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Multiway Spectral Clustering:
A Margin-Based Perspective
Zhihua Zhang and Michael I. Jordan

Abstract. Spectral clustering is a broad class of clustering procedures in
which an intractable combinatorial optimization formulation of clustering is
“relaxed” into a tractable eigenvector problem, and in which the relaxed so-
lution is subsequently “rounded” into an approximate discrete solution to the
original problem. In this paper we present a novel margin-based perspective
on multiway spectral clustering. We show that the margin-based perspective
illuminates both the relaxation and rounding aspects of spectral clustering,
providing a unified analysis of existing algorithms and guiding the design
of new algorithms. We also present connections between spectral clustering
and several other topics in statistics, specifically minimum-variance cluster-
ing, Procrustes analysis and Gaussian intrinsic autoregression.

Key words and phrases: Spectral clustering, spectral relaxation, graph
partitioning, reproducing kernel Hilbert space, large-margin classification,
Gaussian intrinsic autoregression.

1. INTRODUCTION

Spectral clustering is a promising approach to clus-
tering that has recently been undergoing rapid devel-
opment (Shi and Malik, 2000; Kannan, Vempala and
Vetta, 2000; Zha et al., 2002; Ng, Jordan and Weiss,
2002; Shortreed and Meilă, 2005; Ding, He and Simon,
2005; Bach and Jordan, 2006; von Luxburg, 2007). In
the spectral framework a clustering problem is posed as
a discrete optimization problem (an integer program).
This problem is generally intractable computationally,
and approximate solutions are obtained by a two-step
procedure in which (1) the problem is “relaxed” into
a simplified continuous optimization problem that can
be solved efficiently, and (2) the resulting continuous
solution is “rounded” into an approximate solution to
the original discrete problem. The adjective “spectral”
refers to the fact that the relaxed problem generally
takes the form of an eigenvector problem (the origi-
nal objective function involves quadratic constraints,
which yields a Rayleigh coefficient in the relaxed prob-
lem).
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The solutions of the relaxed problem are often re-
ferred to as spectral embeddings and have applications
outside of the clustering context (Belkin and Niyogi,
2002). Our focus here, however, will be on spectral
clustering.

Spectral clustering was first developed in the context
of graph partitioning problems (Donath and Hofmann,
1973; Fiedler, 1973), where the problem is to partition
a weighted graph into disjoint pieces, minimizing the
sum of the weights of the edges linking the disjoint
pieces. The methodology is applied to data analysis
problems by identifying nodes of the graph with data
points and identifying the edge weights with the sim-
ilarity (or “distance”) function used in clustering. The
problem then is to choose an appropriate relaxation of
the weighted graph partitioning problem and an appro-
priate rounding procedure. The current literature offers
many such choices (see, e.g., von Luxburg, 2007).

Naive formulations of graph cut problems yield
uninteresting solutions in which single nodes are
separated from the rest of the graph. The spectral
formulation becomes interesting (and computationally
intractable) when some sort of constraint is imposed
so that the partition is balanced. There have been two
main approaches to imposing balancing constraints. In
the ratio cut (RCUT) formulation (Chan, Schlag and
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Zien, 1994), the constraints are expressed in terms of
cardinalities of subsets of nodes. In the normalized cut
(NCUT) formulation (Shi and Malik, 2000), the con-
straints are expressed in terms of the degrees of nodes.
In this paper we study a general penalized cut (PCUT)
formulation that includes RCUT and NCUT as special
cases and we emphasize the close relationships be-
tween the spectral relaxations resulting from RCUT and
NCUT formulations.

A seemingly very different approach to clustering
is the classical minimum-variance formulation where
one minimizes the trace of the pooled within-class
covariance matrix (Webb, 2002). As we show, how-
ever, this formulation is closely related to PCUT. In
particular, posing the minimum-variance problem in
the reproducing kernel Hilbert space (RKHS) defined
by a kernel function (Wahba, 1990), we establish a
connection between spectral relaxation and minimum-
variance clustering by treating the Laplacian matrix in
the PCUT formulation as the Moore–Penrose inverse
of the kernel matrix in the minimum-variance formula-
tion.

Other forms of clustering procedures have been use-
fully analyzed in terms of their relationships to dis-
crimination or classification procedures (Webb, 2002),
and in the current paper we aim to develop connections
of this kind in the case of spectral clustering. In this re-
gard, it is important to note that our focus is on the
multiway clustering problem, in which a data set is di-
rectly partitioned into c sets where c > 2. This differs
from the classical graph-partitioning literature, where
the focus has been on algorithms that partition a graph
into two pieces (“binary cuts”), with the problem of
partitioning a graph into multiple pieces (“multiway
cuts”) often approached by the recursive invocation of
a binary cut algorithm.

In the case of binary cuts, an interesting connection
to classification has been established by Rahimi and
Recht (2004), who have noted that NCUT-based spec-
tral clustering can be interpreted as finding a hyper-
plane in an RKHS that falls in a “gap” in the empirical
distribution. In the current paper we show that this idea
can be extended to general multiway PCUT spectral
relaxation, where the intuitive idea of a “gap” can be
expressed precisely using ideas from the classification
literature, specifically the idea of a multiclass margin.

Turning to the rounding problem, we note first
that for binary cuts the rounding problem is a rela-
tively simple problem, generally involving the choice
of a threshold for the elements of an eigenvector

(Juhász and Mályusz, 1977; Weiss, 1999). The prob-
lem is significantly more complex in the multiway
case, however, where it essentially involves an aux-
iliary clustering problem based on the spectral em-
bedding. For example, Yu and Shi (2003) proposed a
rounding scheme that works with an alternative itera-
tion between singular value decomposition (SVD) and
nonmaximum suppression, whereas Bach and Jordan
(2006) devised K-means and weighted K-means algo-
rithms for rounding. In the current paper we show that
rounding can be usefully approached within the frame-
work of Procrustes analysis (Gower and Dijksterhuis,
2004). Moreover, we show that this approach again
reveals links between spectral methods and multiway
classification; in particular, we show that the auxiliary
Procrustes problem that we must solve can be analyzed
using the tools of margin-based classification.

Extant multiway spectral algorithms, including those
of Bach and Jordan (2006) and Yu and Shi (2003), as
well as many others (Ng, Jordan and Weiss, 2002; Zha
et al., 2002; Ding, He and Simon, 2005; Shortreed and
Meilă, 2005), are based on the representation of spec-
tral embeddings as c-dimensional vectors. The redun-
dancy inherent in using c-dimensional vectors is incon-
venient, however, preventing the flow of results from
the binary case to the multiway case (Shi and Malik,
2000). The margin-based perspective that we pursue
here shows the value of working with a nonredundant,
(c − 1)-dimensional representation of the spectral em-
bedding.

Our overall approach to spectral clustering is as
follows. We first construct a nonredundant, margin-
based representation of multiway spectral relaxation
problems. Such a margin-based spectral relaxation is
a tractable constrained eigenvalue problem. We then
carry out a rounding scheme by solving an auxiliary
Procrustes problem, which is again associated with a
margin-based classification method. We refer to the re-
sulting clustering framework—margin-based spectral
relaxation with margin-based rounding—as margin-
based spectral clustering.

The margin-based approach not only provides sub-
stantial insight into the relationships among spectral
clustering procedures, but it also yields probabilis-
tic interpretations of these procedures. Specifically,
we show that the spectral relaxation obtained from
the PCUT framework can be interpreted as a form of
Gaussian intrinsic autoregression (Besag and Kooper-
berg, 1995). These are limiting forms of Gaussian con-
ditional autoregressions (Besag, 1974; Mardia, 1988)
that retain the Markov property (two vertices in a graph



MULTIWAY SPECTRAL CLUSTERING 385

are not connected if and only if their corresponding em-
beddings in the intrinsic autoregression are condition-
ally independent).

In summary, the current paper develops a math-
ematical perspective on spectral clustering that uni-
fies the various algorithms that have been studied and
emphasizes connections to other areas of statistics.
Specifically we discuss connections to multiway clas-
sification, reproducing kernel Hilbert space methods,
Procrustes analysis and Gaussian intrinsic autoregres-
sion.

The remainder of the paper is organized as follows.
Sections 2 and 4 describe multiway spectral relaxation
problems based on the general PCUT formulation and
the minimum variance formulation, respectively. The
relationship between these two formulations is also dis-
cussed in Section 4. In Section 3 we present two round-
ing schemes, one based on Procrustean transformation
and the other based on K-means. We present a geo-
metric perspective on spectral clustering using margin-
based principles in Section 5, and we discuss the con-
nection to Gaussian intrinsic autoregression models in
Section 6. Experimental comparisons are given in Sec-
tion 7 and we present our conclusions in Section 8.
Note that several proofs are deferred to the Appendix.

We use the following notation in this paper. Im de-
notes the m × m identity matrix, 1m the m × 1 of ones,
0 the zero vector or matrix zero of appropriate size and
Hm = Im − 1

m
1m1′

m the m × m centering matrix. For
an n × 1 vector a = (a1, . . . , an)

′, diag(a) represents
the n × n diagonal matrix with a1, . . . , an as its diag-
onal entries and ‖a‖ is the Euclidean norm of a. For
an m × m matrix A = [aij ], we let dg(A) be the diag-
onal matrix with a11, . . . , amm as its diagonal entries,
A+ be the Moore–Penrose inverse of A, tr(A) be the
trace of A, rk(A) be the rank of A and ‖A‖F be the
Frobenius norm of A.

2. SPECTRAL RELAXATION FOR
PENALIZED CUTS

Given a set of n d-dimensional data points, {x1, . . . ,

xn}, our goal is to cluster the xi into c disjoint classes
such that each xi belongs to one and only one class.
We consider a graphical representation of this problem.
Let V = {1,2, . . . , n} denote the index set of the data
points and consider an undirected graph G = (V ,E)

where V is the set of nodes in the graph and E is the
set of edges. Associated with the graph is a symmet-
ric n × n affinity matrix (also referred to as a simi-
larity matrix), W = [wij ], defined on pairs of indices

such that wij ≥ 0 for (i, j) ∈ E and wij = 0 otherwise.
The values wij are often obtained via a function eval-
uated on the corresponding pairs of data vectors; that
is, wij = ψ(xi ,xj ) for some (symmetric) function ψ .
A variety of different ways to map a data set into a
graph G and an affinity matrix W have been explored
in the literature; for a review see von Luxburg (2007).

The problem is thus to partition V into c subsets Vj ;
that is, Vi ∩Vj = ∅ for i �= j and

⋃c
j=1 Vj = V , where

the cardinality of Vj is nj so that
∑c

j=1 nj = n. This
problem is typically formulated as a combinatorial op-
timization problem. Let W(A,B) = ∑

i∈A,j∈B wij for
two (possibly overlapping) subsets A and B of V and
consider the following multiway penalized cut crite-
rion:

PCUT =
c∑

j=1

W(Vj ,V ) − W(Vj ,Vj )∑
i∈Vj

πi

,(2.1)

where π = (π1, . . . , πn)
′ is a user-defined vector of

weights (examples are provided below) with πi > 0 for
all i. The numerator of each of the terms in this ex-
pression is equal to the sum of the affinities on edges
leaving the subset Vj . Thus the minimization of PCUT

with respect to the partition {V1, . . . , Vc} aims at find-
ing a partition in which edges with large affinities tend
to stay within the individual subsets Vj . The denom-
inator weights

∑
i∈Vj

πi encode a notion of “size” of
the subsets Vj and act to balance the partition.

The PCUT criterion can also be written in matrix
notation as follows. Define D = diag(W1n) and let
L = D − W denote the Laplacian matrix of the graph.
(An n × n matrix L = [lij ] is a Laplacian matrix
if lii > 0 for i = 1, . . . , n; lij = lj i ≤ 0 for i �= j ;∑n

j=1 lij = 0 for i = 1, . . . , n. Note that Laplacian ma-
trices are positive semidefinite (Mohar, 1991).) Let
� = diag(π1, . . . , πn) be a diagonal matrix of weights.
Let ti ∈ {1, . . . , c} denote the assignment of xi to a
cell in the partition and define the indicator matrix
E = [e1, . . . , en]′, where ei ∈ {0,1}c×1 is a binary vec-
tor whose ti th entry is one and all other entries are zero.
It can now be readily verified that PCUT takes the fol-
lowing form:

PCUT = tr
(
E′LE(E′�E)−1)

,(2.2)

where it is helpful to note that (E′�E)−1 is a diag-
onal matrix, implying that PCUT is simply a scaled
quadratic form. We wish to optimize this scaled qua-
dratic form with respect to E.

Two well-known examples of the PCUT problem
are the ratio cut (RCUT) problem (Chan, Schlag and
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Zien, 1994), in which � = In, and the normalized
cut (NCUT) problem (Shi and Malik, 2000), in which
� = D. In the RCUT problem the notion of “size” of a
subset Vj is simply the number of nodes in the subset,
whereas in the NCUT problem “size” is captured by the
total degree of the nodes in the subset.

The spectral clustering approach to minimizing
PCUT involves two stages: (1) we relax the problem
into a tractable spectral analysis problem in which con-
tinuous variables replace the indicators E, and (2) we
then employ a rounding scheme to obtain a partition
{V1, . . . , Vn} from the continuous relaxation. In the re-
mainder of this section, we focus on the first step (the
relaxation) and we return to the rounding problem in
Section 3.

The standard presentation of spectral relaxation pro-
ceeds somewhat differently in the case of a binary par-
tition and a multiway partition (von Luxburg, 2007). In
both cases, spectral relaxation is motivated by the ob-
servation that the PCUT criterion in (2.2) has the form
of a Rayleigh coefficient, and that replacing the indica-
tor matrix E with a real-valued matrix yields a classical
generalized eigenvector problem. In the binary case,
the indicator matrix E has two columns, which yields
two generalized eigenvectors in the relaxed problem.
However, in the subsequent rounding procedure, the
problem is to discriminate between two classes, for
which a single vector direction suffices. To deal with
this redundancy it is standard to place a (linear) con-
straint upon the relaxation, such that it is the second
generalized eigenvector that is used for rounding (von
Luxburg, 2007). In the multiway case, on the other
hand, no such constraint is imposed; the redundancy
inherent in having c generalized eigenvectors to dis-
criminate among c classes is generally not addressed.
(It is resolved implicitly at the rounding stage.)

We find this distinction between the binary case and
the multiway case to be inconvenient, and thus in the
approach to be described in the following section we
adopt an idea from the literature on multiway classi-
fication (e.g., Zou, Zhu and Hastie, 2006; Shen and
Wang, 2007) where nonredundant, (c−1)-dimensional
vectors are used to discriminate among c classes. These
vectors are referred to as margin vectors. We refer the
reader to the classification literature for the geomet-
ric rationale behind the terminology of “margin” (al-
though we note that a geometric interpretation of mar-
gin vectors will also appear in the current paper in Sec-
tion 5.1).

2.1 Spectral Relaxation

To formulate a spectral relaxation of (2.2), we re-
place the indicator matrix E with a real n × (c − 1)

matrix Y = [y1, . . . ,yn]′. The following proposition,
which is based on a result of Bach and Jordan (2006),
shows that we can express the PCUT criterion in terms
of real-valued matrices Y satisfying certain conditions.

PROPOSITION 1. Let Y be an n× (c − 1) real ma-
trix such that: (a) the columns of Y are piecewise con-
stant with respect to the partition E, (b) Y′�Y = Ic−1
and (c) Y′�1n = 0. Then PCUT is equal to tr

(
Y′LY

)
.

The proof of Proposition 1 is given in Appendix A.1.
For this proposition to be useful it is necessary to

show that matrices satisfying the three conditions in
Proposition 1 exist. Condition (a) for Y is equivalent
to the statement that Y can be expressed as Y = E�
where � is some c × (c − 1) matrix. Thus, the ques-
tion becomes whether there exists a � such that Y sat-
isfies conditions (b)–(c). In Appendix A.2 we provide
a general procedure for constructing such a � . This es-
tablishes the following proposition.

PROPOSITION 2. Matrices Y satisfying the three
conditions in Proposition 1 exist.

We now obtain a spectral relaxation by dropping
condition (a). This yields the following optimization
problem:

min
Y∈Rn×(c−1)

tr
(
Y′LY

)
(2.3)

s.t. Y′�Y = Ic−1 and Y′�1n = 0,

which is a constrained generalized eigenvalue problem.

2.2 Solving the Spectral Relaxation

Letting Y0 = �1/2Y, we can transform (2.3) into the
following problem:

min
Y0∈Rn×(c−1)

tr(Y′
0�

−1/2L�−1/2Y0),

(2.4)
s.t. Y′

0Y0 = Ic−1 and Y′
0�

1/21n = 0.

The solution to this constrained eigenvalue problem is
given in the following theorem.

THEOREM 1. Suppose that L is a real symmetric
matrix such that L1n = 0 and suppose that the diago-
nal entries of � are all positive. Let μ1 = α�1/21n

be the eigenvector associated with the eigenvalue
γ1 = 0 of �−1/2L�−1/2, where α2 = 1/(1′

n�1n).
Let the remaining eigenvalues of �−1/2L�−1/2 be
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arranged so that γ2 ≤ · · · ≤ γn, and let the corre-
sponding orthonormal eigenvectors be denoted by μi ,
i = 2, . . . , n. Then the solution of problem (2.4) is
Ȳ0 = UQ where U = [μ2, . . . ,μc] and Q is an ar-
bitrary (c − 1) × (c − 1) orthonormal matrix, with
min{tr(Y′

0�
−1/2L�−1/2Y0)} = ∑c

i=2 γi . Further-
more, if γc < γc+1, then Ȳ0 is a strict local minimum
of tr(Y′

0�
−1/2L�−1/2Y0).

It follows from the theorem that the solution of prob-
lem (2.3) is Y = �−1/2UQ. The proof of Theorem 1 is
given in Appendix A.3. It is important to note for our
later work that this theorem does not require L to be
Laplacian or even positive semidefinite.

The condition γc < γc+1 implies a nonzero eigen-
gap (Chung, 1997). In practice, the eigengap is often
used as a criterion to determine the number of classes
in clustering scenarios. An idealized situation is that
the multiplicity of the eigenvalue zero is c.

3. ROUNDING SCHEMES

We now consider the problem of rounding—trans-
forming the real-valued solution of a spectral relax-
ation problem into a discrete set of values that can be
interpreted as a clustering. In this section we present
two different solutions to the rounding problem, one
based on Procrustes analysis and the other based on
the K-means algorithm.

3.1 Procrustean Transformation for Rounding

In Theorem 1 we have shown that the solution of the
spectral relaxation problem is a matrix Y = �−1/2UQ,
where Q is an arbitrary orthogonal matrix. We have
also seen, in Proposition 1, that a matrix Y in which
the columns of Y are piecewise constant with respect
to a partition E provides a representation of the objec-
tive function value PCUT. If we had such a matrix Y in
hand we could straightforwardly find the partition E:
Letting ti = arg maxj {yij }, allocate xi to the ti th class
if yiti > 0 and to the cth class otherwise. On the other
hand, if we had the partition we could attempt to find
an orthogonal matrix Q such that Y = �−1/2UQ is
as close as possible to the partition. This latter prob-
lem can be treated as a problem in Procrustes analysis
(Gower and Dijksterhuis, 2004).

Specifically, given an indicator matrix E we pose the
following Procrustes problem:

arg min
Q

L(Q) = tr(EG − UQ)(EG − UQ)′,(3.1)

where G = [Ic−1 − 1
c
1c−11′

c−1,−1
c
1c−1]′. This prob-

lem has an analytical solution: Denote the singular

Algorithm 1. Spectral Clustering with Procrustean Rounding

1: Input: An affinity matrix W and a diagonal ma-
trix �

2: Relaxation: Obtain Y = �−1/2UQ from pro-
blem (2.3)

3: Initialize: Choose the initial partition E
4: Rounding: Repeat the following procedure until

convergence:
(a) Recompute EG, implement the SVD of

U′EG as U′EG = ��V′ and let Q = �V′
(b) Recompute Y = [yij ] = �−1/2UQ, compute

ti = arg maxj yij , and recompute E by allo-
cating the ith data point to class ti if
maxj yij > 0 and to class c otherwise

5: Output {t1, . . . , tn}.

value decomposition of U′EG as U′EG = ��V′.
Then the minimizing value of Q in L is given by
Q = �V′ (see, e.g., Mardia, Kent and Bibby, 1979,
page 416).

We summarize this Procrustean approach to round-
ing in algorithmic form in Algorithm 1 in the context
of a generic spectral clustering algorithm.

Yu and Shi (2003) have presented a rounding al-
gorithm that is similar to the Procrustean approach
we have presented but different in detail. The authors
work with an n × c matrix Z and solve the relaxation
min tr(Z′LZ) subject to Z′DZ = Ic. Given the solu-
tion Z of this relaxation, the authors then compute Ẑ =
[ẑij ] = dg(ZZ′)−1/2Z. Their rounding scheme is to al-
locate the ith data point to class ti if ti = arg maxj ẑij .
This method can be viewed as imposing a constraint;
in particular, note that the norms of the rows of Ẑ are
equal to 1. To motivate this constraint, the authors as-
sume that the solution Z can be expressed as a rescal-
ing of Ẑ: Z = Ẑ(Ẑ′DẐ)−1/2. Inverting this expression
yields Ẑ = dg(ZZ′)−1/2Z. But it is not clear that a solu-
tion Z of the relaxation can be expressed in this form;
the constraints on Ẑ are not incorporated into the re-
laxation. The use of Ẑ defined in this way must be
viewed as a heuristic post-processing procedure. The
Procrustean approach that we have presented in this
section provides a resolution of this difficulty; that ap-
proach requires no post-processing of the matrix ob-
tained from the spectral relaxation.

We return to the Procrustean approach in Section 5,
where we provide additional justification for Pro-
crustean rounding based on a connection to margin
maximization.



388 Z. ZHANG AND M. I. JORDAN

3.2 K-means for Rounding

Another approach to removing the “nuisance” or-
thogonal matrix Q is to consider rounding methods that
are invariant to rotation. The standard K-means algo-
rithm provides an example, and numerous authors have
proposed using K-means on the embedding obtained
from spectral relaxation as a heuristic rounding pro-
cedure (von Luxburg, 2007). Bach and Jordan (2006)
have made this approach more formal by showing that
(weighted) K-means arises when the rounding prob-
lem is formalized in terms of a difference between pro-
jection matrices. In this section we review this formula-
tion within our nonredundant representation of spectral
relaxation.

Let us rewrite PCUT as

PCUT = tr(E′HπLH′
πE(E′�E)−1),

where we define Hπ = In − 1
π ′1n

π ′1n where we

use the fact that HπLH′
π = L. Defining Eπ � H′

π ·
E(E′�E)−1/2, we observe that the number of degrees
of freedom of both Y and Eπ is (n − 1)(c − 1). More-
over, given that E′

π�Eπ = Ic − (E′�E)−1/2E′ππ ′ ·
E(E′�E)−1/2/(π ′1n) and π ′E(E′�E)−1E′π = π ′1n,
there exists a c × c permutation matrix P such that

PE′
π�EπP′ =

[
Ic−1 0

0 0

]
=

[
Y′
0

]
�[Y,0];

this suggests viewing Y as an approximation to Eπ in
the metric given by �. We quantify this by defining
the following distortion between the projection matri-
ces defined by Y and Eπ :

Jk(Eπ ,Y) = 1
2‖Y�Y′ − Eπ�E′

π‖2
F

= c − 1 − tr(Y′�E(E′�E)−1E′�Y).

This objective function can be represented as the so-
lution of a weighted K-means problem, as shown by
the following result which is due to Bach and Jordan
(2006):

THEOREM 2. Let Y = [y1, . . . ,yn]′ be a solution
of problem (2.3). For any partition {V1, . . . , Vc}, the
criterion F(m1, . . . ,mc) = ∑c

j=1
∑

i∈Vj
‖yi − mj‖2

achieves its minimum Jk(Eπ ,Y) at mj = 1∑
i∈Vj

πi
·∑

i∈Vj
πiyi .

Thus by updating the mean vectors mj in the
weighted K-means algorithm we match the crite-
rion Jk(Eπ ,Y), and by updating the partition using
weighted K-means we go downhill in the criterion.

Algorithm 2. Spectral Clustering with K-means Rounding

1: Input: An affinity matrix W and a diagonal ma-
trix �

2: Relaxation: Obtain Y = �−1/2UQ from problem
(2.3)

3: Initialize: Choose the initial partition E
4: Rounding: Repeat the following procedure until

convergence:
(a) Compute mj = 1∑

i∈Vj
πi

∑
i∈Vj

πiyi

(b) Find ti = arg minj ‖yi − mj‖, and recom-
pute E by allocating the ith data point to
class ti

5: Output {t1, . . . , tn}.

Note that in the special case of the RCUT formula-
tion, we obtain the conventional unweighted K-means
algorithm (given that πi = 1 in that case).

We summarize the K-means approach to rounding
in algorithmic form in Algorithm 2.

4. SPECTRAL CLUSTERING AND
MINIMUM-VARIANCE CRITERIA

In this section and the following two sections we
present some relationships between spectral clustering
and various topics in statistics. Our goal is both to illu-
minate the spectral approach and to suggest directions
for further research.

Minimum-variance clustering is a classical approach
to clustering (Webb, 2002). In this section, follow-
ing Zha et al. (2002) and Dhillon, Guan and Kulis
(2007), we present spectral solutions to the minimum-
variance clustering problem, and we establish connec-
tions between minimum-variance clustering and the
PCUT framework.

Let {x1, . . . ,xn} ∈ X ⊂ R
d denote the observed data.

The pooled within-class covariance matrix SW is given
by

SW = 1

n

c∑
j=1

∑
i∈Vj

(xi − mj )(xi − mj )
′,

where mj = 1
nj

∑
i∈Vj

xi . Consider the trace of the
within-class covariance matrix:

tr(SW) = 1

n

c∑
j=1

∑
i∈Vj

‖xi − mj‖2.

Clustering algorithms which are based on the min-
imization of this trace are referred to as minimum-
variance methods.
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In order to establish a connection with the spectral
relaxation presented in Section 2, we define a weighted
pooled within-class covariance matrix in an reproduc-
ing kernel Hilbert space (RKHS) induced by a repro-
ducing kernel K . In particular, assume that we are
given the reproducing kernel K :X×X → R such that
K(xi ,xj ) = φ(xi )

′φ(xj ) for xi ,xj ∈ X, where φ(x) is
called a feature vector corresponding to a data point
x ∈ X. In the sequel, we use the tilde notation to de-
note feature vectors. Thus, the data matrix in the fea-
ture space is denoted as X̃ = [x̃1, x̃2, . . . , x̃n]′. The cen-
tered kernel matrix takes the form K = HnX̃X̃′Hn; note
that it is positive semidefinite and satisfies K1n = 0.

Generalizing slightly, we introduce weighted ver-
sions of the sample covariance matrix S̃, the between-
class covariance matrix S̃B and the within-class covari-
ance matrix S̃W :

S̃ = 1∑n
i=1 πi

n∑
i=1

πi(x̃i − m̃)(x̃i − m̃)′,

S̃B = 1∑n
i=1 πi

c∑
j=1

∑
i∈Vj

πi(m̃j − m̃)(m̃j − m̃)′,

S̃W = 1∑n
i=1 πi

c∑
j=1

∑
i∈Vj

πi(x̃i − m̃j )(x̃i − m̃j )
′,

where the πi are known positive weights, m̃ = 1∑n
i=1 πi

·∑n
i=1 πi x̃i and m̃j = 1∑

i∈Vj
πi

∑
i∈Vj

πi x̃i . It is clear

that S̃W = S̃ − S̃B .
We now formulate a minimum-variance clustering

problem in the RKHS as the minimization of tr(S̃W),
which is given by

tr(S̃W) = 1∑n
i=1 πi

c∑
j=1

∑
i∈Vj

πi‖x̃i − m̃j‖2.

Like the minimization of PCUT, this minimization
is computationally infeasible in general. It is there-
fore natural to consider minimizing tr(S̃W) by using
the spectral relaxations presented in Section 2.2. We
present a way to do this in the following section.

4.1 Spectral Relaxation in the RKHS

Let us rewrite S̃ and S̃B as

S̃ = 1

π ′1n

X̃′Hπ�H′
π X̃

and

S̃B = 1

π ′1n

X̃′Hπ�E
(
E′�E

)−1E′�H′
π X̃,

recalling that Hπ = In − 1
π ′1n

π1′
n. This yields

S̃W = 1

π ′1n

[
X̃′Hπ�H′

π X̃

− X̃′Hπ�E
(
E′�E

)−1E′�H′
π X̃].

The minimization of tr(S̃W) is thus equivalent to the
maximization of

T = tr(E′�H′
πKHπ�E(E′�E)−1),(4.1)

because X̃′Hπ�H′
π X̃ is independent of E and we have

HnHπ = Hπ . Let � = [δ2
ij ], where δij is the squared

distance between x̃i and x̃j , that is,

δ2
ij = (x̃i − x̃j )

′(x̃i − x̃j )
′

= K(xi ,xi) + K(xj ,xj ) − 2K(xi ,xj ).

Given that −1
2H′

π�Hπ = H′
πKHπ , the minimization

of tr(S̃W) is thus equivalent to that of tr(E′�H′
π�Hπ ·

�E(E′�E)−1).
Recall that in the proof of Proposition 1, L is re-

quired to satisfy only the conditions L = L′ and
L1n = 0. Note that �H′

πKHπ�1n = 0. Thus, if Y is
an n × (c − 1) matrix subject to the three conditions in
Proposition 1, we have T = tr(Y′�H′

πKHπ�Y). This
allows us to relax the maximization of T with respect
to E as follows:

max
Y∈Rn×(c−1)

tr(Y′�H′
πKHπ�Y)

= tr(Y′�K�Y)(4.2)

s.t. Y′�Y = Ic−1 and Y′�1n = 0,

where the second equality in the objective is due to the
identity Y′�H′

π = Y′�. Letting Y0 = �1/2Y leads to

max
Y0∈Rn×(c−1)

tr(Y′
0�

1/2H′
πKHπ�1/2Y0)

(4.3)
s.t. Y′

0Y0 = Ic−1 and Y′
0�

1/21n = 0.

This optimization problem is solved in Appendix A.4.
In particular, let U be an n × (c − 1) matrix whose
columns are the top c − 1 eigenvectors of �1/2H′

πK ·
Hπ�1/2. The solution of problem (4.3) is then Y0 =
UQ where Q is an arbitrary (c − 1) × (c − 1) ortho-
normal matrix. Hence, the solution of problem (4.2) is
Y = �−1/2UQ.
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4.2 Minimum Variance Formulations versus PCUT

Formulations

Since the Laplacian matrix L is symmetric and pos-
itive semidefinite, its Moore–Penrose (MP) inverse is
also positive semidefinite. Thus we can regard L as the
MP inverse of a kernel matrix K and investigate the
relationship between the spectral relaxations obtained
from the minimum variance and the PCUT formula-
tions. In fact, we have the following theorem, whose
proof is given in Appendix A.5.

THEOREM 3. Assume that L+ = K. If rk(L) =
rk(K) = n − 1, then Y is the solution of problem (2.3)
if and only if it is the solution of problem (4.2).

Thus, an equivalent formulation of spectral cluster-
ing based on the PCUT criterion is obtained by con-
sidering the minimum variance criterion with K = L+.
Note that � consists of the diagonal elements of K+ in
the NCUT setting, so it is not expedient computation-
ally to obtain � from K—we would need to calculate
K+. We thus suggest defining � = In in the minimum-
variance setting, corresponding to the ratio cut formu-
lation.

It is also possible to start from a minimum-variance
formulation (with � = In) and obtain a RCUT prob-
lem. However, in the corresponding RCUT problem,
the matrix K+ is not guaranteed to be Laplacian,
because the off-diagonal entries of K+ are possi-
bly positive for an arbitrary kernel matrix K. In
this case, we can let L = K+ + nβHn where β =
min{maxi �=j {[K+]ij },0}. Such an L is Laplacian.
Moreover, we have tr(Y′(K+ + nβHn)Y) =
tr(Y′K+Y) + n(c − 1)β due to Y′Y = Ic−1 and Y′ ·
1n = 0. Since min(tr(Y′(K+ + nβHn)Y)) is equiva-
lent to min(tr(Y′K+Y)), it is not necessary to compute
the value of β .

It is worth noting that the condition rk(L) = rk(K) =
n − 1 is necessary. Without this condition, �−1/2L
�−1/2 is a generalized inverse of �1/2H′

πL+Hπ

�1/2, because

�1/2H′
πL+Hπ�1/2�−1/2L�−1/2�1/2H′

πL+

· Hπ�1/2 = �1/2H′
πL+Hπ�1/2,

but it is not necessarily the MP inverse. In this case, it is
no longer the case that �−1/2L�−1/2 and �1/2H′

πL+
Hπ�1/2 are guaranteed to have the same eigenvectors
associated with nonzero eigenvalues. Thus, in this case,
even if K = L+, the solutions of (4.2) and (2.3) are dif-
ferent. In summary we see that the spectral clustering
formulations based on the minimum-variance criteria

and PCUT, while closely related, are not fully equiva-
lent.

Dhillon, Guan and Kulis (2007) pursue a slightly dif-
ferent connection between minimum-variance criteria
and spectral relaxation. They formulate the minimum-
variance criterion via the maximization of

T ′ = tr(E′�K�E(E′�E)−1),(4.4)

which is readily shown to be equal to T + π ′K ·
π/(π ′1n), where T is defined by (4.1). Thus the maxi-
mization of T ′ is equivalent to the maximization of T .
Dhillon, Guan and Kulis (2007) then formulate the cut
minimization problem as an equivalent maximization
problem:

max
(
E′�(�−1 − �−1L�−1)�E(E′�E)−1)

,

and treat �−1 − �−1L�−1 as K in T ′. However,
�−1 − �−1L�−1 is generally indefinite, a difficulty
that the authors circumvent by letting K = ρIn − L in
RCUT and K = ρD−1 + D−1WD−1 in NCUT, where ρ

is a constant chosen to make K positive semidefinite.
The idea of considering a kernel matrix that is the

MP inverse of a Laplacian matrix will return in later
sections, in particular in Section 5.1 where we will see
that it allows us to provide a geometrical interpreta-
tion for spectral clustering, and in Section 6, where we
present a probabilistic interpretation of spectral relax-
ation.

5. SPECTRAL CLUSTERING: A MARGIN-BASED
PERSPECTIVE

In this section we consider a margin-based per-
spective on spectral clustering. First, we show that
the margin-based perspective provides us with insight
into the relationship between spectral embedding and
rounding. In particular, we show that the problems in
(2.3) and (4.2) can be understood in terms of the fit-
ting of hyperplanes in an RKHS. For a data point x, we
show that the elements of the embedding y are propor-
tional to the signed distances of feature vector x̃ to each
of these hyperplanes. This provides support for the Pro-
crustean rounding in which rounding is achieved by
nonmaximum suppression of the elements of y. Sec-
ond, we provide some additional direct justification for
the Procrustean approach, showing that the rounding
problem can be analyzed in terms of the approximation
of a margin-based multiway classification criterion.
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5.1 Hyperplanes in the RKHS

Let us consider a multiway classification problem.
That is, we consider a problem in which data points are
pairs, (xi , ti), where ti is the label of the ith data point.
Using the same notation as in Section 4, the multiway
classification problem has the following standard for-
mulation in an RKHS based on a kernel function K :

min
β0,B

tr(B′KB) + γ

n

n∑
i=1

fti (B
′ki + β0),(5.1)

where fj (·) is a convex surrogate of the 0–1 loss, ki =
(K(x1,xi), . . . ,K(xn,xi ))

′ is the ith column of the
kernel matrix K, B = [b1, . . . ,bc−1] is an n × (c − 1)

matrix of regression vectors, β0 is a (c − 1) × 1 vector
of intercepts and γ > 0 is a regularization parameter.
We can use this optimization problem as the basis of
a clustering formulation by simply omitting the term
γ
n

∑n
i=1 fti (·), reflecting the fact that we have no la-

beled data in the clustering setting. We obtain

min
B

tr(B′KB)

(5.2)
s.t. B′K�1n = 0 and B′K�KB = Ic−1.

We now consider problem (5.2) from two points of
view. From the first point of view, we let Y = KB and
transform (5.2) into

min
Y

tr(Y′K+Y)

(5.3)
s.t. Y′�1n = 0 and Y′�Y = Ic−1,

where we have used the identity K = KK+K. It is
readily seen that (5.3), and hence (5.2), is identical with
the spectral relaxation in (2.3) by taking K+ = L. We
also obtain a relationship between (5.3) and (4.2) from
Section 4.2; in particular, in the special case in which
rk(K) = n − 1, it follows from Theorem 3 that (5.3)
and (4.2) are equivalent.

From a second point of view, we let S = X̃′B (re-
call that X̃ is the data matrix in the feature space). The
problem (5.2) is then transformed into

min
S

tr(S′S)

(5.4)
s.t. S′X̃′�1n = 0 and S′X̃′�X̃S = Ic−1.

Letting S = [s1, . . . , sc−1] denote the solution of (5.4),
the equations s′

j x̃ = 0, j = 1, . . . , c − 1, define hy-
perplanes that pass through the weighted centroid∑n

i=1 πi x̃i of the feature vectors x̃i . Moreover, the
signed distance between feature vector x̃i and the hy-
perplane s′

j x̃ = 0 is s′
j x̃i . Recall that Y = [yij ] = KB =

X̃X̃′B = X̃S. We thus have yij = s′
j x̃i . That is, yij

is the signed distance of x̃i to the j th hyperplane.
We can therefore interpret the spectral relaxation in
(2.3) and (4.2) as yielding vectors whose elements
are—using the language of multiway classification—
margin vectors. Given this interpretation, it is reason-
able to allocate labels by finding the maximum element
of (yi1, . . . , yi,c−1,0). This motivates the Procrustean
approach to rounding, which can be viewed as identify-
ing boundaries between clusters by projecting feature
vectors onto hyperplanes in an RKHS. A graphical in-
terpretation of this result is provided in Figure 1.

5.2 Margin-Based Rounding Scheme

We can also provide a direct connection between
classification and rounding. Let us return to the objec-
tive function in (5.1), which we rewrite as

min
Y

tr(Y′K+Y) + γ

n

n∑
i=1

fti (yi )

by letting Y = KB and setting β0 = 0. Assume that
we have obtained a matrix Y from spectral relaxation
and recall that Y depends on an arbitrary orthogonal
matrix Q. From the classification perspective we can
view the subsequent rounding problem as the problem
of minimizing the classification loss 1

n

∑n
i=1 fti (yi ) un-

der the constraint QQ′ = Ic−1. In this section we ex-
plore some of the consequences of this perspective.

In the multiway classification problem, we define
class-conditional probabilities Pj (x) for the c classes
j = 1, . . . , c. Using this notation, we define the ex-
pected error at x as follows:

R(x,y) =
c∑

j=1

I[t �=j ]Pj (x),(5.5)

where t = arg maxj yj or t = c if max{yj } < 0 and
where I[#] defines the 0–1 loss: it is 1 if # is true and
0 otherwise. Since I[·] is a non-convex objective func-
tion that leads to an intractable optimization problem,
the standard practice in the classification literature is to
replace I[·] with a “surrogate loss function” fj (y) that
is an upper bound on the 0–1 loss (Bartlett, Jordan and
McAuliffe, 2006; Shen and Wang, 2007).

The surrogate loss function that we consider in the
current paper is the following exponential loss:

fj (y) = ∑
l �=j

exp(yl − yj ),(5.6)

where for convenience we extend y to a c-dimensional
vector in which yc = 0. Note that the variables to be op-
timized are the entries of the matrix Q. Clearly, fj (y) is
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FIG. 1. Illustrations of spectral clustering in the feature space for a three-class separable example. The clustering is based on the signed
distances of the feature vector x̃ = φ(x) to suitably defined hyperplanes. (a) Hyperplanes in the feature space are represented by their
normals, aj , j = 1,2,3, subject to the sum-to-zero constraints. These hyperplanes are computed from the vectors s1 and s2 obtained from

spectral relaxation via a1 = s1 − 1
3 (s1 + s2), a2 = s2 − 1

3 (s1 + s2) and a3 = − 1
3 (s1 + s2). (b) The hyperplanes defined by the vectors s1 and

s2. Note that s1 = a1 − a3 and s2 = a2 − a3.

an upper bound of I[t �=j ], because if x does not belong
to class j , there exists at least one yl such that l �= j and
yl −yj ≥ 0, and hence exp(yl −yj ) ≥ 1. This surrogate
loss function also has an important Fisher consistency
property:

PROPOSITION 3. Assume Pj (x) > 0 for j = 1,

. . . , c. We then have

ŷj = arg max
y

c∑
j=1

∑
l �=j

exp(yl − yj )Pj (x)

= 1

2
log

Pj (x)

Pc(x)
.

The proof of Proposition 3 is a straightforward calcu-
lation, so we omit it. This proposition shows that the
surrogate loss function that we have chosen is justified
from the point of view of classification as yielding a
Bayes consistent rule (Bartlett, Jordan and McAuliffe,
2006; Zou, Zhu and Hastie, 2006).

Returning to the rounding problem, we now consider
the labels {ti} as temporarily fixed and consider the em-
pirical risk function defined over the set of pairs (xi , ti)

given by

J (Q) = 1

n

n∑
i=1

∑
l �=ti

exp(yil − yiti ).

We wish to optimize this empirical risk with respect
to Q. This problem does not have a closed-form solu-

tion under the constraint QQ′ = Ic−1. However, we can
consider a Taylor expansion around yij = 0. We have

J (Q) ≈ (c − 1) − c

n

n∑
i=1

g′
ti

yi + c2
n∑

i=1

π−1
i ,

where gj is the j th column of G′ = [Ic−1 − 1
c
1c−11′

c−1,

−1
c
1c−1], and where we have used the fact that y′

igti ·
g′
ti

yi = π−1
i μ′

iQgti g
′
ti

Q′μi ≤ 1/πi because Ic−1 −
gti g

′
ti

is positive semidefinite. We thus see that the max-
imization of the linear term

∑n
i=1 g′

ti
yi with respect

to Q yields an approximate procedure for minimiz-
ing J (Q). But this is precisely the Procrustean prob-
lem (3.1) discussed in Section 3.

It would also be possible to attempt to optimize
J (Q) directly by making use of Newton or conjugate
gradient methods on the Stiefel manifold (Edelman,
Arias and Smith, 1999).

6. SPECTRAL RELAXATION: THE VIEW FROM
GAUSSIAN INTRINSIC AUTOREGRESSION

In this section we show that spectral relaxation can
be interpreted as a model-based statistical procedure.
In particular, we present a connection between spectral
relaxation and Gaussian intrinsic autoregression mod-
els.

Our focus is the spectral relaxation problem pre-
sented in Section 2, specifically the constrained eigen-
value problem in (2.3).
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Recall that the Laplacian matrix L is a positive semi-
definite matrix; moreover, the pseudoinverse L+ is
positive semidefinite and can be viewed as a kernel ma-
trix. We found this perspective useful in our discussion
of minimum-variance clustering in Section 4.2; note
also that (Saerens et al., 2004) have explored connec-
tions between spectral embedding and random walks
on graphs using the fact that the elements of L+ are
closely related to the commute-time distances obtained
from a random walk on the graph. In this section, we
take the interpretation of L+ in a different direction,
using it to make the connection to Gaussian intrinsic
autoregressions.

Denote K = L+ where L = D−W. Let us model the
n×(c−1) matrix Y as a singular matrix-variate normal
distribution Nn,c−1(0, σ 2K ⊗ Ic−1) where we follow
the notation for matrix-variate normal distributions in
(Gupta and Nagar, 2000). That is,

p(Y) ∝ exp
(
− 1

2σ 2 tr(Y′LY)

)
.

Let us set σ 2 = 1/ tr (�K) so that E(Y′�Y) = σ 2

tr(�K)Ic−1 = Ic−1. Finally, we impose the constraint
Y′�1n = 0 in order to remove the redundancy K+1n =
0 in K+. We thus obtain the following proposition.

PROPOSITION 4. The relaxation problem in (2.3)
is equivalent to the maximization of the log likeli-
hood p(Y) under the constraints Y′�Y = Ic−1 and
Y′�1n = 0.

We obtain a statistical interpretation of spectral re-
laxation from the fact that a multivariate normal dis-
tribution can be equivalently expressed as a Gaussian
conditional autoregression (CAR) (Besag 1974; Mar-
dia 1988). Indeed, given Y ∼ Nn,c−1(0, σ 2K ⊗ Ic−1),
we have that the yi can be characterized as (c − 1)-
dimensional CARs with

E(yi |yj , j �= i) = −∑
j �=i

lij

lii
yj =

n∑
j=1

wij

lii
yj ,

(6.1)

Var(yi |yj , j �= i) = σ 2

lii
Ic−1.

That is, we have yi |{yj : j �= i} ∼ Nc−1(
∑n

j=1
wij

lii
yj ,

σ 2

lii
Ic−1), for i = 1, . . . , n. Since K is positive semidef-

inite but not positive definite, Besag and Kooperberg
(1995) referred to such conditional autoregressions as
Gaussian intrinsic autoregressions.

The CAR model implicitly requires wii = 0 and
lii = ∑n

j=1 wij . In spectral embedding and cluster-
ing (Guattery and Miller, 2000; Belkin and Niyogi,

2002; Ng, Jordan and Weiss, 2002), the wij are usu-
ally used to assert adjacency or similarity relationships
between the yi . We will see shortly that these adja-
cency or similarity relationships have an interpretation
as conditional independencies.

Since D − W is positive semidefinite, D − ωW is
positive definite for ω ∈ (0,1). This fact has been used
to devise CAR models based on D − ωW such that
E(yi |yj , j �= i) = ω

∑n
j=1

wij

lii
yj (see, e.g., Carlin and

Banerjee, 2003). We now have

E(yiy′
j |yl , l �= i, j) = ωlij

ω2l2
ij − lii ljj

σ 2Ic−1.

As a result, lij = 0 (or wij = 0) implies that yi ⊥⊥
yj |{yl : l �= i, j}; that is, yi is conditionally indepen-
dent of yj given the remaining vectors. This Markov
property also holds for Gaussian intrinsic autoregres-
sions (Besag and Kooperberg, 1995).

This perspective sheds light on some of the rela-
tionships between the NCUT and RCUT formulations
of spectral relaxation. Recall that since � = D in the
NCUT setting, we impose the constraints Y′DY = Ic−1
and Y′D1n = 0. On the other hand, the RCUT formu-
lation uses the constraints Y′Y = Ic−1 and Y′1n = 0
because � = In. Theorem 1 shows that the solu-
tion of the NCUT is based on �−1/2L�−1/2 = In −
D−1/2WD−1/2, which is a so-called normalized graph
Laplacian. The solution of the RCUT problem is based
on the unnormalized graph Laplacian L. Now Propo-
sition 1 reveals a problematic aspect of the NCUT

formulation—piecewise constancy of the columns of Y
is accompanied by a lack of orthogonality of these
columns. Two natural desiderata of spectral cluster-
ing are in conflict in the NCUT formulation. This con-
flict between orthogonality and piecewise constancy is
not present for RCUT. However, the existing empiri-
cal results showed that the normalized graph Laplacian
tends to outperform the unnormalized graph Laplacian.
Moreover, von Luxburg, Belkin and Bousquet (2008)
provided theoretical evidence of the superiority of the
normalized graph Laplacian.

This seeming paradox can be resolved by using an
alternative choice for L in the RCUT formulation. Let
us set L = (In − C)′(In − C), where C = [cij ] is an
n × n nonnegative matrix such that cii = 0 for all i

and C1n = 1n. Such a L is positive semidefinite but no
longer Laplacian. Since L1n = 0, we can still solve the
spectral relaxation problem (2.4) using Theorem 1.

Our experimental results in Section 7 show that
this novel RCUT formulation is very effective. It is
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also worth noting that we can connect this formula-
tion to the simultaneous autoregression (SAR) model
of Besag (1974). In particular, the yi are now specified
by n simultaneous equations:

yi =
n∑

j=1

cij yj + εi , i = 1, . . . , n,

where the εi are independent normal vectors from
Nc−1(0, σ 2Ic−1). This equation can be written in ma-
trix form as follows:

Y = CY + �

with � = [ε1, . . . ,εn]′ ∼ Nn,c−1
(
0, σ 2In ⊗ Ic−1

)
.

We thus have Y ∼ Nn,c−1
(
0, σ 2K ⊗ Ic−1

)
with K+ =

(In − C)′(In − C). In practice, we are especially
concerned with the case in which C = D−1W. It is
worth noting that In − D−1/2WD−1/2 and In − D−1W
have the same eigenvalues, while the squared sin-
gular values of In − D−1W are the eigenvalues of
(In − D−1W)′(In − D−1W). We thus obtain an inter-
esting new relationship between the NCUT formulation
and the RCUT formulation.

7. EXPERIMENTS

Although our principal focus has been to provide a
unifying perspective on spectral clustering, our analy-
sis has also provided novel spectral algorithms, and it
is of interest to compare the performance of these algo-
rithms to existing algorithms. In this section we report
the results of experiments conducted with six publicly
available data sets: five data sets from the UCI machine
learning repository (the dermatology data, the vowel
data, the NIST optical handwritten digit data, the let-
ter data and the image segmentation data) as well as
a set of gene expression data analyzed by Yeung et al.
(2001).

In the dermatology data, there are 366 patients, 8 of
whom are excluded due to missing information, with
34 features. The data are clustered into six classes. We
standardized the data to have zero mean and unit vari-
ance. The NIST data set contains the handwritten digits
0–9, where each instance consists of a 16 × 16 pixel
and where digits are treated as classes. We selected
1000 digits, with 100 instances per digit, for our ex-
periments. The vowel data set contains the eleven
steady-state vowels of British English. The letter data
set consists of images of the letters “A” to “Z.” In
our experiments we selected the first 10 letters with
195, 199, 182, 207, 203, 210, 226, 196, 188 and 172

TABLE 1
Summary of the benchmark data sets

Gene Dermatology Vowel NIST Letter Segmentation

n 384 358 990 1000 1978 2100
d 17 34 10 256 16 19
c 5 6 11 10 10 7

n—the number of samples; d—the number of features; c—the
number of classes.

instances, respectively. The image segmentation data
consist of seven types of images: “brickface,” “sky,”
“foliage,” “cement,” “window,” “path” and “grass.”
The gene data set contains 384 genes with 17 time
points over two cell cycles. The data were standard-
ized to have mean zero and unit variance (Yeung et al.,
2001). We treated the five phases of the cell cycle as
five nominal classes for these data, classifying genes
into these classes according to their expression level
peaks. Table 1 gives a summary of these data sets.

We compared our rounding algorithm based on Pro-
crustean transformation (see Algorithm 1) with those
based on the rounding procedures given in Bach and
Jordan (2006) and Yu and Shi (2003), conducting
comparisons using the NCUT, RCUT and minimum-
variance criteria. We refer to the weighted K-means
and the K-means algorithms of Bach and Jordan
(2006) as BJ-wkm and BJ-km, respectively. Note that
the spectral clustering algorithm based on the NCUT

formulation and K-means rounding is equivalent to
that presented by Ng, Jordan and Weiss (2002). We
initialized the K-means algorithms by the orthogonal
initialization method in Ng, Jordan and Weiss (2002).
For the rounding scheme of Yu and Shi (2003), we
used two initialization methods: the orthogonal initial-
ization method and initialization to the identity matrix.
We refer to the corresponding algorithms as YS-1 and
YS-2. We also used these two initialization methods in
our algorithm (Algorithm 1), referring to the results in
these two cases as Margin-1 and Margin-2.

7.1 Setup and Evaluation Criterion

We defined the adjacency matrix W = [wij ] as wij =
exp(−‖xi − xj‖2/β) with β > 0. The kernel matrix is
defined as K = HnWHn. For the margin-based algo-
rithms, however, we set wii = 0 for i = 1, . . . , n; in
this case the kernel matrix is defined as K = Hn(In +
W)Hn. For simplicity, we do not distinguish between
these two cases in our notation in the remainder of this
section. In the minimum-variance formulation we al-
ways set � = In. With these settings, the BJ-wkm and
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BJ-km algorithms are based on the spectral decom-
position of In − D−1/2WD−1/2. The YS-1 and YS-2
algorithms are based on the spectral decomposition
of In − D−1W, and the Margin-1 and Margin-2 al-
gorithms are based on the spectral decomposition of
In − D−1/2WD−1/2.

Although L = D − W is one natural choice in the
RCUT setting, we instead adopted the suggestion in
Section 6 and defined L as

L = (In − D−1W)′(In − D−1W).(7.1)

To simplify the comparison among procedures, we
fixed β to specific sets of values for each of the data
sets, exploring a range of values to investigate the
relative sensitivities to the choice of β for the dif-
ferent clustering algorithms. Our specific choices for
both the NCUT and RCUT criteria were β ∈ {1,10}
for the gene data, β ∈ {1,10,100} for the “vowel”
data, β ∈ {5000,10000,20000} for the “image seg-
mentation” data, and β ∈ {10,100,1000} for the “der-
matology,” “NIST” and “letter” data sets. Since the
minimum-variance criterion directly operates on K, we
choose a different set of values when working with this
criterion; in particular, we used β ∈ {10,100} for the
gene data, β ∈ {100,1000} for the “dermatology” data,
β ∈ {1,10,100} for the “vowel” data, β ∈ {500,1000}
for NIST data, β ∈ {10,100,1000} for the “letter” data,
and β ∈ {10,100,1000} for the “image segmentation”
data.

To evaluate the performance of the various clustering
algorithms we employed the Rand index (RI) (Rand,
1971). Given a set of n objects S = {O1, . . . ,On}, sup-
pose that U = {U1, . . . ,Ur} and V = {V1, . . . , Vs} are
two different partitions of the objects in S such that⋃r

i=1 Ui = S = ⋃s
j=1 Vj and Ui ∩ Ui′ = ∅ = Vj ∩ Vj ′

for i �= i′ and j �= j ′. Let a be the number of pairs of
objects that are in the same set in U and in the same set
in V , and b the number of pairs of objects that are in
different sets in U and in different sets in V . The Rand
index is given by RI = (a + b)/

(n
2

)
. If RI = 1, the two

partitions are identical.
Since the ground-truth partitions are available for our

six data sets, we directly calculated RI between the true
partition and the partition obtained from each cluster-
ing algorithm. We conducted 50 replicates of each of
the algorithms that require random initialization (this
is not necessary for YS-2 and Margin-2, which are ini-
tialized to the identity matrix). Note that for the RCUT

and minimum-variance criteria, BJ-wkm and BJ-km be-
come identical because in these cases � = In.

7.2 Performance Analysis

Figure 2 displays the results for all six algorithms us-
ing the NCUT criterion. We see that the margin-based
algorithms are competitive with the other algorithms.
The poorest performer in this setting is BJ-wkm, which
is highly sensitive to the value of β . In particular,
when β = 10 for the “gene” data set, β ∈ {10,100}
for the vowel data, β ∈ {1000,100,10} for the “let-
ter” data, and β = 1000 for both the “dermatology”
and “NIST” data sets, this algorithm almost failed.
A possible interpretation for this result is the con-
flict between orthogonality and piecewise constancy
implied in the NCUT setting (see Proposition 1). In-
deed, as can be seen from Figure 2, the situation is
more favorable for the BJ-km rounding algorithm; in
this case D−12Y(Y′D−1Y)−1/2 is used, which dimin-
ishes the conflict between orthogonality and piecewise
constancy. Similarly, the conflict is diminished for the
YS rounding algorithms and our margin-based round-
ing methods (because arg maxj d

−1/2
j yij is equivalent

to arg maxj yij ).
Recall that the YS-1 and YS-2 algorithms need to use

a heuristic post-processing procedure; that is, the algo-
rithms operate on Ẑ = dg(ZZ′)−1/2Z. We found that
the performance of the algorithms depends strongly on
this procedure.

Figures 3 and 4 display the experimental results us-
ing the RCUT and minimum-variance criteria, respec-
tively. We see again that the margin-based algorithms
are competitive with the other algorithms; indeed for
several of the data sets the margin-based algorithms
yield better performance than the other algorithms.

We see from Figures 3 and 4 that BJ-km is com-
petitive with the other algorithms. This shows that the
choice of L given in (7.1) is an effective choice.

We again found it to be the case that the heuris-
tic post-processing procedure was needed for YS-1 and
YS-2 to yield good clustering performance.

The performances of Margin-1 and Margin-2 were
similar across the data sets and criteria, showing the
relative insensitivity of the margin-based approach to
the initialization. Note in particular the larger degree
of variability between the performances of YS-1 and
YS-2. Note also that the margin-based approach was in
general less sensitive to the value of β than the other
algorithms.

Finally, recall that L in (7.1) for the RCUT setting
and L = K+ obtained from the minimum-variance set-
ting are positive semidefinite but they are not Lapla-
cian matrices, because the off-diagonal elements of the
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FIG. 2. Clustering results (Rand index) with normalized cuts. “BJ-WKM”: the weighted K-means rounding of Bach and Jordan 2006;
“BJ-KM”: the K-means rounding of Bach and Jordan 2006; “YS-1”: the rounding scheme of Yu and Shi 2003 with the orthogonal initial-
ization method; “YS-2”: the rounding scheme of Yu and Shi 2003 with initialization to the identity matrix; “Margin-1”: the rounding scheme
in Section 3.1 with the orthogonal initialization method; “Margin-2”: the rounding scheme in Section 3.1 with initialization to the identity
matrix.
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FIG. 3. Clustering results (Rand index) with ratio cuts. See the caption of Figure 2 for explanation of the acronyms.
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FIG. 4. Clustering results (Rand index) with the minimum-variance criterion. See the caption of Figure 2 for explanation of the acronyms.
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W = L−D are possibly negative. Nonetheless, our ex-
perimental results showed that these two choices are
still effective. Thus cuts can be defined through non-
Laplacian matrices. Although such cuts lose their orig-
inal interpretation in terms of the graph partition, as
we have shown they do have a clear statistical inter-
pretation in terms of Gaussian intrinsic autoregression
models.

8. DISCUSSION

In this paper we have presented a margin-based
perspective on multiway spectral clustering. We have
shown that both aspects of spectral clustering—relaxa-
tion and rounding—can be given an interpretation in
terms of margins. The major advantage of this perspec-
tive is that it ties spectral clustering to the large litera-
ture on margin-based classification. The margin-based
perspective has several additional consequences: (1) it
permits a deeper understanding of the relationship be-
tween the normalized cut and ratio cut formulations of
spectral clustering; (2) it strengthens the connections
between the minimum-variance criterion and spectral
clustering; and (3) it yields a statistical interpretation
of spectral clustering in terms of Gaussian intrinsic au-
toregressions. Also, the preliminary empirical evidence
that we presented suggests that the algorithms moti-
vated by the margin-based perspective are competitive
with existing spectral clustering algorithms.

One of the most useful consequences of the margin-
based perspective is the interpretation that it yields of
spectral clustering in terms of projection onto hyper-
planes in a reproducing kernel Hilbert space (see Fig-
ure 1). This interpretation shows that the performance
of the margin-based clustering algorithms depends on
the separability of the feature vectors. This suggests
that the algorithmic problem of choosing the similar-
ity matrix W or kernel matrix K so as to increase
separability is an important topic for further research;
see Bach and Jordan (2006) and Meilă and Shi (2000)
for initial work along these lines.

Although we have focused on undirected graphs in
our treatment, it is also worth noting the possibility
of considering clustering in a directed graph with the
asymmetric weighted matrix D−1W (Meilă and Pent-
ney, 2007). This can be related to our discussion in
Section 6, where we suggested the use of the matrix
L = (In − D−1W)′(In − D−1W) in the RCUT setting.
The experimental results in Section 7 showed that such
a suggestion is promising. Moreover, although L is no
longer Laplacian, the corresponding spectral relaxation

can be interpreted as a simultaneous autoregression
model. The relationship between simultaneous autore-
gression and conditional autoregression (Ripley, 1981)
may provide connections between spectral clustering
in undirected graphs and directed graphs. We intend to
explore this issue in future work.

In delineating a relationship between the PCUT cri-
terion and the kernel minimum-variance criterion, we
have proven that the relaxation problems (2.3) and
(4.2) have the same solution whenever rk(L) = n − 1
and L+ = K. This leads to the question as to whether
the original unrelaxed problems—that is, the mini-
mization of PCUT and the maximization of T with re-
spect to discrete partition matrix E— have the same so-
lution under the conditions rk(L) = n−1 and L+ = K.
This is currently an open problem.

APPENDIX

A.1 Proof of Proposition 1

Since the columns of Y are piecewise constant
with respect to the partition E, we can express Y as
Y = E� for some � ∈ R

c×(c−1). Let Y0 = �1/2Y,
�0 = [�, α1c], a c×c matrix, and Z = [Y0, α�1/21n],
where α = 1/

√
1′
n�1n. We have �−1/2Z = E�0

and Z′Z = [Y0, α�1/21n]′[Y0, α�1/21n] = Ic due to
E1c = 1n, Y′

0Y0 = Y′�Y = Ic−1 and Y′
0�

1/21n =
Y′�1n = 0. Furthermore, we have � ′

0E′�E�0 =
Z′Z = Ic. Since �0 and E′�E are square, �0 and
E′�E are invertible. Hence �0�

′
0 = (E′�E)−1. We

now have

tr(Y′LY) = tr(Y′
0�

−1/2L�−1/2Y0)

= tr(Z′�−1/2L�−1/2Z) = tr(� ′
0E′LE�0)

= tr(E′LE�0�
′
0) = tr(E′LE(E′�E)−1),

completing the proof.

A.2 The Proof of Proposition 2

In this section we provide a constructive proof of
Proposition 2 by establishing the existence of � . We
also provide an example of the construction in the spe-
cial case of c = 4 and � = In.

Let (E′�E)−1 = diag(1/β1, . . . ,1/βc) and β =
(β1, . . . , βc)

′. We then have 1′
n�1n = π ′1n = β ′1c and

E′�1n = β . In the proof in Appendix A.1, we obtain
�0�

′
0 = (E′�E)−1. Thus,

�� ′ = diag(1/β1, . . . ,1/βc) − 1

π ′1n

1c1′
c

(denoted A).
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In order to make the above equation hold, it is nec-
essary for A to be positive semidefinite. Given any
nonzero b = (b1, . . . , bc)

′ ∈ R
c, we have

b′ diag(β)A diag(β)b/(π ′1n)

=
c∑

j=1

βj

π ′1n

b2
j −

(∑
j=1

βj

π ′1n

bj

)2

≥ 0,

since the function f (x) = x2 is convex. This implies
that A positive semidefinite. Furthermore, it is easy to
obtain Aβ = 0. Using the SVD of A, we are always
able to obtain a � such that �� ′ = A and � ′β = 0.
Consequently, we have

1′
n�E� = β ′� = 0 and � ′E′�E� = Ic−1.

The latter equality comes from

Ic = � ′
0E′�E�0 =

[
� ′
α1′

c

]
E′�E[�, α1c]

=
[
� ′E′�E� 0

0 1

]
.

EXAMPLE 1. Let η = π ′1n and ηj = ∑
i∈Vj

πi .
Assume that � = (ψ1, . . . ,ψc−1)

′ where ψ ′
1 =

(
√

η−η1√
ηη1

,−
√

η1√
η(η−η1)

1′
c−1) and

ψ ′
l =

(
0 ∗ 1′

l−1,

√∑c
j=l+1 ηj√

ηl

∑c
j=l ηj

,

√
ηl√∑c

j=l ηj

∑c
j=l+1 ηj

1c−l

)

for l = 2, . . . , c − 1. For instance, if c = 4, we have

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
η−η1√
ηη1

0 0

−
√

η1√
η(η−η1)

√
η3+η4√

η2(η−η1)
0

−
√

η1√
η(η−η1)

−
√

η2√
(η3+η4)(η−η1)

√
η4√

(η3+η4)η3

−
√

η1√
η(η−η1)

−
√

η2√
(η3+η4)(η−η1)

−
√

η3√
(η3+η4)η4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easily verified that Y = E� satisfies the condi-
tions (a)–(c) listed in Proposition 1. Let a1, . . . ,ac de-
note the row vectors of � . We note that an arbitrary
collection of c − 1 vectors from the set a1, . . . ,ac are
linearly independent. The convex hull of a1, . . . ,ac is
thus a (c − 1)-dimensional simplex. (A d-dimensional
simplex is the convex hull of an affinely independent
point set in R

d . A regular d-dimensional simplex is
the convex hull of d + 1 points with all pairs of points

having equal distances.) In addition, we have that the
squared distance between ai and aj is

‖ai − aj‖2 = 1

ηi

+ 1

ηj

for i �= j.

Note that we have η = n and ηj = nj when � = In.
In particular, if � = In and n1 = · · · = nc = n

c
, the ai

constitute the vertices of a (c − 1)-dimensional regular
simplex.

A.3 The Proof of Theorem 1

This theorem is a variation on a standard result in
linear algebra; for completeness we present a proof.
Let S = �−1/2L�−1/2 and consider the following La-
grangian:

L(Y0,A,b)

= tr
(
Y′

0SY0
) − tr(A(Y′

0Y0 − Ic−1)) − b′Y′
0�

1/21n,

where A is a (c − 1) × (c − 1) symmetric matrix of
Lagrange multipliers and b is a (c − 1) × 1 vector of
Lagrange multipliers. We differentiate to obtain

∂L

∂Y0
= 2SY0 − 2Y0A − �1/21nb′.

Letting ∂L
∂Y0

= 0 leads to

2SY0 − 2Y0A − �1/21nb′ = 0,

from which we have

21′
n�

1/2SY0 − 21′
n�

1/2Y0A − 1′
n�1nb′ = 0.

This implies b = 0. Accordingly, we obtain

SY0 = Y0A.

We now take the eigendecomposition of A, letting
A = Q′
1Q where Q is a (c − 1) × (c − 1) ortho-
normal matrix and 
1 is a (c − 1) × (c − 1) diago-
nal matrix. We note that the diagonal entries of 
1
and the columns of Y0Q′ are the eigenvalues and the
associated eigenvectors of S. Clearly, �1/21n is the
eigenvector of S associated with eigenvalue 0. We
now let 
1 = diag(γ2, . . . , γc). We thus have Ȳ0 =
[μ2, . . . ,μc]Q. Obviously, Ȳ0 satisfies Ȳ′

0Ȳ0 = Ic−1

and Ȳ′
0�

1/21n = 0 due to μ′
i�

1/21n = 0 for i �= 1.
To verify that Ȳ0 is the solution of problem (2.4), we

consider the Hessian matrix of L with respect to Y0.
Let vec(Y′

0) = (y11, . . . , y1,c−1, y21, . . . , yn,c−1)
′. The

Hessian matrix is then given by

H(Y0) = ∂2L

∂ vec(Y′
0) ∂ vec(Y′

0)
′ = Ic−1 ⊗ S − A ⊗ In.
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Let B be an arbitrary nonzero n × (c − 1) matrix
such that B′[μ1, . . . ,μc] = 0. We can always express
B = [μc+1, . . . ,μn]� where � = [φ1, . . . ,φc−1] is an
(n−c)×(c−1) matrix. Denoting 
2 = diag(γc+1, . . . ,

γn), we have

vec((BQ)′)′H(Ȳ0)vec((BQ)′)
= tr(Q′B′SBQ) − tr(AQ′B′BQ)

= tr(B′SB) − tr(
1B′B) = tr(�′
2�) − tr(
1�
′�)

=
c−1∑
i=1

φ′
i
2φi −

c−1∑
i=1

γi+1φ
′
iφi

=
c−1∑
i=1

φ′
i (
2 − γi+1In−c)φi ≥ 0.

If γc > γc+1, then the matrices 
2 − γi+1In−c, i =
1, . . . , c − 1, are positive definite. Thus, the above in-
equality is strict. This shows that Ȳ0 is a strict local
minimum of tr(Y′

0�
−1/2L�−1/2Y0) under the condi-

tions Y′
0Y0 = Ic−1 and Y′

0�
1/21n = 0.

A.4 The Solution of Problem (4.3)

Let T = �1/2H′
πKHπ�1/2 and consider the follow-

ing Lagrangian:

L(Y0,A,b)

= tr(Y′
0TY0) − tr

(
A(Y′

0Y0 − Ic−1)
) − b′Y′

0�
1/21n,

where A is a (c − 1) × (c − 1) symmetric matrix of
Lagrange multipliers and b is a (c − 1) × 1 vector of
Lagrange multipliers. Differentiating, we obtain

∂L

∂Y0
= 2TY0 − 2Y0A − �1/21nb′.

Letting ∂L
∂Y0

= 0 leads to

2TY0 − 2Y0A − �1/21nb′ = 0,

from which we have

21′
n�

1/2TY0 − 21′
n�

1/2Y0A − 1′
n�1nb′ = 0.

Since 1′
n�

1/2T = 1′
n�H′

πKHπ�1/2 = 1′
nHπ�K ·

Hπ�1/2 = 0, we obtain b = 0. This implies

TY0 = Y0A.

Now following the proof in Appendix A.3, we find that
the top c − 1 eigenvectors of T provide the solution for
Y0 in problem (4.3).

A.5 The Proof of Theorem 3

Our proof is based on the following lemma.

LEMMA 1. Assume that A is an n × n symmetric
matrix with rk(A) = n− 1 and A1n = 0. Let A+ be the
MP inverse of A. Then �1/2H′

πA+Hπ�1/2 is the MP
inverse of �−1/2A�−1/2.

PROOF. We first prove A+A = AA+ = Hn. Let
N = A′A. It is clear that NHn = HnN = N. It thus
follows from Corollary 4.5.18 in Horn and Johnson
(1985) that there exists an n × n orthonormal matrix
U such that

U′NU =
(

�n−1 0
0 0

)
and U′HnU =

(
In−1 0

0 0

)
,

where �n−1 is an (n − 1) × (n − 1) diagonal ma-
trix with positive diagonal entries, and U = [U1,

1√
n

1n]
with U′

1U1 = In−1 and U11n = 0. Here we use the fact
that 1n is the eigenvector of N and of Hn with associ-
ated eigenvalue 0. Accordingly, we have

N = U1�n−1U′
1 and Hn = U1U′

1,

from which it follows that

N+ = U1�
−1
n−1U′

1

and hence N+N = U1U′
1 = Hn. On the other hand,

since A+ = (A′A)+A′, we have A+A = N+N = Hn.
Since A is symmetric, we also have AA+ = Hn.

Using the identity A+A = AA+ = Hn and AH′
π =

A = HπA, we have

�−1/2A�−1/2�1/2H′
πA+Hπ�1/2

= �−1/2Hπ�1/2 = �1/2H′
π�−1/2

= �1/2H′
πA+Hπ�1/2�−1/2A�−1/2.

We further obtain

�−1/2A�−1/2�1/2H′
πA+Hπ�1/2�−1/2A�−1/2

= �−1/2A�−1/2

and

�1/2H′
πA+Hπ�1/2�−1/2A�−1/2�1/2H′

πA+

· Hπ�1/2 = �1/2H′
πA+Hπ�1/2.

Thus �1/2H′
πA+Hπ�1/2 is the MP inverse of �−1/2

· A�−1/2. �
Since L+ is the MP inverse of L, L+ is positive

semidefinite and it satisfies L+1n = 0 and rk(L+) =
n−1. It is obvious that rk

(
�−1/2L�−1/2) = n−1 and

rk
(
�1/2H′

πL+Hπ�1/2) = n − 1. Moreover, �1/21n is
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eigenvector of both �−1/2L�−1/2 and �1/2H′
πL+Hπ

�1/2 with associated eigenvalue 0. In addition, if λ �= 0
is eigenvalue of �−1/2L�−1/2 with associated eigen-
vector u, then λ−1 is eigenvalue of �1/2H′

πL+Hπ�1/2

with associated eigenvector u. It thus follows from
Lemma 1 that (4.3) has the same solution as (2.4)
whenever L+ = K. As a result, (4.2) has the same so-
lution as (2.3).
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