
Multiway Netlist Partitioning onto FPGA-based Board Architectures

U. Ober, M. Glesner
Institute of Microelectronic Systems, Darmstadt University of Technology,

Karlstr. 15, 64283 Darmstadt, Germany

Abstract

FPGAs are well accepted as an alternative to ASICs
and for rapid prototyping purposes. Netlists of designs
which are too large to be implemented on a single FPGA,
have to be mapped onto a set of FPGAs, which could be
organized on an FPGA board containing various FPGAs
connected by interconnection networks. This paper pre-
sents an efficient approach to the problem of multiway
partitioning of large FPGA netlists onto heterogeneous
FPGA boards. To optimize the resulting partitioning with
respect to the target architecture, our algorithm is able to
consider the board architecture.

1. INTRODUCTION

Field programmable gate arrays (FPGAs) combine the
flexibility of mask programmable gate arrays (MPGAs)
and "time to market" advantages of programmable logic
devices (PLDs). For this reason, they are often used for
rapid prototyping purposes.

Upon specification, a design is transformed into a net-
list for FPGA implementation. If the logic capacity of a
single FPGA is insufficient for the entire design, its netlist
has to be partitioned into smaller pieces. FPGA-based ra-
pid prototyping boards have been developed to implement
large designs. One example is the Quickturn emulation
system containing several FPGA based boards. These are
made up of Xilinx LCAs and routing devices. The system
allows validation of the design and reprogrammability en-
sures a quick reimplementation of the corrected design in
case of malfunction. Partitioning on a rapid prototyping
board can be performed by hand, automatically, or inter-
actively. Manual partitioning is work and time consuming,
thus, with increasing design complexity, there is a growing
need for automatic partitioning tools.

Partitioning can be performed before or after techno-
logy mapping. During technology mapping, logic gates are
clustered to logic modules to be mapped onto an FPGA’s
configurable logic blocks (CLBs). If partitioning is exe-
cuted before technology mapping, the number of logic
modules used for this design has to be estimated. This
number depends on many variable factors, e.g. used tech-
nology mapper, optimization target, logic complexity of

every subcircuit, thus, partitioning after technology
mapping is more efficient.

Finding a circuit partitioning with a minimum number
of interconnecting nets between the subsets is called min-
cut problem. The mincut partitioning problem with con-
straints concerning the size of subcircuits is proven to be
NP-hard [1]. To alleviate the complexity problem, a num-
ber of mincut partitioning heuristics have been developed.

Group migration methodes include the Kernighan Lin
and the Fiduccia Mattheyses bipartitioning heuristics [2,
3]. These heuristics have been improved with cell replica-
tion by Kring and Newton [4]. Metrical allocation methods
do not cut the circuit but cluster nodes together. The
metrics used for this method usually use eigenvalues and
eigenvectors of matrices obtained from the graph represen-
ting the netlist to be partitioned [5, 6, 7]. Other methods
rely on simulated annealing, such as the one developed by
Green and Supowit [8].

A mincut partitioning heuristic with cost minimization
was developed by Kuznar, Brglez, and Kozminski [9, 10]
realizing multiway partitioning by recursively executing a
bipartitioning heuristic. This approach works under the
condition that a heterogeneous board with various FPGA
types will be assembled specifically for this application,
whereby the costs of the devices should be minimized.

In our approach a rapid prototyping system with an
FPGA based ASIC emulation board already exists. Thus,
the number and types of FPGAs and the interconnection
network are predefined. To partition the netlist so as to fit
onto this board we consider all devices at once, unlike
recursive bipartitioning which considers only one device
in every iteration. The processed device will be considered
no more at a later time in the partitioning process. If no
interconnection network has to be taken to account, the
recursive scheme yields good results. However, due to the
local nature of its transformations, it insufficiently covers
the search space. Thus, introducing additional constraints
on the size and topology of the interconnecting network
usually yields suboptimum results. By considering all de-
vices during the complete partitioning process, we expand
the search space sufficient to find a suitable partition
matching the interconnection network of the board.

We propose different FPGA board configurations.
They contain various FPGAs of the same device family

and eventually a routing device. These boards are well
suited for ASIC emulation purposes. Some examples for
applications of these boards include rapid prototyping
[11], parallel hardware and software development [12],
algorithm accelleration [13], and programmable coproces-
sors [14]. Our algorithm allows the specification of
different board architectures matching one of the basic
models described in section 2 and is able to partition an
FPGA netlist onto the specified board.

This paper is organized as follows: In section 2 the
main board architectures are presented. A formalised prob-
lem definition is given in section 3. Section 4 describes the
partitioning process and section 5 presents experimental
results. A short summary concludes the paper.

2. BOARD-ARCHITECTURES

We consider two basic models of board architectures:
pure FPGA architectures, boards containing a routing de-
vice in addition to the FPGAs. They can differ in the num-
ber and type of FPGAs and the interconnection network.
These architectures were extracted for typical applications
in the fields of ASIC emulation, rapid prototyping, etc.

A. Pure FPGA-Architecture

Pure FPGA architecture, as shown in figure 1, contain
a certain number of FPGAs. The devices can be of diffe-
rent parttypes, but of the same device family. Adjacent
devices are connected via local wires. Some or all devices
can have external wires passing the board’s boundaries to
connect the board to other hardware. In addition, there
exists a bus to create multi-point connections or to supply
connections between devices which are not directly linked
via local wires. The interconnection network can differ in
the number of local, outside, and bus connections. But the
sum of all connections of an FPGA must not exceed the
number of its IOBs. The number of buslines is also
variable.

local
Connections

external
Wires

Common
Wires

Board Frontier

Figure 1: Pure FPGA Architecture

Due to the short distance local connections, boards
with pure FPGA architecture are well suited for applica-
tions with strong timing constraints.

B. Board Architecture with Routing Device

Figure 2 shows a board architecture with the intercon-
nect topology is created by a special routing device. All
FPGAs are only connected with this device, because no in-
terconnections between the FPGAs exist. The routing de-
vice also supplies all outside connections. A common rout-
ing device is the Aptix Field Programmable Interconnect
Component. The interconnection network can differ in the
number of outside and FPGA-routing device connections.

Aptix FPIC Field Programmable
Interconnect Component Device
with 1024 Pins, with 936 available
as IO-Pins

Board Frontier

external
Wires

Figure 2: Board with a Routing Device

Typical applications for those boards are netlists with
high complexity of interconnection structure.

3. PROBLEM DEFINITION

Given is an FPGA netlist N=(V,E) , where V is a set of
vertices and E a set of hyperedges, and a board B∈{B FPGA,

BRout } . The set of the netlist’s vertices V=(X,Y) is com-
posed of a set X of internal nodes representing the logic
modules to be mapped onto the CLBs and set Y of terminal
nodes, which reflect the IO ports to be mapped onto the
IOBs. The set of hyperedges is defined as E={(v 1,...,v n)

| v 1,...,v n ∈ V} .
A board B can contain only FPGAs (B FPGA) or a rou-

ting device in addition (B Rout) . A board is described by
its devices and the interconnection network. The devices
of a pure FPGA board BFPGA=(F,W F) are only FPGAs
F={(C,I)} which are described by a set C of CLBs and a
set I of IOBs. The interconnection network WF=(L,S) com-
prises two kinds of nets, a set L of local connections
defined as L={(i j ,i k)|f j =(i j ,c j) ,f k =(i k ,c k) ;f j ,f k ∈F}

of two-point connections between the IOBs of two FPGAs
and a set S of shared multi-point connections via bus de-
fined as S={(i k ,...,i n)|f j =(i j ,c j) ,j=k,...,n,f k ,...,

f n∈F} and |S| ≤Smax, where Smax is the number of buslines
on the board which can be used.

The second architecture BRout =(D,W R) consists of two
kinds of devices D=(R,F) , where the routing device R={p}

is described by its available routing pins, and only one
kind of interconnect WR={(i,p) | i ∈F,p ∈R} .

Let f j , f k ∈F,j ≠k, LC(f j) denote the lower bound of
available CLBs of FPGA f j and UC(f j) and UI (f j) denote
the upper bound of available CLBs and IOBs. The upper

bound of the available routing device pins is specified by
U(R),p ∈R. C(L jk) denotes the number of local connections
between the IOBs of f j and those of f k and C(Sj) speci-
fies the number of IOBs of f j which can be connected to
the bus. C(Oj) indicates the number of outside connections
of f j . The number of connections between the routing de-
vice R and f j is declared by C(Rj) . Ljk ⊂L denotes the local
connections between f j and f k and Wj ⊂WR the interconnec-
tions between f j and the routing device.

A mapping MV:V →D of the vertices V onto the devices
D=(F,R) is defined as MV(v)=d , where d is the device v is
mapped onto, and the mapping ME:E →W of the hyperedges
E to the interconnection W∈{WF,WR} as ME(e)={d ∈D|e=(v 1,

...,v n) ∧

map(v mm =1
n∑ ,d)>0} , where the boolean func-

tion map is map(v,d) =
 0 else

1 if v is mapped onto d{ , v ∈V,d ∈D.

The cut set CUT(dj ,d k) between the devices dj and d k ∈D is
specified as CUT(d j , d k) = {e ∈ E | e = (v 1, ..., v n) ∧

map(v mm =1

n∑ ,d j)>0 ∧

map(v mm =1
n∑ ,d k)>0} .

A partitioning is a projection P:N →B of the vertices V
of the netlist N onto the devices F and R of the board B
meeting the following constraints:
• The number of internal nodes x ∈X mapped onto the

CLBs c ∈C of an FPGA is within the interval from the
lower LC(f) to the upper bound UC(f) of CLB usage:
LC(f) ≤ |{x ∈X | P(x)=c,f=(c,i)}| ≤ U C(f), ∀ f ∈F

• The number of internal nodes y ∈Y mapped onto the
IOBs i ∈I does not exceed the upper bound of IOBs:
|{y ∈Y | P(y)=i,f=(c,i)}| ≤ U I (f), ∀ f ∈F

• The number of internal nodes y∈Y mapped onto the IO
pins p∈R does not exceed the upper bound of pin usage
of the routing device R:
|{y ∈Y | P(y)=R}| ≤ U(R)

• The size of the cut set CUT(j,k) between two devices
dj and dk does not exceed the number of local connec-
tions Ljk between these devices or the allowed number
of interconnections Wj between the f j and R, if dk =R:

|CUT(j,k)| ≤

|Wj | if B Rout (d k =R)
|L jk | if B FPGA

• The maximum number of buslines Smax is not exceeded.

4. PARTITIONING

We will now look at the algorithms to partition a net-
list onto a board. The netlist N=(V,E) of a complex appli-
cation is given and we assume that technology mapping
has already been applied. The circuit is too large to be
mapped onto one single FPGA. Further a prototyping
board B∈{B FPGA,B Rout } is available containing several
FPGAs and possibly a routing device. The components are
arranged in a predefined way and connected with given
wires W∈{WF,WR} .

The problem is to partition the netlist that way, that
every subcircuit can be mapped onto one of the board’s

FPGAs and the connections between the subcircuits match
the interconnection network on the board. The partitioning
P:N →B must comply to the following constraints:
• The FPGAs on the boards should be efficiently exploi-

ted to minimize the interconnecting nets and the delays
they cause. A lower bound of logic block usage L(c j)

will ensure this.
• Every FPGA used and the routing device have to be

routable. A usage of 100% of logic blocks and of
routing pins, respectively, generally leads to unrouta-
bility. Therefore, an upper bound for logic block usage
U(c j) and one for routing pin usage U(p) are given.

• An FPGA board B has a specific interconnection net-
work W∈{WF,WR} . The nets in the cut sets of a partition
CUT(j,k) have to be mappable onto this architecture.
Not every efficient partition P can be mapped onto the
board, because the board’s routing architecture W not
necessarily contains all connections needed by the par-
tition. That means that the interconnection network has
to be considered during the partitioning process.
The algorithms of the system have to partition the net-

list suitable for the given prototyping board architecture.
The particular board architecture is read in from an archi-
tecture file. The partitioning process itself is a multiway
partitioning heuristic using basic elements of the Fiduccia/
Mattheyses bipartitioning heuristic [3] improved by the
cell replication by Kring and Newton [4].

A. The Basic Algorithm

First, the board architecture specification is read in
from the architecture file to invoke the appropriate par-
titioning algorithm. An estimation is performed to check,
whether the logic capacity of the board’s devices is suffi-
cient to hold the entire netlist.

To yield an initial partition, the devices are considered
successively. The actual device f j is filled up with internal
nodes until the upper bound of CLB usage U(c j) is
reached

map(x,f j)x ∈X∑ =

U(c j) . The nodes to be moved

are selected using the gain principle of the Fiduccia/
Mattheyses heuristic. The improvement of the solution
considering the requirements of the different board archi-
tectures is described in the following subsections.

B. Pure FPGA Architecture

The cost of a hyperedge e∈E under a mapping M is de-
fined as cost(e,M)=

 0 else
|M(e) | if |M(e) |>1{ . and the cost of a M

is

cost(M) = cost(e, M)e ∈E∑ . The set VxF={(v,f)|v ∈V,

f ∈F} is build. An improving action AI =(MI ,R I ,D I) can be:
• a move MI :(V,F) →(V,F) , where v∈V is moved from

device f i to f j ; f i ,f j ∈ F, (v,f i) a (v,f j), if
(v,f j) is not locked,

• a replication RI :(V,F) →(V,F)x(V,F) , where v∈V is re-
plicated from device f i t o f i and f j ; f i ,f j ∈ F,

(v,f i) a ((v,f i),(v,f j)) , if (v,f j) is not locked,
• a dereplication DI :(V,F)x(V,F) →(V,F) , where v ∈ V is

dereplicated from device f i and f j to f i ; f i , f j ∈F,

((v,f i),(v,f j)) a (v,f j) .
After performing the action MI or DI , the left pair

(v,f i) is locked, so vertice v cannot be moved back or
replicated again to device f i . The gain of action AI M a M’

is gain(v,f i ,f j)=cost(M)-cost(M’) , gain(e,v,f i ,f j)=

cost(e,M)-cost(e,M’) denotes the part of e to the gain of
the action M a M’ . The gain of an action (v,f i) a (v,f j)

is gain(v,f i ,f j)=

gain(e, v,f ie ∈Ev
∑ ,f j) . The action

with the highest gain(v,f i ,f j) is executed.
If all pairs (v,f) are locked, the best configuration

which occured during the current iteration is stored and
used as initial partition of the next improvement iteration.
This configuration is checked, if it is suitable. In the case
that it is not, it will be abandonned. Otherwise, it will be
compared with the previous best suitable configuration .
The best of both is stored as the new best configuration
and the other one is abandonned.

The iteration stops, if no further improvement is ob-
tained. To escape from local minima, the whole procedure
is iterated five times which has proved to been a good
compromise for the solution quality/run time trade-off.

C. Prototying Boards with a Routing Device

To partition a netlist suitable for prototyping boards
containing one routing device, the interconnection network
need not to be considered since the routing device creates
all interconnection of the FPGAs. However, the number of
available IO pins of the routing device is limited. To keep
the device routable, not all available IO pins can be used.
The sum of all interconnections between the FPGAs and
the routing device is bound by the upper bound of IO pin
usage U(p) of the routing device. The number of inter-
connections to a single FPGA f j is further bound by the
number of IO pins U(i j) o f f j . So the number of
allowed nets in the cut set CUT(j, R) is restricted to

CUT(j,R) =

U(i j)

U(I)
* U(p) ,

where U(I) is the sum of all IOBs on the board.
No terminal nodes must be moved to a subcircuit to be

mapped onto an FPGA and no internal node must be
moved to the subcircuit being mapped onto the routing
device. The only terminals being mapped onto the IOBs of
the FPGAs are those terminals needed as IO ports for the
interconnections between the FPGAs and the routing de-
vice. The original terminal nodes Y remain in the rest, i.e.
are mapped onto the routing device

map(y,R) =|Y|y ∈Y∑

and all internal nodes X are distributed to the FPGAs

map(x,f) =|X|x ∈X∑f ∈F∑ .

With the initial partition as the starting point we apply
an improvement procedure on the subnetlists. We build
every combination of two devices. For every pair of devi-
ces we perform the improvement strategy of the Fiduccia/
Mattheyses heuristic, improved by cell replication accor-
ding to Kring and Newton, considering the upper and
lower bounds of CLB usage L(c) and U(c) . If the overall
solution has improved, this strategy is applied anew. As
shown in algorithm 1, the whole procedure is iterated five
times to prevent local minima.
1 procedure improve
2 variables
3 Sol old ,Sol new=array[1 ..n]of|CUT(j,R)|,j=1,...,n
4 i, j = loop variables
5 begin
6 Sol new = < Cut sets of initial partition>
7 for 5 times do
8 Sol old =(∞,..., ∞);
9 while Sol old > Sol new do
10 Sol old = Sol new
11 for i=1 to n-1 do
12 for j=i+1 to n do
13 Sol new=<Improvement of CUT(i,R), CUT(j,R) by

moving, replicating, and dereplicating
internal nodes between fi, fj according to
gain principle of Fiduccia/Mattheyses and
Kring/Newton heuristic>

14 end for
15 end for
16 end while
17 Sol new = Sol old
18 end for
19 end improve

Algorithm1: Improvement Strategy for Boards with a
Routing Device

5. RESULTS

We specified four board configurations composed of
Xilinx LCAs of the XC3000 family. The first two boards
contain the Aptix AX1024D routing device with 936 avai-
lable IO-pins in addition. The number of CLBs and IOBs
of the Xilinx XC3000 LCAs are summarized in table 1.

LCA #CLB #IOB

XC3020 64 64

XC3030 100 80

XC3042 144 96

XC3064 224 120

XC3090 320 144

Table 1: Xilinx LCAs of the XC3000 Family

We partitioned combinational and sequencial circuits
from the MCNC benchmark Partitioning93 set. The cho-
sen benchmarks with their number of CLBs, IOBs and
nets are listed in table 2.

Benchmark #CLB #IOB #Nets

c3540 283 72 489

c5315 377 301 699

c6288 833 64 1472

c7552 489 313 921

s5378 381 86 628

s9234 454 43 716

s15850 842 102 1265

Table 2: Benchmark Circuits

Board 1 (results shown in table 3) contains four LCAs
of different sizes. It has a logic capacity of 612 CLBs,
thus, it is insufficient for the Benchmarks c6288, c7552,
and s15850. Table 3 shows the CLB utilization of the used
LCAs. The utilization is between 30 and 90% for single
FPGAs and between 62 and 83% for all used board resour-
ces. The high utilization of the routing device IO-pins with
the combinational circuit c5315 shows that this circuit has
a very complex interconnection structure.

Board 1 c3540 c5315 s5378 s9234

XC3064 89% 65% 88% 82%

XC3042 57% 50% 69% 81%

XC3042 90% 87% 83%

XC3030 30% 65%

Logic Capacity 368 612 512 612

Used Board LCAs 77% 62% 83% 79%

AX1024D 21% 72% 37% 29%

Table 3: Utilization Rates of Board 1

The logic capacity of the second board, composed of
six LCAs, is 1376 CLBs, as shown in table 4. The smaller
circuits c3540, s5378, and s9234 have not been investiga-
ted for board 2, as these would fit onto one or two FPGAs.
The resource utilization numbers are listed in table 4.

Board 2 c5315 c6288 c7552 s15850

XC3090 16% 80% 32% 36%

XC3090 72% 80% 34% 52%

XC3064 46% 80% 75% 47%

XC3064 63% 49% 90%

XC3042 90%

XC3042 88%

Logic Capacity 864 1088 1088 1376

Used Board LCAs 44% 77% 45% 61%

AX1024D 73% 42% 83% 81%

Table 4: Utilization Rates of Board 2

The CLB utilization of a single FPGA is between 16
and 90%. The circuits with complex interconnection net-
work c5315 and c7552 yield low utilization (between 16

and 75%) and the utilization of used resources here is also
low (44 and 45%). Complex interconnection structure
needs a high number of IOBs. Thus, the usage of CLBs for
circuits with complex interconnection structure cannot be
as high as for those circuits with average interconnection
complexity. The CLB utilization of the other circuits are
between 36 and 90% of a single FPGA and between 61
and 77% of the used board resources.

Due to the strong constraints given by the predefined
interconnection structure, the utilization rate of the used
board LCAs for pure FPGA architecture is not as high as
for those boards with a routing device. The average of
CLB utilization of board 1 and 2 (66%) is about 20 percent
higer than the utilization of pure FPGA board’s CLBs
(45,5 %).

Board 3 contains four XC3090 LCAs and board 4 six
different LCAs of the XC3000 family. The intercon-
nection network is given in upper triangular matrices, as
shown in tables 5 and 6. The number of buslines is 64.

Board 3 D0 D1 D2 D3 BUS OUT

XC3090=D0 - 36 - 36 36 36

XC3090=D1 - 36 - 36 36

XC3090=D2 - 36 36 36

XC3090=D3 - 36 36

Table 5: Interconnection Structure of Board 3

The first four or six resp. columns denote the number
of local connections between the FPGAs. The connections
of the FPGAs to the bus and their outside connections are
listed in the last two columns.

Board 4 0 1 2 3 4 5 BUS OUT

XC3042=0 - 10 - - - 20 40 26

XC3064=1 - 20 - 40 - 35 15

XC3042=2 - 20 - - 35 21

XC3042=3 - 15 - 40 21

XC3064=4 - 10 40 15

XC3042=5 - 40 26

Table 6: Interconnection Structure of Board 4

Board 3 has a logic capacity of 1280 CLBs and the
interconnection network is composed by equal distribution
of all possible connections (local, bus, and outside). The
outside connection capacity is 144 IOBs.

The partitioned benchmarks yield utilization rates of 4
to 90% for a single FPGA and 23 to 66% for all used
board FPGAs, as listed in table 7. The large span of CLBs
utilization for single LCAs shows that in four FPGA con-
stellation normally the first FPGA can contain a high num-
ber of CLBs, but due to the interconnection constraints the
further FPGAs get lower rates. The utilization rate of the
interconnection network is between 50 and 62%.

Board 3 c3540 c6288 s5378 s9234

XC3090 71% 89% 90% 85%

XC3090 8% 82% 17% 48%

XC3090 6% 75% 13% 5%

XC3090 5% 13% 4%

Logic Capacity 1280 1280 960 1280

Used Board LCAs 23% 66% 40% 36%

Connections 61% 62% 58% 50%

Table 7: Utilization Rates of Board 3

Although board 4 contains more FPGAs than board 3,
its logic capacity (1024 CLBs) is lower, as well as its
number of outside connections (124 IOBs). The CLB utili-
zation rate is 28 and 82% of used board LCAs. The distri-
bution, as to see in table 8, shows a high CLB utilization
rate for the large devices in the middle and low utilization
of the smaller devices on the edges of the board. The utili-
zation of the interconnection network between 57 and 69%
is comparable with that of board 3.

Board 4 c3540 c6288 s5378 s9234

XC3042 3% 89% 37%

XC3064 77% 89% 71% 84%

XC3042 11% 89% 22% 13%

XC3042 6% 33% 8% 3%

XC3064 35% 89% 79% 82%

XC3042 1% 89% 1% 4%

Logic Capacity 1024 1024 880 1024

Used Board LCAs 28% 82% 44% 45%

Connections 58% 69% 60% 57%

Table 8: Utilization Rates of Board 4

6. CONCLUSION

We presented a partitioning algorithm which partitons
a netlist suitable for the special requirements of a FPGA
based rapid prototyping board. The board architectures we
consider are derived for typical applications, like rapid
prototyping, ASIC emulation, etc.

We partitioned seven benchmark circuits from the
MCNC benchmark Partitioning93 set onto four board con-
figurations. As shown in the experimental results, our al-
gorithm is able to efficiently partition a netlist suitable for
the specified board architecture whenever the logic and
outside connection capacity of the board is sufficient and
yield good utilization of the used FPGAs.

We are currently working on a critical path handling
to address timing issues crucial for finding partitions that
allow maximum system performance. In the future we
want to propose a third board architecture that contains
more than one routing device. Then, we will be able to

implement on such a board designs with a interconnection
structure too complex to be mapped onto the single routing
device architecture as presented in section 2.B.

7. REFERENCES

[1] M. Garey, D. Johnson: Computers and Intractibility; A
Guide to the Theory of NP-Completeness, W.H. Freeman
& Company, 1979.

[2] B. W. Kernighan, S. Lin: An Efficient Heuristic Procedure
for Partitioning Graphs; Bell System Technical Journal,
49:291-307, 1970.

[3] C.M. Fiduccia, R. Mattheyses: A Linear Time Heuristic for
Improving Network Partitions; Proc. of the 19th Annual
Design Automation Conference, pp. 241-247 (175-181),
July 1982.

[4] C. Kring, A. R. Newton: A Cell Replicating Approach to
Mincut-Based Circuit Partitioning; Proc. IEEE Inter-
national Conference on Computer-Aided Design, Santa
Clara, California, November 1991.

[5] S. W. Hadley, B. L. Mark, A. Vannelli: An Efficient Eigen-
vector Approach for Finding Netlist Partitions; IEEE
Transactions on Computer-Aided Design, 11(7):885-892,
July 1992.

[6] L. Hagen, A. Kahng: Fast Spectral Methods for Ratio Cut
Partitioning and Clustering; Proc. IEEE International
Conference on Computer-Aided Design, Santa Clara,
California, November 1991.

[7] J. Cong, L. Hagen, A. Kahng: Net Partitioning Yield Better
Module Partitions; Proc. of the 29th ACM/IEEE Design
Automation Conference, pp 47-52, June 1992.

[8] M. R. Green, J. Supowit: Simulated Annealing without
Rejected Moves; Digest International Conference on
Computer Design, pp 658-663, October 1984.

[9] R. Kuznar, F. Brglez, K. Kozminski: Partitioning Digital
Circuits for Implementation in Multiple FPGA ICs;
Technical Report, MCNC Center for Mikroelectronic
Systems Technologies, March 8, 1993.

[10] R. Kuznar, F. Brglez, K. Kozminski: Cost Minimisation of
Partitions into Multiple Devices; IEEE/ACM Proc. 30th
Design Automation Conference, Dallas, Texas, June 14-18,
1993.

[11] H. J. Herpel, N. Wehn, M. Gasteier, M. Glesner: A
Reconfigurable Computer for Embedded Control Appli-
cations; IEEE Workshop on FPGAs for Custom Computing
Machines, Napa, California, April 5-7, 1993.

[12] J. Babb, R. Tessier, A. Agarwal: Virtual Wires:
Overcoming Pin Limitations in FPGA-based Logic
Emulators; IEEE Workshop on FPGAs for Custom
Computing Machines, Napa, California, April 5-7, 1993.

[13] C. Iseli, E. Sanchez: Spyder: A Reconfigurable VLIW
Processor using FPGAs; IEEE Workshop on FPGAs for
Custom Computing Machines, Napa, California, April 5-7,
1993.

[14] P. W. Foulk: Data-folding in SRAM configurable FPGAs;
IEEE Workshop on FPGAs for Custom Computing
Machines, Napa, California, 1993.

