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We use multivoxel pattern analysis (MVPA) to study the spatial clustering of color-selective neurons in the human brain. Our
main objective was to investigate whether MVPA reveals the spatial arrangements of color-selective neurons in human
primary visual cortex (V1). We measured the distributed fMRI activation patterns for different color stimuli (Experiment 1:
cardinal colors (to which the LGN is known to be tuned), Experiment 2: perceptual hues) in V1. Our two main findings were
that (i) cone-opponent cardinal color modulations produce highly reproducible patterns of activity in V1, but these were not
unique to each color. This suggests that V1 neurons with tuning characteristics similar to those found in LGN are not
spatially clustered. (ii) Unique activation patterns for perceptual hues in V1 support current evidence for a spatially clustered
hue map. We believe that our work is the first to show evidence of spatial clustering of neurons with similar color
preferences in human V1.
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Introduction

Color processing begins in the retina with three cone
types broadly tuned to either short (S), medium (M), or
long (L) wavelengths of light. Retinal ganglion cells
compare the outputs of the cone cells and this cone
opponency is inherited by neurons in the Lateral Genicu-
late Nucleus (LGN), which then project to neurons in the
primary visual cortex (V1). The mapping from cone cells
to the LGN is well understood; much less is known about
the transformation that occurs between the LGN and V1
and the spatial organization of color-tuned neurons in V1,
hence the focus of the current work.
The LGN consists of magno-, parvo-, and koniocellular

layers which are thought to map onto the ‘luminance’
(‘L+M’), the ‘red–green’ (‘LjM’), and the ‘yellow–blue’
channel (‘Sj(L+M)’), respectively (Casagrande, 1994;
Chatterjee & Callaway, 2002; Chichilnisky & Baylor,

1999; Derrington, Krauskopf, & Lennie, 1984; De Valois,
Abramov, & Jacobs, 1966; De Valois, Cottaris, Elfar,
Mahon, & Wilson, 2000; Gegenfurtner & Kiper, 2003;
Solomon, White, & Martin, 1999), termed ‘cardinal
directions’ by Krauskopf, Williams, and Heeley (1982).
Importantly, these cardinal directions do not map onto the
perceptual hues of red, yellow, green, and blue (De
Valois, De Valois, & Mahon, 2000; De Valois, De Valois,
Switkes, & Mahon, 1997; Wuerger, Atkinson, & Cropper,
2005) but appear as red (‘LjM’), cyan (‘MjL’), lime
(‘(L+M)jS’), and violet (‘Sj(L+M)’).
The presence of wavelength selective cells in V1 has

been known for many years (Conway & Tsao, 2006;
Tootell, Nelissen, Vanduffel, & Orban, 2004; Zeki, 1983),
but the distribution of peak tuning in V1 is much flatter
than in the LGN, implying that a substantial number of
cortical neurons are tuned to intermediate color directions
(Hanazawa, Komatsu, & Murakami, 2000; Lennie,
Krauskopf, & Sclar, 1990; Wachtler, Sejnowski, &
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Albright, 2003). Also, whereas neurons with similar color
preferences are spatially clustered and arranged in distinct
layers in LGN, much less is known about the spatial
organization of color-tuned neurons in V1, with the
exception of a recent optical imaging study in the
macaque providing evidence for a spatially organized
map of hue tuning (Xiao, Casti, Xiao, & Kaplan, 2007).
We hypothesize a shift of tuning in V1 away from cone-
opponent cardinal colors toward intermediate, non-
opponent, color modulations, and that cells with similar
tuning will be topographically arranged.
fMRI has been used to study color processing in V1 of

humans. However, the amplitude of the blood oxygen-
ation-level-dependent (BOLD) fMRI response in V1 has
been shown to depend on both the color and contrast of
the stimulus, making any inferences on color tuning
difficult. Different cardinal color directions produce differ-
ent BOLD amplitudes even with matched psychophysical
detection thresholds (Mullen, Dumoulin, McMahon, de
Zubicaray, & Hess, 2007) or equal cone contrasts (Engel,
Zhang, & Wandell, 1997; Liu & Wandell, 2005). The
suggestion of spatial clustering of neurons tuned to
particular hues (Xiao et al., 2007) allows a new approach
to study color tuning with fMRI, namely a multivoxel
pattern analysis (MVPA) approach. Two studies of
orientation tuning in V1 (Haynes & Rees, 2005; Kamitani
& Tong, 2005) used such an approach to infer spatial
information beyond traditional fMRI resolution by pool-
ing information from weak orientation-selective features
across a region. The fMRI response pattern across the
region was shown to be unique for each orientation of
visual grating presented.
In this work we apply the MVPA method to test our

hypotheses. Namely, we aim to determine the degree of
spatial clustering of neurons with similar color prefer-
ences in human V1.

Methods

Participants

Five healthy subjects (2 female, age 21–31 years) with
normal or corrected-to-normal vision gave written
informed consent to take part in this study. All partic-
ipants had normal color vision as assessed with the
Cambridge Color Test (Regan, Reffin, & Mollon, 1994).
The study was approved by the Sefton Liverpool Research
Ethics Committee.

Experimental design and stimuli

We used high resolution fMRI (1.5-mm in-plane
resolution) to determine the spatial clustering of V1

neurons with similar color preferences using two different
sets of color modulations: (i) 3 cardinal directions and (ii)
4 perceptual hues. Each subject was scanned on two
separate occasions (Experiments 1 and 2). In each
experiment, isoluminant color stimuli were presented for
12 s followed by 12 s of an isoluminant gray screen. The
color stimuli had similar spatial and temporal parameters as
the stimuli used by Liu and Wandell (2005); they consisted
of flickering radial sinusoidal gratings (0.8 cycles/deg;
1.5 Hz; 20 degrees of visual angle diameter), reversing
contrast between: the endpoints of the cardinal directions
in Experiment 1 and the perceptual hues and isoluminant
gray in Experiment 2 (cf. Figure 1). All stimuli were
presented on a neutral gray background. To control for
attention subjects were asked to perform a forced choice
task throughout the experiment where they had to decide
if the fixation shape was a circle or a square.

Experiment 1

In Experiment 1, the three cardinal color directions
were used for the stimuli, each presented three times in a
random order per run (216 s). There were six runs giving
18 presentations for each of the three colors. Each run had
a different random order of color presentation (Figure 2).
The CIE xy coordinates of these three color modulations

were given as follows (see also Figure 1A; labeled as
‘Card IsolumRed’, etc.): The red–green direction varied
from x = 0.358, y = 0.340 (reddish) to x = 0.267, y = 0.386
(greenish); the lime–violet direction from x = 0.391, y =
0.552 (lime) to x = 0.286, y = 0.289 (violet). All color
stimuli were presented on a gray background (x = 0.313,
0.362) of the same luminance (470 cd/m2); all components
of the stimulus were isoluminant with the gray back-
ground for the chromatic modulations. The third direction
was achromatic (ranging from black to white) with the
same chromaticities as the gray background. Based on the
results of Liu and Wandell (2005) the cone contrasts
(vector length in cone contrast space) for the red–green,
lime–violet, and black–white modulations were chosen as
9%, 86%, and 60%, respectively, in order to give roughly
similar BOLD responses in V1. Given the gamut of our
LCD projector (dashed line in Figure 1A), the maximum
available cone contrast modulation from isoluminant
reddish to isoluminant greenish is only about 9% (cf.
Figure 1).

Experiment 2

In a second experiment, on a different day, four
perceptual hues were used, each presented three times in
a random order per run (288 s). There were five runs
giving 15 presentations for each of the four colors. Each
run had a different random order of color presentation. For
each observer the perceptual hues (i.e., red, green, yellow,
blue) were assessed individually prior to the scan using a
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modified hue-cancellation task (Wuerger et al., 2005). The
contrast of the perceptual hues was then scaled such that
they were roughly equal in terms of detectability (Webster,
Miyahara, Malkoc, & Raker, 2000). We chose to use
stimuli that were equally detectable rather than equidistant
in the xy diagram, since CIE xy space is not uniform and
distances in the xy diagram do not correspond to
perceptual color differences. The average CIE coordinates
were given as follows (see also Figure 1A): red: x = 0.3312,

y = 0.3420; green: x = 0.3060, y = 0.4276; yellow:
x = 0.3924, y = 0.4862; blue: x = 0.2730, 0.3236. Stimuli
were now modulated between the gray background color
and a particular perceptual hue (cf. Figure 1C), with the
mean contrast level being half the peak contrast of a
particular hue. The luminance level of the test patterns
was always the same as the background at each point in
space and time.
The peak cone contrasts for the four hues were given as

follows: red: 4%; green: 18%; yellow: 56%; blue: 16%.
We used unipolar modulations between the gray back-
ground and a particular perceptual hue, since the percep-
tual hues (as assessed by a cancellation method) do not lie
on a straight line including the gray background (Wuerger
et al., 2005). All perceptual hues had the same luminance
as the gray background (470 cd/m2 for 2 subjects and
100 cd/m2 for 3 subjects). Four subjects performed the
‘cardinal colors’ session first and 1 subject the ‘perceptual
hues’ session first.
In the first session a retinotopic mapping scan was

included, consisting of a rotating 45 degree checkerboard
wedge, flickering at 8 Hz, with the same visual angle as
the color stimuli. An inner radius of 0.75 degrees of visual
angle was omitted from the retinotopic stimulus, thus
avoiding the foveal tritanopic area of approximately 0.35
degrees in which S-cones are absent (Curcio et al., 1991).
The wedge rotated a full circle in 48 s; there were 10
rotations.

Visual display system

Experiments were run on a standard DELL PC with a
VSG2/5 graphics card (32-MB memory, Cambridge
Research Systems). Stimulus presentation was controlled
with Matlab 7 (Mathworks\) and stimuli were presented
on a PANASONIC LCD PT-L785U projector, which was
calibrated using a spectroradiometer (Photo Research
PR650).

Figure 2. Paradigm. Each run consisted of nine 24-s presenta-

tions (12-s color stimulus, 12-s gray screen), hence lasting 216 s

in total. The colors are presented in a random order over a total of

6 runs. For each color, the presentations are separated into two

equal sets, named ‘odd’ and ‘even’ as shown.

Figure 1. (A) The CIE xy chromaticity coordinates for all colors are

shown. ‘Card’ refers to the cardinal color directions that optimally

activate the layers of the LGN (Experiment 1) and ‘Percept’ refers

to the perceptual hues (Experiment 2). (B) Spatial and temporal

profiles of the three cardinal color modulations (Experiment 1) are

shown (CardRG: modulations between cardinal red and green;

CardLV: modulations between lime and violet; CardBW:

modulations between black and white). The mean contrast is 0.

(C). Spatial and temporal profiles of the four perceptual hue

modulations (Experiment 2) are shown. The color varies over

time between gray and the peak contrast of a particular

perceptual hue.
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fMRI acquisition

Scanning was performed on a 3 T Siemens system with
an eight-channel phased-array head coil for signal collec-
tion. A high resolution EPI sequence with prospective
motion correction (Thesen, Heid, Mueller, & Schad, 2000)
was used for the color runs with the following parameters:
TR 3 s, TE 35 ms, matrix 128 � 128, in-plane resolution
1.5 mm, slice thickness 2 mm, 29 slices covering the
occipital cortex. In both scanning sessions a 1-mm
isotropic 3D MPRAGE structural image was collected.

Analysis

The fMRI data were analyzed using BrainVoyager
version1.9 (Brain Innovations,Maastricht,TheNetherlands)
on an individual basis. Pre-processing comprised linear
trend removal, motion correction, and slice time correction.
No spatial or temporal smoothing was applied to the data
from the color runs. The functional data were aligned onto
the 3D anatomical image using coordinates contained in the
image header files. The two anatomical images, one from
each imaging session, were aligned automatically within
BrainVoyager. Each alignment step was checked by eye
and slight adjustments were made where necessary. A
general linear model was created for each color run,
comprising of either the three (cardinal colors) or four
(perceptual hues) color regressors.

Identifying primary visual cortex (V1)

Standard procedures within BrainVoyager were used to
segment white and gray matter and so identify the cortical
boundary. The boundary is then inflated to give a smooth
representation of the cortical surface. The functional data
from the retinotopic run were analyzed using a box-car
function convolved with a standard hemodynamic
response function (HRF), for a range of 6 lag times (from
0 to 24 s). The lag time represents the visual angle of the
stimulus, with 24 s covering one half of the visual field.
The other half of the visual field was revealed by using an
HRF shifted by 24 s. The significantly activated voxels

were color-coded for lag time (visual angle) and displayed
on the inflated cortical surface (see Figure 3B). Using
knowledge of the retinotopic organization of the visual
cortex (Wandell, Brewer, & Dougherty, 2005) the V1
region was identified by hand. For each subject, a binary
mask of V1 voxels was produced, as shown in Figure 3.
We also created four additional mask images of sub-

regions of V1: upper and lower visual fields based on the
retinotopic maps and ‘foveal’ and ‘eccentric’ regions
based on a crude division of V1 along the anterior–
posterior axis.
Within V1 the average BOLD signal time course was

plotted for each color stimulus for each subject. Baseline
was set as the time period from 3 s before color stimulus
onset to 3-s post-stimulus onset.

Creating subtraction images for each trial

The fMRI data from the color runs and the binary mask
files were input to in-house software. For each presenta-
tion, 3 EPI images from 6 s to 15 s following color
stimulus onset were averaged (i.e., those containing the
maximum BOLD response), as were 2 EPI images from
3-s preceding color onset to 3-s post-onset (i.e., those
containing the minimum BOLD response). These time
periods were chosen by inspecting the average time course
of the BOLD response in V1, avoiding the transition
images between maximum and minimum responses. The
average minimum image was subtracted from the average
maximum image to give a single subtraction image per
color presentation.
The stimuli were designed to give similar average

BOLD response within V1. However, to avoid the
classification results being driven by any small difference
in overall amplitude rather than the spatial pattern of the
response, the subtraction images were normalized within
the region of interest (Haxby et al., 2001). The mean
signal in the region of interest was found for each
subtraction image and this was subtracted from each voxel
value such that the average signal in the region of interest
is now zero. To test this normalization process, for one
subject, the signal in V1 was artificially elevated for one of
the perceptual hues, by multiplying the voxel values by a

Figure 3. Mask regions. The figure shows mask regions of V1 (A) and the retinotopic map (B) in a typical subject. The color key shows that

there are 6 discreet colors each coding for a different region of space.
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factor from 1 to 10. The correlation and classification
results were found in each case to determine if there was
any effect of this global contrast enhancement.

Correlation analysis

To determine if there is a robust and unique pattern of
fMRI activation for each color presented we looked at
correlations between the activation patterns within V1,
following a similar procedure to that described by Haxby
et al. (2001). For each subject and each color category the
subtraction images (see previous section) were split into
two sets, namely even and odd sets, and averaged to create
two mean subtraction images per color category (Figure 2).
We then determined whether the color the subject was

viewing could be identified on the basis of the correlations
between even and odd sets. Correlation coefficients were
computed between the response patterns for odd sets
compared to even sets for both same color (e.g., red odd
sets and red even sets) and different colors (e.g., red odd
and blue even). For the different-color case there were
four possible combinations (red (odd or even) + blue (odd
or even)), the mean of which was found. This was done on
an individual basis and also on concatenated data from all
subjects.
To determine the predictive power of the correlation

data we asked the following question: Given the even data
sets, does the highest correlation with a given odd data set
correctly predict the color that was viewed? To calculate
the confidence interval on a null result we used a
bootstrapping technique and randomly permuted the
correlation values 1000 times to find a mean performance
and 95% confidence interval (1.96 * SD).

Pattern classification

For the classification we experimented with various
machine learning algorithms (Duda, Hart, & Stork, 2001;
Hastie, Tibshirani, & Friedman, 2001). As expected, due
to the particular characteristics of the data sets (i.e., very
small number of samples per class, with very large
dimensionalities) complex classifiers, such as neural net-
works, did not perform robustly. The experiments showed
that the specific data sets supported simpler classification
surfaces that discriminate the different pairs of classes.
Similar observations for such small sample cases have
also been observed in other applications (Goulermas,
Findlow, Nester, Howard, & Bowker, 2005). Here, we
obtained the best classification performance using Regu-
larized Discriminant Analysis (RDA; Friedman, 1989), a
mixture between linear and quadratic discriminant analy-
sis, where the class covariance estimates are replaced with
regularized ones. Support Vector Machines (SVM) with a
linear kernel (Joachims, 1999) gave similar results.
The set of subtraction images and the mask files were

input into the classification software. Pair-wise classification

was performed between all color pairs within each set,
i.e., three pairings for the cardinal colors and six pairings
for the perceptual hues. Two-way classification was used
(rather than 3- or 4-way) in order to produce the largest
number of tests to give the lowest confidence margin.
Testing involved Leave-One-Out (LOO) validation,
which is a special case of the k-fold cross validation
widely used for classification analysis and classifier
evaluation (Duda et al., 2001; Hastie et al., 2001). This
is mandatory due to the finiteness of the data sets, to
ensure that the classifier is trained with some samples, and
tested with a completely different sample instances later,
so that the final error assessment is objective. Given n data
samples, LOO trains the classifier with n j 1 samples,
and then tests with the remaining one. Subsequently, it
repeats the process for a total of n times by alternating the
left-out testing sample. Each testing prediction is
recorded, and the final classification performance is the
average result from all n runs.
To test whether the result is significantly above chance

the procedure was repeated for a set of ‘shuffled’ data. The
color classes were randomly shuffled 100 times in order to
produce 100 sets of ‘null’ data where the performance
should be at chance level. The same classification procedure
as for the real data was repeated on these 100 sets. The mean
and standard deviation were found and the 95% confidence
interval (1.96 * SD) on this chance performance. If the real
result lies outside the 95% confidence interval then it is
deemed to be significant at the p G 0.05 level.

Results: Experiment 1

The V1 response to cardinal colors was tested in
Experiment 1. Observers were presented with color
modulations along the cardinal axes while fMRI data
were obtained. Mean voxel numbers in V1 across all 5
subjects were 1850 with a standard deviation of 100.
Figure 4 shows the average BOLD response for the

cardinal colors in V1, which were found to be similar for
all colors.
Figure 5A shows fMRI activation patterns within V1 for

each cardinal color in a typical subject. It is useful to
inspect these raw data (an approach also followed by
Haxby et al. (2001)) to assess whether the response
patterns differ between conditions. In this case the
response patterns for the odd and even sets are similar,
showing that the response pattern is robust. However, the
pattern for each color also appears similar. Figure 5B
shows the correlation over voxels between two sets of the
same color (RG–RG) and between two sets of different
colors (RG–BW) for this subject. The correlations appear
similar. Figure 5C shows the correlation coefficients
between pairs of response patterns over all 5 subjects.
On an individual basis, the correlation data could be used
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to correctly predict the color viewed in 47% of cases,
which is within the 95% confidence interval for chance
performance (33% T 24%) and hence not significant.
Hence the correlation data can provide no predictive
power as to which color is viewed.
It is unsurprising therefore that the classification

performances (Figure 6) are within the 95% confidence
interval for chance performance and hence are not deemed
to be significant.

Results: Experiment 2

In Experiment 1 we demonstrated that, although V1
neurons clearly respond strongly to cone-opponent cardi-
nal color modulations, the color viewed could not be
predicted based on the spatial distribution of activity. The
main purpose of the second experiment was therefore to
investigate whether spatial clustering of neurons with
similar color preferences could be revealed with a differ-
ent set of color stimuli. From neurophysiological data we
know that a large proportion of neurons are tuned to hues
different from the cardinal colors and a significant
proportion of neurons responds best to a narrow range of
hues and not to any linear combinations of cone outputs
(Hanazawa et al., 2000; Lennie et al., 1990; Wachtler
et al., 2003). An obvious candidate set of colors are the
focal colors (red, green, yellow, blue) since not only are
these important color categories to encode the statistical
properties of our environment (Philipona & O’Regan,
2006), but neurons in areas as early as primary visual
cortex may be particularly sensitive to these focal hues
(De Valois, Cottaris et al., 2000; Horwitz, Chichilnisky, &
Albright, 2007; Vautin & Dow, 1985). With this in mind,
we measured the BOLD responses associated with the
focal colors (red, green, yellow, blue), which will be
referred to as the ‘perceptual hues’.

Figure 5. Correlation results for cardinal colors. (A) The BOLD

response pattern within V1 is shown for one typical subject for

even and odd sets of each of the color stimuli. The signal has

been normalized by subtracting the mean signal over all voxels.

Hence the colors represent the normalized BOLD signal ampli-

tude with blue lower than mean and red/yellow higher than mean.

The color bar indicates percentage BOLD signal change. (B) The

lowest ‘within’ and ‘between’ category correlations for this subject.

(C) Correlation coefficients concatenated across all subjects. The

x-axis describes the color category for one data set and the

column color represents the category of the second data set. Red/

green is represented by the two-tone colors red/cyan and lime/

violet is represented by lime/pink. The error bars represent the

standard error over individual results from all subjects.

Figure 6. Classification results for cardinal colors. The figure

shows the overall performance for all subjects and all pairs of

color classifications for both the RDA and SVM analysis. The

performance of the real data (black diamonds) is shown in

comparison to the null result from 100 sets of shuffled data (black

cross). The error bars represent the 95% confidence interval on

the null result.

Figure 4. The BOLD response to cardinal colors in V1. The

percentage BOLD increase is shown for all color stimuli, averaged

over all subjects. The error bars show the SD over subjects. red =

red–green, blue = lime–violet, white = black–white.
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Figure 7 shows the average BOLD response for
perceptual hues in V1. The responses are similar across
all perceptual hues but lower than for cardinal colors
(Figure 4). One explanation for the lower BOLD response
for perceptual hues is that unipolar modulations were used
rather than bipolar modulations and fewer neurons may
respond to unipolar modulations or they may respond less
strongly. Furthermore, the BOLD signal is contrast
dependent and there is no obvious contrast metric one
can use to equate different colors.
Figure 8A shows fMRI activation patterns within V1 for

each perceptual hue in a typical subject. The response
patterns for even and odd sets are similar, showing again
that the response pattern is robust. Note that the individual
patterns appear idiosyncratic and unique across different
regions within V1; i.e., the differences do not appear to be
driven by more global, larger scale differences in spatial
pattern. Figure 8B shows the correlation over voxels
between two sets of the same color (red–red) and between
two sets of different colors (red–blue) for this subject. The
correlations are different, with the same-color correlation
being higher than the different color, showing that the
pattern for each perceptual hue is unique. Figure 8C shows
the correlation coefficients between pairs of response
patterns over all 5 subjects, showing that this difference
between ‘same’ and ‘different’ color correlations is
maintained. It can be seen that the same-category
correlations are generally higher than the different-
category correlations. On an individual basis the correla-
tion data could be used to correctly predict the color
viewed in 55% of the cases, which is outside the 95%
confidence interval on chance performance (25% T 19%).
Hence the color viewed in Experiment 2 can be predicted
significantly above chance level from the fMRI data in
V1.
Differences in same-category correlations (for example

red–red is lower than blue–blueVFigure 8) may contrib-
ute to differences in different-category correlations and
hence to the predictive power of the data, i.e., if one
category has higher noise than another, the prediction may
be made using this information. To assess this we

Figure 7. The BOLD response to perceptual hues in V1. The

percentage BOLD increase is shown for all color stimuli, averaged

over all subjects. The error bars show the SD over subjects. Line

colors correspond to stimuli colors.

Figure 8. Correlation results for perceptual hues. (A) The BOLD

response pattern within V1 is shown for one typical subject for

the even and odd sets of each of the color stimuli. The signal

has been normalized by subtracting the mean signal over all

voxels. Hence the colors represent the normalized BOLD signal

amplitude with blue lower than mean and red/yellow higher than

mean. The color bar indicates percentage BOLD signal change.

(B) Lowest ‘within’- and ‘between’-category correlations for this

subject. (C) Correlation coefficients concatenated across all

subjects. The x-axis describes the color category for one data

set and the column color represents the category of the second

data set. The error bars represent the standard error over

individual results from all subjects. The circles show the predicted

different-color correlation coefficients for the null hypothesis (see

text).
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considered the null hypothesis that all data have the same
underlying response pattern but with different levels of
noise. In this case, the different-category correlation
coefficient is equal to the square root of the product of
the same-category correlation coefficients (i.e., r12 =
¾(r1r2), see Appendix A). Using this we computed the
different-category correlation coefficients for the null
hypothesis for individual data and also the group result
(Figure 8C) based on same-category coefficients only. We
found that the predictive power of this simulated data was
reduced to 25%, i.e., chance performance. Hence we
conclude that the predictive power of 55% is due purely to
the different underlying spatial patterns of the different
categories.
Figure 9 shows the classification performance for both

the RDA and SVM analysis. The perceptual hues are
classified significantly above chance for both analyses.
There is a possibility that this above-chance classifica-

tion performance is driven by differences in color
preference over large regions, for example between upper
and lower visual fields, rather than by local differences.
To test for this we repeated the classification in sub-
regions of V1: upper and lower visual fields and ‘foveal’
and ‘eccentric’ regions (see Methods section). Figure 10
shows that classification remained above chance in these
sub-regions.
Figure 11 shows color-preference images (similar to the

orientation-preference maps of Kamitani and Tong
(2005), ocular dominance maps of Cheng, Waggoner,
and Tanaka (2001), and category-preference maps of
Grill-Spector, Sayres, and Ress (2006)) revealing the
preference of each individual voxel to a particular color
(i.e., the voxel is colored according to the stimulus to
which it has the largest BOLD response). In general the
images show scattered color preference, with no regional
preference to a particular color, and are variable and
idiosyncratic across subjects.

Our stimuli were chosen to give comparable BOLD
responses (see Methods section) in order to give similar
signal to noise ratios across stimuli within each color set.
Figures 4 and 7 show that this was reasonably successful.
However, our classification method does not make use of
the average BOLD response in a region, but rather the
distribution of responses within that region. Crucially, we
normalized the average BOLD response within each
region for each stimulus to remove this information from
the classification procedure. This ensures that the differ-
ence in response distribution due to color information is

Figure 9. Classification results for perceptual hues. The figure

shows the overall performance for all subjects and all pairs of

color classifications for both the RDA and SVM analysis. The

performance of the real data (black diamonds) is shown in

comparison to the null result from 100 sets of shuffled data (black

cross). The error bars represent the 95% confidence interval on

the null result.

Figure 10. Classification results for perceptual hues within sub-

regions of V1: eccentric (mean voxels = 420) and foveal (mean

voxels = 980) regions of interest and upper (mean voxels = 1080)

and lower (mean voxels = 780) visual fields. The figure shows the

overall performance for all subjects and all pairs of color

classifications using the RDA.

Figure 11. The ‘color-preference’ images show the preference of

each voxel for a particular color. Each voxel is colored according

to the perceptual hue (red, yellow, green, or blue) to which

the voxel showed the largest BOLD response. (A) Results from all

5 subjects for the middle slice. (B) The results on the inflated

cortical surface for one subject.

Journal of Vision (2009) 9(1):1, 1–13 Parkes et al. 8

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932855/ on 05/16/2018



used as opposed to contrast information (which would
affect the global signal rather than the response pattern).
Figure 12 shows the success of this normalization

procedure on data where the average BOLD response to
one color was artificially increased. There is very little
effect on the classification result even when considering a
10-fold increase (contrast factor = 10) in average response
for one of the colors. We found no effect of this contrast
manipulation on the correlation results.

Discussion

The results of Experiment 1 showed that the BOLD
response to cardinal colors in V1 is high and the patterns
of activation are robust (Figure 5). However, there is no
significant difference between within- and between-
category correlations, such that the color viewed could
not be predicted (Figures 5C and 6). The most parsimonious
explanation is that a significant number of V1 neurons
respond to the cardinal colors, but that these neurons
are not spatially clustered hence producing no unique
response patterns. This explanation is supported by the
large BOLD response for cardinal colors in V1 (Figure 4)
and is in agreement with neurophysiological data in
macaque showing that a significant number of V1 neurons
are tuned to cardinal color directions (Hanazawa et al.,
2000; Horwitz et al., 2007; Lennie et al., 1990; Wachtler
et al., 2003).
The results of Experiment 2 showed that the BOLD

response to perceptual hues in V1 is also high and the
patterns of activation are robust (Figure 8). But most
importantly, the within-category correlations are higher
than the between-category correlations, such that the color
viewed can be predicted significantly above chance
(Figures 8C and 9). This suggests that the V1 neurons
that respond to perceptual hues are spatially clustered,
producing unique response patterns.

Spatial clustering of V1 neurons with similar
chromatic preferences

The results of Experiment 2 show that perceptual hues
generate unique response patterns (Figure 8), suggesting
that the neurons that are responsive to perceptual hues
are spatially clustered. In V1, cone-opponent cardinal
color modulations generate a strong BOLD signal but
poor correlation/classification results (Experiment 1); this
lack of within-category correlation implies that neurons
that preferentially respond to these color modulations are
not spatially clustered in V1. Unipolar perceptual hue
modulations, on the other hand, yield strong within-color
correlations that are predictive of the color viewed. This
suggests that perceptual hues are associated with a
unique activation pattern, which in turn requires some
spatial clustering of neurons with similar chromatic
preferences.
Indeed, this highlights the key difference in the

information we can get from our multivoxel analysis
approach compared to previous work using univariate
approaches. Previous fMRI work in this field has
considered the mean BOLD response over a region to
stimuli of different colors and contrasts. This allows the
investigation of the overall chromatic sensitivity but does
not provide direct information about the underlying
chromatic tuning and spatial clustering of cortical
neurons. Classification/correlation techniques may be a
more sensitive technique to study chromatic tuning as
they make use of the overall activity patterns across
many voxels and are to a large extent independent of the
overall amplitude. This is advantageous since the overall
amplitude of the BOLD response to a particular color
depends on both the hue and the contrast of the color
signal.
The classification results alone do not however inform

us of the nature of the spatial organization. It is possible
that the results are driven by global rather than local
differencesVfor example upper and lower visual fields
may show slight differences in sensitivity to different
colors. We addressed this issue by calculating classifica-
tion performance for upper and lower visual fields alone
and found that classification remained above chance and
only marginally lower than when considering the entire
V1 region (Figure 10). There is also recent evidence for
changes in color preference with eccentricity (Mullen
et al., 2007; Vanni, Henriksson, Viikari, & James, 2006).
It was more difficult for us to test any potential effect of
this on classification performance as we did not collect
eccentricity maps, however, a crude segmentation of V1
into smaller ‘foveal’ and more ‘eccentric’ regions again
revealed little reduction in classification performance
(Figure 10). In addition the ‘color-preference’ map
(Figure 11) shows no regional bias to one particular color
compared to another. The activation patterns for each hue
appear to vary locally rather than globally.

Figure 12. Effect of artificially increasing the global signal (by the

contrast factor) for one perceptual hue on the SVM classification

result in V1 for one subject.
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It may have been expected that cardinal colors would
show significant classification due to the known differ-
ences in contrast sensitivity for each color with increasing
eccentricity (Mullen et al., 2007; Mullen & Kingdom,
2002). However, while the behaviorally assessed contrast
sensitivity is robust and consistent across subjects (Mullen
& Kingdom, 2002), the fMRI response is variable (Mullen
et al., 2007), which could explain why we do not see this
effect. In addition, our stimuli were at a higher contrast
level than in the previous studies, which could reduce any
difference between the stimuli. There is little behavioral
evidence for any difference in response to unipolar
perceptual hues with increasing eccentricity (Parry,
McKeefry, & Murray, 2006), hence it seems unlikely that
this could contribute to the significant classification results
that we see in this case.

Methodological issues

One important issue is the limit of spatial information
that the MVPA technique can access. Clearly, as the size
of tuning column becomes smaller and the fMRI voxel
larger, the bias between voxels for a particular color will
become progressively smaller. Optical imaging data in the
macaque (Xiao et al., 2007) suggest that color columns
are on the order of 150 2m apart, i.e., ten-fold smaller
than the 1.5 mm voxel size used in our study. Earlier work
using MVPA to successfully classify orientation informa-
tion used voxel sizes of 3 mm (Haynes & Rees, 2005;
Kamitani & Tong, 2005). Orientation columns are known
to have a width of 300–500 2m in the macaque
(Vanduffel, Tootell, Schoups, & Orban, 2002); i.e., a
similar ratio of column/voxel size as for our study.
However, the limit of detectability also depends on the
signal to noise ratio, which is dependent on the square of
the voxel size and hence 4-fold smaller for our study. This
reduction in power could contribute to the lower classi-
fication performance that we find in comparison to the
earlier work on orientation tuning.
In general we found the correlation results to be more

successful in predicting the color viewed than the
classification results. This could be due to the fact that,
for the correlation analysis, data are averaged over half of
the total number of presentations, hence boosting the
signal to noise ratio. The classification approach instead
considers individual subtraction images. Both approaches
can give information on underlying spatial organization of
neurons responding to different colors.
The classification/correlation results are driven by the

spatial pattern of response as the normalization of the data
ensures that the overall amplitude is not driving the
classification. Figure 12 confirms the success of this
normalization approach, showing that, even if the overall
response to one color is amplified by a factor of 10, the
classification result is not significantly affected. The
correlation results are also unaffected. The difference

between the within- and between-category correlations,
which drive the color predictions, are therefore due to
unique spatial patterns of BOLD response associated with
each color. A number of alternative normalization
approaches could have been considered. Our subtraction
approach is similar to that used by Haxby et al. (2001),
whereas others divided by the mean signal (Haynes &
Rees, 2005), and others chose not to normalize (Eger,
Ashburner, Haynes, Dolan, & Rees, 2008). Our subtrac-
tion method will remove the mean signal difference
between conditions but there could be residual differences
in variance. However, this is likely to be small in our case
due to the similar BOLD responses across color stimuli
(Figures 4 and 7).
It is possible that the poor classification performance for

cardinal colors is due to saturation of the BOLD signal
(i.e., blood vessels are maximally expanded), which is
indeed larger for cardinal colors (Figure 4) than for
perceptual hues (Figure 7). However we feel that this is
unlikely as the 1–1.5% BOLD signal we report is not as
high as typical BOLD signal amplitudes seen at the same
field strength in V1. For example, recent work by
Leontiev and Buxton (2007) shows a 1.9% BOLD
response to a checkerboard stimulus and 4% BOLD
response to hypercapnia in V1. Hence, it seems unlikely
that the BOLD response has reached its maximum
possible value in our study. It is however possible that
the neuronal response is saturated due to the high color
contrasts used. Even if the neuronal response is saturated,
so long as the BOLD response is not saturated, this should
not affect our classification performance. The classifica-
tion relies on biases between voxels (the activation
pattern) due to differences in populations of neurons with
similar chromatic preferences, not due to the different
absolute BOLD response to different colors.
In Experiment 1 we used cone-opponent color modu-

lations. Under these conditions we could not identify a
unique activation pattern. We think the most parsimonious
explanation is that the neurons tuned to these cone-
opponent modulations are not spatially clustered. This
lack of unique activation pattern could be due to the
opponency of the bipolar modulations and not due to the
particular colors tested. However the aim was to test
whether similar spatial clustering of these particular cone-
opponent neurons as seen in the LGN also exists in V1.
Our data suggest that this is not the case. In Experiment 2
we employed perceptual hues, namely modulations
between gray and a particular hue. We chose the focal
hues of red, green, yellow, and blue because of their
behavioral importance (Philipona & O’Regan, 2006) and
neurophysiological evidence suggesting increased sensi-
tivity of V1 neurons to these colors (De Valois, Cottaris et
al., 2000). We were able to reveal spatial clustering of
neurons with similar chromatic preference, but this does
not imply that this clustering is exclusively for focal
colors, and it is the topic of further work to investigate
whether hue maps can be revealed with intermediate
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colors. Sincewe used unipolarmodulations in Experiment 2
and bipolar modulations in Experiment 1, we cannot
directly compare these two experiments to draw conclu-
sions about the precise chromatic tuning of V1 neurons.
Such inferences are beyond the scope of this study: the
purpose of these experiments was to test whether multi-
voxel pattern analysis is a sensitive tool to reveal spatial
clustering of neurons with similar chromatic preferences.

Why does a spatial hue map make sense?

From a functional point of view, in analogy with
orientation discrimination, an orderly columnar organiza-
tion of hues provides the most parsimonious model to
explain one major function of color vision, namely
discriminating visual stimuli on the basis of hue. Optical
imaging data from the macaque show evidence for such
an orderly hue map in V1 (Xiao et al., 2007). If such a
spatial hue map exists in primary visual cortex, we would
also predict that colors that are perceptually more similar
should show stronger correlations than colors that are
perceptually dissimilar. Our experiment was not designed
to test this particular prediction, but the correlation results
for perceptual hues (Figure 8C) are at least not inconsistent
with such a prediction, e.g., response pattern to ‘green’ has
a higher correlation with the response pattern to ‘yellow’
and ‘blue’ than to ‘red’. This suggests that neurons
responding to green are physically closer in space to
those tuned to yellow or blue than to those tuned to red,
which is consistent with recent findings using optical
imaging (Chen & Zhu, 2001; Miki, Liu, & Liu, 2004). At
this stage we can only speculate whether the predicted
correlation patterns would arise when tested with more
appropriate stimuli. The current study was not designed to
correlate color similarity with classification/correlation
performance, but it demonstrates that multivoxel correla-
tion analysis of BOLD responses may be a useful tool
to identify brain areas that correspond to perceptual
measures, such as color similarity.
In summary, we have shown that the multivoxel fMRI

analysis can be used to reveal the spatial clustering of
neurons with similar chromatic preferences. In V1,
neurons with cone-opponent properties (cardinal colors)
were found not to be spatially clustered, but we found
evidence for a spatial hue map consistent with recent
optical imaging data.

Appendix A

Assuming that each color produces the same underlying
fMRI response pattern, but with different noise levels, we
can calculate the predicted different-color correlations
based on the same-color correlations.

Consider the same-color correlation coefficient for color
X, defined as

>X1X2
K

A
2
X1X2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
2
X1

I A
2
X2

q ¼
P

ðx1 j x
�
1Þðx2 j x

�
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðx1 j x
�
1Þ

2Pðx2 j x
�
2Þ

2
q ; ðA1Þ

i.e., the X1 and X2 covariance divided by the product of
the standard deviations. We can assume that the standard
deviation of X1 is the same as for X2 as these are created
from two groups of data drawn from the same underlying
population, giving
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Consider a second color Y, which has the same under-
lying pattern as color X but with added noise. Assuming
that the noise is independent to the signal, the addition of
noise to X will not affect the covariance only the standard
deviations. Therefore,
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where A is the true signal covariance. Hence the between-
color correlation is given by
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This was also numerically verified by simulation.
This treatment assumes that the same-color correlation

coefficients are noise free, and uses them to drive the
predictions. We thank one of the reviewers of this
manuscript for suggesting a more accurate approach of
treating the four same-color correlation coefficients as
parameters of a model, and ask how well the model can fit
the entire set of 16 correlation coefficients. This then
recalculates the same-color correlation coefficients
according to the data from the entire data set. These
values are then used to compute the different-color
correlation coefficients as described above. Again, we
found the predictive power of this simulated data was only
25%, i.e., chance performance.
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