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for Multilabel Image Classification

Yong Luo, Dacheng Tao, Senior Member, IEEE, Chang Xu, Chao Xu,

Hong Liu, and Yonggang Wen, Member, IEEE

Abstract— In computer vision, image datasets used for clas-
sification are naturally associated with multiple labels and
comprised of multiple views, because each image may contain
several objects (e.g., pedestrian, bicycle, and tree) and is properly
characterized by multiple visual features (e.g., color, texture, and
shape). Currently, available tools ignore either the label relation-
ship or the view complementarily. Motivated by the success of the
vector-valued function that constructs matrix-valued kernels to
explore the multilabel structure in the output space, we introduce

multiview vector-valued manifold regularization (MV3MR) to

integrate multiple features. MV3MR exploits the complementary
property of different features and discovers the intrinsic local
geometry of the compact support shared by different features
under the theme of manifold regularization. We conduct extensive
experiments on two challenging, but popular, datasets, PASCAL
VOC’ 07 and MIR Flickr, and validate the effectiveness of the
proposed MV3MR for image classification.

Index Terms— Image classification, manifold, multilabel,
multiview, semisupervised.

I. INTRODUCTION

ANATURAL image can be summarized by several key-

words or labels. To conduct image classification by

directly using binary classification methods [1], [2], it is

necessary to assume that labels are independent, although

most labels appearing in one image are related to one another.

Examples are given in Fig. 1, where A1–A3 shows a person

riding a motorbike, B1–B3 indicates sea usually co-occurring

with sky, and C1–C3 shows some clouds in the sky. This mul-

tilabel nature makes image classification intrinsically different

from simple binary classification.
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Moreover, different labels cannot be properly characterized

by a single feature representation. For example, the color infor-

mation (e.g., color histogram), shape cue (encoded in scale-

invariant feature transform (SIFT) [3]), and global structure

(e.g., GIST [4]) can effectively represent natural substances

(e.g., sky, cloud, and plant life), man-made objects (e.g.,

aeroplane, motorbike, and TV monitor), and scenes (e.g.,

seaside and indoor), respectively, but cannot simultaneously

illustrate all these concepts in an effective way. Each visual

feature encodes a particular property of the images and char-

acterizes a particular concept (label), so we treat each feature

representation as a particular view for characterizing images.

Fig. 1(a)–(c) indicates that SIFT representation is effective

in describing a motorbike and GIST can capture the global

structure of a person on the motorbike. Fig. 1(d)–(f) shows

that GIST performs well in recognizing seaside scenes, while

the color information can be used as a complementary aid

for recognizing the blue seawater. From Fig. 1(g)–(i), we

can see that RGB usually represents cloud well and GIST

is helpful when RGB fails. For example, the RGB represen-

tations of C1 and C3 are not very similar but their GIST

distance (0.22) is very small due to the sky scene structure.

This multiview nature distinguishes image classification from

single-view tasks, such as texture segmentation [5] and face

recognition [6].

The vector-valued function [7] has recently been intro-

duced to resolve multilabel classification [8] and has been

demonstrated to be effective in semantic scene annotation.

This method naturally incorporates the label dependencies

into the classification model by first computing the graph

Laplacian [9] of the output similarity graph, and then uses

this graph to construct a vector-valued kernel. This model is

superior to most of the existing multilabel learning methods

[10]–[12] because it naturally considers the label correlations

and efficiently outputs all the predicted labels at one time.

Although the vector-valued function is effective for general

multilabel classification tasks, it cannot directly handle image

classification problems that include images represented by

multiview features. A popular solution is to concatenate all

the features into a long vector. This concatenation strategy not

only ignores the physical interpretations of different features

but also encounters the overfitting problem given the limited

training samples.

We thus introduce multikernel learning (MKL) to the vector-

valued function and present a multiview vector-valued man-

ifold regularization (MV3MR) framework for handling the

multiview features in multilabel image classification. MV3MR

associates each view with a particular kernel, assigns a higher

2162–237X/$31.00 © 2013 IEEE
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Fig. 1. A1–A3, B1–B3, and C1–C3 are images of a person riding a motorbike, a seaside, and clouds in the sky, respectively. (a)–(i) Feature representations
and a distance matrix of the samples in a particular view. All the distances have been normalized here.

weight to the view/kernel carrying more discriminative infor-

mation, and explores the complementary nature of different

views.

In particular, MV3MR assembles the multiview information

through a large number of unlabeled images to discover the

intrinsic geometry embedded in the high-dimensional ambient

space of the compact support of the marginal distribution.

The local geometry, approximated by the adjacency graphs

induced from multiple kernels of all the correspond-

ing views, is more reliable than that approximated by

the adjacency graph induced from a particular kernel of

any corresponding view. In this way, MV3MR essentially

improves the vector-valued function for multilabel image

classification.

Because the hinge loss is more suitable for classification

than the least squares loss [13]–[15], we derive an support

vector machine (SVM) formulation of MV3MR which results

in a multiview vector-valued Laplacian SVM (MV3LSVM).

We carefully design the MV3LSVM algorithm so that it

determines the set of kernel weights in the learning process of

the vector-valued function.

We thoroughly evaluate the proposed MV3LSVM algo-

rithm on two challenging datasets, PASCAL VOC’ 07 (VOC)

[16] and MIR Flickr (MIR) [17], by comparing it with

a popular MKL algorithm [18], a recently proposed MKL

method [19], and competitive multilabel learning algorithms

for image classification, such as multilabel compressed sensing

(MLCS) [20], canonical correlation analysis (CCA) [12], and

vector-valued manifold regularization [8] in terms of mean

average precision (mAP), mean area under curve (mAUC),

and Ranking loss (RL). The experimental results suggest the

effectiveness of MV3LSVM.

The rest of this paper is organized as follows. Section II

summarizes the recent work in multilabel learning, MKL

and image classification. In Section III, we introduce man-

ifold regularization and its vector-valued generalization. We

depict the proposed MV3MR framework and its SVM for-

mulation in Section IV. Extensive experiments are pre-

sented in Section V and we conclude this paper in

Section VI.

II. RELATED WORK

A. Multilabel Learning

Multilabel classification has received intensive attention

in recent years [21]–[23]. Some methods extend traditional

multiclass algorithms to cope with the multilabel problem.

AdaBoost.MH [24] adds the label value to the feature vector

and then applies AdaBoost on weak classifiers. A ranking

algorithm is presented in [25] by adopting the RL as the cost

function in SVM. Multilabel k nearest neighbours (ML-KNN)

[26] is an extension of the KNN algorithm to deal with multil-

abel data, and CCA has also recently been extended to the mul-

tilabel case by formulating it as a least-squares problem [12].

Other works concentrate on preprocessing the data so that

standard binary or multiclass techniques can be utilized. For

example, multiple labels of a sample belong to a subset of

the whole label set and we can view this subset as a new

class [27]. This may lead to a large number of classes and a

more common strategy is to learn a binary classifier for each

label [1], [2]. Considering that the labels are often sparse,

a compressed sensing method is proposed for multilabel

prediction [20].

Various approaches have been proposed to improve

prediction accuracy by exploiting label correlations

[8], [11], [28], [29]. Sun et al. [28] proposed the construction

of a hypergraph to exploit the label dependencies. In [29], a

common subspace is assumed to be shared among all labels,

and the correlation information contained in different labels

can be captured by learning this low-dimensional subspace.

A max-margin method is proposed in [11], where prior

knowledge of label correlations is incorporated explicitly in

the multilabel classification model.

None of the approaches mentioned above considers the

features to be used; however, an image with multiple labels

usually indicates that it contains multiple objects. As far

as we know, there is no single kind of feature that can

describe a variety of objects very well. Therefore, how to

combine different features is a critical issue in multilabel

image classification and we consider MKL for this purpose

in this paper.
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B. Multikernel Learning

Classical kernel methods are usually based on a single

kernel [30], [31]. MKL [32], in which a kernel-based classifier

and a convex combination of the kernels are learned simulta-

neously, has attracted much attention. Lanckriet et al. [32]

have introduced MKL for binary classification and solved

it with semidefinite programming techniques. The MKL

algorithm was further developed by Sonnenburg et al. [33]

in the presentation of a semi-infinite linear program. In

[18], MKL is reformulated by using a weighted L2-norm

regularization to replace the mixed-norm regularization and

adding an L1-norm constraint on the kernel weights. All of

these MKL formulations are based on SVM and are not

naturally designed for multilabel classification. The proposed

MV3MR framework extends MKL to handle the multilabel

problem and model label interdependencies.

C. Image Classification

Image classification has been widely used in many

computer-vision-related applications such as image retrieval

and web content browsing. In recent years, more than a dozen

methods have been proposed and representative works can be

grouped into three categories.

1) Single-View Learning for Image Classification: This

category contains many recent image classification

schemes, e.g., dictionary learning [34] and spatial pyra-

mid matching [35]. For example, Labusch et al. [36]

proposed to integrate sparse-coding and local-maximum

operation to extract local features for handwritten

digit recognition. In [37], a nonlinear coding scheme

was introduced for local descriptors such as SIFT.

Yang et al. [38] explored the local co-occurrences of

visual words over the spatial pyramid.

2) Multiview Learning for Image Classification: Multiview

learning is an active current research topic [39]–[41].

Schemes in this category utilize the features from dif-

ferent views (or multiview features) to boost image

classification performance. In this paper, the concept of

“views” used for learning refers to different features

or attributes for depicting the objects to be classified.

It should be noted that for some other applications

in vision and graphics, “views” mean different spatial

viewpoints [42]–[44]. A semisupervised boosting algo-

rithm is proposed in [45], in which images measured

by different views are used to construct a prior and

formulate a regularization term. Guillaumin et al. [2]

combined 15 visual representations [e.g., SIFT, GIST,

and hue, saturation and value (HSV)] with the tag feature

for semisupervised image classification. Combining the

visual and textual information has been utilized for

clustering [46] and web page classification [47].

3) Multilabel Learning for Image Classification: This cat-

egory is motivated by the success of multilabel learning

and has demonstrated promising image classification

performance. For example, Bucak et al. [48] proposed a

ranking-based algorithm to tackle the multilabel problem

with incompletely labeled data by introducing a group

lasso regularizer in optimization. Unlike traditional mul-

tilabel methods that always consider positive label cor-

relations, a novel approach is presented in [49] to make

use of the negative relationship of categories.

Although it has been widely acknowledged that both

multiview representation and label interdependencies are

important for multilabel image classification, most of

the existing approaches do not take both of them into

consideration. Most existing multiview approaches assume

that different views (features) contribute equally to label

prediction. In contrast to these approaches, the proposed

MV3MR naturally explores both the complementary property

of multiview features and the correlations of different labels

under the manifold regularization scheme.

III. MANIFOLD REGULARIZATION AND

VECTOR-VALUED GENERALIZATION

This section briefly introduces the manifold regularization

framework [9] and its vector-valued generalization [8]. Given

a set of l labeled examples Dl = {(xi , yi )
l
i=1} and a relatively

large set of u unlabeled examples Du = {(xi)
N=l+u
i=l+1 }, we con-

sider a nonparametric estimation of a vector-valued function

f : X �→ Y , where Y = R
n and n is the number of labels.

This setting includes Y = R as a special case for regression

and classification.

A. Manifold Regularization

Manifold learning has been widely used for capturing the

local geometry [50] and conducting low-dimensional embed-

ding [51], [52]. In manifold regularization, the data mani-

fold is characterized by a nearest neighbor graph W , which

explores the geometric structure of the compact support of

the marginal distribution. The Laplacian L of W and the

prediction f = [ f (x1), . . . , f (xN )] are then formulated as a

smoothness constraint ‖ f ‖2
I = fTLf , where L = D − W

and the diagonal matrix D is given by Dii =
∑N

j=1 Wi j . The

manifold regularization framework minimizes the regularized

loss

argmin
f ∈Hk

1

l

l
∑

i=1

L( f, xi , yi ) + γA‖ f ‖2
k + γI ‖ f ‖2

I (1)

where L is a predefined loss function, k is the standard scalar-

valued kernel, i.e., k : X ×X �→ R, and Hk is the associated

reproducing kernel Hilbert space (RKHS). Here, γA and γI

are trade-off parameters to control the complexities of f in

the ambient space and the compact support of the marginal

distribution. The representer theorem [9] ensures the solution

of (1) takes the form f ∗(x) =
∑N

i=1 αi k(x, xi), where αi ∈ R

is the coefficient. Since a pair of close samples means that

the corresponding conditional distributions are similar, the

manifold regularization ‖ f ‖2
I helps the function learning.

B. Vector-Valued Manifold Regularization

In the vector-valued RKHS, where a kernel function K is

defined and the corresponding Y-valued RKHS is denoted by
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HK , the optimization problem of the vector-valued manifold

regularization (VVMR) is given by

argmin
f ∈HK

1

l

l
∑

i=1

L( f, xi , yi ) + γA‖ f ‖2
K + γI 〈f,Mf〉Yu+l (2)

where Yu+l is the u + l direct product of Y , and the inner

product takes the form

〈(y1, . . . , yu+l), (w1, . . . , wu+l)〉Yu+l =

u+l
∑

i=1

〈yi , wi 〉Y .

The function prediction f = [ f (x1), . . . , f (xu+l)] ∈ Yu+l .

The matrix M is a symmetric positive operator that satisfies

〈y,My〉 ≥ 0 for all y ∈ Yu+l and is chosen to be L⊗ In . Here,

L is the graph Laplacian, In is the n×n identity matrix, and ⊗

denotes the Kronecker (tensor) matrix product. For Y = R
n ,

an entry K (xi , x j ) of the n × n vector-valued kernel matrix is

defined by

K (xi , x j ) = k(xi , x j )(γO L
†
out + (1 − γO)In) (3)

where k(·, ·) is a scalar-valued kernel, and γO ∈ [0, 1] is

a parameter. Here, L
†
out is the pseudo-inverse of the output

labels’ graph Laplacian. The graph can be estimated by

viewing each label as a vertex and using the nearest neighbors

method. The representation of the j th label is the j th column

in the label matrix Y ∈ R
N×n , in which Yi j = 1 if the j th label

is manually assigned to the i th sample, and −1 otherwise. For

the unlabeled samples, Yi j = 0.

It has been proved in [8] that the solution of the minimiza-

tion problem (2) takes the form f ∗(x) =
∑N

i=1 K (x, xi )ai .

By choosing the regularization least squares (RLS) loss

L( f, xi , yi ) = ( f (xi ) − yi )
2, we can estimate the column

vector a = {a1, . . . , au+l} ∈ R
n(u+l) with each ai ∈ Y by

solving a the Sylvester equation

−
1

lγA

(J N
l Gk + lγILGk)AQ − A +

1

lγA

Y = 0 (4)

where a = vec(AT ) and Q = (γOL
†
out + (1 − γO )In) and J N

l

is a diagonal matrix with the first l entries 1 and the others 0.

Here, Gk is the Gram matrix of the scalar-valued kernel k over

the labeled and unlabeled data. We refer the reader to [8] for

a detailed description of the vector-valued Laplacian RLS.

IV. MULTIVIEW VECTOR-VALUED

MANIFOLD REGULARIZATION

To handle multiview multilabel image classification, we

generalize VVMR and present MV3MR. In contrast to [2],

which assumes that different views contribute equally to the

classification, MV3MR assumes that different views contribute

to the classification differently and learns the combination

coefficients to integrate different views.

Fig. 2 gives an illustrative example which suggests that

different views contribute to the classification differently and

that learning the combination coefficients to integrate different

views benefits the classification. Given five images from two

classes, namely three cars of different colors (silvery white,

blue, and red) and two different sky images, the optimal Gram
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Fig. 2. Different views contributing to the classification differently. Gk
1 is

a Gram matrix constructed from SIFT [3]. Gk
2 is obtained from RGB color

histogram. Gk
1 and Gk

2 are complementary to each other. The learned linear

combination Gk
comb

of the two Gram matrices is closer to the optimal Gram

matrix Gk
opt than the mean Gram matrix Gk

avg by simply averaging the two
kernels.

Fig. 3. Diagram of the proposed MV3MR algorithm. The given labels
are used to construct an output similarity graph, which encodes the label
correlations. Features from different views of the labeled and unlabeled
data are used to construct different Gram matrices (with label correlations
incorporated) Gv , v = 1, . . . , V as well as the different graph Laplacians
Mv , v = 1, . . . , V . We learn the weight βv for Gv and θv for Mv . The
combined Gram matrix G is used for classification while preserving locality
on the integrated manifold M.

matrix Gk
opt is shown on the right side for separating these

images into two classes. On the left, there are four Gram

matrices, which are two single Gram matrices Gk
1, Gk

2 obtained

from two different views, and their mean Gk
avg, as well as

their linear combination Gk
comb with the learned coefficients.

The figure indicates that Gk
comb is closer to the optimal Gram

matrix Gk
opt than Gk

avg.

Given a small number of labeled samples and a relatively

large number of unlabeled samples, MV3MR first computes

an output similarity graph by using the label information

of the labeled samples. The Laplacian of the label graph

is incorporated in the scalar-valued Gram matrix Gk
v over

labeled and unlabeled data to enforce label correlations on

each view, and the vector-valued Gram matrices Gv = Gk
v⊗Q,

v = 1, . . . , V can be obtained. Meanwhile, we also compute

the vector-valued graph Laplacians Mv , v = 1, . . . , V by

using the features of the input data from different views. Then

MV3MR learns the kernel combination coefficient βv for Gv
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as well as the graph weight θv for Mv by the use of alternating

optimization. Finally, the combined Gram matrix G together

with the regularization on the combined manifold M is used

for classification. Fig. 3 summarizes the above procedure. The

technical details are given below.

A. Rationality

Let V be the number of views and v be the view index. On

the feature space of each view, we define the corresponding

positive-definite scalar-valued kernel kv , which is associated

with an RKHS Hkv . It follows from the functional framework

[18] that, by introducing a nonnegative coefficient βv , the

Hilbert space H′
kv

= { f | f ∈ Hkv :
‖ f ‖Hkv

βv
< ∞} is an RKHS

with kernel k(x, x ′) = βvkv(x, x ′). If we define Hk as the

direct sum of the space H′
kv

, i.e., Hk = ⊕V
v=1H

′
kv

, then Hk is

an RKHS associated with the kernel

k(x, x ′) =

V
∑

v=1

βvkv(x, x ′). (5)

Thus, any function in Hk is a sum of functions belonging

to Hkv. The vector-valued kernel K (x, x ′) = k(x, x ′) ⊗

Q =
∑V

v=1 βv Kv (x, x ′), where we have used the bilinearity

of the Kronecker product. Each Kv (x, x ′) = kv(x, x ′) ⊗ Q

corresponds to an RKHS according to the study of RKHS

for the vector-valued functions [8]. Thus, the kernel K is

associated with an RKHS HK . This functional framework

motivates the MV3MR framework. We will jointly learn the

linear combination coefficients {βv} to integrate kernels for

characterizing different views and the classifier coefficients

{ai } in a single optimization problem. Moreover, to effectively

utilize the unlabeled data, we construct graph Laplacians for

different views and learn to combine all of them.

B. Problem Formulation

Under the multiview setting and the theme of manifold

regularization, we propose to learn the vector-valued function

f by linearly combining the kernels and graphs from different

views. The optimization problem is given by

argmin
f ∈HK

1

l

l
∑

i=1

L( f, xi , yi ) + γA‖ f ‖2
K + γI 〈f,Mf〉Yu+l

+γB‖β‖2
2 + γC‖θ‖2

2

s.t.

V
∑

v=1

βv = 1, βv ≥ 0

V
∑

v=1

θv = 1, θv ≥ 0, v = 1, . . . , V (6)

where β = [β1, . . . , βV ]T and θ = [θ1, . . . , θV ]T . Both

γB > 0 and γC > 0 are trade-off parameters. The decision

function takes the form f (x)+b =
∑

v f v (x)+b and belongs

to an RKHS HK associated with the kernel K (x, x ′) =
∑

v βv Kv (x, x ′). We define M =
∑

v θvMv , where each Mv

is a vector-valued graph Laplacian constructed on HKv . It can

be demonstrated that M is still a graph Laplacian.

Lemma 1: M ∈ S+
Nn is a vector-valued graph Laplacian.

The notation S+
n denotes a set of n × n symmetric positive-

semidefinite matrices and we will use S∗
n to denote a set of

positive-definite matrices. Then we have the following version

of the representer theorem.

Theorem 1: For fixed sets of {βv} and {θv}, the minimizer

of (6) admits an expansion

f ∗(x) =

u+l
∑

i=1

K (x, xi)ai (7)

where ai ∈ Y, 1 ≤ i ≤ N = u + l are some vectors to be

estimated and K (x, xi ) =
∑V

v=1 βv Kv(x, xi ). The proof of

Lemma 1 and Theorem 1 are detailed in the Appendix.

The hinge loss L( f, xi , yi ) = (1 − yi f (xi ))+ is more

suitable for classification than least squares loss since the hinge

loss results in a better convergence rate and usually higher

classification accuracy (we refer to [13] for a comparison of

different popular loss functions). We adopt the hinge loss in

MV3MR and derive MV3LSVM as follows.

C. Multiview Vector-Valued Laplacian SVM

Under the SVM formulation, the minimization problem of

MV3MR is

argmin
f ∈HK ,β,θ

1

nl

l
∑

i=1

n
∑

j=1

(1−yi j f j (xi ))++γA‖ f ‖2
K

+γI 〈f,Mf〉Yu+l +γB‖β‖2
2+γC‖θ‖2

2

s.t.

V
∑

v=1

βv =1, βv ≥0,

V
∑

v=1

θv =1, θv ≥0 ∀v. (8)

An unregularized bias b j is often added to the solution

f j (x) =
∑N

i=1 K j (x, xi)ai in the SVM formulation. By

substituting (7) into the above formulation, we can see the

primal problem as follows:

argmin
a,b,ξ,β,θ

1

nl

l
∑

i=1

n
∑

j=1

ξi j +γAaT Ga+γI aT GMGa

+γB‖β‖2
2 + γC‖θ‖2

2

s.t. yi j

(l+u
∑

z=1

K j (xi , xz)az +b j

)

≥ 1−ξi j , ξi j ≥ 0 ∀i, j

V
∑

v=1

βv = 1, βv ≥ 0,

V
∑

v=1

θv = 1, θv ≥ 0 ∀v (9)

where G =
∑V

v=1 βv Gv is the combined vector-valued Gram

matrix over the labeled and unlabeled samples defined on

kernel K , and M =
∑V

v=1 θvMv is the integrated vector-

valued graph Laplacian. Here, K j (·, ·) is the j th row of the

vector-valued kernel K. We have three variables, i.e., a, β, and

θ , to be optimized in (9). To solve this problem, we consider

the following constrained optimization problem:

min F(β, θ)

s.t.

V
∑

v=1

βv = 1, βv ≥ 0,

V
∑

v=1

θv = 1, θv ≥ 0 ∀v (10)
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where F(β, θ) equals

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

argmina,b,ξ
1
nl

∑l
i=1

∑n
j=1 ξi j +γAaT Ga+γI aT GMGa

+ γB‖β‖2
2 + γC‖θ‖2

2

s.t. yi j (
∑l+u

z=1 K j (xi , xz)az + b j ) ≥ 1 − ξi j ,

ξi j ≥ 0, i = 1, . . . , l, j = 1, . . . , n.

(11)

Here, G and M take the form as in (9). We can omit the terms

γB‖β‖2
2 and γC‖θ‖2

2 in (11) since β and θ are fixed. By intro-

ducing the Lagrange multipliers µi j and ηi j in (11), we have

W (a, ξ, b, µ, η)

=
1

nl

l
∑

i=1

n
∑

j=1

ξi j +
1

2
aT (2γAG+2γI GMG)a−

l
∑

i=1

n
∑

j=1

ηi j ξi j

−

l
∑

i=1

n
∑

j=1

µi j

(

yi j

(

l+u
∑

z=1

K j (xi , xz)az + b j

)

− 1 + ξi j

)

. (12)

By taking the partial derivative w.r.t. ξi j , b j , and setting them

to be zero, we obtain

∂W

∂b j
= 0 ⇒

l
∑

i=1

µi j yi j = 0, j = 1, . . . , n

∂W

∂ξi j

= 0 ⇒
1

nl
− µi j − ηi j = 0 ⇒ 0 ≤ µi j ≤

1

nl
.

A reduced Lagrangian can be obtained by substituting the

above equalities back into (12), which leads to

W R(a, µ) =
1

2
aT

(

2γAG+2γI GMG
)

a−aTGJ TYdµ+µT1

s.t.

l
∑

i=1

µi j yi j = 0, j = 1, . . . , n,

0≤µi j ≤
1

nl
, i = 1, . . . , l, j = 1, . . . , n (13)

where J = [I 0] ∈ R
(nl)×(nl+nu) and I is an nl × nl

identity matrix. Here, µ = {µ1, . . . , µl} ∈ R
nl is

a column vector with each µi = [µi1, . . . , µin ]T ,

Yd = diag(y11, . . . , y1n, . . . , . . . , yl1, . . . , yln), and 1 is

an all 1s column vector. Taking the partial derivative of W R

w.r.t. a and letting it be zero leads to

a∗ = (2γA I + 2γIMG)−1 J T Ydµ∗. (14)

Substituting it back into (13) we get

µ∗ = argmax
µ∈Rnl

µT 1 −
1

2
µT Sµ

s.t.

l
∑

i=1

µi j yi j = 0, j = 1, . . . , n

0 ≤ µi j ≤
1

nl
, i = 1, . . . , l, j = 1, . . . , n (15)

where the matrix S = Yd J G(2γA I + 2γI MG)−1 J T Yd .

Again, the combined Gram matrix G =
∑V

v=1 βv Gv and

the integrated graph Laplacian M =
∑V

v=1 θvMv . Because

of the strong duality, the objective value of (11) is also the

objective value of (13), which is W R(a∗, µ∗). Therefore, we

can rewrite (10) as

W (β, θ) = W R(a∗, µ∗)+γB‖β‖2
2+γC‖θ‖2

2

s.t.

V
∑

v=1

βv = 1,βv ≥ 0;

V
∑

v=1

θv = 1, θv ≥0 ∀v. (16)

For fixed θ , the above problem can be rewritten with respect

to β as

W (β) = βT Hβ + γB‖β‖2
2 − hT β

s.t.
∑

v

βv = 1, β ≥ 0, v = 1, . . . , V (17)

where h = [h1, . . . , hV ]T with each hv = (a∗)T Gv J T Ydµ∗ −

γA(a∗)T Gva∗ and H is a V × V matrix with the entry

Hi j = γI (a
∗)T GiMG j a

∗. We can simply set the derivative

of W (β) to zero and obtain β = (H + H T + 2γB I )−1h.

Then the computed β is projected to the positive simplex

to satisfy the summation and positive constraints. However,

such an approach lacks convergence guarantees and may lead

to numerical problems. A coordinate descent algorithm is

therefore used to solve (17). In each iteration round during

the coordinate descent procedure, two elements βi and β j

are selected to be updated while the others are fixed. By

using the Lagrangian of (17) and considering that βi + β j

will not change due to constraint
∑V

v=1 βv = 1, we have the

following solution for updating βi and β j :

{

β∗
i =

2γB(βi+β j )+(hi−h j )+2ti j

2(Hii −H j i −Hi j +H j j )+4γB

β∗
j = βi + β j − β∗

i

(18)

where ti j = (Hii − H j i − Hi j + H j j)βi −
∑

k(Hik − H j k)βk .

The obtained β∗
i or β∗

j may violate the constraint βv ≥ 0.

Thus, we set

β∗
i = 0, β∗

j = βi +β j , if 2γB(βi +β j )+(hi −h j )+2ti j ≤ 0

β∗
j = 0, β∗

i = βi +β j , if 2γB(βi +β j )+(h j −hi )+2t j i ≤ 0.

From (18), we can see that the update criteria tends to assign

larger value βi to larger hi and smaller Hii . Because hi =

(a∗)T Gi J T Ydµ−γA(a∗)T Gi a
∗ and Hii = γI (a

∗)T GiMGi a
∗

measures the discriminative ability and the performance of

the i th view. Let (a∗
i , µ

∗
i ) be the solution for the optimization

problem of the i th view, which is W R(a, µ) with G = Gi .

If all the solutions are the same, i.e., (a∗
1, µ

∗
1) = · · · =

(a∗
V , µ∗

V ) = (a∗, µ∗), then the objective value W R(a∗
i , µ

∗
i ) of

the discriminative view tends to be smaller than nondiscrim-

inative view (we assume that all Gram matrices have been

normalized). A smaller W R(a∗
i , µ

∗
i ) corresponds to a larger

hi and a smaller Hii , and thus our algorithm prefers discrim-

inative view. However, the solutions (a∗
1, µ

∗
1), . . . , (a

∗
V , µ∗

V )

may not be exactly the same as (a∗, µ∗). Thus the learned βi

is in general but not strictly consistent with the performance

of the i th single view. We can see this in the experiments.

For fixed β, (16) can be simplified as

W (θ) = sT θ + γC‖θ‖2
2 (19)

s.t
∑

v

θv = 1, θv ≥ 0, v = 1, . . . , V (20)
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Algorithm 1 Optimization Procedure of the Proposed

MV3LSVM Algorithm

Input: labeled data Dv
l = {(xv

i , yi )
l
i=1} and unlabeled data

Dv
u = {(xv

i )N=u+l
i=l+1 } form different views, v = 1, . . . , V is

the view index

Algorithm parameters: γA, γI , γB , and γC

Output: classifier variable a, the kernel combination coeffi-

cients {βv}, and the graph Laplacian weights {θv}.

1: Construct the Gram matrix Gv and the vector-valued

graph Laplacian Mv for each view, set βv = θv =
1
V

, v = 1, . . . , V ; compute G =
∑V

v=1 βv Gv and M =
∑V

v=1 θvMv .

2: Iterate

3: Approximately solve for a through (14) with fixed G and

M

4: Compute β by solving (17) and update the Gram matrix

G

5: Compute θ by solving (19) and update the graph

Laplacian M

6: Until convergence

where s = [s1, . . . , sV ]T with each sv = γI (a
∗)T GMv Ga∗.

Similarly, the solution of (19) can be obtained by using the

coordinate descent, and the criteria for updating θi and θ j in

an iteration round is given by
⎧

⎪

⎨

⎪

⎩

θ∗
i = 0, θ∗

j = θi + θ j , if 2γC(θi + θ j ) + (s j − si ) ≤ 0

θ∗
j = 0, θ∗

i = θi +θ j , if 2γC(θi +θ j )+(si − s j ) ≤ 0

θ∗
i =

2γC (θi+θ j )+(s j−si )

4γC
, θ∗

j = θi + θ j − θ∗
i , else.

(21)

We now summarize the learning procedure of the proposed

MV3LSVM in Algorithm 1.

The stopping criterion for terminating the algorithm can be

the difference of the objective value W R(a, µ) + γB‖β‖2
2 +

γC‖θ‖2
2 between two consecutive steps. Alternatively, we can

stop the iterations when the variation of β and θ are both

smaller than a predefined threshold. Our implementation is

based on the difference of the objective value, i.e., if the value

|Ok − Ok−1|/|Ok − O0| is smaller than a predefined threshold,

then the iteration stops, where Ok is the objective value of

the kth iteration step. Our implementation is based on the

difference of the objective value.

D. Convergence Analysis

In this section, we discuss the convergence of the proposed

MV3LSVM algorithm. We first prove the convexity of (11),

(17), and (19) as follows.

Proof: The Hessian matrix of the objective function of (11)

is He(a) = γAG + γI GMG. The Gram matrix G ∈ S+
n and

we assume that G is positive definite in this paper (to enforce

this property a small ridge is added to the diagonal of G).

The second term is positive semidefinite since xT GMGx =

zTMz ≥ 0 for any x and z = Gx . Here, we have used the

property of the graph Laplacian M ∈ S+
Nn . Then He(a) ∈ S∗

Nn

for γA > 0 and (11) is strictly convex.

For (17), the Hessian matrix is He(β) = H + γB I . The

matrix H is symmetric since the element Hi j = H T
i j =

γI aT G jMGi a = H j i . In addition, the Cholesky decompo-

sition M = PT P exists since M ∈ S+
Nn . Let zi = PGi a, and

we have Hi j = γI zT
i z j . Thus, H ∈ S+

V and He(β) ∈ S∗
V for

γB > 0. This means that (17) is also strictly convex.

Finally, it is straightforward to verify that (19) is strictly

convex for γC > 0. This completes the proof.

Now we discuss the convergence of our algorithm. Let

the objective function of (9) be R(a, b, ξ, β, θ) and the ini-

tialized value be R(ak, bk, ξ k, βk, θ k). Since (11) is convex,

we have R(ak+1, bk+1, ξ k+1, βk, θ k) ≤ R(ak, bk, ξ k , βk, θ k).

We suppose that (9) is exactly solved, which means that

the duality gap is zero. Then R(ak+1, bk+1, ξ k+1, βk, θ k) =

W (βk, θ k). For fixed θ k , we obtain the convex prob-

lem (17), thus we have R(ak+1, bk+1, ξ k+1, βk+1, θ k) ≤

R(ak+1, bk+1, ξ k+1, βk, θ k). Similarly, due to the convex-

ity of (19), we have R(ak+1, bk+1, ξ k+1, βk+1, θ k+1) ≤

R(ak+1, bk+1, ξ k+1, βk+1, θ k). Therefore, the convergence of

our algorithm is guaranteed.

E. Complexity Analysis

For the proposed MV3LSVM, the complexity is dominated

by the time cost of computing a∗ in each iteration, where

the computation of the matrix S in (15) involves an inversion

and several multiplications of nN × nN matrix, and the

time complexity is O(n2.8 N2.8) using the Strassen algorithm

[53]. (15) can be solved using a standard SVM solver with

the time complexity O(n2.3l2.3) according to the sequential

minimal optimization [54]. The computations of β and θ

are quite efficient since their dimensionality is V , which

is usually very small (e.g., V = 7 in our experiments).

Suppose the number of iterations is k, then the total cost

of MV3LSVM is O(k(n2.8 N2.8 + n2.3l2.3)). Considering that

l < N , the time cost is O(kn2.8 N2.8), which is k times of

the case where no combination coefficients (β and θ ) are

learned. From the experimental results shown in Section V-B,

we will find that k is very small since our algorithm only

needs a few iterations (around five) to converge. Actually, there

is a balance between the time complexity and classification

accuracy. If only a limited number of unlabeled samples are

selected to construct the input graph Laplacians, i.e., N = u+l

is small, then the time complexity can be reduced with

an acceptable performance sacrifice. In our experiments, we

obtain satisfactory accuracy by setting N = 1000, so the time

cost is acceptable.

V. EXPERIMENT

We validate the effectiveness of MV3LSVM on two chal-

lenge datasets, VOC [16] and MIR [17]. The VOC dataset

contains 10 000 images labeled with 20 categories. The MIR

dataset consists of 25 000 images of 38 concepts. For the VOC

dataset [16], we use the standard train/test partition [16], which

splits 9963 images into a training set of 5011 images and a

test set of 4952 images. For the MIR dataset [17], images are

randomly split into equally sized training and test sets. For

both datasets, we randomly select 20% of the test images for

validation and the rest for testing. The parameters of all the

algorithms compared in our experiments are tuned by using the

validation set. This means that the parameters corresponding
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to the best performance in the validation set are used for the

transductive inference and inductive test. From the training

examples, 10 random choices of l ∈ {100, 200, 500} labeled

samples are used in our experiments.

We use several visual views and the tag feature according

to [2]. The visual views include SIFT features [3], local

hue histograms [55], global GIST descriptor [4], and some

color histograms (RGB, HSV, and LAB). The local descriptors

(SIFT and hue) are computed densely on the multiscale grid

and quantized using k-means, which results in a visual word

histogram for each image. Therefore, we have seven different

representations in total. We precompute a scalar-valued Gram

matrix for each view and normalize it to unit trace. For the

visual representations, the kernel is defined by

k(xi , x j ) = exp
(

− λ−1d(xi , x j )
)

where d(xi , x j ) denotes the distance between xi and x j , and

λ = maxi, j d(xi , x j ). Following [2], we choose the L1 distance

for the color histogram representations (RGB, HSV, and LAB),

and L2 for GIST and χ2 for the visual word histograms (SIFT

and hue). For the tag features, a linear kernel k(xi , x j ) = x T
i x j

is constructed.

A. Evaluation Metrics

We use three kinds of evaluation criteria. The AP and AUC

are utilized to evaluate the ranking performance under each

label. We also use the RL to study the performance of label

set prediction for each instance.

1) AP evaluates the fraction of samples ranked above a

particular positive sample [56]. For each label, there is

a ranked sequence of samples returned by the classifier.

A good classifier will rank most of the positive samples

higher than the negative ones. The traditional AP is

defined as

AP =

∑

k P(k)

#{positive samples}

where k is a rank index of a positive sample and P(k)

is the precision at the cutoff k. In this paper, we choose

to use the computing method as in the PASCAL VOC

[16] challenge evaluation

AP =
1

11

∑

r

P(r)

where P(r) is the maximum precision over all recalls

larger than r ∈ {0, 0.1, 0.2, . . . , 1.0}. A larger value

means a higher performance. In this paper, the mean

AP, i.e., mAP, over all labels, is reported to save space.

2) ROC evaluates the probability that a positive sample will

be ranked higher than a negative one by a classifier

[57]. It is computed from an ROC curve that depicts

relative tradeoffs between true positive (benefits) and

false positive (costs). The AUC of a realistic classifier

should be larger than 0.5. We refer to [57] for a detailed

description. A larger value means a higher performance.

Similar to AP, the mean AUC, i.e., mAUC, over all

labels, is reported.

3) RL evaluates the fraction of label pairs that are incor-

rectly ranked [24], [26]. Given a sample xi and its label

set Yi , a successful classifier f (x, y) should have a

larger value for y ∈ Yi than those y �∈ Yi . Then the

RL for the i th sample is defined as

RL( f, xi ) =
1

|Yi|(P −|Yi |)

×|{(y1, y2)| f (x, y1)≤ f (x, y2), y1 ∈ Yi , y2 �∈ Yi }|

where P is the total number of labels and | · | denotes

the cardinality of a set. The smaller the value, the higher

the performance. The mean value over all samples is

computed for evaluation.

B. Performance Enhancement With Multiview Learning

It has been shown in [8] that VVMR performs well for trans-

ductive semisupervised multilabel classification and can pro-

vide a high-quality out-of-sample generalization. The proposed

MV3MR framework is a multiview generalization of VVMR

that incorporates the advantage from MKL for handling mul-

tiview data. Therefore, we first evaluate the effectiveness of

learning the view combination weights using the proposed

multiview learning algorithm for transductive semisupervised

multilabel classification. An out-of-sample evaluation will be

presented in the next subsection. The experimental setup of

the two compared methods is given as follows.

1) VVLSVM: Vector-valued LSVM is an SVM implementa-

tion of the vector-valued manifold regularization frame-

work that exploits both the geometry of the input data as

well as the label correlations. We do not use the vector-

valued Laplacian RLS presented in [8] for comparison

because the hinge loss is more suitable for classification.

The parameters γA and γI in (2) are both optimized

over the set {10i |i = −8,−7, . . . ,−2,−1}. We set the

parameter γO in (3) to 1.0 since it has been demonstrated

empirically in [8] that with a larger γO , the performance

will usually be better. The mean of the multiple Gram

matrices and input graph Laplacians are precomputed for

the experiments. The number of nearest neighbors for

constructing the input and output graph Laplacians are

tuned on the sets {10, 20, . . . , 100} and {2, 4, . . . , 20},

respectively.

2) MV3LSVM: This an SVM implementation of the pro-

posed MV3MR framework that combines multiple views

by constructing kernels for all views and learning

their weights. We tune the parameters γA and γI as

in VVLSVM and γO is set to 1.0. The additional

parameters γB and γC are optimized over {10i |i =

−8,−7, . . . ,−2,−1}. We first only learn kernel combi-

nations β and set the graph weights θ to be uniform

(MV3LSVM1 in Fig. 4). Then we learn both and θ

in MV3LSVM2. We use 20 and 6 nearest neighbor

graphs to construct the input and output normalized

graph Laplacians, respectively, for the VOC dataset, and

30 and 8 nearest neighbor graphs in the experiments

on MIR. We set these hyperparameters to be the same

as those in VVLSVM and no further optimization was

attempted.
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Fig. 4. (a) mAP, (b) mAUC, and (c) RL performance enhancement by learning the weights (β and θ ) for different views. PASCAL VOC’ 07 (top) and MIR
Flickr (bottom). MV3LSVM1: only learn β; MV3LSVM2: learn both β and θ .
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Fig. 5. Behavior of the objective values by increasing the iteration number
on the two datasets. (a) PASCAL VOC’ 07. (b) MIR Flickr.

The experimental results on the two datasets are shown

in Fig. 4. We can see that learning the combination weights

using our algorithm is always superior to simply using the

uniform weights for different views. We also find that, when

the number of labeled samples increases, the improvement

becomes small. This is because the multiview learning actually

helps to approximate the underlying data distribution. This

approximation can be steadily improved with the increase of

the number of labeled samples, and thus the significance of the

multiview learning to the approximation gradually decreases.

Besides, we observe that β has more influence on the final

performance overall.

We show the behavior of the objective values by increasing

the iteration number in Fig. 5. From the figure, we can see

that only a few iterations (about five) are necessary to obtain

a satisfactory solution. Thus the time complexity is only a

little more than the VVLSVM algorithm and can justify the

performance enhancement.

Finally, our algorithm is not sensitive to different initializa-

tions, as shown in Fig. 6. In particular, we run our algorithm
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Fig. 6. Performance in mAP, mAUC, and RL verses randomly initialized
(β, θ ). The proposed model is insensitive to different initializations of (β, θ ).
(a) PASCAL VOC’ 07. (b) MIR Flickr.

with 10 random choices of β and θ . We show the performance

in terms of mAP, mAUC, and RL on the two datasets in Fig. 6.

It can be observed that the performance curves do not vary a

lot with different initializations.

C. Out-of-Sample Generalization

The second set of experiments is to evaluate the out-of-

sample extension quality of the MV3MR framework, and

the SVM implementation is utilized. Fig. 7 compares the

transductive performance to the inductive performance when

using l = 200 labeled samples. We show a scatter plot of

the AP scores for each label on the two datasets by using 10

random choices of labeled data. We can see that our algorithm

generalizes well from the unlabeled set to the unseen set. The

MV3MR framework inherits a strong natural out-of-sample

generalization ability that many semisupervised multilabel

methods do not naturally have [8]. Besides, most graph-

based semisupervised learning algorithms are transductive and
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Fig. 7. Transductive and inductive APs across outputs on (a) VOC and
(b) MIR datasets.

additional induction schemes are necessary to handle new

points [58].

D. Analysis of the Combination Coefficients in Multiview

Learning

In the following, we present empirical analyses of the

multiview learning procedure. In Fig. 8, we select l = 200

and present the view combination coefficients β and θ learned

by MV3LSVM, together with the mAP by using VVLSVM

for each view. From the results, we find that the tendency

of the kernel and graph weights are both consistent with the

corresponding mAP in general, i.e., the views with a higher

classification performance tend to be assigned larger weights,

taking the DenseSIFT visual view (the second view) and the

tag (the last view) for example. However, a larger weight

may sometimes be assigned to a less discriminative view; for

example, the weight of Hsv (the fourth view) is larger than the

weight of DenseSift (the second view). This is mainly because

the coefficient a is not optimal for every single view, in which

only Gv and Mv are utilized. The learned a minimizes the

optimization problem (8) by using the combined Gram matrix

G and integrated graph Laplacian M, which means that the

learned vector-valued function is smooth along the combined

RKHS and the integrated manifold. In this way, the proposed

algorithm effectively exploits the complementary property of

different views.

E. Comparisons With Multilabel and MKL Algorithms

Our last set of experiments is to compare MV3LSVM with

several competitive multilabel methods as well as with some

well-known and competitive MKL algorithms in predicting

the unknown labels of the unlabeled data. The out-of-sample

generalization ability of our method has been verified in our

second set of experiments.

We specifically compare MV3LSVM with the following

methods on the challenging VOC and MIR datasets

1) SVM_CAT: Concatenating the features of each view

and then running standard SVM. The parameter C is

tuned on the set {10i |i = −1, 0, . . . , 7, 8}. The time

complexity is O(nl2.3) [54].

2) SVM_UNI: Combining different kernels by combining

them with uniform weights and then running standard

SVM. The parameter C is tuned on the set {10i |i =

−1, 0, . . . , 7, 8}. The time complexity is O(nl2.3) [54].

3) MLCS [20]: MLCS algorithm that takes advantage of the

sparsity of the labels. We choose the label compression

ratio to be 1.0 since the number of the labels n is

not very large. The mean of the multiple kernels from

different views is precomputed for the experiments.

Suppose the length of the compressed label vector (for

each sample) is r ≤ n. Then the training cost is

O(nl3) if we choose the regression algorithm to be the

least squares [59], and the reconstruction complexity

is O(l(n3 + rn2)) if we use the least angle regression

algorithm [60]. Considering that r ≤ n ≤ l in this paper,

the time complexity of MLCS is O(nl3).

4) KLS_CCA [12]: A least-squares formulation of the

kernelized CCA for multilabel classification. The ridge

parameter is chosen from the candidate set {0, 10i |i =

−3,−2, . . . , 2, 3}. The mean of multiple Gram matrices

is precomputed to run the algorithm. According to the

discussion presented in [12], the time complexity is

O(n2l + kn(3l + 5d + 2dl)), where d is the feature

dimensionality and k is the number of iterations.

5) SimpleMKL [18]: A popular SVM-based MKL algo-

rithm that determines the combination of multiple ker-

nels by a reduced gradient descent algorithm. The

penalty factor C is tuned on the set {10i |i =

−1, 0, . . . , 7, 8}. We apply SimpleMKL to multilabel

classification by learning a binary classifier for each

label. According to the Algorithm 1 presented in [18],

there is an outer loop for updating the kernel weights,

as well as an inner loop to determine the maximal

admissible step size in the reduced gradient descent.

Suppose the number of outer and inner iterations are

k1 and k2, respectively; then the time complexity of

SimpleMKL is approximately O(nk1k2l2.3), where we

have ignored the time cost of the SVM solver in the

inner loop since it has warm start and can be very fast

[18].

6) LpMKL [19]: A recent proposed MKL algorithm,

which extend MKL to lp-norm with p ≥ 1. The

penalty factor C is tuned on the set {10i |i =

−1, 0, . . . , 7, 8} and we choose the norm p from the set

{1, 8/7, 4/3, 2, 4, 8, 16,∞}. According to Algorithm 1

presented in [19], the time complexity is O(nkl2.3)

since the kernel combination coefficients can be

computed analytically, where k is the number of

iterations.

The performance of the compared methods on the VOC

dataset and MIR dataset are reported in Table I. The val-

ues in the last column of Table I are the average ranks.

From the results, we first observe that the performance keeps

improving with increasing number of the labeled samples.

Second, the performance of the simpleMKL algorithm, which

learns the kernel weights for SVM, can be inferior to that

of the multilabel algorithms with the mean kernel in many

cases. MV3LSVM is superior to multiview (SimpleMKL and

LpMKL) and multilabel algorithms in general and consistently

outperforms other methods in terms of mAP. The average rank

of our algorithm is smaller than those of all the other methods

in terms of all the three criteria. According to the Friedman test
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Fig. 8. View combination weights β and θ learned by MV3MR, as well as the mAP of using VVLSVM for each view. (a) PASCAL VOC’ 07. (b) MIR
Flickr.

TABLE I

PERFORMANCE EVALUATION ON THE TWO DATASETS

VOC mAP ↑ Versus #{Labeled Samples} MIR mAP ↑ Versus #{Labeled Samples}

Methods 100 200 500 100 200 500 Ranks

SVM_CAT 0.241±0.011 (7) 0.288±0.013 (7) 0.371±0.007 (7) 0.281±0.009 (7) 0.306±0.007 (7) 0.352±0.008 (7) 7

SVM_UNI 0.347±0.018 (4.5) 0.424±0.014 (5) 0.529±0.006 (5) 0.302±0.011 (5) 0.336±0.013 (6) 0.400±0.009 (6) 5.25

MLCS [20] 0.332±0.017 (6) 0.412±0.016 (6) 0.525±0.007 (6) 0.289±0.010 (6) 0.342±0.011 (5) 0.424±0.010 (5) 5.67

KLS_CCA [12] 0.347±0.019 (4.5) 0.432±0.014 (4) 0.536±0.007 (4) 0.321±0.009 (3.5) 0.369±0.017 (2) 0.445±0.009 (2.5) 3.42

MV3LSVM 0.412±0.025 (1) 0.476±0.015 (1) 0.555±0.006 (1) 0.332±0.013 (1) 0.376±0.017 (1) 0.449±0.008 (1) 1

SimpleMKL [18] 0.381±0.024 (3) 0.453±0.020 (3) 0.538±0.011 (3) 0.321±0.014 (3.5) 0.365±0.017 (4) 0.444±0.011 (2.5) 3.17

LpMKL [19] 0.391±0.024 (2) 0.462±0.012 (2) 0.540±0.006 (2) 0.327±0.010 (2) 0.367±0.014 (3) 0.436±0.008 (4) 2.5

VOC mAUC ↑ Versus #{Labeled Samples} MIR mAUC ↑ Versus #{Labeled Samples}

Methods 100 200 500 100 200 500 Ranks

SVM_CAT 0.744±0.013 (7) 0.785±0.006 (7) 0.832±0.003 (7) 0.722±0.008 (4) 0.745±0.004 (6) 0.783±0.004 (6) 6.17

SVM_UNI 0.783±0.008 (3) 0.824±0.009 (2.5) 0.870±0.003 (2.5) 0.718±0.011 (5) 0.742±0.011 (7) 0.782±0.006 (7) 4.5

MLCS [20] 0.773±0.010 (5) 0.819±0.010 (6) 0.869±0.004 (4) 0.701±0.012 (7) 0.749±0.010 (5) 0.805±0.005 (1.5) 4.42

KLS_CCA [12] 0.781±0.009 (4) 0.824±0.008 (2.5) 0.866±0.003 (5) 0.737±0.009 (2) 0.769±0.010 (1.5) 0.805±0.005 (1.5) 2.75

MV3LSVM 0.801±0.011 (1) 0.835±0.011 (1) 0.875±0.004 (1) 0.741±0.014 (1) 0.769±0.012 (1.5) 0.802±0.005 (3.5) 1.5

SimpleMKL [18] 0.769±0.017 (6) 0.822±0.013 (4.5) 0.870±0.006 (2.5) 0.717±0.013 (6) 0.753±0.010 (4) 0.802±0.005 (3.5) 4.42

LpMKL [19] 0.786±0.008 (2) 0.822±0.008 (4.5) 0.862±0.005 (6) 0.732±0.010 (3) 0.756±0.010 (3) 0.795±0.007 (5) 3.92

VOC RL ↓ Versus #{Labeled Samples} MIR RL ↓ Versus #{Labeled Samples}

Methods 100 200 500 100 200 500 Ranks

SVM_CAT 0.220±0.008 (7) 0.183±0.006 (7) 0.142±0.003 (7) 0.165±0.005 (3) 0.146±0.004 (5) 0.126±0.002 (5) 5.67

SVM_UNI 0.178±0.008 (2) 0.143±0.006 (3) 0.106±0.003 (1.5) 0.549±0.040 (7) 0.437±0.022 (7) 0.177±0.011 (7) 4.58

MLCS [20] 0.195±0.007 (5) 0.155±0.007 (5) 0.112±0.004 (4) 0.173±0.006 (5) 0.145±0.005 (4) 0.115±0.003 (2.5) 4.25

KLS_CCA [12] 0.183±0.008 (3) 0.149±0.006 (4) 0.122±0.005 (5) 0.168±0.013 (4) 0.143±0.005 (3) 0.121±0.004 (4) 3.83

MV3LSVM 0.170±0.007 (1) 0.140±0.007 (1) 0.108±0.003 (3) 0.150±0.006 (1) 0.130±0.007 (1) 0.111±0.003 (1) 1.33

SimpleMKL [18] 0.214±0.017 (6) 0.142±0.009 (2) 0.106±0.004 (1.5) 0.155±0.005 (2) 0.136±0.006 (2) 0.115±0.003 (2.5) 2.67

LpMKL [19] 0.186±0.011 (4) 0.164±0.010 (6) 0.137±0.007 (6) 0.199±0.014 (6) 0.181±0.007 (6) 0.141±0.004 (6) 5.67

(↑ indicates “the larger the better”; ↓ indicates “the smaller the better.” Mean and std. are reported. The best result is highlighted in boldface.)

[61], the statistics FF of mAP, mAUC and RL are 56.05, 3.03,

and 5.69 respectively. All of them are larger than the critical

value F(6, 30) = 2.42, so we reject the null hypothesis (the

compared algorithms perform equally well). In particular, by

comparing it with SimpleMKL, we obtain a significant 8.1%

mAP improvement on VOC when using 100 labeled samples.

The level of improvement drops when more labeled samples

are available, for the same reason described in our first set of

experiments.

VI. CONCLUSION

Most of the existing works on multilabel image classifica-

tion use only single feature representation, and the multiple
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feature methods usually assume that a single label is assigned

to an image. However, an image is usually associated with

multiple labels and different kinds of features are necessary to

describe the image properly. Therefore, we have developed a

MV3MR for multilabel image classification in which images

are naturally characterized by multiple views. MV3MR com-

bines different kinds of features in the learning process of

the vector-valued function for multilabel classification. We

also derived an SVM formulation of MV3MR, which results

in MV3LSVM. The new algorithm effectively exploits the

label correlations and learns the view weights to integrate the

consistency and complementary properties of different views.

We evaluated the proposed algorithm in terms of three popular

criteria, i.e., mAP, mAUC, and RL. Intensive experiments

on two challenge datasets VOC and MIR showed that the

SVM-based implementation under MV3MR outperforms the

traditional multilabel algorithms as well as some well-known

multiple kernel learning methods. Furthermore, our method

provides a strategy for learning from multiple views in mul-

tilabel classification and can be extended to other multilabel

algorithms.

APPENDIX A

PROOF OF LEMMA 1

Proof: The matrix M =
∑

v θvMv =
∑

v θv(Lv ⊗

In) = L ⊗ In , where L =
∑

v θvLv is defined as a convex

combination of the scalar-valued graph Laplacians constructed

from different views. L ∈ S+
N since each Lv ∈ S+

N , and thus

we have M ∈ S+
Nn according to the positive-definite property

on the Kronecker product. Here, L =
∑

v θv(Dv − Wv ) can

be computed by using the following adjacency graph:

Wi j =

{

∑

v θvWv i j , if xi ∈ N(x j ) or x j ∈ N(xi ),

0, otherwise

where N(x) denotes a set that contains the KNNs of x , and

Wv i j is the similarity between the i th and j th point from

the vth view. Thus L is a graph Laplacian and M is the

corresponding vector-valued graph Laplacian.

APPENDIX B

PROOF OF THE REPRESENTER THEOREM

Proof: It has been presented in Section IV-A that there

is an RKHS HK associated with the vector-valued kernel K .

The probability distribution is assumed to be supported on

a manifold M in the manifold regularization framework. We

now denote S = {
∑

i K (xi , ·)ai |xi ∈ M, ai ∈ Y} as a linear

space spanned by the kernels centered at the points on M .

Any function f ∈ HK can be decomposed as f = f‖ + f⊥,

with f‖ ∈ S and f⊥ ∈ S⊥. It has been proved in Lemma 1

that M is a graph Laplacian. Thus we can use M to induce

an intrinsic norm ‖ · ‖I , which satisfies ‖ f ‖I = ‖g‖I for any

f, g ∈ HK , ( f − g)|M ≡ 0. According to the reproducing

property, it concludes that f⊥ vanishes on M [9]. This means

that for any x ∈ M , we have f (x) = f‖(x) and then

‖ f ‖I = ‖ f‖‖I . Besides ‖ f ‖2
K = ‖ f‖‖

2
K + ‖ f⊥‖2

K ≥ ‖ f‖‖
2
K ,

and thus we conclude that the minimizer of (6) must lie in S

for fixed β and θ . Furthermore, because M is approximated

by the Laplacian of the graph constructed by the labeled and

unlabeled samples, we have S = {
∑l+u

i=1 K (xi , ·)ai |ai ∈ Y}.

This completes the proof.

ACKNOWLEDGMENT

The authors would like to thank the Editor-In-Chief Prof. Dr.

D. Liu, the handling associate editor and all four anonymous

reviewers for their positive support and constructive comments

to this paper. The authors would also like to thank Journals

Coordinator M. Hellrigel for careful editing.

REFERENCES

[1] M. Boutell, J. Luo, X. Shen, and C. Brown, “Learning multi-label scene
classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757–1771, 2004.

[2] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-
supervised learning for image classification,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2010, pp. 902–909.
[3] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.
[4] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic

representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[5] E. Çesmeli and D. Wang, “Texture segmentation using gaussian-markov
random fields and neural oscillator networks,” IEEE Trans. Neural Netw.,
vol. 12, no. 2, pp. 394–404, Mar. 2001.

[6] D. Masip and J. Vitrià, “Shared feature extraction for nearest neighbor
face recognition,” IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 586–595,
Apr. 2008.

[7] C. Micchelli and M. Pontil, “On learning vector-valued functions,”
Neural Comput., vol. 17, no. 1, pp. 177–204, 2005.

[8] H. Minh and V. Sindhwani, “Vector-valued manifold regularization,” in
Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 57–64.

[9] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., vol. 7, no. 1, pp. 2399–2434, Jan. 2006.

[10] G. Chen, Y. Song, F. Wang, and C. Zhang, “Semi-supervised multi-label
learning by solving a sylvester equation,” in Proc. SIAM Int. Conf. Data

Mining, 2008, pp. 410–419.
[11] B. Hariharan, L. Zelnik-Manor, S. Vishwanathan, and M. Varma, “Large

scale max-margin multi-label classification with priors,” in Proc. 27th

Int. Conf. Mach. Learn., 2010, pp. 423–430.
[12] L. Sun, S. Ji, and J. Ye, “Canonical correlation analysis for multilabel

classification: A least-squares formulation, extensions, and analysis,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 194–200,
Jan. 2011.

[13] L. Rosasco, E. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss
functions all the same?” Neural Comput., vol. 16, no. 5, pp. 1063–1076,
2004.

[14] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random
subspace for support vector machines-based relevance feedback in image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7,
pp. 1088–1099, Jul. 2006.

[15] D. Tao, X. Li, and S. Maybank, “Negative samples analysis in relevance
feedback,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 4, pp. 568–580,
Apr. 2007.

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman, “The PASCAL visual object classes challenge (VOC) results,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[17] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval evaluation,” in
Proc. 1st ACM Int. Conf. Multimedia Inf. Retr., 2008, pp. 39–43.

[18] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,”
J. Mach. Learn. Res., vol. 9, pp. 2491–2521, Nov. 2008.

[19] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “Lp-norm multiple
kernel learning,” J. Mach. Learn. Res., vol. 12, no. 3, pp. 953–997,
Mar. 2011.

[20] D. Hsu, S. Kakade, J. Langford, and T. Zhang, “Multi-label prediction
via compressed sensing,” in Advances in Neural Information Processing

Systems. New York, USA: Springer-Verlag, 2009, pp. 772–780.
[21] T. Zhou and D. Tao, “Multi-label subspace ensemble,” J. Mach. Learn.

Res., vol. 22, pp. 1444–1452, Apr. 2012.



LUO et al.: MANIFOLD REGULARIZATION FOR MULTILABEL IMAGE CLASSIFICATION 721

[22] T. Zhou, D. Tao, and X. Wu, “Compressed labeling on distilled labelsets
for multi-label learning,” Mach. Learn., vol. 88, no. 1, pp. 69–126, 2012.

[23] Y. Luo, D. Tao, B. Geng, C. Xu, and S. J. Maybank, “Mani-
fold regularized multi-task learning for semi-supervised multi-label
image classification,” IEEE Trans. Image Process., vol. 22, no. 2,
pp. 523–536, Feb. 2013.

[24] R. Schapire and Y. Singer, “Boostexter: A boosting-based system for
text categorization,” Mach. Learn., vol. 39, no. 2, pp. 135–168, 2000.

[25] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in Advances in Neural Information Processing Systems. New
York, USA: Springer-Verlag, 2001, pp. 681–687.

[26] M. Zhang and Z. Zhou, “ML-KNN: A lazy learning approach to multi-
label learning,” Pattern Recognit., vol. 40, no. 7, pp. 2038–2048, 2007.

[27] A. McCallum, “Multi-label text classification with a mixture model
trained by EM,” in Proc. Assoc. Adv. Artif. Intell. Workshop Text Learn.,
1999, pp. 1–7.

[28] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learning for multi-label
classification,” in Proc. 14th ACM Int. Conf. Knowl. Discovery Data

Mining, 2008, pp. 668–676.

[29] S. Ji, L. Tang, S. Yu, and J. Ye, “A shared-subspace learning framework
for multi-label classification,” ACM Trans. Knowl. Discovery Data,
vol. 4, no. 2, pp. 1–29, 2010.

[30] S. Zafeiriou, G. Tzimiropoulos, M. Petrou, and T. Stathaki, “Regularized
kernel discriminant analysis with a robust kernel for face recognition
and verification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3,
pp. 526–534, Mar. 2012.

[31] D. Tao, X. Tang, X. Li, and Y. Rui, “Direct kernel biased discriminant
analysis: A new content-based image retrieval relevance feedback algo-
rithm,” IEEE Trans. Multimedia, vol. 8, no. 4, pp. 716–727, Aug. 2006.

[32] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan,
“Learning the kernel matrix with semidefinite programming,” in Proc.

19th Int. Conf. Mach. Learn., Jan. 2002, pp. 323–330.

[33] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large
scale multiple kernel learning,” J. Mach. Learn. Res., vol. 7,
pp. 1531–1565, Jul. 2006.

[34] K. Kreutz-Delgado, J. Murray, B. Rao, K. Engan, T. Lee, and
T. Sejnowski, “Dictionary learning algorithms for sparse representation,”
Neural Comput., vol. 15, no. 2, pp. 349–396, 2003.

[35] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., Oct. 2006, pp. 2169–2178.

[36] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-
performance digit recognition based on sparse coding,” IEEE Trans.

Neural Netw., vol. 19, no. 11, pp. 1985–1989, Nov. 2008.

[37] X. Zhou, K. Yu, T. Zhang, and T. Huang, “Image classification using
super-vector coding of local image descriptors,” in Proc. 11th Eur. Conf.

Comput. Vis., 2010, pp. 141–154.

[38] Y. Yang and S. Newsam, “Spatial pyramid co-occurrence for image
classification,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 1465–1472.

[39] T. Xia, D. Tao, T. Mei, and Y. Zhang, “Multiview spectral embed-
ding,” IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 40, no. 6,
pp. 1438–1446, Dec. 2010.

[40] B. Xie, Y. Mu, D. Tao, and K. Huang, “m-SNE: Multiview stochastic
neighbor embedding,” IEEE Trans. Systems, Man, Cybern., B, Cybern.,
vol. 41, no. 4, pp. 1088–1096, Aug. 2011.

[41] J. Yu, M. Wang, and D. Tao, “Semi-supervised multiview distance metric
learning for cartoon synthesis,” IEEE Trans. Image Process., vol. 21,
no. 11, pp. 4636–4648, Nov. 2012.

[42] H. Su, M. Sun, L. Fei-Fei, and S. Savarese, “Learning a dense multi-
view representation for detection, viewpoint classification and syn-
thesis of object categories,” in Proc. IEEE Int. Conf. Comput. Vis.,
Sep.–Oct. 2009, pp. 213–220.

[43] Y. Fu, Y. Guo, Y. Zhu, F. Liu, C. Song, and Z. Zhou, “Multi-view video
summarization,” IEEE Trans. Multimedia, vol. 12, no. 7, pp. 717–729,
Aug. 2010.

[44] A. Iosifidis, A. Tefas, and I. Pitas, “View-invariant action recognition
based on artificial Neural Networks,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 23, no. 3, pp. 412–424, Jul. 2012.

[45] A. Saffari, C. Leistner, M. Godec, and H. Bischof, “Robust multi-view
boosting with priors,” in Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 776–789.

[46] D. Zhang, F. Wang, L. Si, and T. Li, “Maximum margin multiple instance
clustering with its applications to image and text clustering,” IEEE Trans.

Neural Netw., vol. 22, no. 5, pp. 739–751, May 2011.

[47] H. Zhang, G. Liu, T. Chow, and W. Liu, “Textual and visual content-
based anti-phishing: A Bayesian approach,” IEEE Trans. Neural Netw.,
vol. 22, no. 10, pp. 1532–1546, Oct. 2011.

[48] S. Bucak, R. Jin, and A. Jain, “Multi-label learning with incomplete
class assignments,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2011, pp. 2801–2808.

[49] X. Chen, X. Yuan, Q. Chen, S. Yan, and T. Chua, “Multi-label visual
classification with label exclusive context,” in Proc. IEEE Int. Conf.

Comput. Vis., Nov. 2011, pp. 834–841.

[50] Z. Fan, Y. Xu, and D. Zhang, “Local linear discriminant analysis
framework using sample neighbors,” IEEE Trans. Nural Netw., vol. 22,
no. 7, pp. 1119–1132, Jul. 2011.

[51] D. Bouchaffra, “Mapping dynamic bayesian networks to α-shapes:
Application to human faces identification across ages,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1229–1241, Aug. 2012.

[52] L. Chen, I. Tsang, and D. Xu, “Laplacian embedded regression for
scalable manifold regularization,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 23, no. 6, pp. 902–915, Jun. 2012.

[53] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math.,
vol. 13, no. 4, pp. 354–356, 1969.

[54] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods. Cambridge, MA,
USA: MIT Press, pp. 185–208, 1999.

[55] J. Van De Weijer and C. Schmid, “Coloring local feature extraction,” in
Proc. Eur. Conf. Comput. Vis., 2006, pp. 334–348.

[56] M. Zhu, “Recall, precision and average precision,” Dept. Electr. Eng.,
Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep. 2004-09, 2004.

[57] T. Fawcett, “Roc graphs: Notes and practical considerations for
researchers,” Mach. Learn., vol. 31, pp. 1–38, Mar. 2004.

[58] X. Zhu, “Semi-supervised learning literature survey,” Dept. Electr. Eng.,
Univ. Wisconsin Madison, Madison, WI, USA, Tech. Rep. 1530, 2006.

[59] M. Gori, “On the time complexity of regularized least square,” in Proc.

WIRN, 2011, pp. 85–96.

[60] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals Stat., vol. 32, no. 2, pp. 407–499, 2004.

[61] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, no. 1, pp. 1–30, Jan. 2006.

Yong Luo received the B.Sc. degree from North-
western Polytechnical University, Xi’an, China, in
2009. He is currently pursuing the Ph.D. degree with
the School of Electronics Engineering and Computer
Science, Peking University, Beijing, China.

He was a Visiting Student with the School of
Computing, Nanyang Technological University, Sin-
gapore, and the Faculty of Engineering and Infor-
mation Technology, University of Technology, Syd-
ney, Australia. His current research interests include
machine learning and its applications on image clas-

sification and annotation.

Dacheng Tao (M’07–SM’12) is currently a Profes-
sor of computer science with the Centre for Quan-
tum Computation and Information Systems and the
Faculty of Engineering and Information Technology,
University of Technology, Sydney, Australia. He has
authored or co-authored more than 100 papers in
journals and conferences at top venues including
the IEEE T-PAMI, T-IP, T-NNLS, CVPR, ECCV,
and ICDM. His current research interests include
applying statistics and mathematics for data analysis
problems in data mining, computer vision, machine

learning, multimedia, and video surveillance.
Dr. Tao was a recipient of the Best Theory/Algorithm Paper Runner-Up

Award at the IEEE ICDM07. He is a Fellow of the International Association
of Pattern Recognition and the International Society of Optics and Photonics.



722 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 5, MAY 2013

Chang Xu received the B.S. degree from TianJin
University, Tianjin, China, in 2011. He is currently
pursuing the Ph.D. degree with the Key Labora-
tory of Machine Perception (Ministry of Education),
Peking University, Beijing, China.

His current research interests include machine
learning, information retrieval, and computer vision.

Chao Xu received the B.E. degree from Tsinghua
University, Beijing, China, the M.S. degree from
the University of Science and Technology of China,
Hefei, China, and the Ph.D. degree from the Insti-
tute of Electronics, Chinese Academy of Sciences,
Beijing, in 1988, 1991, and 1997, respectively.

He was an Assistant Researcher with the Uni-
versity of Science and Technology of China from
1991 and 1994. Since 1997, he has been with the
Key Laboratory of Machine Perception (Ministry of
Education), Peking University, Beijing, where he has

been a Professor since 2005. He has authored or co-authored more than 100
papers in journals and conferences, and holds six patents. His current research
interests include image and video processing, multimedia technology.

Hong Liu received the Ph.D. degree in mechanical
electronics and automation from Peking University,
Beijing, China, in 1996.

He is currently a Full Professor with the School
of Electronics Engineering and Computer Science,
Peking University, where he is the Director of the
Engineering Laboratory on Intelligent Perception
for Internet of Things. He has authored or co-
authored more than 100 papers in journals and
conferences. His current research interests include
computer vision and robotics, image processing, and

pattern recognition.
Dr. Liu was a recipient of the Chinese National Aero-space Award, the

Excellence Teaching Award, and the Candidates of Top Ten Outstanding
Professors from Peking University.

Yonggang Wen (S’99–M’08) received the Ph.D.
degree from the Massachusetts Institute of Technol-
ogy, Cambridge, USA.

He is currently an Assistant Professor with the
School of Computer Engineering, Nanyang Techno-
logical University, Singapore. He has authored or co-
authored more than 50 papers in journals and confer-
ences. His system research on Cloud Social TV has
been featured by international media, including The
Straits Times, The Business Times, Lianhe Zaobao,
Channel News Asia, ZDNet, CNet, United Press

International, ACM Tech News, Times of India, Yahoo News. His current
research interests include cloud computing, mobile computing, multimedia
networks, cyber security, and green ICT.

Dr. Wen is a member of the Sigma Xi (the Scientific Research Society) and
SIAM.


