
Multiview Depth Map Enhancement by  

Variational Bayes Inference Estimation of 
Dirichlet Mixture Models 

Pravin Kumar Rana, Zhanyu Ma, Jalil Taghia, and Markus Flierl 

 

School of Electrical Engineering 

KTH Royal Institute of Technology 

Stockholm, Sweden 

 

 

May 31, 2013 

IEEE International Conference on Acoustics, Speech, and Signal Processing 



Motivation and background 



Free-viewpoint television 

Multiview video imagery 

User                          Display 

1 



1 

Free-viewpoint television 

Multiview video imagery 

User                          Display 



1 

Free-viewpoint television 

Multiview video imagery 

User                          Display 



1 

Free-viewpoint television 

Multiview video imagery 

User                          Display 



1 

Free-viewpoint television 

Multiview video imagery 

User                          Display 

Virtual camera Virtual view 



Depth image based rendering 

Multiview video imagery 

Virtual camera Virtual view 

2 



2 

Depth image based rendering 

Multiview video imagery 

Virtual camera Virtual view 

• Depth pixels represent shortest distance 
between object points and the camera plane 

• To be estimated from multiview imagery 

Depth image 

3D  warping 

Near 

Far 



• Depth pixels represent shortest distance 
between object points and the camera plane 

• To be estimated from multiview imagery 

Depth image 

3D  warping 

Near 

Far 

2 

Depth image based rendering 
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Problem: Inter-view depth inconsistency 

Note: we assume a 1D-parallel camera arrangement  
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Depth enhancement framework 



Overview of our prior work 
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Multiview color classification 
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Concatenation of view imagery 

View (n-1) View (n) View (n+1) View (n+2) 

• Multiview imagery has inherent inter-view similarity 

• To have a unique model for multiview imagery 

– The inherent inter-view similarity is exploited by concatenating views 
from multiple viewpoints 
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Multiview color classification 
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[1] P. K. Rana, J. Taghia, and M. Flierl, “A variational Bayesian inference framework for multiview depth image 

enhancement,”  IEEE Int. Symp. Multimedia (ISM),  2012 
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Multiview color classification 
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View (n) View (n+1) 

… … … … 

                      RGB                                                                        xyz 

View (n) View (n+1) 

• Use the chromatic color representation to make the procedure 
insensitive to the absolut luminance 
 

• The chromaticity of a pixel is described by a vector of three 
chromaticity coefficients [x y z]T 

x+y+z = 1 

[1] P. K. Rana, J. Taghia, and M. Flierl, “A variational Bayesian inference framework for multiview depth image 

enhancement,”  IEEE Int. Symp. Multimedia (ISM),  2012 

Color space  



[2] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006. 

• The goal of classification is to partition an image into regions each of 
which has a reasonably homogeneous visual appearance 

 

• Usually, clustering algorithm, such as expectation-maximization (EM)  
suffers from one major drawbacks that the number of clusters has to be 
known 

 

• Variational Bayes inference  automatically select the number of cluster  

Why variational Bayes inference (VBI)? 
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Multiview color classification 



Why Dirichlet mixture model with variational Bayes inference? 

• The vector of image pixels has nonnegative elements and is bounded  

– It can be efficiently modeled by utilizing non-Gaussian distributions [3] 

 

• Based on the pixel vector’s properties, assume that the pixel vectors 
of each cluster are Dirichlet distributed 

 

• Use Dirichlet mixture model (DMM) with VBI to capture the all 
underlying clusters in multiview imagery 

 

• It reduces complexity 

  

Multiview color classification 
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[3] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, “Bayesian estimation of Dirichlet mixture model with variational 

inference,” IEEE Trans. PAMI, submitted, 2013. 
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Multiview color classification 



Exploiting the per-pixel association between color and depth 

View image Depth image 

Concatenated view imagery Concatenated depth imagery 
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Multiview depth classification 



Using Dirichlet mixture model with variational Bayes inference in xyz space 
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Multiview depth classification 
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Multiview depth classification 



Difference between color and depth clusters 

Members have similar colors  

pixels 

Members may have different  

depth values  
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Multiview depth subclassification 

• Why? 

– due to foreground and background depth difference 

– due to inter-view inconsistency 
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Multiview depth subclassification 

• A nonparametric clustering  technique  

 

• Does not require prior knowledge of the number of clusters 

 

• Does not constrain the shape of the clusters 

 

• Assigns the mean to depth pixels irrespective of the originating 
viewpoints 

 

• Bayesian approaches imply higher computational complexity 

Means-shift clustering  
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Experimental setup 

MPEG 3DTV multiview data set 
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Multiview 

data 

set 

Initial number of 

mixture 

components  

Active number of mixture components 

(after convergence) 

VBI-GMM VBI-DMM 

Lovebird1 100 31 24 

Kendo 100 34 15 
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Y-PSNR (dB) 
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Subjective results 
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• The inter-view depth consistency and hence, the free-viewpoint 
experience improve 

 

• The per-pixel association between depth and color is exploited by 
classification 

 

• Depth subclassification improves depth maps and hence, view 
rendering quality 

 

• Both objective and subjective results improve 

20 

Conclusions 



Thank you 
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