invoked instead.

Typically, DVFS techniques aim to reduce energy consump-
tion, while minimizing the negative impact on performance or
maintaining performance at best. In contrast, we show that com-
plex, general-purpose applications not only exhibit energy improve-
ments, but also significant performance boosts, when executed un-
der the decoupled access-execute model. Despite the partial code
duplication, decoupled execution exposes more memory-level par-
allelism (by hoisting all loads to the access phase), hides latency (by
separating the load operation –access– from the use –execute–) and
increases instruction level parallelism (by invoking the execute ver-
sion when the required data is available in the cache). While the be-
havior of complex applications is challenging for static analysis and
for hardware predictors, software multi-versioning DAE (SMV-
DAE) improves energy delay product (EDP), by over 20% on aver-
age (over 70% peak), and provides energy benefits of over 30% for
memory-bound general-purpose applications. Furthermore, SMV-
DAE is a self-adapting technique, automatically selecting the best
performing access version at runtime, and a self-healing technique,
resorting to the original code version for applications which are not
amenable to decoupling (compute-bound applications), hence the
race-to-sleep technique [44] is applied instead.

2. Overall System Design

Our SMVDAE framework, depicted in Figure 1, consists of a com-
piler infrastructure, which generates multiple access versions, and
two libraries to measure the impact of each version to performance
(libVER) and energy (libDVFS) respectively. LibVER profiles the
performance of each access-execute pair and selects the most effi-

cient Access phase, while libDVFS identifies and applies optimal 1

DVFS settings for each phase of the previously selected pair (by
libVER).

The mechanism to generate multiple access versions is imple-
mented as an LLVM [28] compiler pass. Functions on the criti-
cal path are marked as a target for SMVDAE execution, identified
either via offline profiling or based on programmer’s annotations.
The compiler then automatically prepares the outermost loops con-
tained in these functions to be run in slices, as shown in Figure 2. A
slice represents a subset of consecutive iterations of the outermost
loop and its size is referred to as granularity. Once the loop is split
in slices, the granularity is adjusted experimentally such that the
workload of each slice fits in the private cache of the core. Next,
the access phases {A0, A1, .., An} and the execute phase E are
generated per slice. The execution model is illustrated in Figure 2:
the first loop slice is executed in the original version (CAE), as a

1 The selection of optimal frequency can be performed with respect to either
performance, energy, or EDP. In our work we opt for EDP and we use
similar techniques as presented by Spiliopoulos et al. [38]

122

loop

body

for(;;) {

}

SMVDAE

Multiple Access phases

Each Access phase is constructed to prefetch

different amount of data. Early Access phases

prefetch less data, but are lightweight. Later

Access phases prefetch more data, are more

effective but also more heavyweight.

Execute

The execute phase is unique as it is merely the

original code, which became compute bound as

more data is brought to L1 by Access.

A0 E E EA1 EA1 EA1A1 A2 ECAE ...

for(granularity) {

 // select Access

}

E

A0 A2A1

for(;;) {

}

C
o
m

p
il
e
-t

im
e

R
u

n
-t

im
e Loop execution in slices of granularity=10

Iterations0 10 20 30 40 50 60

The loop is executed in slices,

each slice evaluating first the

original loop version, next each

pair Access-Execute. The best

performing Access-Execute pair

is selected to complete the loop.slice 0 slice 1 slice 2 slice 3 slice 4 slice 5 ...

Figure 2: SMVDAE compilation and execution model: The
compiler generates multiple Access versions which are evaluated
at runtime and the best performing Access-Execute pair is selected
to complete the loop execution.

for(int i = thedim - 1; i >= 0; i--) {

 int r = row.orig[i];

 int c = col.orig[i];

 Real x = wrk[c] = diag[r] * vec[r];

 vec[r] = 0.0;

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 vec[u.col.idx[j]] -= x * u.col.val[j];

 }

 }

Figure 3: Code snippet of statically challenging code extracted
from soplex, SPEC CPU 2006. The compiler cannot clearly de-
termine which memory accesses to prefetch to achieve the right
balance between overhead (for computing the address) and bene-
fits (by prefetching the data to the L1 cache).

reference for performance and energy; the access phase A0 of the
next loop slice is run, followed by the execute phase of the same
slice; next, the DAE run of the following slice is invoked with the
pair Ai+1 and E, until all access phases have been evaluated. The
access phase that performs best is selected for the DAE run of the
following slices until the entire loop completes its execution. Our
approach requires loops with a considerable number of iterations
to enable the evaluation of a sufficient number of Access versions
and to compensate for the selection overhead. For loops with low
loop-trip counts, the programmer may explicitly select the best ver-
sion (e.g., after profiling). Orchestrating the execution of Access-
Execute pairs per slice can be handled with state of the art runtime

systems, such as Protean code [27], VMAD [20, 22], etc.2.
Evaluating the access versions on successive slices introduces

negligible overhead, as the loop progresses naturally. Optimizing
the version selection at runtime is not the main focus of this work.
Therefore, the best performing version is selected once in the be-
ginning of the loop. This simple technique provides good results
(on the evaluated benchmarks) and minimizes the selection over-
head. Furthermore, loop slicing is performed at coarse granularity
which covers the potential heterogeneity of the loop behavior. Note
that, in most cases the slicing is performed on the outermost loop,
however, in case the workload of a single loop iteration overflows
the private cache, the child loop is sliced instead.

2 The runtime version selection mechanism is orthogonal to this proposal
and it can be replaced by more advanced heuristics, which, for instance,
might re-evaluate promising access phases to better serve different execu-
tion phases.

The execution time of each Access and Execute phase is mea-
sured by libVER library. The execution-time profiling requires
only a low-latency timer, available on every contemporary system,
hence we refer to this library as being system independent. En-
ergy measurements are performed using libDVFS library, follow-
ing a similar methodology as in our previous work on decoupled
access-execution [21, 26]. LibDVFS uses a linear Instructions-
per-Cycle (IPC) power model (specific to each architecture) to
estimate the energy for each Access and Execute phase sep-
arately. This infrastructure allows us to measure efficiency as
Energy Delay Product (EDP) = T imetotal × EnergyTotal

[12, 24] which accounts both for performance and energy.

3. Methodology

SMVDAE targets loops with complex control flow, memory ac-
cesses performed via indirections and pointer chasing, typically ap-
plications which pose challenges for compile-time optimizations.

We proceed with a pedagogical example, shown in Figure 3,
for which the compiler cannot statically estimate the overhead of
computing the addresses with many indirections (e.g. u.col.start[c],
vec[u.col.idx[j]]) or guarded by conditionals, and the benefit of
prefetching such addresses. Figure 4 illustrates these trade-offs
when various memory addresses are selected for prefetching. Se-
lection is based on the level of indirection, lower levels of indi-
rection generate lightweight, but less efficient access phases, while
higher levels of indirection have the potential to prefetch addresses
outside the reach of the hardware prefetcher, but at a higher cost.
It is our goal to provide compile-time support to generate the most
promising access versions and select at runtime the one that pro-
vides the best balance between overhead and benefits.

Section 3.1 provides the general approach for generating an
access phase starting from a list of target loads. Next, Section 3.2
details how the target loads are selected, which lead to multiple,
customized access versions (one version for each set of loads).

3.1 Access Phase Generation

As the role of the access phase is to prefetch data required by the ex-
ecute phase, the access version is a simplified clone of the original
code, containing only address computation and instructions main-
taining the control flow. A key aspect is that variables written within
the access phase do not escape its scope, meaning that no writes to
globally visible data are allowed (i.e. global variables and func-

tion arguments 3, henceforth referred to as “globals” for brevity),
since each loop slice is re-executed by the execute version, which
performs the writes. Consequently, the compiler must ensure that
globals are correctly identified and no updates are performed within
the access phase. In contrast, updates of local variables are not only
allowed, but also mandatory for preserving the control-flow. This
requires a precise pointer analysis. The algorithms for selecting in-
structions for the access phase control flow (3.1.1), and memory
address computations (3.1.2) are described below. All other instruc-
tions are removed from the clone, generating a lean access version.

3.1.1 CFG Skeleton

The CFG skeleton represents the minimal set of instructions that
duplicates the control flow of the original slice. Algorithm 1 de-
scribes how these instructions are collected. The algorithm first
adds all terminator instructions —conditional / unconditional
branches, exit, return instructions— to set K (step 1), and then
processes each instruction from the set by adding all its require-
ments (steps 2 – 3). Requirements are found recursively using the

3 Conservatively, all function arguments are handled as potentially escaping
the scope of the access phase.

123

Prefetching 1st level of indirections: Lean address computation, but
possibly already prefetched by hardware.

for(int i = thedim - 1; i >= 0; i--) {

 int r = row.orig[i];

 int c = col.orig[i];

 Real x = wrk[c] = diag[r] * vec[r];

 vec[r] = 0.0;

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 vec[u.col.idx[j]] -= x * u.col.val[j];

 }

 }

Prefetching 2nd level of indirections: prefetches more of the
useful data. Note that the addresses in the inner loop, e.g.
u.col.start[c] are computed with three indirections (not by
computing u.col.start).

for(int i = thedim - 1; i >= 0; i--) {

 int r = row.orig[i];

 int c = col.orig[i];

 Real x = wrk[c] = diag[r] * vec[r];

 vec[r] = 0.0;

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 vec[u.col.idx[j]] -= x * u.col.val[j];

 }

 }

Prefetching 3rd level of indirections: Increased address computa-
tion overhead, may or may not lead to runtime benefits.

for(int i = thedim - 1; i >= 0; i--) {

 int r = row.orig[i];

 int c = col.orig[i];

 Real x = wrk[c] = diag[r] * vec[r];

 vec[r] = 0.0;

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 vec[u.col.idx[j]] -= x * u.col.val[j];

 }

 }

Prefetching 4th level of indirections: Heavier access phase,
prefetches data difficult to reach by the hardware prefetcher. How-
ever the cost of maintaining the control flow and computing the
addresses may or may not be hidden by the benefits.

for(int i = thedim - 1; i >= 0; i--) {

 int r = row.orig[i];

 int c = col.orig[i];

 Real x = wrk[c] = diag[r] * vec[r];

 vec[r] = 0.0;

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 vec[u.col.idx[j]] -= x * u.col.val[j];

 }

 }

Figure 4: It is impossible for the compiler to optimally balance
address computation overheads and benefits for the general case.

i7: Gl = 10

i6

i1
i0: load m[Gl]

i3
i2

i5
i4

A:

B: C:

D:

Starting from the load i0: load m[Gl],

we parse the instructions on the

reversed control flow graph and identify

stores that alias the address of the load.

First, instructions in the current basic

block are parsed (i1 from D), followed

by instructions in the predecessors

basic blocks (i2,i3 from B and i4,i5

from C), and the algorithm continues

processing predecessor basic blocks

(A), until an aliasing store is found (i7:

Gl = 10) or all preceding instructions

have been processed.

Figure 5: Algorithm for identifying stores aliasing the loads se-
lected for inclusion in the access phase.

use-def chain and the algorithm stops when no new instructions are
added to the set (step 4).

Algorithm 1 Set K collects the instructions preserving the CFG.

1. Add all instructions that directly define the CFG to set K.

2. For each instruction I in K, add all instructions that produce a
value required by I .

3. If I is a load instruction, add all store instructions that may store
the value that I reads. (Algorithm 2 describes how to find the
store instructions.)

4. Repeat steps 2 and 3 until no choice of I will cause further
instructions to be added to K.

Store instructions are selected by “climbing up” the reversed
control flow graph and checking whether the store and load ad-
dresses alias. Aliasing is determined using the LLVM AliasAnalysis
pass. Specifically, alias matches of the types MustAlias, where the
addresses reference the same memory area, and PartialAlias, where

the referenced memory overlap, are considered 4. Algorithm 2 de-
tails how the search is conducted and Figure 5 provides an example.

Once the instructions building up the CFG are identified, the
compiler must ensure the access phase is side-effect free or discard
it otherwise. The access version is discarded if the CFG depends on
(i) function calls (not annotated as read-only) or (ii) there exist at
least one store instruction aliasing with a non-local value. To iden-
tify local values, the pass analyzes memory allocation. Local point-
ers in LLVM IR are allocated by a special allocation instruction
(AllocaInst). The pointers can pass through a number of instruc-
tions before being used by a memory operation, most notably an
indexing operation (GetElementPtrInst) and various types of casts
(CastInst). If the input pointer to any of these types of instructions
is local, the output pointer is considered local as well. Conserva-
tively, all pointers stemming from other sources (e.g. global vari-
ables, function arguments) are considered global, or external to the
function. Store instructions targeting the latter pointers are prohib-
ited in the access phase.

3.1.2 Memory Address Computation

The purpose of the access phase is to prefetch data to the cache to
be ready for use once the execute phase takes over. As phases do not
share local data, it is only useful to prefetch global variables. While
it is possible to prefetch all global variables, doing so may lead to

4 MayAlias matches are not included, to keep the Access phase lightweight
and efficient. The decision was guided by the observation that in practice
MayAlias materializes to NoAlias.

124

Algorithm 2 Set S collects potential sources (store instructions)
for a load instruction, L, loading from address A.

1. Starting from L, search backwards through the instruction list
of the parent function.

2. For each instruction I , check

(a) If I has been encountered before, cancel the rest of step 2
and go to step 4.

(b) If I is a store instruction to address B, check

i. If A and B alias exactly (MustAlias), add I to S, cancel
the rest of step 2 and go to step 4.

ii. Otherwise, if A and B alias partially (PartialAlias), add
I to S and continue.

(c) If I is the first instruction in the basic block, go to step 3.

(d) Otherwise, continue step 2.

3. Enqueue preceding basic blocks in the CFG for subsequent
search.

4. If there are no queued basic blocks, stop. Otherwise, pick the
first queued basic block and go to step 2, searching the basic
block backwards from its last instruction.

very heavy access phases. Instead, only a subset of all loads5 are
prefetched, as detailed in Section 3.2.1. Loads are replaced with
prefetch instructions, unless the loaded value is further required
in the access phase. Moreover, the prefetch instruction is inserted
right after the address computation, not necessarily in the original
position of the load. Thus, only one prefetch instruction is inserted
even if several loads target the same address. An algorithm similar
to the one building the CFG is used. First, the set of target loads is
built (Section 3.2.1), equivalent to the starting set K in Algorithm 1
and next, all required instructions are added following the same
algorithms as in Section 3.1.1. Unlike the algorithm for building
the CFG, access phases are not discarded in case a memory address
computation relies on a store to a global value. Instead, only the
corresponding prefetch instruction is discarded, together with its
required instructions.

3.1.3 Removal of Superfluous Code

Once the instructions for building the access phase are selected, we
run the classical compiler optimizations on the generated access
version. In particular, dead code elimination and optimizations
aimed to simplify the control flow ensure that empty basic blocks
and unnecessary branches are removed. The entire CFG skeleton is
first inserted in the basic access version to ensure that all loads are
reachable and that the loop’s control flow is preserved. However,
part of the CFG skeleton might not be necessary, if the basic blocks
do not contain instructions required for computing a target address
or for reaching a prefetch instruction. Also, prefetch instructions
which accompany a load required in the access phase are removed
in this step.

3.2 Multi-Versioning

To adjust the balance between cost and efficiency, multiple access
versions are created, each employing its own policy for selecting
the target loads for prefetching. The heuristics employed in this
proposal to decide the set of target loads are based on the number
of indirections required to calculate the address to be prefetched.
More precisely, a threshold Ti is set for each access version, and

5 DAE prefetches loads only, since stores are not on the critical path.

x = a [* b +c - > d [* e]]; t1 = load b

t2 = gep c, 0, index_of_d

t3 = load t2

t4 = load e

t5 = gep t3, 0, t4

t6 = load t5

t7 = add t1, t6

t8 = gep a, 0, t7

x = load t8

A load statement in C and its SSA representation,

resembling the LLVM IR; “gep” is the GetElementPointerInst

indexing instruction from LLVM.

Figure 6: The number of indirections of an address A is given by
the number of loads required to compute A.

only addresses that require less that Ti indirections are prefetched
in the associated access version Ai. For instance, address a[b[i]]
requires one indirection, hence we will generate A0 prefetching
addresses that require T0 = 0 indirections, b[i], and A1 with
T1 = 1 prefetching a[b[i]].

3.2.1 Indirection Measure

We define “indirection” as a metric indicating how many interme-
diate loads are required to compute an address. Figure 6 shows an
example which converts a C statement that loads a value to the
equivalent static single assignment (SSA) representation, resem-
bling the LLVM intermediate representation. In this example, the
indirection measure for the load t8 to x is four: t1, t3, t4, t6.

The general algorithm to find the indirection measure for an ar-
bitrary address A follows the same steps as Algorithm 1 to identify
the set of instructions for computing address A.

Algorithm 3 Finding the number of indirections for an address A.

1. If address A is not produced by an instruction (e.g. a global
variable), stop, the level of indirection is 0. Otherwise, continue.

2. Find the set D of dependencies for A by following steps 2-4 in
Algorithm 1, using D in place of K.

3. The level of indirection is the number of load instructions
present in D.

Note that two access versions Ai and Aj can be identical, de-
spite having distinct thresholds for the maximal number of allowed
indirections, Ti < Tj , if there is no address that requires n loads,
Ti < n ≤ Tj . For instance, Access2 in Figure 6 contains instruc-
tions t1 – t6, as t6 requires loads t3 and t4, hence a maximum
indirection of two. Access3 contains precisely the same instruc-
tions, as there is no memory access that requires three indirections,
yielding Access2 and Access3 identical. Finally, Access4 differs,
as it can reach load t8, which has an indirection of four.

3.2.2 Generating Multiple Access Versions

SMVDAE generates one access version for each level of indirec-
tions. For the code example in Figure 4, SMVDAE generates the
access versions presented in Figure 7. Access0 displays also the
instructions before removing the superfluous code. These prefetch
instructions are removed because the corresponding loads are re-
quired and kept in the access phase. Note that although Access2
and Access3 prefetch only addresses in the innermost group, a sig-
nificant part of the control flow is replicated to reach the prefetch
instruction. It is therefore difficult to estimate statically the actual
benefit of prefetching these addresses.

125

for(int i = thedim - 1; i >= 0; i--) {

 prefetch orig[i];

 int r = row.orig[i];

 int c = col.orig[i];

 prefetch wrk[r];

 prefetch diag[r];

 prefetch vec[r];

 Real x = wrk[c] = diag[r] * vec[r];

 if (x != 0.0) {

 prefetch u.col;

 prefetch start[c];

 prefetch len[c];

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++){

 prefetch idx[j];

 prefetch val[j];

 }

 }

 }

Access 0:

for(int i = thedim - 1; i >= 0; i--) {

 prefetch row.orig[i];

 prefetch col.diag[r];

}

Access 1:

for(int i = thedim - 1; i >= 0; i--) {

 Real x = wrk[c] = diag[r] * vec[r];

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++){

 prefetch u.col.idx[j];

 prefetch u.col.val[j];

 }

 }

 }

Access 2:

for(int i = thedim - 1; i >= 0; i--) {

 Real x = wrk[c] = diag[r] * vec[r];

 if (x != 0.0) {

 for(int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++)

 prefetch vec[u.col.val[j]];

 }

 }

Access 3:

Figure 7: SMVDAE generated access versions, one version for
each level of indirections.

3.3 Statically Unknown Memory Dependences

As described in Algorithm 2, the access phase includes stores that
MustAlias or PartiallyAlias with other loads required for the con-
trol flow or address computation, as long as such stores do not alias

with global variables 6. In case they do alias, the Access phase is
discarded, i.e. the code is not decoupled, since it cannot be guaran-
teed to be side-effect free. To enable DAE when stores in the access
phase may alias global variables, techniques are required to ensure
that all global variables are returned to the state they had before the
invocation of the access phase. Although our experiments show that
this problem rarely occurs in practice (1 out of 14 evaluated bench-
marks), we provide a generic solution to decouple general purpose
applications. We perform a pointer analysis of the generated access
phase and mark as “unsafe” (using metadata information) stores
that alias global variables. We provide two solutions to ensure that
unsafe stores are harmless (explained in Sections 3.3.1 and 3.3.2).

6 By “global variables” we refer to variables whose scope escapes the
Access phase

DAE

A → E

A : Prefetch Task

E : Computation Task

DAE - HTM

A → E

xbegin

A : Prefetch Task

xabort

E : Computation Task

DAE - sofware

A → E

backup

A : Prefetch Task

restore

E : Computation Task

Figure 8: If a store in Access aliases a global variable, we provide
two solutions: (1) Embed Access in a hardware transaction to
ensure side-effect free access phases; (2) Guard Access with a
backup-and-restore mechanism to preserve the original value of
variables that escape Access scope.

3.3.1 HTM

On architectures that provide support for Hardware Transactional
Memory (HTM), e.g. Intel Haswell [13], we embed the access
phase in a transaction using Restricted Transactional Memory
(RTM) [2, 17]. This is done by inserting a forced XABORT at the
end of the access phase, and specify the execute version as the fall-
back path. Thus, XABORT ensures that values loaded or prefetched
during the access phase are available in the cache, while the written
cache lines are invalidated, yielding the unsafe stores harmless. We
adjust the granularity of the slice to fit the transaction buffer and
avoid unexpected capacity aborts. Nevertheless, when a transaction
aborts before the access phase completes its execution, we simply
continue with the execute phase, since part of the data is already
prefetched in the L1 cache.

3.3.2 Software Managed Stores

A software solution to this problem is to safeguard the global vari-
ables at compile-time by copying them to local variables and restor-
ing their original values before exiting the access phase. Should
the target address of the store depend on the loop index, the over-
head of allocating memory and saving a back-up copy in each it-
eration would be too large and would hide any potential benefit.
Therefore, we implement a light version of the backup-and-restore
mechanism, only applicable when the address to be protected is
loop-independent and therefore can be hoisted outside the loop.
Otherwise, the access phase is discarded.

4. Experimental Setup

We perform our evaluation on two different generations of Intel

desktop processors. A Sandybridge architecture (Intel R© CoreTM

i7-2600K CPU, with a frequency range from 1.6GHz to 3.40GHz),

and a Haswell architecture (Intel R© CoreTM i7-4790K CPU, with
a frequency range from 800MHz to 4.00GHz), that features Hard-
ware Transactional Memory (HTM). Both machines are equipped
with 16 GB DDR3 RAM running at 1333MHz, and have a sim-
ilar cache hierarchy: 32 KB private (per core) L1 instruction and
data caches, 256 KB private (per core) L2, and a shared 8192 KB
L3. Haswell, in addition, has various improvements in the micro-
architecture and in the hardware prefetcher.

Energy is estimated separately for each phase, with the use of
a linear IPC power model. The model accuracy is verified against
measurements performed on real hardware (with an average error
of ≈ 3%) using a methodology similar to previous work [21, 25,
26, 38]. The instruction count at each phase is performed with
the help of PAPI [32] library, while cycles are counted with the
use of the rdtsc x86 instruction. The Instructions-per-Cycle (IPC)
model enables us to estimate the energy expenditure of each phase
at each frequency and therefore, to predict the optimal frequency.
Typically, a low or intermediate frequency is selected for the access
phase, and a higher frequency for the execute phase, depending on
the memory boundness of each phase (as determined by its IPC).

126

Table 1: Selection of benchmarks (BM) from SPEC CPU 2006
(up) and Parboil (bottom). The functions on the critical path were
selected to evaluate SMVDAE.

BM File Function

astar
Way2 .cpp way2obj::releasebound
Way .cpp wayobj::makebound2

bzip
compress.c generateMTFValues
decompress.c BZ2 decompress

h264ref
mv-search.c SetupFastFullPelSearch
mv-search.c BlockMotionSearch

hmmer fast algorithms.c P7Viterbi

lbm lbm.c LBM performStreamCollide

libQ
gates.c quantum toffoli
gates.c quantum sigma x
gates.c quantum cnot

mcf pbeampp.c primal bea mpp

milc m mat na.c mult su3 na

soplex
ssvector.cc SSVector::assign2product4. . .
spxsteeppr.cc SPxSteepPR::entered4X
ssvector.cc SSVector::setup

sphinx3 cont mgau.c mgau eval

cutcp cutcpu.c cpu compute cutoff potent. . .

mri-g. CPU kernels.c gridding Gold

sad sad cpu.c sad4 cpu

stencil kernels.c cpu stencil

We evaluated SMVDAE on a selection of applications from
SPEC CPU2006 [15] and from Parboil [39] benchmark suites, eval-
uating both memory- and compute-bound applications. The classi-
fication was guided by two metrics, cache miss rate and Cycles
per Instruction (CPI), as reported in previous work [18, 33]. While
memory bound applications are a good target for DVFS techniques,
and therefore for SMVDAE, compute-bound applications do not
benefit from adjusting the frequency, nevertheless, we emphasize
that SMVDAE does not harm their performance. Among the mem-
ory bound applications we selected mcf, milc, soplex and lbm, ex-
pected to benefit from SMVDAE, libquantum, astar, sphinx3 and
sad are medium compute- and memory-bound, while bzip, hmmer,
cutcp, mri-g. and stencil are compute bound, hence not a target for
DVFS techniques. For each benchmark, we applied SMVDAE on
the functions on the critical path, which for SPEC CPU-2006 were
identified based on previous studies [1], while for Parboil we per-
formed an initial profiling to determine the critical functions. The
target functions are listed in Table 1.

We have conducted our experiments using the largest input set,
ref, for SPEC CPU 2006 and evaluated all available ref inputs
when several were provided (e.g. for soplex, hmmer and astar).
Parboil benchmarks were evaluated with large datasets. Thus, the
workloads evaluated in this proposal contain loops with high loop
trip counts, which enabled the generation of coarse-grain Access
phases and hid selection overheads. Finally, granularity was set
experimentally. Other proposals [40] estimate the workload of a
loop iteration and can be used to set the granularity automatically
at compile-time, such that the workload of each slice fits the private
L1d cache. This study is orthogonal to our approach.

Table 2 indicates the number of generated access versions per
application, which is less or equal to the maximum number of in-
directions found in the benchmark. Each version Accessn is gen-
erated by setting the threshold Tn = n for the number of indi-
rections, however if two consecutive access versions are identical
(see Section 3), only one is included. The results clearly emphasize

Table 2: Gran. is slice granularity (in loop iterations), #Versions
corresponds to the total number of distinct access phases per appli-
cation, M.I. is the max depth of indirection in an access phase, B.I.
is the level of indirections in the best performing access phase, and
#Slices is the number of slices executed for each benchmark. B.I.
values correspond to the execution shown in Figure 12 on an In-
tel i7-4790K CPU. For bzip and hmmer the original (CAE) version
was selected.

BM Gran. #Versions M.I. B.I. #Slices

astar 300 6 6 1 21028729

bzip 2048 9 10 CAE 382475892

h264ref 512 12 12 0 42986240

hmmer 75 7 6 CAE 4944811

lbm 192 2 2 2 26001000

libQ 1450 3 3 3 94107092

mcf 4 3 3 3 21854886

milc 1650 3 2 2 460800000

soplex 300 13 15 12 22823811

sphinx3 256 7 7 7 599989032

cutcp 2048 7 19 11 56

mri-g. 16 5 10 9 165995

sad 16 3 6 0 5

stencil 4 2 2 0 2048

that some applications benefit from prefetching deeper indirections
(soplex, mri-g), others show better results when the lower levels of
indirection are used (e.g. bzip, astar, hmmer, stencil, while some ap-
plications obtain benefits with a medium indirection depth (cutcp).

5. Evaluation

5.1 Multi-Version Case-Study

This section focuses on two case study applications, mcf and mri-g,
and presents the performance and energy benefits of all versions, as
shown in Figure 9. For mcf, we observe that performance increases
as we increase the number of indirections in the access phase
and energy follows the same trend. Access3, which prefetches the
deepest level of indirections, achieves the best performance. An
important observation is that even when the overall performance is
unaffected e.g., for mcf Access0, there is still potential for energy
savings, if a significant amount of the total execution time is within
the access phase.

For mri-g, we observe that the first three versions bring no per-
formance or energy improvement, while the last two versions yield
17–18% performance and ≈ 20% energy improvements. Although
the access phases of the two applications (mcf and mri-g) represent
a similar percentage of the total execution time, the energy savings
registered for mri-g are significantly lower compared to mcf. This
is a consequence of selecting different optimal frequencies for the
access phases for each application, namely 1.7GHz for mcf, and
3.4GHz for mri-g.

5.2 Dynamic Application Behavior

The main goal of multi-versioning is to adapt and therefore, run op-
timally on different architectures and under different system loads.
This section evaluates a memory-bound subset of SPEC-CPU2006
on the same architecture (Intel i7-2600K), under different system
loads —for example, when a single instance of an application runs
in isolation in the system, and when multiple instances (e.g., 4) of
the same application compete for shared resources (e.g., last level
cache and memory bandwidth). As expected, SMVDAE provides

127

0

0,2

0,4

0,6

0,8

1

0 2 3

N
o

rm
.
E

xe
c
. T

im
e

Time(A) Time(X)

0

0,2

0,4

0,6

0,8

1

0 2 3

N
o

rm
.
E

n
e

rg
y

Energy(A) Energy(X)

(a) Mutli-version performance/energy for mcf

0

0,2

0,4

0,6

0,8

1

0 1 2 9 10

N
o
rm

.
E

xe
c
. T

im
e

Time(A) Time(X)

0

0,2

0,4

0,6

0,8

1

0 1 2 9 10

N
o
rm

.
E

n
e
rg

y

Energy(A) Energy(X)

(b) Mutli-version performance/energy for mri-g

Figure 9: Normalized execution time and energy for all generated versions for mcf, and mri-g. Ox axis displays the maximum number of
indirections per version. Experiments were conducted on an Intel i7-4790K CPU.

0

0,2

0,4

0,6

0,8

1

1,2

N
o
rm

a
liz

e
d
 E

xe
c
u
ti
o
n
 T

im
e

1P (A) 1P (X) 4P (A) 4P (X)

0

0,2

0,4

0,6

0,8

1

1,2

g.mean

1P 4P

(a) Execution time for different system loads

0

0,2

0,4

0,6

0,8

1

1,2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

1P (A) 1P (X) 4P (A) 4P (X)

0

0,2

0,4

0,6

0,8

1

1,2

g.mean

1P 4P

(b) Energy for different system loads

Figure 10: Normalized execution time and energy for a selection of SPEC 2006 benchmarks, under different system loads on an Intel
i7-2600K. 1P is 1 instance of the application in isolation, versus 4 instances (4P) of the same application (one per core).

higher performance/energy improvements when the memory sys-
tem is under heavy strain (multi-instance runs), as shown in Fig-
ure 10. For the selected (memory-bound) benchmarks, we observe
that when they do not run in isolation a DAE version always out-
performs the original (CAE version), yielding on average 10% per-
formance and over 30% energy improvements.

The variance in performance and energy observed for the same
application under different system loads, further motivates the use
of software multi-versioning. Even if one could statically infer
the optimal version for a specific architecture, e.g., using offline
profiling, the actual optimal version might differ at runtime based
on the system load, therefore requiring a dynamic approach. In
Figure 10 we observe that mcf and milc benefit from SMVDAE
even when they run in isolation (although different access versions
are selected when running one process (1P) versus four processes
4P). This is not the case for the rest: lbm, libQ, soplex, and sphinx3,
where SMVDAE yields good energy improvements in 4P runs,
while in 1P runs the original (CAE version) is selected.

5.3 Performance and Energy Evaluation

We evaluate SMVDAE on two different systems (Intel i7-2600K
and Intel i7-4790K) using three metrics: performance, energy and
EDP. The evaluation is performed with 4 instances of the same
application pinned on different cores stressing the memory band-
width. Our first observation is that DAE yields higher overall im-
provements on the i7-4790K over the i7-2600K, despite the fact
that both processors use similar memory modules (same frequency
and timings). The reason is the performance gap between CPU
and memory (i7-4790K runs at 4GHz while i7-2600K at 3.4GHz).
On average we observe 20–25% EDP improvements and 16–22%
energy improvements (over 5% performance). For predominantly
compute-bound applications like bzip and hmmer the original ver-

sion was selected in both architectures. For the rest of the compute-
bound applications, we observe small improvements from SMV-
DAE, while for the memory-bound ones (lbm, libQ, mcf, milc and
soplex) we observe significant EDP and energy savings. We mea-
sure over 40% EDP and energy savings on average (for memory
bound applications), with a peak of 72% EDP improvement for
mcf. Finally, for sphinx3 we observe that despite spending a sig-
nificant amount of the total execution time within the access phase,
the energy/EDP savings are minimal, due to the heavy calculations
required in the access phase that suggest a high optimal frequency.

5.4 SMVDAE Code-Size Overhead

Code explosion is a typical concern associated with multi-versioning
techniques, however SMVDAE does not incur such problems since
it only targets functions on the critical path and imposes a thresh-
old on the number of generated versions, if necessary. Prefetching
very deep indirections (i.e. with an indirection level higher than ,
for example, 20) is unlikely to bring benefits, due to the overhead
of computing the address. In our experiments we have generated
and evaluated all possible access versions, namely until the deepest
indirection level. Since in many cases consecutive access phases
are equivalent, as explained in Section 3 and exemplified in Fig-
ure 9, the final number of generated access versions (e.g., soplex
has 13 versions) may be lower than the deepest indirection level
(soplex has a maximum indirection depth of 15). Since the criti-
cal functions, although dominating the execution time, represent
a small fraction of the total code size, the overhead of SMVDAE
with respect to code size is negligible, less than 1% for most of
the applications, except h264ref (2.6%, including 12 versions) and
soplex (1.3%, with 13 versions).

128

‐

0

0,2

0,4

0,6

0,8

1

1,2

N
o
rm

a
liz

e
d
 T

im
e
 /
 E

n
e
rg

y
 /
 E

D
P

Time (A) Time (X) Energy (A) Energy (X) EDP (Total)

0

0,2

0,4

0,6

0,8

1

g.mean

Time

Energy

EDP

Figure 11: Overall improvements in performance, energy, and EDP on Sandybridge Intel i7-2600K

Q

‐

0

0,2

0,4

0,6

0,8

1

1,2

N
o
rm

a
liz

e
d
 T

im
e
 /
 E

n
e
rg

y
 /
 E

D
P

Time (A) Time (X) Energy (A) Energy (X) EDP (Total)

0

0,2

0,4

0,6

0,8

1

g.mean

Time

Energy

EDP

Figure 12: Overall improvements in performance, energy, and EDP on Haswell Intel i7-4790K

0

1

2

3

%
 N

o
rm

a
liz

e
d
 B

in
a
ry

 S
iz

e

Figure 13: % Code-size overhead due to multi-versioning (up to
20 versions).

5.5 Software and Hardware Solutions to Memory Aliasing

In practice, the compiler was successful in statically disambiguat-
ing the memory accesses and in generating side-effect free access
versions. Among the evaluated benchmarks, only a subset of the
bzip access phases contained stores that may-alias globally visi-
ble variables. However, including such stores in the access phases
generated prohibitively heavy versions, for this particular applica-
tion, hence the original CAE version was automatically selected to
complete the execution. Embedding the “unsafe” access phases in
a hardware transaction or using the backup-and-restore mechanism

in software adds an additional overhead. HTM for instance may in-
troduce overall performance penalties ranging from 0% to 60% in
total, depending on the number and granularity of slices protected
by a transaction. On the other hand, HTM might also abort ahead of
time, in which case there is an apparent speed-up compared to the
decoupled version, due to an incomplete access phase. We did not
investigate these techniques in depth, as the need did not occur in
practice. Nevertheless, “unsafe” access versions are transformed to
safe versions and made available for the runtime version selection,
should they lead to a more energy efficient execution.

6. Related Work

State of the art compile-time optimizations targeting energy effi-
ciency rely on statically injecting instructions for scaling voltage or
frequency [42], [6] at runtime. This proposal builds upon the de-
coupled access-execute scheme [21], which is a pioneering work
in performing aggressive compile-time code transformations that
remodel the application behavior to better adapt to the underlying
hardware.

The decoupled access - execute model was initially proposed in
hardware by Smith [37]. The computation units were only aware of
the operation and the operands were given through queues. Koukos
et al. [26] proposed a decoupled access-execute (DAE) technique
in software, using the private caches of the core as communication
channels between Access and Execute. DAE exploits a potential for
energy efficiency optimizations in task based parallel applications,

129

while further work by Jimborean et al. [21] extends these ideas and
provides a concrete compiler methodology to support the automatic
decoupled access execute model. This work [21] relied on polyhe-
dral transformations and aggressive code simplifications to gener-
ate low-overhead (lightweight) access phases for scientific codes.
However, these approaches are not typically applicable to general
purpose serial applications, whose pointer-chasing, dynamic data
structures and conditionals hinder static analysis, or result in either
inefficient or high-overhead access phases. SMVDAE addresses
this problem by providing efficient means to adjust the trade-off
and the benefits of prefetching, at runtime.

Generating skeleton phases derived from the original code re-
sembles techniques such as inspector-executor [3, 5, 35, 36, 43]
and helper thread [23, 34, 45] methods. Inspector-executor tech-
niques [3, 5, 35, 36, 43] rely on the concept of running an inspector
version aimed to instrument and analyze the code and typically in-
cludes extra code to process the collected information. Next, the
executor is optimized based on the outcome of the inspector code.
This technique is commonly used to overcome static limitations,
e.g. analyze dependence patterns that could not be explored stati-
cally by a compiler and optimize or parallelize the executor accord-
ingly. Helper threads are designed to accelerate the performance of
single threaded applications [23, 34, 45] using a prefetching thread
that runs ahead and warms up the cache for the worker thread. Such
methods require that the inspector code or the prefetching thread,
respectively, are generated statically, which exhibits similar limita-
tions to the previously proposed DAE. Should memory accesses
and computation be entailed, the generated code would incur a
large overhead, cancelling the benefits of the method.

Software multi-versioning was proposed to reduce the overhead
of code instrumentation [4, 8, 10, 14, 16, 30], for checking program
correctness [14], for loop parallelization, for automatic, speculative
optimizations [7, 19, 29], or to optimize the execution for different
inputs [41, 46]. The technique periodically switches between high-
overhead instrumenting versions and more efficient original or opti-
mized versions [4, 8, 10, 16]. Instrumentation conclusions are then
used to guide optimizations [7, 29], speculative parallelization [19]
or to detect data races [30]. SMVDAE relies on multi-versioning
not for diminishing the overhead or for predicting application be-
havior, but for finding the right balance between cost and benefit,
using runtime information.

7. Conclusions

We propose a compiler technique to improve the energy efficiency
of complex, general-purpose applications, which are typically
not amenable to static analysis. Our solution gracefully blends
DVFS [11, 25, 31, 38], employing the decoupled access-execute
model for memory-bound applications, and race-to-sleep [44]
methods, running the original version under maximum frequency
for compute-bound applications.

The main challenge is to generate an efficient and lightweight
access phase to tackle memory bound applications, provided that
the compiler cannot statically determine the right balance between
the overhead of computing a memory address and the benefits
obtained from prefetching the address. We approach this challenge
using a static multi-versioning technique (SMVDAE), which incurs
no runtime overhead in generating promising access versions, but
provides flexibility and adaptability, as the system can explore
a larger search space and can select the best performing access
version dynamically.

We show that general purpose, complex applications not only
exhibit energy improvements, but also significant performance
boosts, when executed using the decoupled access-execute model,
as decoupled execution exposes more memory and instruction
level parallelism. While previous DAE compiler techniques were

restricted to scientific task based parallel codes, SMVDAE tar-
gets: complex, irregular, general-purpose codes efficiently; yield-
ing overall EDP improvements of 22%, with peak improvements
of 72% for memory bound applications.

References

[1] SPEC CPU2006 function profile. http://hpc.cs.tsinghua.edu.
cn/research/cluster/SPEC2006Characterization/fprof.
html. Accessed: 2014-08-17.

[2] Transactional synchronization in haswell. https:
//software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell.

[3] M. Arenaz, J. Tourio, and R. Doallo. An inspector-executor algorithm
for irregular assignment parallelization. In J. Cao, L. Yang, M. Guo,
and F. Lau, editors, Parallel and Distributed Processing and Applica-

tions, volume 3358 of Lecture Notes in Computer Science, pages 4–15.
Springer Berlin Heidelberg, 2005.

[4] M. Arnold and B. G. Ryder. A framework for reducing the cost
of instrumented code. In ACM SIGPLAN Conf. on Programming

Language Design and Implementation (PLDI), 2001.

[5] D. K. Chen, J. Torrellas, and P. C. Yew. An efficient algorithm for
the run-time parallelization of doacross loops. In Proceedings of

the 1994 ACM/IEEE Conference on Supercomputing, Supercomputing
’94, pages 518–527, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[6] J. Chen, H. Yi, X. Yang, and L. Qian. Compile-time energy optimiza-
tion for parallel applications in on-chip multiprocessors. In V. Alexan-
drov, G. van Albada, P. Sloot, and J. Dongarra, editors, Computational

Science ICCS 2006, volume 3992 of Lecture Notes in Computer Sci-

ence, pages 904–911. Springer Berlin Heidelberg, 2006.

[7] X. Chen and S. Long. Adaptive multi-versioning for openmp paral-
lelization via machine learning. In Parallel and Distributed Systems

(ICPADS), 2009 15th International Conference on, pages 907–912,
Dec 2009.

[8] T. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. In ACM SIGPLAN Conf. on Programming

Language Design and Implementation (PLDI), 2002.

[9] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimen-
sions. Solid-State Circuits, IEEE Journal of, 9(5):256 – 268, 1974.

[10] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis for perfor-
mance understanding of framework-based applications. In Int’l Symp.

on Software Testing and Analysis (ISSTA), 2007.

[11] S. Eyerman and L. Eeckhout. A counter architecture for online
dvfs profitability estimation. Computers, IEEE Transactions on,
59(11):1576–1583, 2010.

[12] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. Solid-State Circuits, IEEE Journal of, 31(9):1277–
1284, Sep 1996.

[13] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne,
R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennu-
paty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton. Haswell: The
fourth-generation intel core processor. IEEE Micro, 34(2):6–20, 2014.

[14] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak de-
tection using adaptive statistical profiling. In Int’l Conf. on Archi-

tectural Support for Programming Language and Operating Systems

(ASPLOS), 2004.

[15] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, Sept. 2006.

[16] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-
overhead temporal profiling. In ACM Workshop on FeedbackDirected

and Dynamic Optimization (FDD), 2001.

[17] Intel. Intel R© architecture instruction set extensions programming
reference, pp.506-529, 2012.

130

[18] A. Jaleel. Memory characterization of workloads us-
ing instrumentation-driven simulation. http: // http:
// www. glue. umd. edu/ ~ ajaleel/ workload/ , 2007.

[19] A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, and J. M. Mar-
tinez Caamaño. Dynamic and speculative polyhedral parallelization
using compiler-generated skeletons. Int’l Journal of Parallel Pro-

gramming (IJPP), 42(4):529–545, Aug. 2014.

[20] A. Jimborean, M. Herrmann, V. Loechner, and P. Clauss. Vmad:
A virtual machine for advanced dynamic analysis of programs. In
IEEE Int’l Symp. on Performance Analysis of Systems and Software

(ISPASS), pages 125–126, 2011.

[21] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras. Fix the code. don’t tweak the hardware: A new com-
piler approach to voltage-frequency scaling. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Opti-

mization, CGO ’14, pages 262:262–262:272, New York, NY, USA,
2014. ACM.

[22] A. Jimborean, L. Mastrangelo, V. Loechner, and P. Clauss. Vmad: An
advanced dynamic program analysis and instrumentation framework.
In IEEE / ACM International Conference on Compiler Construction

(CC), pages 220–239, 2012.

[23] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-core
prefetching for multicore processors using migrating helper threads. In
Proceedings of the sixteenth international conference on Architectural

support for programming languages and operating systems, ASPLOS
’11, pages 393–404, New York, NY, USA, 2011. ACM.

[24] S. Kaxiras and M. Martonosi. Computer architecture techniques
for power-efficiency. Synthesis Lectures on Computer Architecture,
3(1):1–207, 2008.

[25] G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval-based models
for run-time dvfs orchestration in superscalar processors. In Proceed-

ings of the 7th ACM international conference on Computing frontiers,
CF ’10, pages 287–296, New York, NY, USA, 2010. ACM.

[26] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and S. Kaxiras. To-
wards more efficient execution: A decoupled access-execute approach.
In Proceedings of the 27th International ACM Conference on Interna-

tional Conference on Supercomputing, ICS ’13, pages 253–262, New
York, NY, USA, 2013. ACM.

[27] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars. Protean code:
Achieving near-free online code transformations for warehouse scale
computers. In IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
pages 558–570, 2014.

[28] The llvm compiler infrastructure. http://llvm.org.

[29] L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. In In-

ternational Workshop on Statistical and Machine learning approaches

to ARchitectures and compilaTion, Paphos, Cyprus, Jan. 2009.

[30] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: effective
sampling for lightweight data-race detection. In ACM SIGPLAN Conf.

on Programming Language Design and Implementation (PLDI), 2009.

[31] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting perfor-
mance impact of dvfs for realistic memory systems. In Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO-45, pages 155–165, Washington, DC, USA,
2012. IEEE Computer Society.

[32] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable
interface to hardware performance counters. In In Proceedings of the

Department of Defense HPCMP Users Group Conference, pages 7–
10, 1999.

[33] T. K. Prakash and L. Peng. Performance characterization of SPEC
CPU2006 benchmarks on Intel Core 2 Duo processor. ISAST Trans.

Comput. Softw. Eng., 2(1):36–41, 2008.

[34] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González,
and D. M. Tullsen. Mitosis compiler: An infrastructure for speculative
threading based on pre-computation slices. In Proceedings of the

2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’05, pages 269–279, New York, NY, USA,
2005. ACM.

[35] L. Rauchwerger, N. M. Amato, and D. A. Padua. Run-time methods
for parallelizing partially parallel loops. In Proceedings of the 9th

International Conference on Supercomputing, ICS ’95, pages 137–
146, New York, NY, USA, 1995. ACM.

[36] J. Saltz, R. Mirchandaney, and K. Crowley. Run-time paralleliza-
tion and scheduling of loops. Computers, IEEE Transactions on,
40(5):603–612, May 1991.

[37] J. E. Smith. Decoupled access/execute computer architectures.
SIGARCH Comput. Archit. News, 10(3):112–119, Apr. 1982.

[38] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A
framework for continuously adaptive dvfs. In Proceedings of the 2011

International Green Computing Conference and Workshops, IGCC
’11, pages 1–8, Washington, DC, USA, 2011. IEEE Computer Society.

[39] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu. Parboil: A revised bench-
mark suite for scientific and commercial throughput computing. Cen-

ter for Reliable and High-Performance Computing, 2012.

[40] S. Tavarageri and P. Sadayappan. A compiler analysis to deter-
mine useful cache size for energy efficiency. In Int’l Parallel and

Distributed Processing Symp. Workshops (IPDPSW), pages 923–930,
2013.

[41] K. Tian, Y. Jiang, E. Z. Zhang, and X. Shen. An input-centric paradigm
for program dynamic optimizations. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’10, pages 125–139, New
York, NY, USA, 2010. ACM.

[42] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage
scaling settings: Opportunities and limits. In Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and

Implementation, PLDI ’03, pages 49–62, New York, NY, USA, 2003.
ACM.

[43] D. Yokota, S. Chiba, and K. Itano. A new optimization technique for
the inspector-executor method. In IASTED PDCS, pages 706–711,
2002.

[44] T. Yuki and S. Rajopadhye. Folklore confirmed: Compiling for speed
= compiling for energy. In C. Cacaval and P. Montesinos, editors,
Languages and Compilers for Parallel Computing, volume 8664 of
Lecture Notes in Computer Science, pages 169–184. Springer Interna-
tional Publishing, 2014.

[45] W. Zhang, D. Tullsen, and B. Calder. Accelerating and adapting
precomputation threads for effcient prefetching. In High Performance

Computer Architecture, 2007. HPCA 2007. IEEE 13th International

Symposium on, pages 85–95, Feb 2007.

[46] M. Zhou, X. Shen, Y. Gao, and G. Yiu. Space-efficient multi-
versioning for input-adaptive feedback-driven program optimizations.
In Proceedings of the 2014 ACM International Conference on Object

Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 763–776, New York, NY, USA, 2014. ACM.

131

