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Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity
associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions.
The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the
fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across
neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA)
represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of
neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem
where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In
this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals,
such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as
feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating
characteristic (ROC) curves.

1. Classical Statistical Inference in
fMRI Research

Functional magnetic resonance imaging (fMRI) exploits
blood-oxygen-level-dependent (BOLD) contrasts to map
neural activity associated with a variety of brain functions
including sensory processing, motor control, and cognitive
and emotional functions [1, 2]. BOLD signal changes are
due to hemodynamic and metabolic modulations associated
with neural activity. BOLD responses mainly reflect synaptic
inputs driving neuronal assemblies, rather than their output
firing activity [3]. A typical fMRI database contains BOLD
signal time courses recorded at multiple voxels in the brain.
A voxel is a three-dimensional rectangular cuboid, whose
dimensions are in the range of millimeters. In order to map

the cerebral areas involved in a given cognitive function, the
BOLD signal at each voxel is analysed [4]. Statistical inference
is commonly performed using the general linear model
(GLM) approach to reveal task-related (or “activated”)
brain areas by searching for linear correlations between the
fMRI time course and a reference model defined by the
experimenter [5–9]. Statistical analysis is then performed
iteratively on all voxels to identify brain regions whose BOLD
responses display significant statistical effects. This approach
is often referred to as mass-univariate model-based analysis,
and it represents the gold standard in fMRI research. This
approach, however, suffers from several limitations. One
of the most compelling things is the assumption that the
covariance across neighbouring voxels is not informative
about the cognitive function under examination. We will
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review the statistical methods used in GLM analysis and
then present how multivariate and model-free statistical
tools based on machine-learning methods overcome these
limitations and provide a novel approach in neuroimaging
research.

1.1. The GLM Approach: Mass Univariate and Model-Based
Analysis of fMRI Data. The GLM is normally expressed in
matrix formulation by

Y = Xβ + ǫ, (1)

where Y = [y1, . . . , yJ]
T is the dependent variable and is

a column vector containing the BOLD signal at a single

voxel; ǫ = [ǫ1, . . . , ǫJ]
T is the error vector whose elements

are independent and identically distributed normal random
variables with zero mean and variance σ2, ǫ ∼ N(0, σ2I).
β = [β1, . . . ,βP]T is the column vector of model parameters
where P is the number of model parameters; X is J×P design
matrix which is a near-complete description of the model.
It contains explanatory variables (one row per time point
and one column per explanatory variable) quantifying the
experimental knowledge about the expected signal.

The parameter estimates of the model that we denote as β̂
are obtained by minimizing the squared differences between

Y and the estimated signal Ŷ = Xβ̂ giving residual errors

ǫ = Y−Ŷ . The residual sum of squares S =
∑J

j=1 ǫ j
2 = ǫTǫ is

the sum of squared differences between the actual and fitted
values and thus measures the fit of the model with these
parameter estimates. The least square estimates are the β̂-
values which minimize S. This is obtained when

β̂ =
(
XTX

)−1
XTY. (2)

In order to compare experimental conditions, T- or F-

statistics allow to test for a linear combination of β̂-values
that correspond to null hypotheses [10]. For example, to test
whether activation in condition A is significantly different
from activation in condition B, a two-sample t-test can be
used. In this case, the null hypothesis would state that the

β̂-values of the two conditions would not differ, that is, H0:

β̂A = β̂B or H0: (+1)β̂A + (−1)β̂B = 0.
To generalize this argument, we consider linear functions

of the beta estimates:

c1β̂1 + c2β̂2 + · · · + cP β̂P = cT β̂, (3)

where the constants ci are the coefficients of a function that

“contrasts” the beta estimates β̂i. The vector cT = [c1, . . . , cP]
is referred to as the contrast vector. With this definition, H0

can be then written using a scalar product cT β̂ = 0.
To test whether the condition combinations specified in

c differ significantly from the null hypothesis H0, the T-
statistic is computed at each voxel as

t =
cT β̂√

var(ǫ)cT(XTX)−1c
. (4)

Classical statistical methods, such as F-test or ANOVA
(analyse of variance), are special cases of the GLM analysis
and can be used to perform statistical inference at each voxel.
The resulting statistical parametric map (SPM) arises from
multiple hypothesis testing (i.e., at all voxels). Classically,
the significance level is controlled for family-wise errors
using appropriate multiple comparison procedures (e.g.,
Bonferroni correction). Additionally, Gaussian random field
theory (RFT) [11] is used to take into account the spatial
smoothness of the statistical map. Instead of assigning a P
value to each voxel, clusters of voxels are created on the basis
of an initial threshold, and then each cluster is assigned a
P value [5, 12]. The resulting thresholded statistical maps
display the brain regions whose BOLD activity significantly
correlates with the cognitive functions under investigation
(Figure 1).

1.2. The Quest for Multivariate and Model-Free fMRI Data
Analysis. One of the limitations of the GLM mass-univariate
approach is the assumption that the covariance across
neighbouring voxels is not informative about the cognitive
function under examination. Such covariance is considered
as uncorrelated noise and normally reduced using spatial
filters that smooth BOLD signals across neighbouring voxels.
Additionally, the GLM approach is inevitably limited by the
model used for statistical inference.

Multivariate and model-free fMRI methods represent
promising techniques to overcome these limitations by
investigating the functional role of distributed patterns of
neural activity without assuming a specific model. Multi-
variate model-free methods are based on machine learning
and pattern recognition algorithms. Nowadays, multivoxel
pattern analysis (MVPA) has become a leading technique in
the analysis of neuroimaging data, and it has been extensively
used to identify the neural substrates of cognitive functions
ranging from visual perception to memory processing [13–
16].

The aim of the current paper is to review the mathe-
matical formalism underlying MVPA of fMRI data within
the framework of supervised classification tools. We will
review the statistical tools currently used and outline the
steps required to perform multivariate analysis.

2. Multivoxel fMRI Analysis as a Supervised
Classification Problem

Multi-voxel pattern analysis (MVPA) involves searching for
highly reproducible spatial patterns of activity that differ-
entiate across experimental conditions. MVPA is therefore
considered as a supervised classification problem where
a classifier attempts to capture the relationships between
spatial patterns of fMRI activity and experimental conditions
[17].

More generally, classification consists in determining a
decision function f that takes the values of various “features”
in a data “example” x and predicts the class of that “example.”
“Features” is a generic term used in machine learning to
be the set of variables or attributes describing a certain
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Figure 1: Thresholded statistical map overlaid on anatomical image.

“example.” In the context of fMRI, an “example” may
represent a given trial in the experimental run, and the
“features” may represent the corresponding fMRI signals in a
cluster of voxels. The experimental conditions may represent
the different classes.

To obtain the decision function f , data (i.e., examples
and the corresponding class labels) must be split into two
sets: “training set” and “test set.” The classifier is trained
using the training set. Training consists of modeling the rela-
tionship between the features and the class label by assigning
a weight w to each feature. This weight corresponds to the
relative contribution of the feature to successfully classify two
or more classes. When more than two classes are present
in the experimental design, the analysis can be transformed
into a combination of multiple two-class problems (i.e., each
class versus all the others). The classifier is then evaluated
with the test set to determine its performance in capturing
the relationship between features and classes. Given that
there are several data split possibilities (see Section 4), one
can train and test many classifiers and end up with one of
maximum performance.

Support vector machines (SVMs) [18, 19] have recently
become popular as supervised classifiers of fMRI data due
to their high performance, their ability to deal with large
high-dimensional datasets, and their flexibility in modeling
diverse sources of data [20–22]. Furthermore, standard
libraries implementing SVMs are available such as SVM-light
[23], LIBSVM [24], and PyMVPA [25]. We will therefore
review the mathematical basis of SVMs.

2.1. Mathematical Basis of Support Vector Machines

2.1.1. Linear SVM. In the simplest linear form of SVMs for
two classes, the goal is to estimate a decision boundary (a
hyperplane) that separates with maximum margin a set of

positive examples from a set of negative examples (Figure 2).
Each example is an input vector xi (i = 1, . . . ,N) having
M features (i.e., xi in RM) and is associated with one of
two classes yi = −1 or +1. For example, in fMRI research,
the data vectors xi contain BOLD values at discrete time
points (or averages of time points) during the experiment,
and features could be a set of voxels extracted in each time
point; y = −1 indicates condition A, and y = +1 indicates
condition B.

If we assume that data are linearly separable, meaning
that we can draw a line on a graph of the feature x(1) versus
the feature x(2) separating the two classes when M = 2 and a
hyperplane on graphs of x(1), x(2), . . . , x(M) when M > 2, the
SVM produces the discriminant function f with the largest
possible margin:

f (x) = w · x + b. (5)

w is the normal weight vector of the separating hyperplane,
b is referred to as the “bias,” and it translates the hyperplane
away from the origin of the feature space, and · is the inner
product:

w · x =
M∑

j=1

w( j)x( j). (6)

SVM attempts to find the optimal hyperplane w · x+ b =
0 which maximizes the margin magnitude 2/‖w‖, that is, it
finds w and b by solving the following primal optimization
problem:

min
w,b

1

2
‖w‖2

subject to yi(xi ·w + b) ≥ 1, ∀i ∈ {1, . . . ,N}.

(7)
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Figure 2: 2D space illustration of the decision boundary of the support vector machine (SVM) linear classifier. (a) the hard margin on
linearly separable examples where no training errors are permitted. (b) the soft margin where two training errors are introduced to make data
nonlinearly separable. Dotted examples are called the support vectors (they determine the margin by which the two classes are separated).

However, in practice, data are not often linearly sepa-
rable. To permit training errors and then increase classifier
performance, slack variables ξi ≥ 0, for all i ∈ {1, . . . ,N},
are introduced:

yi(xi ·w + b) ≥ 1− ξi, for all i ∈ {1, . . . ,N}, ξi ≥ 0. (8)

When ξi = 0, for all i ∈ {1, . . . ,N}, (i.e., (7)), the margin
is the width of the gap between the classes allowing no
training errors, and it is referred to as the “hard margin.”
0 ≤ ξi ≤ 1 means that the corresponding training examples
are allowed to be inside the gap defined by the hyperplane
and the margin. ξi ≥ 1 allows some training examples to be
misclassified. In such a case, the margin is referred to as “soft
margin” (Figure 2).

To control the trade-off between the hyperplane com-
plexity and training errors, a penalty factor C is introduced.
The primal optimization problem becomes

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

subject to yi(xi ·w + b)− 1 + ξi ≥ 0,

∀i ∈ {1, . . . ,N}, ξi ≥ 0.

(9)

High C values force slack variables ξi to be smaller, approxi-
mating the behaviour of hard margin SVM (ξi = 0). Figure 3
shows the effect of C on the decision boundary. Large C (C =
10000) does not allow any training error. Small C (C = 0.1)
however allows some training errors. In this figure, C =

0.1 is typically preferred because it represents a trade-off

between acceptable classifier performance and generalization
to unseen examples (i.e., overfitting).

To solve the mentioned primal optimization problem
where a function has to be minimized subject to fixed outside
constraints, the method of Lagrange multipliers is used. This
method provides a strategy for finding the local maxima and
minima of a function subject to equality constraints. These
are included in the minimization objective, and Lagrange
multipliers allow to quantify how much to emphasize these
(see, e.g., [26] for more details).

Let µi ≥ 0 and αi ≥ 0 be two Lagrange multipliers.
We derive the so-called dual problem using the following
Lagrangian L of the primal problem:

L
(
w, b,α, ξ,µ

)
=

1

2
‖w‖2 + C

N∑

i=1

ξi

−

N∑

i=1

αi
(
yi(xiw + b)− 1 + ξi

)

−

N∑

i=1

µiξi.

(10)

The Lagrangian L(w, b,α, ξ,µ) needs to be minimized
with respect to w, b, and ξ under the constraints ξi ≥ 0,
αi ≥ 0, and µi ≥ 0 for all i ∈ {1, . . . ,N}. Consequently, the
derivatives of L with respect to these variables must vanish:

∂L

∂w
= w −

N∑

i=1

αiyixi = 0, (11)

∂L

∂b
=

N∑

i=1

αiyi = 0, (12)
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∂L

∂ξ
= C − αi − µi = 0. (13)

Substituting the above results in the Lagrange form, we
get the following:

L(w, b,α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiα j yiy jxix j . (14)

According to Lagrange theory, in order to obtain the
optimum, it is enough to maximize L with respect to αi,
for all i ∈ {1, . . . ,N}:

max
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiα j yiy jxix j

subject to
N∑

i=1

αiyi = 0,

∀i ∈ {1, . . . ,N} 0 ≤ αi ≤ C,

(15)

where αi ≤ C comes from µi ≥ 0 and C − αi − µi = 0.
Because this dual problem has a quadratic form, the

solution can be found iteratively by quadratic programming
(QP), sequential minimal optimization (SMO), or least
square (LS). This solution has the property that w is a linear
combination of a few of the training examples:

w =
N∑

i=1

αiyixi, ∀αi ≥ 0. (16)

The key feature of this equation is that αi = 0 for every xi
except those which are inside the margin. Those are called the
support vectors. They lie closest to the decision boundary and
determine the margin. Note that if all nonsupport vectors were
removed, the same maximum margin hyperplane would be
found.

In practice, most fMRI experimenters use linear SVMs
because they produce linear boundaries in the original
feature space, which makes the interpretation of their
results straightforward. Indeed in this case, examining the
weight maps directly allows the identification of the most
discriminative features [27].

2.1.2. Nonlinear SVM. Nonlinear SVMs are often used for
discrimination problems when the data are nonlinearly
separable. Vectors are mapped to a high-dimensional feature
space using a function g(x).

In nonlinear SVMs, the decision function will be based
on the hyperplane:

f (x) =
N∑

i=1

αiyig(xi) · g(x) + b. (17)

A mathematical tool known as “kernel trick” can be
applied to this equation which solely depends on the dot
product between two vectors. It allows a nonlinear operator
to be written as a linear one in a space of higher dimension.

In practice, the dot product is replaced by a “kernel function”
k(x, x′) = g(x) · g(x′) which does not need to be explicitly
computed reducing the optimization problem to the linear
case:

f (x) =
N∑

i=1

αiyik(xi, x) + b. (18)

Several types of kernels can be used in SVMs models.
The most common kernels are polynomial kernels and radial
basis functions (RBFs).

The polynomial kernel is defined by

kd,K (x, x′) = (x · x′ + K)d . (19)

The K and d parameters are set to control the decision
boundary curvature. Figure 4 shows the decision boundary
with two different values of d and K = 0. We note that the
case with K = 0 and d = 1 is a linear kernel.

Radial basis function (RBF) kernel is defined by

kσ(x, x′) = exp

(
−
‖x − x′‖2

2σ2

)
, (20)

where σ is a hyperparameter. A large σ value corresponds to
a large kernel width. This parameter controls the flexibility
of the resulting classifier (Figure 5).

In the fMRI domain, although non-linear transforma-
tions sometimes provide higher prediction performance,
their use limits the interpretation of the results when the
feature weights are transformed back to the input space [28].

2.2. Comparison of Classifiers and Preprocessing Strategies.
Although SVMs are efficient at dealing with large high-
dimensional data-sets, they are, as many other classifiers,
affected by preprocessing steps such as spatial smoothing,
temporal detrending, and motion correction. LaConte et al.
[27] compared SVMs to canonical variate analysis (CVA)
and examined their relative sensitivity with respect to ten
combinations of pre-processing steps. The study showed
that for both SVM and CVA, classification of individual
time samples of whole brain data can be performed with
no averaging across scans. Ku et al. [29] compared four
pattern recognition methods (SVM, Fisher linear discrimi-
nant (FLD), correlation analysis (CA), and Gaussian naive
bayes (GNB)) and found that classifier performance can
be improved through outlier elimination. Misaki et al. [30]
compared six classifiers attempting to decode stimuli from
response patterns: pattern correlation, k-nearest neighbors
(KNN), FLD, GNB, and linear and nonlinear SVM. The
results suggest that normalizing mean and standard devia-
tion of the response patterns either across stimuli or across
voxels had no significant effect.

On the other hand, classifier performance can be
improved by reducing the data dimensionality or by selecting
a set of discriminative features. Decoding performance was
found to increase by applying dimensionality reduction
using the recursive features elimination (RFE) algorithm [31]
or after selection of independent voxels with highest overall
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Figure 3: Effect of C on the decision boundary. The solid line (C = 0.1) allows some training errors (red example on the top left is
misclassified). The dashed line (C = 10000) does not allow any training error. Even though the C = 0.1 case has one misclassification, it
represents a trade-off between acceptable classifier performance and overfitting.
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Figure 4: Decision boundary with polynomial kernel. d = 2 (a) and d = 4 (b). K is set to 0.

responsiveness, using a priori knowledge of GLM measures
[29]. However, LaConte et al. [27] showed that classification
of whole brain data can be performed with no prior feature
selection, while Mourão-Miranda et al. [32] found that SVM
was more accurate compared to FLD when classifying brain
states without prior selection of spatial features. Schmah
et al. [33] compared, in terms of performance, a set of
classification methods (adaptive FLD, adaptive quadratic
discriminant (QD), GNB, linear and nonlinear SVM, logistic
regression (LR), restricted Boltzmann machines (RBM),
and KNN) applied to the fMRI volumes without reducing
dimensionality and showed that the relative performance
varied considerably across subjects and classification tasks.

Other studies attempted to compare classifiers in terms
of their performances or execution time. Cox and Savoy
[14] studied linear discriminant (LD) and SVMs to classify
patterns of fMRI activation evoked by the visual presentation
of various categories of objects. The classifier accuracy was
found to be significant for both linear and polynomial SVMs
compared to the LD classifier. Pereira and Botvinick [34]

found that the GNB classifier is a reasonable choice for quick
mapping, LD is likely preferable if more time is given, and
linear SVM can achieve the same level of performance if the
classifier parameters are well set using cross-validation (see
Section 4).

3. Feature Selection and
Dimensionality Reduction

When dealing with single-subject univariate analysis, fea-
tures may be created from the maps estimated using a
GLM. A typical feature will consist of the pattern of β-
values across voxels. The analysis is normally performed on
spatially unsmoothed data to preserve fine-grained subject-
specific information [35]. In such a case, features are
simply the voxels. Other authors recommend applying spatial
smoothing [36]. This idea is highly debated in the fMRI
literature [30, 37] (see also Section 2.2). In both cases, the
feature space can still be considered as high dimensional
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Figure 5: Decision boundary with RBF kernel. σ = 0.1 (a) and σ = 0.2 (b).

when all brain voxels (or at least too-large regions of interest)
are used. Therefore, the dimensionality of the data needs to
be significantly reduced, and informative features (voxels)
have to be wisely selected in order to make the classification
task feasible. When small regions of interest are used, there
is typically no need to reduce the dimensionality (see the
following Section 3.1).

Several studies demonstrated the relevance of feature
selection. Pearson’s and Kendall τ rank correlation coefficient
have been used to evaluate the elements of the functional
connectivity matrix between each pair of brain regions
as classification features [38], whereas voxel reliability and
mutual information metrics have been compared for iden-
tifying subsets of voxels in the fMRI data which optimally
distinguish object identity [39]. Åberg and Wessberg [40]
explored the effectiveness of evolutionary algorithms in
determining a limited number of voxels that optimally
discriminate between single volumes of fMRI. The method
is based on a simple multiple linear regression classifier in
conjunction with as few as five selected voxels which out-
performs the feature selection based on statistical parametric
mapping (SPM) [41].

More recently, novel techniques have been developed
to find informative features while ignoring uninformative
sources of noise, such as principal components analysis
(PCA) and independent component analysis (ICA) [42, 43].
Such methods perform well when dealing with single-subject
analysis. Recently, attempts have been made to extend these
methods to group-level analysis by developing group ICA
approaches to extract independent components from the
analysis of subject’s group data [44, 45].

It is worth mentioning that feature selection can be
improved by the use of cross-validation (see Section 4). The
best classifier will generally include only a subset of features
that are deemed truly informative. In fact, SVM classifiers
can also be used to perform feature selection. To do so,

Martino et al. [31] developed the recursive feature elimina-
tion (RFE) algorithm which iteratively eliminates the least
discriminative features based on multivariate information
as detected by the classifier. For each voxel selection level,
the RFE consists of two steps. First, an SVM classifier is
trained on a subset of training data using the current set of
voxels. Second, a set of voxels is discarded according to their
discriminative weights as estimated during training. Data
used as test are classified, and generalization performance
is assessed at each iteration. RFE has been recently used for
the analysis of fMRI data and has been proven to improve
generalization performances in discriminating visual stimuli
during two different tasks [31, 46].

3.1. Regions of Interest (ROI): Searchlight Analysis. Multivari-
ate classification methods are used to identify whether the
fMRI signals from a given set of voxels contain a dissociable
pattern of activity according to experimental manipulation.
One option is to analyze the pattern of activity across all
brain voxels. In such a case, the number of voxels exceeds the
number of training patterns which makes the classification
computationally expensive.

A typical approach is to make assumptions about
the anatomical regions of interest (ROI) suspected to be
correlated with the task [14, 47, 48]. In such cases, the ROI
will represent spatially contiguous sets of voxels, but not
necessarily adjacent.

An alternative is to select fewer voxels (e.g., those within
a sphere centred at a voxel) and repeat the analysis at all
voxels in the brain. This method has been introduced by
Kriegeskorte et al. [49], and it has been named “searchlight.”
It produces a multivariate information map where each voxel
is assigned the classifier’s performance. In other terms, the
searchlight method scores a voxel by how accurately the clas-
sifier can predict a condition of each example on the training
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set, based on the data from the voxel and its immediately
adjacent neighbours. Figure 6 shows a 2D illustration of the
searchlight method applied to 120 simulated maps of 10× 10
pixels. The pixels for conditions A are random numbers, and
pixels of condition B are constructed from those of A except
in some patterns where a value of 1 is added. We used four
runs where each run contains 30 examples (15 for condition
A and 15 for condition B).

More recently, Björnsdotter et al. [50] proposed a Monte
Carlo approximation of the searchlight designed for fast
whole brain mapping. One iteration of the algorithm consists
of the brain volume being randomly divided into a number
of clusters (search spheres) such that each voxel is included
in one (and only one) cluster, and a classifier performance
is computed for it. Thus, a mean performance across all the
constellations in which the voxel took part is assigned to
that voxel (as opposed to the searchlight where each voxel
is assigned the one value computed when the sphere was
centered on it) (Figure 7).

4. Performance Estimation and
Cross-Validation

To ensure unbiased testing, the data must be split into
two sets: a training and test set. In addition: it is generally
recommended to choose a larger training set in order to
enhance classifier convergence. Indeed, the performance of
the learned classifier depends on how the original data are
partitioned into training and test set, and, most critically, on
their size. In other words, the more instances we leave for
test, the fewer samples remain for training, and hence the less
accurate becomes the classifier. On the other hand, a classifier
that explains one set of data well does not necessarily
generalize to other sets of data even if the data are drawn
from the same distribution. In fact, an excessively complex
classifier will tend to overfit (i.e., it will fail to generalize to
unseen examples). This may occur, for example, when the
number of features is too large with respect to the number
of examples (i.e., M ≫ N). This problematic is known as
“the curse of dimensionality” [51]. One way to overcome
this problem is the use of “cross-validation.” This procedure
allows efficient evaluation of the classifier performance [52–
54]. The goal is to identify the best parameters for the
classifier (e.g., parameters C, d, and σ) that can accurately
predict unknown data (Figure 8). By cross-validation, the
same dataset can be used for both the training and testing
of the classifier, thus increasing the number of examples N
with the same number of features M.

4.1. N-Fold Cross-Validation. In N-fold cross-validation, the
original data are randomly partitioned into N subsamples.
Of the N subsamples, a single subsample is retained for
validating the model, and the remaining N − 1 subsamples
are used as training data. The cross-validation procedure is
then repeated N times, each of the N sub-samples being
used for testing. The N results can be averaged (or otherwise
combined) to produce single performance estimation. Two
schemes of cross-validation are used for single-subject

MVPA (Figure 9). The first one is the leave-one-run-out
cross-validation (LORO-CV). In this procedure, data of one
run provide the test samples, and the remaining runs provide
the training samples. The second one is leave-one-sample-
out cross-validation (LOSO-CV) in which one sample is
taken from each class as a test sample, and all remaining
samples are used for classifier training. The samples are
randomly selected such that each sample appears in the test
set at least once. LOSO-CV produces higher performances
than the LORO-CV but is computationally more expensive
due to a larger number of training processes [30].

4.2. Classifier Performance. Machine-learning algorithms
come with several parameters that can modify their behav-
iors and performances. Evaluation of a learned model is
traditionally performed by maximizing an accuracy metric.
Considering a basic two-class classification problem, let
{p,n} be the true positive and negative class labels, and let
{Y ,N} be the predicted positive and negative class labels.
Then, a representation of classification performance can be
formulated by a confusion matrix (contingency table), as
illustrated in Figure 10. Given a classifier and an example,
there are four possible outcomes. If the example is positive
and it is classified as positive, it is counted as a true positive
(TP); if it is classified as negative, it is counted as a false
negative (FN). If the example is negative and it is classified as
negative, it is counted as a true negative (TN); if it is classified
as positive, it is counted as a false positive (FP). Following this
convention, the accuracy metric is defined as

ACC =
TP + TN

n+ + n−
, (21)

where n+ and n− are the number of positive and negative
examples, respectively (n+ = TP + FN, n− = FP + TN).
However, accuracy can be deceiving in certain situations
and is highly sensitive to changes in data. In other words,
in the presence of unbalanced data-sets (i.e., where n+ ≫

n−), it becomes difficult to make relative analysis when the
evaluation metric is sensitive to data distributions. In fMRI
tasks, the experimental designs are often balanced (same
fraction of conditions of each type in each run), but there
are cases where they are unbalanced. Furthermore, any use
of random cross-validation procedure to evaluate a classifier
may cause data-sets to unbalance.

4.2.1. Receiver Operating Characteristic (ROC) Curve. Met-
rics extracted from the receiver operating characteristic
(ROC) curve can be a good alternative for model evaluation,
because they allow the dissociation of errors on positive or
negative examples. The ROC curve is formed by plotting
true positive rate (TPR) over false positive rate (FPR) defined
both from the confusion matrix by

TPR =
TP

n+
,

FPR =
FP

n−
.

(22)
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Figure 6: 2D illustration of the “searchlight” method on simulated maps of 10 × 10 pixels. For each pixel in the activity map, 5 neighbors
(a searchlight) are extracted to form a feature vector. Extracted searchlights from the activity maps of each condition (A or B) form then the
input examples. A classifier is trained using training examples (corresponding to the 3 first runs) and tested using the examples of the fourth
run. The procedure is then repeated along the activity maps for each pixel to produce finally a performance map that shows how well the
signal in the local neighborhoods differentiates the experimental conditions A and B.

Figure 7: Illustration of the Monte Carlo fMRI brain mapping method in one voxel (in black). Instead of centering the search volume
(dashed-line circle) at the voxel as in the searchlight method and computing a single performance for it, here the voxel is included in five
different constellations with other neighboring voxels (dark gray). In each constellation, a classification performance is computed for it. In
the end, the average performance across all the constellations is assigned to the dark voxel.

Any point (FPR; TPR) in ROC space corresponds to the
performance of a single classifier on a given distribution. The
ROC space is useful because it provides a visual representa-
tion of the relative trade-offs between the benefits (reflected
by TP) and costs (reflected by FP) of classification in regards
to data distributions.

Generally, the classifier’s output is a continuous numeric
value. The decision rule is performed by selecting a decision
threshold which separates the positive and negative classes.
Most of the time, this threshold is set regardless of the class

distribution of the data. However, given that the optimal
threshold for a class distribution may vary over a large
range of values, a pair (FPR; TPR) is thus obtained at each
threshold value. Hence, by varying this threshold value, an
ROC curve is produced.

Figure 11 illustrates a typical ROC graph with points A,
B, and C representing ROC points and curves L1 and L2

representing ROC curves. According to the structure of the
ROC graph, point A (0,1) represents a perfect classification.
Generally speaking, one classifier is better than another if its
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Figure 8: Mean accuracy after 4-fold cross-validation to classify the data shown in Figure 3. The parameters showing the best accuracy are
d = 1 for polynomial kernel and σ ≥ .4 for RBF kernel.

Run 1, run 2 and run 3 Run 4

A B A B A B A B A B A B A B A B

Training set

Test set

LORO-CV

LOSO-CV

· · · ·

Figure 9: Leave-one-run-out cross-validation (LORO-CV) and leave-one-sample-out cross-validation (LOSO-CV). A classifier is trained
using training set (in blue) and then tested using the test set (in red) to get a performance. This procedure is repeated for each run in
LORO-CV and for each sample in LOSO-CV to get at the end an averaged performance.

corresponding point in ROC space is closer to the upper left
hand corner. Any classifier whose corresponding ROC point
is located on the diagonal, such as point B, is representative
of a classifier that will provide a random guess of the class
labels (i.e., a random classifier). Therefore, any classifier that
appears in the lower right triangle of ROC space performs
worse than random guessing, such as the classifier associated
with point C in the shaded area.

In order to assess different classifier’s performances, one
generally uses the area under the ROC curve (AUC) as an
evaluation criterion [55]. For instance, in Figure 11, the L2

curve provides a larger AUC measure compared to that of
L1; therefore, the corresponding classifier associated with
L2 provides better performance compared to the classifier
associated with L1. The AUC has an important statistical
property: it is equivalent to the probability that the classifier
will evaluate a randomly chosen positive example higher than

a randomly chosen negative example. Smith and Nichols
[56] have shown that the AUC is a better measure of classifier
performance than the accuracy measure.

Processing the AUC would need the computation of an
integral in the continuous case; however, in the discrete case,
the area is given by [57]

AUC =

∑n−

i=1

∑n−

j=1 1 f (x+)> f (x−)

n+n−
, (23)

where f is the decision function of the discrete classifier,
x+ and x−, respectively, denote the positive and negative
examples, and 1π is defined to be 1 if the predicate π holds
and 0 otherwise. This equation states that if a classifier f (x)
is such that f (xi+) > f (x j−), for all i = 1, . . . ,n+, for all j =
1, . . . ,n−, then the AUC of this classifier is maximal. Any
negative example that happens to be ranked higher than
positive examples makes the AUC decreases.



Computational and Mathematical Methods in Medicine 11

True class

p n

Predicted

class

Y

TP

(True positives) 

FP

(False positives)

N

FN

(False negatives) 

TN 

(True Negatives) 

n+ n−

Figure 10: Confusion matrix for performance evaluation.

4.2.2. An Example of ROC Curve Applied to SVM Classifier.
SVMs can be used as classifiers that output a continuous
numeric value in order to plot the ROC curve. In fact, in
standard SVM implementations, the continuous output f of
a test example x (i.e., f = w · x + b) is generally fed into a
sign function: if sign( f ) = +1, the example x is considered
as positive and inversely if sign( f ) = −1, x is considered as
negative (as if a threshold t is frozen at t = 0 and x is positive
if f > t, and is negative if f < t). In this case, a single pair of
FPR; TPR is obtained. Thus, if one could vary the threshold
t in a range between the maximum and minimum of all the
outputs f of the test set (min( f ) ≤ t ≤ max( f )), the ROC
curve could be obtained. The algorithm will thus follow the
following steps.

(i) Step 1. Compute the output vector f for all examples
in the test set.

(ii) Step 2. For each value of a threshold t between
minimum and maximum of f ,

(a) Step 2.1. compute sign( f + t) and assign exam-
ples to the corresponding classes;

(b) Step 2.2. plot the corresponding point (FPR;
TPR).

We performed this procedure on the simulated data used
for the searchlight analysis. However, data were unbalanced
in order to show the threshold effect (we used four runs each
containing 30 exampls, 10 for condition A and 20 for con-
dition B). Figure 12 shows the ROC curves corresponding to
different voxels. The area under the ROC curve is computed
for all voxels yielding the AUC map in Figure 12.

A last point worth mentioning is that the classifier
performance measures its ability to generalize to unseen data
under the assumption that training and test examples are
drawn from the same distribution. However, this assumption
could be violated when using cross-validation [34]. An
alternative could be the use of Bayesian strategies for
model selection given their efficiency both in terms of
computational complexity and in terms of the available
degrees of freedom [58].

4.2.3. Nonparametric Permutation Test Analysis. Nonpara-
metric permutation test analysis was introduced in func-
tional neuroimaging studies to provide flexible and intuitive

FPR

TPR

C

A

B
L1

L2

Figure 11: ROC curve representation.

methodology to verify the validity of the classification
results [59, 60]. The significance of a statistic expressing the
experimental effect can be assessed by comparison with the
distribution of values obtained when the labels are permuted
[61].

Concretely, to verify the hypothesis H0 under which there
is no difference between conditions A and B when the class
labels are randomly permuted, one can follow these steps: (1)
permute the labels on the sample; (2) compute the maximum
t-statistic; (3) repeat over many permutations; (4) obtain a
distribution of values for the t-statistic; (5) find the threshold
corresponding to a given P value determining the degree of
rejection of the hypothesis [62, 63].

In particular experimental conditions when the fMRI
data exhibit temporal autocorrelation [64], an assumption
of “exchangeability” of scans (i.e., rearranging the labels on
the scans without affecting the underlying distribution of
possible outcomes) within subjects is not tenable. In this
case, to analyze a group of subjects for population inference,
one exclusively assumes exchangeability of subjects. Nichols
and Holmes [60] presented practical examples from func-
tional neuroimaging both in single-subject and multisubject
experiments, and Golland and Fischl. [62] proposed practical
recommendations on performing permutation tests for
classification.

5. Conclusion

In this paper, we have reviewed how machine-learning
classifier analysis can be applied to the analysis of functional
neuroimaging data. We reported the limitations of univariate
model-based analysis and presented the multivariate model-
free analysis as a solution. By reviewing the literature
comparing different classifiers, we focused on support vector
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Figure 12: ROC analysis of unbalanced simulated data. Data in Figure 6 were unbalanced in order to show the threshold effect. (a) ROC
curves corresponding to some coordinates (voxels) shown in colored circles in the AUC map in (b).

machine (SVM) as supervised classifier that can be con-
sidered as an efficient tool to perform multivariate pattern
analysis (MVPA). We reported the importance of feature
selection and dimensionality reduction for the success of the
chosen classifier in terms of performance, and the impor-
tance of a cross-validation scheme both in selecting the best
parameters for the classifier and computing the performance.
The use of ROC curves seems to be more accurate to
evaluate the classifier performance, while nonparametric
permutation tests provide flexible and intuitive methodology
to verify the validity of the classification results.
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