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Abstract

For humans, it is usually easier to make state-

ments about the similarity of objects in relative,

rather than absolute terms. Moreover, subjec-

tive comparisons of objects can be based on a

number of different and independent attributes.

For example, objects can be compared based on

their shape, color, etc. In this paper, we con-

sider the problem of uncovering these hidden at-

tributes given a set of relative distance judgments

in the form of triplets. The attribute that was used

to generate a particular triplet in this set is un-

known. Such data occurs, e.g., in crowdsourcing

applications where the triplets are collected from

a large group of workers.

We propose the Multiview Triplet Embedding

(MVTE) algorithm that produces a number of

low-dimensional maps, each corresponding to

one of the hidden attributes. The method can be

used to assess how many different attributes were

used to create the triplets, as well as to assess the

difficulty of a distance comparison task, and find

objects that have multiple interpretations in rela-

tion to the other objects.

1. Introduction

High-dimensional data can be analyzed by first embedding

it into a low-dimensional space (Kruskal, 1964; Tenen-

baum et al., 2000; Belkin & Niyogi, 2003; Saul & Roweis,

2003). A usual input to such methods is a distance ma-

trix of the items, and the objective is to create an em-

bedding that aims to preserve these distances as well as

possible. However, eliciting absolute distance informa-

Proceedings of the 32
nd International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

tion can be hard in a number of cases. This is espe-

cially true if the judgments must be collected from hu-

man evaluators. Therefore, a number of recent methods,

such as Generalized Non-metric Multidimensional Scaling

(GNMDS) (Agarwal et al., 2007), the Crowd Kernel algo-

rithm (Tamuz et al., 2011), and Stochastic Triplet Embed-

ding (STE) (van der Maaten & Weinberger, 2012), only use

relative distance judgments, or some other type of quali-

tative information (Gomes et al., 2011). These are more

amenable to applications in, e.g., crowdsourcing and hu-

man computation.

Relative distances are often collected in the form of triplets,

where the evaluator must answer the following task:

“Which of the items A and B is closer to item

X?”

A common problem when collecting such data is that the

evaluators may provide inconsistent answers. Someone

might say that A is closer to X , while somebody else might

says that B is closer. A lot of research on human compu-

tation tends to make the assumption that the tasks have a

single correct solution, and all other solutions are incor-

rect. This is clearly a good approach in some applications,

e.g., labeling tasks where the items unambiguously either

do or do not satisfy some property. In such cases, it is im-

portant to aggregate the solutions of a single task to provide

the most probable correct answer (Dawid & Skene, 1979;

Whitehill et al., 2009; Raykar & Yu, 2012).

However, with some tasks, the situation can be more am-

biguous. Consider the following toy example in the con-

text of the comparison task given above. We are given a set

of objects, each having two attributes: shape (o or x) and

color (‘red’ or ‘green’). The user is asked to compare item

X = ‘a red o’, with item A = ‘a red x’ and item B = ‘a

green o’. We argue that A and B are both correct answers

depending on the point of view taken by the evaluator. In

the absence of more precise instructions, the decision can
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Figure 1. Maps produced by GNMDS, t-STE and MVTE (pro-

posed in this paper) given a toy data with objects having two at-

tributes (shape, color).

be made based on either of the two attributes. If the evalu-

ator uses color as a deciding factor, A is the correct choice,

while if the evaluator uses shape, B is an appropriate an-

swer.

In general, our input thus contains a mixture of triplets

where the workers may have used different attributes of the

items when making their comparisons. Figure 1 shows em-

beddings produced by the GNMDS and t-STE methods1,

as well as the MVTE method that we propose, given such

triplets from the simple ‘xo’ toy data described above. GN-

MDS and t-STE collapse all items into a single map, and

consequently may fail to identify the original attributes.

For instance, the t-STE method appropriately divides the

objects into four subclusters, but neither of the dimensions

of the embedding corresponds to shape or color. However,

MVTE successfully separates the underlying attributes us-

ing two different maps. Distances in the first map are based

on color, while distances in the second map reflect the

shape.

In this paper, we take thus the position that inconsistent

answers to individual tasks should not necessarily be ag-

gregated into a single consensus solution. Instead, we con-

sider all solutions as potentially correct. Rather than trying

to learn a single low-dimensional map for the items, we

propose to simultaneously learn a number of maps that all

1We only consider GNMDS and t-STE because other ap-
proaches are similar to one of these two techniques.

aim to represent one possible attribute of the input space,

as shown in Figure 1. A similar problem was considered by

(Changpinyo et al., 2013) in the context of metric learning

using pairwise similarity comparisons. Observe that this

problem, in general, cannot be solved simply by increas-

ing the dimensionality of the output space. In the example

above, no matter what dimensionality we use, one of the

solutions (A vs. B) would always be unsatisfied in terms

of any distance metric.

Our contributions: We propose the Multiview Triplet

Embedding (MVTE) algorithm for learning multiple maps

from a given set of triplets. We propose a number of ap-

plications of the algorithm, and conduct experiments that

show how the method can be used to identify tasks and

items that are confusing to the workers, as well as to iden-

tify the attribute each worker mainly uses when comparing

the items.

2. Multiview Triplet Embedding

In this section, we define the problem of finding multiple

embeddings2 given a set of triplets that originate from a

number of different views, as well as describe the MVTE

algorithm.

2.1. Problem Formulation

We define a query as the triad (i| j, k) of items where i is

called the probe item and j and k are called the test items.

The query is a question of the form: “Is i more similar to j

or k?”. An answer to the query is called a triplet. We de-

note a triplet by the ordered tuple (i, j, k), meaning that “i

is closer to j than k”. Let T = {(i, j, k)} denote the set of

triplets provided for a set of N different items in M differ-

ent views V = {Vm}Mm=1. Let Xm = {xm
1 ,xm

2 , . . . ,xm
N}

denote the representation of the items in the mth view.

Each view Vm represents a particular attribute (or aspect)

of the data, e.g., shape, orientation, color, semantics, etc.

and Xm denotes the placements of the items with respect

to that attribute. Each triplet (i, j, k) specifies the relative

distances of the query items in (at least) one of the views

Vm ∈ V . That is, the inequality

dm(xm
i ,xm

j ) < dm(xm
i ,xm

k ) (1)

is satisfied with respect to the distance function dm for

some m ∈ {1, 2, . . . ,M}. However, the same triplet may

also be satisfied in some of the other spaces, as there might

exist some correlation among different attributes of the ob-

jects. Therefore, a particular triplet might happen to be sat-

isfied in more than one, only one, or none of the provided

metric spaces (if there is noise).

2Please note that we use the words embedding and map inter-
changeably throughout this paper.
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Figure 2. Embedding results of the MNIST dataset using different sets of triplets: results of the t-STE method using (a) sharp triplets

only, (b) sharp triplets mixed with weak triplets, and (c) the MVTE method (M = 1) using the same set of mixed triplets weighted by

the satisfiability ratios.

Problem: Given the set of triplets T , our goal is

to find M different embeddings of the items Ym =
{ym

1 ,ym
2 . . . ,ym

N} such that for each triplet (i, j, k), the

distance constraint is satisfied with respect to the Euclidean

norm in the corresponding map3. In other words,

dm(xm
i ,xm

j ) < dm(xm
i ,xm

k )

m

‖ym
i − ym

j ‖ < ‖ym
i − ym

k ‖

(2)

for all (i, j, k) ∈ T .

2.2. The MVTE algorithm

To overcome the problem of having triplets from differ-

ent views, we consider a mixture of maps as follows. For

each triplet (i, j, k), we define pmijk as the probability that

it is satisfied in map m. We adopt the formulation similar

to (van der Maaten & Weinberger, 2012), that is

pmijk =
exp(−‖ymi − ymj ‖2)

exp(−‖ymi − ymj ‖2) + exp(−‖ymi − ymk ‖2)
.

(3)

We denote by zijk the binary indicator vector of length M

for the triplet (i, j, k) having all values equal to zero except

one, specifying the corresponding view that it originates

from. Thus, the probability that the triplet (i, j, k) is satis-

fied in the corresponding view can be written as

pijk =

M
∏

m=1

(pmijk)
zm
ijk , (4)

where zmijk is the mth component of the binary vector zijk.

Now, our objective becomes to maximize the sum of the

3Note that in general, the correspondence between the maps
and the views might be randomly permuted since the comparisons
are provided as a set of unlabeled triplets. However, we use iden-
tical indices for notational simplicity.

log-probabilities over all triplets, that is

max
Y

∑

(i,j,k)∈T

log pijk = max
Y

∑

(i,j,k)∈T

M
∑

m=1

zmijk log p
m
ijk.

(5)

The objective function can be optimized using a standard

iterative gradient ascent algorithm on the map points ymi .

Now, there still remains the problem of estimating the la-

tent indicator variables zijk in (5). The naı̈ve approach to

maximize (5) w.r.t. Z = {zijk} would be to set each zijk
as the indicator of the probability pmijk which has the largest

value among all the maps. However, as we stated earlier,

each triplet may be satisfied in more than one view. There-

fore, restraining the indicator variable to a single map pre-

vents using the triplet information when forming the maps

that correspond to other views. We consider a triplet to be

more informative for Vm if it is strongly satisfied in Vm,

and it is only weakly satisfied or entirely unsatisfied in the

other views. Therefore, it must be given more emphasis

when finding the map for view Vm. To formulate the im-

portance of a triplet, we define the satisfiability ratio for

triplet (i, j, k) in view Vm as

Γm
ijk =

dm(xm
i ,xm

k )

dm(xm
i ,xm

j )
. (6)

A value of Γm
ijk > 1 (Γm

ijk ≤ 1) indicates that the triplet is

satisfied (unsatisfied) in view Vm. We similarly define

γm
ijk =

‖ym
i − ym

k ‖

‖ym
i − ym

j ‖
(7)

as the satisfiability ratio in the corresponding map.

We consider a simple example that illustrates how the sat-

isfiability ratio can be used to assess the importance of a

triplet. We use a subset of 2000 datapoints from the MNIST
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Figure 3. Triplet satisfiability results: (a) confusion matrix for Pima dataset using MVTE with M = 3, and the generalization error of

different algorithms on (b) Pima, (c) Vogue, (d) Food, and (e) Music datasets.

Algorithm 1 Multiview Triplet Embedding (MVTE)

Input: set of triplets T , number of views M

Output: embeddings of datapoints Y = {Ym}Mm=1, in-

dicator variables of the triplets Z
Initialize Y and Z .

repeat

1) Update (5) w.r.t Y with Z fixed

2) Update Z using (9)

until (5) does not change significantly

dataset (LeCun & Cortes, 1999). We first build a map us-

ing the t-STE algorithm by considering a set of 20,000
strongly satisfied synthetic triplets (see Figure 2(a)). The

quality of the same map reduces significantly when we ap-

pend another set of 20,000 weakly satisfied triplets and

re-compute the embedding (Figure 2(b)). To increase the

effect of strong triplets, we calculate the satisfiability ra-

tios of the triplets in map (b), and reconstruct the map by

weighting the triplets by the estimated satisfiability ratios

(using the MVTE algorithm). As can be seen, the result is

improved by assigning a higher weight to the strongly sat-

isfied triplets (Figure 2(c)). The satisfiability ratio is thus a

reasonable way to assign weights to the triplets. This result

also suggests that the satisfiability ratios in the learned map

may provide an appropriate estimate of the true satisfiabil-

ity ratios in the original view.

We make use of these findings when estimating the indica-

tor variables for the triplets in different views as follows.

First, we define the biased satisfiability ratio for triplet

(i, j, k) as

γ̃m
ijk =







γm
ijk if γm

ijk > 1

0 otherwise

. (8)

The biased ratio assigns no importance to the unsatisfied

triplets while it preserves the satisfiability ratio if the triplet

is satisfied. We define the indicator variable zmijk so that it

reflects the extent to which the triplet (i, j, k) is satisfied in

the mth map. In particular, we let

zmijk =
γ̃m
ijk

max
(

∑M

l=1 γ̃
l
ijk, 1

) . (9)

In this way, we assign higher weights to the informa-

tive triplets while neglecting the unimportant (and possi-

bly unsatisfied) ones. Therefore, the triplets are distributed

among the maps with different weights, where the total

weights for each sum up to one. The algorithm for finding

the maps proceeds by alternatively maximizing (5) w.r.t. Y
and then, updating the indicator variables using (9). The

pseudocode for the algorithm is shown in Algorithm 1. We

refer to our proposed method as Multiview Triplet Em-

bedding (MVTE). The algorithm can be extended to dis-

tributions having heavier tail than Gaussian, e.g., Student

t-distribution which leads to the t-distributed MVTE algo-

rithm, or t-MVTE, in short.

3. Applications

Next, we describe a number of novel applications where we

can use the MVTE algorithm. We assume that the method

is applied in a crowdsourcing context where the triplets are

elicited from a number of workers.

Number of attributes: As the first result, our method can

be used to estimate the true number of attributes in a set of

triplets. We want to point out that this is not the same as

the dimensionality of a single input space, as each attribute

induces an independent view of the items. The effect of

having several attributes can be investigated by increasing

the dimensionality of a single map and comparing the re-

sults with those obtained from multiple maps that each have

a fixed number of dimensions. As we will see in the next

section, the limiting factor for satisfying the triplets in most

cases is the assumption of a single view (or distance func-

tion) for the items rather than the number of dimensions of

the resulting map.
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Figure 4. Results of the different algorithms on the subset of objects images dataset.

Query difficulty: Using multiple different maps we can

estimate the difficulty of a query (i|j, k); a property which

might not be possible to measure using the methods pro-

ducing a single map only. By difficulty, we mean the possi-

bility of having different interpretations for a given query.

As outlined in the Introduction, in certain situations, given

a probe i and the test items j and k, both answers may be

equally correct. Therefore, the workers might face difficul-

ties when answering these queries. This property can be

roughly formulated as follows. The query (i| j, k) is con-

sidered easy if it is strongly satisfied in a consistent way

in all the views, i.e, if the solution (i, j, k) is the correct

answer no matter what attribute is considered. However,

a query becomes hard if the solution (i, j, k) is strongly

satisfied in at least one view while the (opposite) solution

(i, k, j) it is strongly satisfied in the other view(s). Finally,

a query is ambiguous if it is only (un)satisfied weakly in

most of the views, making the answers only marginally dif-

ferent by any sense.

Item ambiguity: The availability of different views en-

ables us to roughly estimate the ambiguity of the items, i.e.,

the level of different interpretations that each item might

have in distinct spaces. We perform this by considering

the neighborhood of each item in different maps. An item

should be considered highly ambiguous if it has entirely

dissimilar neighboring items in the maps. (See also (Cook

et al., 2007).) In order to measure this quality, we calculate

the mean average precision (MAP) (Manning et al., 2008)

of each item with respect to the pairs of different views.

MAP is calculated by first averaging the precision over dif-

ferent neighborhood sizes in a pair of maps, that is,

avePrec =

∑N

k=1 prec(k)

N
, (10)

and then, finding the mean average precision of all pairs of

maps. Here, prec(k) denotes the precision by considering

only the first k-nearest neighbors of the item in each map.

A large MAP amounts to similar neighborhood structure in

different maps and therefore, a less ambiguous item while

a small MAP indicates a highly ambiguous item.
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MVTE: First Map MVTE: Second Map

Figure 5. Results of the MVTE algorithm on the Food dataset with M = 2. The insets show that the picture of two apples can be placed

both among naturally occurring things (e.g. vegetables, peppers, beans) as well as desserts that require preparation (e.g. ice cream,

muffins). It is thus an ambiguous item.
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Figure 6. (a) Top and (b) bottom 20 items in the Food dataset in sense of MAP value in two maps, (c) query difficulty, (d) histogram of

the preference probabilities of the workers towards the first map in the Food dataset.

Workers preferences towards different attributes:

Clearly, the workers may also have different levels of pref-

erences towards the perceived attributes. It is reasonable

to expect that all the workers provide consistent answers to

the set of easy queries4, since all the attributes tend to favor

the same answer. However, they might provide different

answers to hard queries based on their respective prefer-

ences.

4. Experimental Results

In this section, we compare the MVTE algorithm with

methods that produce only a single map. In particular, we

study the four applications outlined in the previous section.

We conduct the experiments on a set of artificial as well as

real-world datasets. Our MATLAB implementation of the

4Unless the worker is spammer or malicious.

algorithm is publicly available online5.

Multiple embeddings vs. higher dimensionality: We

start by comparing the effect of having multiple maps with

that of a single map having large number of dimensions.

As an example, we consider triplets generated over a sub-

space of the Pima Indians Diabetes dataset (Smith et al.,

1988). The original dataset contains 768 instances, each

having 8 different measurements which belong to one of

two different classes: ill or not-ill. We select three features,

corresponding to three different measurements in the data:

plasma glucose concentration, diastolic blood pressure, and

2-hour serum insulin. Each feature represents a different

view for each instance. We generate 100 triplets for each

datapoint in each view. The confusion matrix on the train-

ing signal and the generalization error6 on a 10-fold cross-

5https://github.com/eamid/mvte
6The generalization error is the ratio of the new triplets that

are unsatisfied.

https://github.com/eamid/mvte


Multiview Triplet Embedding

validation are shown in Figure 3(a) and Figure 3(b), respec-

tively. The MVTE algorithm successfully divides the train-

ing triplets among three different maps, each correspond-

ing to one of the views. Note that because of correlation

between the views, each map also satisfies a portion of the

triplets that originate from other views. Additionally, over

98% of the held-out triplets are satisfied using t-MVTE al-

gorithm in at least one of the three maps (vs. 92% in a

single map solution).

We perform similar experiments on three real-world

datasets, namely Vogue Magazine Covers (Heikinheimo &

Ukkonen, 2013), Food Images (Wilber et al., 2014), and

Music Artists (Ellis et al., 2002), for all of which, the true

numbers of views are unknown. For all the datasets, we

do not make any assumptions about the provided triplets

and thus, consider all of them as potentially correct. The

results, illustrated in Figure 3(c) to 3(e), indicate that us-

ing multiple maps results in a lower generalisation error.

Furthermore, the generalization error provides clues about

the true number of views in each dataset. For instance, in

the Vogue dataset, almost all the triplets are satisfied us-

ing three maps while the Music dataset requires a larger

number of maps to obtain similar accuracy. This suggests

that the users indeed considered a large number of differ-

ent, subjective attributes when comparing the artists (Ellis

et al., 2002).

Separating attributes from a mixture of triplets: Next,

we consider the visualization results on two datasets. We

first perform a visualization using a set of synthetic triplets,

generated on a dataset of objects images (Konkle et al.,

2010). The dataset contains 3400 images of objects from

200 different categories on a white background. We con-

sider a subset of 156 objects out of 12 object categories.

We form M = 2 spaces, corresponding to shapes and col-

ors of the objects. We use Fourier descriptors (Gonzalez &

Woods, 2006) for shape representation. For the color space,

we concatenate the color histograms in the RGB channels

(each with 16 bins in each channel) to form the color fea-

ture vectors. The results are shown in Figure 4. It can

be seen that our method successfully projects the objects

into two different maps corresponding to shape and color,

while the other methods at best mix both attributes into a

single map. The ‘red toy-gun’ is an example of an object

with different neighborhood structures in two maps; in the

first map, it appears among other toy-guns having differ-

ent colors while in the second map, it is located among red

objects, irrespective of their shape.

Finding ambiguous items: We continue by describing an

experiment to find items that may have different interpre-

tations. The Food dataset (Wilber et al., 2014) contains

250,320 triplets, queried on 100 images of different dishes

of food. Figure 5 shows the results of the MVTE method

with M = 2. The first map represents ‘types’ of the dishes

in which the neighborhood structure mainly corresponds to

the attributes such as vegetable vs. non-vegetable, natu-

ral vs. processed, etc. On the other hand, the second map

seems to be based on the ‘taste’, rather than type of the

food. For instance, whether a food is sweet or not. The im-

age of two apples is a good example of an item with very

different neighborhood structures in the two maps. (See the

insets in Figure 5.)

Figures 6(a) and 6(b) show the items having the top and

bottom 20 MAP values in the Food dataset, respectively.

The items having large values of MAP are those, such as

green beans, muffins, pancakes, etc., which have a unique

structural and semantic interpretations. However, the items

at the bottom, e.g., apples, sweet corn, berries, etc., can

be easily grouped in different categories, depending on the

property considered.

Are queries with ambiguous items difficult? The level

of ambiguity of items in a query also affects the difficulty

of the query for workers. A query containing ambiguous

items leads to several different interpretations, making it

hard for the workers to decide on the answer. We show

this by roughly estimating the difficulty of the queries by

considering the minimum of the MAP values of the items in

each query as the level of difficulty. Figure 6(c) illustrates

the distribution of a number of 500 different triplets in the

Food dataset, based on their respective satisfiability ratios

in two different maps7. The color, on the other hand, indi-

cates the minimum of the MAP values of the items in the

query. Clearly, the difficulty level of the items, estimated

using MAP values, is highly correlated with the difficulty

of the queries, found by considering the satisfiability ratios

in different maps. In other words, triplets having ambigu-

ous items tend to appear mainly in regions which are ex-

pected to comprise hard triplets. Similar results hold for

the easy queries having unambiguous items.

Do some workers prefer one attribute over another?

To asses the performance of our approach for estimating

the preferences of the workers, we conduct the follow-

ing experiment. We first generate 10,000 queries on the

xo-objects dataset (see Section 1) in each view (20,000
queries in total). To filter out the easy queries, we first

compute the satisfiability ratios in the original spaces for

each query. We mark the query (i| j, k) as hard if: 1) the

triplet (i, j, k) has a high satisfiability ratio in one view,

the triplet (i, k, j) as a high satisfiability ratio in the other

view, and 2) the difference between the satisfiability ra-

tios in two views is comparatively small. The rest of the

queries are marked as easy. Next, we generate a set of

7The triplets are plotted by reversing the order of the test items
in a randomly selected subset. Please note that this procedure
would not affect the difficulty of the query.
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Table 1. Workers preferences probabilities in the synthetic exam-

ple.

ID 1 2 3 4 5

p 0.004 0.274 0.471 0.483 0.490
p̃ 0.038 0.318 0.500 0.472 0.545

ID 6 7 8 9 10

p 0.551 0.580 0.585 0.945 0.981
p̃ 0.538 0.604 0.631 0.926 0.981

98

 (a)

22

 (b)

40

 (c)

Figure 7. An example of a hard query (a| b, c) which has been

answered differently by the workers having opposite preferences.

10 random workers, each having a different probability to

prefer the shape space, {pi}10i=1 (therefore, {(1 − pi)}10i=1

for the color). That is, the ith worker provides her answer

with reference to the shape space with probability pi. For

each query, 5 workers are chosen randomly to answer the

task. All the easy queries are answered consistently by ev-

ery worker. The hard queries are answered according to the

preference probabilities.

We then run the MVTE with M = 2 on the set of triplets

generated by the above workers. We repeat the same pro-

cedure to filter out the easy triplets by finding the satisfia-

bility ratios in the maps. Finally, for each worker, we esti-

mate the preference probabilities by finding the number of

triplets satisfied in each view and normalizing the counts.

Table 1 shows the true probabilities {pi}10i=1 along with the

estimated probabilities {p̃i}10i=1 using our method. The es-

timated probabilities are very close to the true probabilities.

As a real-world example, we consider the workers of the

Food dataset. We repeat the procedure for finding the hard

triplets using the satisfiability ratios in the embeddings, as

above and then, calculate the preference probabilities of the

workers for each map. The histogram of the estimated pref-

erence probabilities of the workers towards the first map is

shown in Figure 6(d). Most workers are neutral, having

preference probabilities around 0.5, as expected. Figure 7

illustrates an example of a conflicting query, provided by

the workers having highly different preferences. The first

worker (#463 with p̃ = 0.64), who is inclined towards the

first map (types of items), selected the beans (b) as more

similar to the apples, while the other worker (#188 with

p̃ = 0.34), who prefers the second view (taste), has chosen

the ice cream (c). Note that the probe item (apples) appears

among the ambiguous items in Figure 6(b), while the test

items are relatively less ambiguous.

5. Conclusions

In this paper, we introduced a method to uncover multiple

hidden attributes that can be used independently for mak-

ing relative distance comparisons. We propose the MVTE

method that successfully represents these attributes by find-

ing a number of maps that correspond to the underlying

attributes. The method provides a framework to estimate

the true number of attributes, and to evaluate the difficulty

of distance comparison tasks as well as the ambiguity of

an object. Finally, it enables estimating the preferences of

each worker towards different attributes based on the solu-

tions provided by that worker. In general, the method can

be seen as a means to learn a number of independent dis-

tance functions from a set of relative distance judgements.

This may have applications beyond the crowdsourcing ex-

ample considered in this paper.
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