
Soc Choice Welf (2018) 51:513–550

https://doi.org/10.1007/s00355-018-1126-4

ORIGINAL PAPER

Multiwinner analogues of the plurality rule: axiomatic

and algorithmic perspectives

Piotr Faliszewski1 · Piotr Skowron2
·

Arkadii Slinko3
· Nimrod Talmon4

Received: 12 September 2017 / Accepted: 9 April 2018 / Published online: 19 April 2018

© The Author(s) 2018

Abstract We characterize the class of committee scoring rules that satisfy the fixed-

majority criterion. We argue that rules in this class are multiwinner analogues of the

single-winner Plurality rule, which is uniquely characterized as the only single-winner

scoring rule that satisfies the simple majority criterion. We define top-k-counting

committee scoring rules and show that the fixed-majority consistent rules are a subclass

of the top-k-counting rules. We give necessary and sufficient conditions for a top-k-

counting rule to satisfy the fixed-majority criterion. We show that, for many top-k-

counting rules, the complexity of winner determination is high (formally, we show that

the problem of deciding if there exists a committee with at least a given score is NP-

hard), but we also show examples of rules with polynomial-time winner determination

procedures. For some of the computationally hard rules, we provide either exact FPT

algorithms or approximate polynomial-time algorithms.
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1 Introduction

A multiwinner voting rule is a formal procedure for selecting a subset of predetermined

size from the available candidates in accord with the preferences of an electorate

(such a subset of candidates is usually referred to as a committee). Parliamentary

elections constitute one of the most classic examples where multiwinner rules are

regularly used. For country-wide elections, societies typically use the district-based

First-Past-the-Post rule, or a party-list system, or some mixture of the two [nonetheless,

some countries use other rules for this purpose, such as SNTV or STV (Lijphart

and Aitkin 1994)]. In smaller-scale elections, where it is possible for the voters to

rank all the candidates, many other rules become available; for example, the k-Borda

rule (Debord 1992) selects committees where each member receives broad support

from the electorate, the Chamberlin–Courant rule (Chamberlin and Courant 1983)

finds committees with diverse membership, and the Monroe rule (Monroe 1995) is

designed to achieve proportional representation.

Apart from political elections, multiwinner rules are useful for many other purposes:

to shortlist candidates for a job interview (Barberà and Coelho 2008; Elkind et al.

2017), to determine the locations of public facilities (Zanjirani and Hekmatfar 2009), in

a wide range of scenarios where resources need to be selected and assigned to the agents

for their (shared) use (Skowron et al. 2016), in segmentation problems (Kleinberg

et al. 2004), or even in search strategies of genetic algorithms (Faliszewski et al. 2017;

Sawicki et al. 2017). In business applications, company strategists deciding which sets

of products to advertise on the front pages of their websites implicitly use multiwinner

elections to make their choices (Lu and Boutilier 2011, 2015). Since these tasks are

very different in spirit, one may presume that not all rules are equally suitable for all

scenarios. This makes the question of comparing different rules, and of understanding

their nature and their shortcomings (including their computational difficulty), very

relevant.

One approach to advance our understanding of the nature of multiwinner rules

is to view them as extensions of certain well-understood single-winner ones. For

example, Single Non-Transferable Vote (SNTV) can clearly be viewed as an extension

of Plurality, because it selects the k candidates with the k highest numbers of the first-

place votes. However, this is not the only point of view that one can take in generalizing

Plurality. For instance, one could argue that a voter’s most preferred committee consists

exactly of those k candidates that this voter ranks in top k positions, and, so, if under

the Plurality rule a voter gives a point only to his or her most preferred candidate, then

under a multiwinner Plurality a voter should give points only to those candidates that

belong to his or her most preferred committee. In fact, this is exactly how the Bloc

rule works, and one can argue that Bloc is an extension of Plurality to the multiwinner

setting as well. Naturally, there are also many other rules that would qualify for this

title. Our goal in this paper is to seek and study such rules.

Our goal requires some justification. It is widely acknowledged that the single-

winner Plurality rule has only one advantage: simplicity. Apart from this, it is

considered a very bad rule—for instance, during the “Voting Power in Practice” work-

shop, held in 2010 at the Chateau du Baffy, Normandy, the participants (who were

experts in voting procedures) were asked to rank election rules. Laslier (2012) reports
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Multiwinner analogues of the plurality... 515

that Plurality was considered the worst. One of the most serious drawbacks of Plu-

rality is that voters are pressured to vote for one of the two candidates they predict

are most likely to win, even if their true most preferred candidate is neither of them;

they do that from the fear of casting a ‘wasted vote’ (Dummett 1984). However, in the

multiwinner setting this pressure becomes milder, because there are more candidates

to be elected. We view this as one reason why multiwinner analogues of Plurality are

worth investigating.

We seek multiwinner analogues of Plurality within the family of committee scoring

rules, recently introduced by Elkind et al. (2017). This is a natural choice because

Plurality belongs to the class of positional scoring rules and committee scoring rules

generalize this class to the multiwinner setting. (However, looking for such rules

beyond the class of committee scoring rules would not be unthinkable.) Further, we

take the following axiomatic approach. We note that Plurality is the only single-

winner scoring rule that satisfies the simple majority criterion,1 which stipulates that

a candidate ranked first by more than half of the voters must be the unique winner

of the election. The fixed-majority criterion, introduced by Debord (1993), extends

this notion to the world of multiwinner elections by requiring that, if there is a simple

majority of voters, each of whom ranks the same k candidates in the top k positions

(perhaps in a different order), then these k candidates should form the unique winning

committee.2 Thus, all in all, we seek committee scoring rules that satisfy the fixed-

majority criterion.

One can verify that SNTV fails the fixed-majority criterion for all k > 1, but that

Bloc does satisfy it. Yet, Bloc is not the only fixed-majority consistent rule within the

class of committee scoring rules. In fact, our approach led us to the discovery of a

new class of voting rules, which includes all committee scoring rules satisfying the

fixed-majority criterion. We call them top-k-counting rules. As in the case of Bloc,

they take only the top k preferences of the voters into consideration. Specifically,

under a top-k-counting rule, each voter awards points to every committee on the basis

of the number of this voter’s top k candidates that are members of the committee;

the committee with the most points collected from all the voters wins. The function

that determines the score of a committee based on the number of committee members

ranked in the top k positions by a voter will be called the counting function. As it turns

out, the nature of this function (e.g., whether it is convex or concave) has very strong

impact on both axiomatic and computational properties of the voting rule it defines.

We provide an (almost) full characterization3 of fixed-majority consistent com-

mittee scoring rules and we analyze the computational complexity of their winner

determination problems. More specifically, we obtain the following results:

1. We prove that all committee scoring rules that satisfy the fixed-majority criterion

are top-k-counting rules and we establish a condition on the counting function that

is necessary and sufficient for the corresponding top-k-counting rule to satisfy the

1 In the literature, simple majority is often referred to as majority. However, we write ‘simple majority’ to

clearly distinguish it from qualified majority and from fixed-majority.

2 In Sect. 3.1 we argue that, indeed, this is a natural extension of the simple majority property.

3 We consider the case where there are at least twice as many candidates as the size of the committee. We

are not sure whether this restriction can be dropped.
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fixed-majority criterion. This condition is a fairly mild relaxation of the classic

notion of convexity; in particular, if the counting function is convex then the

corresponding top-k-counting rule satisfies the fixed-majority criterion.

2. We show that a number of top-k-counting rules are NP-hard to compute4 (for

example, we show an example of a rule that closely resembles the Bloc rule and is

hard even to approximate). There are, however, some polynomial-time computable

ones (for example, the Bloc and the Perfectionist rules; the latter one is introduced

in this paper).

3. We show that if the counting function is concave, then the corresponding top-

k-counting rule fails the fixed-majority criterion, but the rule seems to be

computationally easier than in the convex case. Specifically, for top-k-counting

rules defined via concave counting functions we present a polynomial-time

(1 − 1
e
)-approximation algorithm and an exact fixed-parameter tractable algorithm

(parameterized by the number of voters) for the problem of computing the highest-

scoring committees.

All in all, there is no unique multiwinner analogue of Plurality, even if we restrict

ourselves to polynomial-time computable committee scoring rules, but there is a rich

class of such rules that deserves further investigation.

2 Preliminaries

An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of candidates

and V = (v1, . . . , vn) is a collection of voters. Throughout the paper, we reserve

the symbol m to denote the number of candidates. Each voter vi is associated with a

preference order ≻i in which vi ranks the candidates from his or her most desirable

one to his or her least desirable one (we assume the unrestricted domain, i.e., each

voter is free to choose any preference order). If X and Y are two (disjoint) subsets of

C , then by X ≻i Y we mean that for each x ∈ X and each y ∈ Y it holds that x ≻i y.

For a positive integer t , we denote the set {1, . . . , t} by [t].

Single-Winner Voting Rules A single-winner voting rule R is a function that given an

election E = (C, V ), outputs a subset R(E) ⊆ C of candidates that are called (tied)

winners of this election. There is quite a variety of single-winner voting rules, but for

this paper it suffices to consider scoring rules only. Given a voter v and a candidate c,

we write posv(c) to denote the position of c in v’s preference order (for example, if

v ranks c first then posv(c) = 1). A scoring function for m candidates is a function

γm : [m] → R+ such that for each i ∈ [m − 1] we have γm(i) ≥ γm(i + 1) (by

R+ we mean the set of nonnegative real numbers). Each family of scoring functions

γ = (γm)m∈N (one function for each possible choice of m) defines a voting rule Rγ as

follows. Let E = (C, V ) be an election with m candidates. Under Rγ , each candidate

c ∈ C receives score(c) :=
∑

v∈V γm(posv(c)) points and the candidate with the

highest number of points wins. (If there are several such candidates, then they all tie

as winners; the term single-winner voting rule refers to the fact that we use the rule to

4 See Remark 4 in Sect. 4 for an exact explanation of this statement.
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fill-in a single position, and not to indicate that the rule is resolute.) We often refer to

the value score(c) as the γ -score of c.

The following scoring functions and scoring rules are particularly interesting. The

t-Approval scoring function αt is defined as αt (i) := 1 for i ≤ t and αt (i) := 0

otherwise. (If t is fixed, then the definition of αt does not depend on m; in such cases,

αt can both be viewed as a scoring function and as a family of scoring functions.) For

example, Plurality is Rα1 , the t-Approval rule is Rαt , and the Veto rule is R(αm−1)m∈N
.

The Borda scoring function (for m candidates), βm , is defined as βm(i) := m − i , and

Rβ is the Borda rule, where β = (βm)m∈N. This notation for these scoring functions

will be used throughout the paper.

Multiwinner Voting Rules A multiwinner voting rule R is a function that given an

election E = (C, V ) and a number k representing the size of the desired committee,

outputs a family R(E, k) of size-k subsets of C ; the sets in this family are the com-

mittees that tie as winners. As in the case of single-winner voting rules, one may need

a tie-breaking rule to get a unique winning committee, but we ignore this aspect in the

current paper.

We focus on the class of committee scoring rules, introduced by Elkind et al.

(2017) (we remark that the conference version of their paper was published in 2014).

Consider an election E = (C, V ) and some committee S of a given size k. Let

v be some voter in V . By posv(S) we mean the sequence (i1, . . . , ik) that results

from sorting the set {posv(c) : c ∈ S} in a strictly increasing order. For example, if

C = {a, b, c, d, e}, the preference order of v is a ≻ b ≻ c ≻ d ≻ e, and S = {a, c, d},

then posv(S) = (1, 3, 4). If I = (i1, . . . , ik) and J = ( j1, . . . , jk) are two strictly

increasing sequences of integers, then we say that I (weakly) dominates J (denoted

I � J ) if it ≤ jt for each t ∈ [k]. For positive integers m and k, k ≤ m, by [m]k we

mean the set of all strictly increasing size-k sequences of integers from [m].

Definition 1 (Elkind et al. 2017) A committee scoring function for a multiwinner

election with m candidates, where we seek a committee of size k, is a function

fm,k : [m]k → R+ such that for each two sequences I, J ∈ [m]k it holds that if

I � J then f (I ) ≥ f (J ).

Intuitively, the function fm,k from Definition 1 assigns to each sequence I of k

positions the number of points that a committee C gets from a voter v when the

members of C stand on exactly the positions of I in the preference order of v.

A committee scoring rule is defined by a family of committee scoring functions

f = ( fm,k)k≤m , which contains one function for each possible choice of m and k.

Analogously to the case of single-winner scoring rules, we will denote such a mul-

tiwinner rule by R f . Let E = (C, V ) be an election with m candidates and let k,

k ≤ m, be the size of the desired committee. Under the committee scoring rule R f ,

every committee S ⊆ C with |S| = k receives score(S) :=
∑

v∈V fm,k(posv(S))

points (for this notation, the election E = (C, V ) will always be clear from the con-

text). The committee with the highest score wins. (If there are several such committees,

then they all tie as winners.)
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Many well-known multiwinner voting rules are, in fact, committee scoring rules.

Consider the following examples (we will use them throughout the paper to illustrate

various points):

1. The SNTV, Bloc, and k-Borda rules pick k candidates with the highest Plurality,

k-Approval, and Borda scores, respectively, and so they are defined through the

following scoring functions:

f SNTV
m,k (i1, . . . , ik) :=

∑k
t=1 α1(it ) = α1(i1),

f Bloc
m,k (i1, . . . , ik) :=

∑k
t=1 αk(it ),

f k-Borda
m,k (i1, . . . , ik) :=

∑k
t=1 βm(it ).

Note that f SNTV
m,k is defined as a sum of functions that do not depend on either m or

k, f Bloc
m,k is defined as a sum of functions that depend on k but not m, and f k-Borda

m,k

is defined as a sum of functions that depend on m but not k.5

2. The two versions of the Chamberlin–Courant rule that we consider are defined

through the following committee scoring functions, respectively:

f
β-CC
m,k (i1, . . . , ik) := βm(i1),

f
αk-CC
m,k (i1, . . . , ik) := αk(i1).

The first one defines the classical Chamberlin-Courant rule (Chamberlin and

Courant 1983) and the second one defines what we refer to as the k-Approval

Chamberlin–Courant rule [approval-based variants of the Chamberlin–Courant

rule were first mentioned by Thiele (1895) and recently they were recalled by

Procaccia et al. (2008); they were studied further, for example, by Betzler et al.

(2013), Aziz et al. (2017), and Skowron and Faliszewski (2017)]. For brevity, we

sometimes refer to the k-Approval Chamberlin–Courant rule as the αk-CC rule.

Intuitively, under the Chamberlin–Courant rules, each voter is represented by the

committee member that this voter ranks highest; the Chamberlin–Courant rule

chooses a committee S that maximizes the sum of the scores that the voters give to

their representatives in S (which characterizes the total satisfaction of the society

with the assignment of representatives to the voters).

3. We introduce the Perfectionist rule. This rule is defined through scoring functions

of the form:

f Perf
m,k (i1, . . . , ik) := αk(ik).

In other words, a voter gives score of 1 to a committee only if its members occupy

the top k positions of his or her vote. The rule is not necessarily very appealing, but

5 One could define the Borda scoring function so that βm (i) = −i , removing the dependence on m.

However, the traditional definition, βm (i) = m − i , is much more common and, on the formal ground, we

require the values of the scoring functions to be nonnegative.
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it has interesting features that will illustrate several points that we make throughout

our discussion.

Below we provide an example election where SNTV, Bloc, k-Borda, β-CC, αk-CC,

and Perfectionist give different outcomes (with the exception that the results of Bloc

and αk-CC are the same).

Example 1 Let us consider the set of candidates C = {a, b, c, d, e, f, g, h} and eight

voters with the following preference orders:

v1 : a ≻ f ≻ c ≻ g ≻ h ≻ e ≻ b ≻ d, v2 : c ≻ e ≻ g ≻ h ≻ a ≻ f ≻ b ≻ d,

v3 : a ≻ f ≻ c ≻ h ≻ g ≻ e ≻ b ≻ d, v4 : d ≻ e ≻ h ≻ g ≻ a ≻ f ≻ b ≻ c,

v5 : b ≻ c ≻ g ≻ h ≻ a ≻ e ≻ f ≻ d, v6 : e ≻ g ≻ d ≻ h ≻ a ≻ b ≻ f ≻ c,

v7 : b ≻ d ≻ h ≻ g ≻ a ≻ e ≻ f ≻ c, v8 : f ≻ h ≻ d ≻ g ≻ a ≻ b ≻ e ≻ c.

Let the committee size k be 2. It is easy to compute the winners under the SNTV

and Bloc rules. For the former, the unique winning committee is {a, b} (these are the

only two candidates that are ranked in the top positions twice), and for the latter it is

{e, f } (these are the only two candidates that are ranked among top two positions three

times; all the other candidates are ranked there at most twice). A somewhat tedious

calculation shows that the unique k-Borda winning committee is {g, h}, which follows

since the Borda scores of the candidates a, b, c, d, e, f, g, h are, respectively:

32, 22, 23, 23, 28, 26, 35, 35.

Further calculations show that under the (classical) Chamberlin–Courant rule, the

unique winning committee is {c, d}. (While it is tedious to compute these results by

hand, and indeed we used a computer to find them, the intuition for the k-Borda and

Chamberlin–Courant winners is as follows: g and h are always ranked in the middle

of each vote, or slightly above, so that they get high total Borda score, whereas c and d

are ranked so that one of them is (almost) always ahead of g and h, whereas the other

one is in the last position. This way, as representatives, c and d get higher scores than

g and h, even though their total Borda score is lower.)

On the other hand, it is relatively easy to verify that under αk-CC, the winning

committee is {e, f } (its αk-CC score is six; there is no other committee whose members

are ranked among the top two positions of six or more voters).

Finally, let us consider the Perfectionist rule. It assigns two points to committee

{a, f }, one point to each of {b, c}, {b, d}, {c, e}, {d, e}, {e, g}, and { f, h}, and zero

points to all the other committees. Thus, {a, f } is the unique winning committee.

All the above rules are examples of OWA-based committee scoring rules, i.e., their

committee scoring functions can be expressed as ordered weighted averages (OWAs)

of single-winner scores. Formally, an OWA operator � of dimension k is a sequence

� = (λ1, . . . , λk) of nonnegative reals6 and the class of OWA-based rules (due to

Skowron et al. 2016) is defined as follows.

6 We slightly generalize the notion and, unlike Yager (1988), we do not require that λ1 + · · · + λk = 1.
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Definition 2 Let � = (�m,k)k≤m be a family of OWA operators such that �m,k =

(λ1
m,k , . . . , λk

m,k) has dimension k (one size-k vector for each pair m, k). Let γ =

(γm,k)k≤m be a family of (single-winner) scoring functions (one scoring function for

each pair m, k). Then γ together with � define a family of committee scoring functions

f = fm,k(�, γ ) such that for each (i1, . . . , ik) ∈ [mk] we have:

fm,k(i1, . . . , ik) =

k
∑

t=1

λt
m,kγm,k(it ).

The committee scoring rule R f corresponding to the family f is called OWA-based.

Intuitively, the OWA operators specify to what extent the voters care about each

member of the committee, depending on how this member is ranked among the other

ones. For example, rules with OWA operators of the form (1, . . . , 1), such as SNTV,

Bloc, or k-Borda, care about all the committee members equally, whereas rules with

OWA operators of the form (1, 0, . . . , 0), such as our two versions of the Chamberlin–

Courant rule, care about the top-ranked committee members only. Rules of the first

type are called weakly separable, and those of the second type are called representation

focused (Elkind et al. 2017; Faliszewski et al. 2016). Naturally, there are also many

other choices of OWA operators. For example, the t-Approval variant of the Propor-

tional Approval Voting rule (αt -PAV) uses OWA operators of the form (1, 1
2
, . . . , 1

k
),

indicating the decreasing attention the voters pay to their lower-ranked committee

members; the Perfectionist rule uses the OWA operator (0, . . . , 0, 1). For more dis-

cussions regarding the OWA-based rules, we refer the reader to the works of Skowron

et al. (2016), Aziz et al. (2017, 2015), and Lackner and Skowron (2017) (the latter

ones include a more detailed discussion of PAV; see also the work of Kilgour (2010)

for a description of this rule).

Remark 1 We note that in most cases the OWA vectors �m,k used to define OWA-

based rules do not depend on m. Yet, formally, we allow for such a dependence in

order to build the relation between our general framework in which committee scoring

functions fm,k might depend on m in any, even not very intuitive, way, and the world

of OWA-based rules.

Naturally, there are also committee scoring rules that are not OWA-based. For

example, Faliszewski et al. (2017) study the family of ℓp-Borda rules, with committee

scoring functions of the following form (p ≥ 1):

f
ℓp-Borda

m,k (i1, . . . , ik) :=
p

√
∑k

t=1 β
p
m(it ).

In particular, they discuss how the ℓp-Borda rules (for p > 1) are, in a certain

sense, between the k-Borda rule (which is simply the ℓ1-Borda rule) and the classical

Chamberlin–Courant rule (which, with slight abuse of notation, could be referred to

as ℓ∞-Borda).
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3 Fixed-majority consistent rules

We are ready to start our quest for finding committee scoring rules that can be seen as

multiwinner analogues of Plurality. We begin by describing the fixed-majority criterion

that, in our view, encapsulates the idea of “closeness” to Plurality. Then, we provide

a class of committee scoring rules—the class of top-k-counting rules—that contains

all the rules which satisfy the fixed-majority criterion. Finally, we provide an almost

complete characterization of those top-k-counting rules that have the fixed-majority

property.

3.1 Initial remarks

One of the features that distinguishes Plurality among all the other scoring rules is the

fact that it satisfies the simple majority criterion.

Definition 3 A single-winner voting rule R satisfies the simple majority criterion if

for every election E = (C, V ) where more than half of the voters rank some candidate

c first, it holds that R(E) = {c}.

Importantly, the simple majority criterion indeed characterizes Plurality within the

class of single-winner scoring rules. The result is a part of folklore (we provide the

proof for the sake of completeness).

Proposition 1 Let γ = (γm)m∈N be a family of single-winner scoring functions that

defines a scoring rule Rγ . Then, Rγ satisfies the simple majority criterion if and only

if for each m it holds that γm(1) > γm(2) = · · · = γm(m) (that is, if and only if Rγ

coincides with Plurality).

Proof It is straightforward to verify that if for each m we have γm(1) > γm(2) =

· · · = γm(m) then Rγ satisfies the simple majority criterion. For the other direction,

assume that Rγ satisfies the simple majority criterion. This immediately implies that

for each m ≥ 2 we have γm(1) > γm(m) (otherwise all the candidates would always

tie as winners). Hence for m = 2 the result follows.

Let us fix m ≥ 3. For each positive integer n, define the election En = (C, Vn)

with the candidate set C = {c1, . . . , cm} and with Vn containing:

n + 1 voters with preference order c1 ≻ c2 ≻ · · · ≻ cm and

n voters with preference order c2 ≻ c3 ≻ · · · ≻ cm ≻ c1.

Since Rγ satisfies the simple majority criterion, it must be the case that c1 is the unique

Rγ -winner for each En . Further, for a given value of n, the difference between the

scores of c1 and c2 in En is:

score(c1) − score(c2) =
(

(n + 1)γm(1) + nγm(m)
)

−
(

(n + 1)γm(2) + nγm(1)
)

= γm(1) − γm(2) + n
(

γm(m) − γm(2)
)

.
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Thus, if it held that γm(2) > γm(m), then—for large enough value of n—candidate

c1 would not be a winner of En . This implies that γm(2) = · · · = γm(m). Since

γm(1) > γm(m), we reach the conclusion that γm(1) > γm(2) = · · · = γm(m). ⊓⊔

There are at least two ways of generalizing the simple majority criterion to the

multiwinner setting. We choose perhaps the simplest one, the fixed-majority criterion

introduced by Debord (1993) (other notions of majority studied by Debord are variants

of the Condorcet principle and are incompatible with Plurality and scoring rules in

general).

Definition 4 A multiwinner voting rule R satisfies the fixed-majority criterion for m

candidates and committee size k if for every election E = (C, V ) with m candidates

the following holds: if there is a committee W of size k such that more than half of

the voters rank all the members of W above the non-members of W (equivalently:

put the candidates from W on top), then R(E, k) = {W }. We say that R satisfies the

fixed-majority criterion if it satisfies it for all choices of m and k (with k ≤ m).

Remark 2 Another possible way of extending the simple majority criterion to the

multiwinner case would be to say that if a committee W is such that for each c ∈ W

a majority of voters rank c among their top k positions (possibly a different majority

for each c), then W must be a winning committee. However, consider the following

votes over the candidate set {a, b, c}:

v1 : a > b > c, v2 : a > c > b, v3 : b > c > a.

For k = 2, all three committees, {a, b}, {a, c}, and {b, c} have majority support in

the sense just described. We feel that this is against the spirit of the simple majority

criterion (since at most one candidate can be ranked on the top position by more than

half of the voters, we feel that there should be at most one committee that can claim to

have the majority support). Thus, and since we have not found any other convincing

ways of generalizing the simple majority criterion to the multiwinner setting, we focus

on Debord’s fixed-majority notion.

It seems that the fixed-majority criterion is far more important for the multiwinner

setting than the simple majority criterion is for the single-winner one. For example,

one can verify that the Bloc rule satisfies the fixed-majority criterion and, in fact, this

property is crucial in explaining its inner workings (we characterize the Bloc rule as

the unique committee scoring rule that is noncrossing monotone and that satisfies the

fixed-majority criterion7). This is important as in practice Bloc is among the most

commonly used multiwinner rules. Further, the fixed-majority property may be useful

when arguing that a given voting rule is appropriate for a setting where the selected

committee needs strong legitimization: If a rule fails the fixed-majority property, then

it is possible that even though a majority of the voters agree which committee is the

7 For a discussion of noncrossing monotonicity that leads to this characterization, see the work of Fal-

iszewski et al. (2016).
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best, a different committee is elected (whose legitimacy might be questioned by this

majority).8

While the Bloc rule satisfies the fixed-majority criterion, the SNTV rule does not

(it will follow formally from our further discussion). This means that in our axiomatic

sense, Bloc is closer to Plurality than SNTV. This is quite interesting since one’s first

idea of generalizing Plurality would likely be to think of SNTV. Yet, Bloc is cer-

tainly not the only committee scoring rule that satisfies our criterion. For example, the

Perfectionist rule satisfies the fixed-majority criterion and, indeed, closely resembles

Plurality. The following remark strongly highlights this similarity.

Remark 3 Consider a situation where the voters extend their rankings of candidates

to rankings of committees in some natural way (see, e.g., the work of Barberà et al.

(2004) for an overview of how this may be done). Then, for each voter, the best

committee would consist of his or her k best candidates. As a result, running Plurality

on the profile of preferences over the committees would give the same result as running

Perfectionist over the profile of preferences over the candidates.

Naturally, not all committee scoring rules satisfy the fixed-majority criterion. For

example, neither k-Borda nor the Chamberlin–Courant rule do. To see this, it suffices

to note that for k = 1 they both become the single-winner Borda rule, which fails the

simple majority criterion.

3.2 Top-k-counting rules

To characterize the committee scoring rules that satisfy the fixed-majority criterion, we

introduce the class of scoring functions that depend only on the number of committee

members ranked in the top k positions.

Definition 5 We say that a committee scoring function fm,k : [m]k → R+ is top-k-

counting if there is a function gm,k : {0, . . . , k} → R+ such that gm,k(0) = 0 and for

each (i1, . . . , ik) ∈ [m]k we have fm,k(i1, . . . , ik) = gm,k(|{t ∈ [k] : it ≤ k}|). We

refer to gm,k as the counting function for fm,k . We say that a committee scoring rule

R f is top-k-counting if it can be defined through a family of top-k-counting scoring

functions f = ( fm,k)k≤m .

Both Bloc and Perfectionist are top-k-counting rules. The former uses the linear

counting function gm,k(x) = x , while the latter uses the counting function gm,k which

is a step-function: gm,k(x) = 0 for x < k and gm,k(k) = 1. Another example of a

top-k-counting rule is the αk-CC rule, which uses the counting function gm,k such that

gm,k(0) = 0 and gm,k(x) = 1 for all x ∈ [k].

Top-k-counting rules have a number of interesting features. First, their counting

functions have to be nondecreasing. Second, every top-k-counting rule is OWA-based.

Third, every committee scoring rule that satisfies the fixed-majority criterion is top-k-

counting. We express these facts in the following two propositions and in Theorem 4.

8 Naturally, on its own, the fact that a rule is fixed-majority consistent is not sufficient to claim that this

rule is good for such a setting.
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For the rest of the paper we make the assumption that m ≥ 2k; this assumption is

technical as our arguments are greatly simplified by the fact that we can form two

disjoint committees of size k. Further, it is also quite natural: one could say that if

we were to choose a committee consisting of more than half of the candidates, then

perhaps we should rather be voting for who should not be in the elected committee.

We are not sure whether this assumption can be dropped.

Proposition 2 Let m ≥ 2k and let fm,k : [m]k → R+ be a top-k-counting scoring

function defined through a counting function gm,k . Then, gm,k is nondecreasing.

Proof Let t ∈ {0, . . . , k} be a number. Consider the sequences It = (1, . . . , t, k +

1, . . . , k+(k−t)) and It+1 = (1, . . . , t+1, k+1, . . . , k+(k−t−1)) from [m]k . (Note

that we need m ≥ 2k for defining I0.) Since It+1 � It , we have that fm,k(It+1) ≥

fm,k(It ). By the definition, however, we have that fm,k(It+1) = gm,k(t + 1) and

fm,k(It ) = gm,k(t). Hence, gm,k(t + 1) ≥ gm,k(t). ⊓⊔

Without the assumption that m ≥ 2k, Proposition 2 would have to be phrased

more cautiously, and would speak only of the existence of a nondecreasing counting

function. (For example, for m = k, the function gm,k could be arbitrary.)

Proposition 3 Every top-k-counting rule is OWA-based.

Proof Let us consider a top-k-counting rule R f , where f = ( fm,k)k≤m is the

corresponding family of top-k-counting functions defined by a family of counting

functions (gm,k)k≤m . Let us consider one function fm,k from this family. We know

that fm,k : [m]k → R+ is a top-k-counting scoring function defined through a count-

ing function gm,k so that fm,k(i1, . . . , ik) = gm,k(s), where s = |{t ∈ [k] : it ≤ k}|.

As gm,k(0) = 0, we have

fm,k(i1, . . . ik) = gm,k(s) − gm,k(0) =
∑s

t=1(gm,k(t) − gm,k(t − 1))

=
∑k

t=1 αk(it ) · (gm,k(t) − gm,k(t − 1)),

from which we see that R f is OWA-based through the family of OWA operators:

�m,k = (gm,k(1) − gm,k(0), gm,k(2) − gm,k(1), . . . , gm,k(k) − gm,k(k − 1)),

and the family of k-Approval scoring functions (γm,k = αk). ⊓⊔

In the next theorem (and in many further theorems) we speak of a committee scoring

rule R f defined through a family of committee scoring functions f = ( fm,k)2k≤m .

We use this notation as a shorthand for the assumption that the theorem is restricted

to the cases where 2k ≤ m.

Theorem 4 Let f = ( fm,k)2k≤m be a family of committee scoring functions. Then, if

R f satisfies the fixed-majority criterion, then R f is top-k-counting.

Proof Let us fix two numbers m and k such that 2k ≤ m. Consider an election with

m candidates, where a committee of size k is to be elected. For each positive integer

t such that 0 ≤ t ≤ k we define the following two sequences from [m]k :
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1. It = (1, . . . , t, k + 1, . . . , k + k − t) is a sequence of positions of the candidates

where the first t candidates are ranked in the top t positions and the remaining

k − t candidates are ranked just below the kth position.

2. Jt = (k − (t − 1), . . . , k, m − ((k − t) − 1), . . . , m) is a sequence of positions

where the first t candidates are ranked just above (and including) the kth position,

whereas the remaining k − t candidates are ranked at the bottom.

Among these, Ik = (1, . . . , k) is the highest-scoring sequence of positions and Jk =

(m − (k − 1), . . . , m) is the lowest-scoring sequence. Further, for every t we have

It � Jt and, in effect, fm,k(It ) ≥ fm,k(Jt ).

We claim that if there exists some t ∈ {0, . . . , k} such that fm,k(It ) > fm,k(Jt ) then

R f does not have the fixed-majority property. For the sake of contradiction, assume

that there is some t such that fm,k(It ) > fm,k(Jt ). Let E = (C, V ) be an election

with m candidates and 2n + 1 voters. The set of candidates is C = X ∪ Y ∪ Z ∪ D,

where X = {x1, . . . , xt }, Y = {yt+1, . . . , yk}, Z = {zt+1, . . . , zk}, and D is a set of

sufficiently many dummy candidates so that |C | = m. We focus on two committees,

M = X ∪ Y and N = X ∪ Z . The first n + 1 voters have preference order X ≻ Y ≻

Z ≻ D, and the next n voters have preference order Z ≻ X ≻ D ≻ Y . Note that the

fixed-majority criterion requires that M be the unique winning committee.

Committee M receives the total score of (n + 1) fm,k(Ik) + n fm,k(Jt ), whereas

committee N receives the total score of (n + 1) fm,k(It ) + n fm,k(Ik). The difference

between these values is:

(n + 1) fm,k(Ik) + n fm,k(Jt ) − (n + 1) fm,k(It ) − n fm,k(Ik)

= fm,k(Ik) + n fm,k(Jt ) − (n + 1) fm,k(It ) =

= fm,k(Ik) − fm,k(It ) + n
(

fm,k(Jt ) − fm,k(It )
)

,

which, for a large enough value of n, is negative (since, by assumption, we know that

fm,k(Jt ) < fm,k(It ) and so fm,k(Jt ) − fm,k(It ) is negative). That is, for large enough

n, committee M does not win the election and R f fails the fixed-majority criterion.

So, if R f satisfies the fixed-majority criterion, then for every t ∈ {0, . . . , k} we have

that fm,k(It ) = fm,k(Jt ). This, however, means that fm,k is a top-k-counting scoring

function. To see this, consider some sequence of positions L = (ℓ1, . . . , ℓk) ∈ [m]k

where exactly the first t entries are smaller than or equal to k. Clearly, we have that It �

L � Jt and so fm,k(It ) = fm,k(L) = fm,k(Jt ), which means that fm,k(i1, . . . , ik)

depends only on the cardinality of the set {t ∈ [k] : it ≤ k}. Since m and k were chosen

arbitrarily (with 2k ≤ m), this completes the proof. ⊓⊔

Unfortunately, the converse of Theorem 4 does not hold: αk-CC, for example, is a

top-k-counting rule that fails the fixed-majority criterion.

Example 2 Consider an election E = (C, V ) with C = {a, b, c, d}, V = (v1, v2, v3),

and k = 2. Let the preference orders of the voters be:

v1 : a ≻ b ≻ c ≻ d, v2 : a ≻ b ≻ c ≻ d, v3 : c ≻ d ≻ a ≻ b.
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Fig. 1 Illustration of the

condition from Theorem 5

kk1 k1 + k2 k − k2

gm,k(k1 + k2) − gm.k(k1)

gm,k(k) − gm,k(k − k2)

The fixed-majority criterion requires {a, b} to be the only winning committee, while

under αk-CC, other committees, such as {a, c}, have strictly higher scores. (Inciden-

tally, this example also witnesses that SNTV fails the fixed-majority criterion; this is

hardly surprising since SNTV is not a top-k-counting rule.)

3.3 Criterion for fixed-majority consistency

In this section, we provide a formal characterization of those top-k-counting rules that

satisfy the fixed-majority criterion. Together with Theorem 4, this gives an almost full

characterization of committee scoring rules with this property.

Theorem 5 Let f = ( fm,k)2k≤m be a family of committee scoring functions with

the corresponding family (gm,k)2k≤m of counting functions. Then, R f satisfies the

fixed-majority criterion if and only if for every k, m ∈ N, 2k ≤ m, it holds that:

(i) gm,k is not constant, and

(ii) for each pair of nonnegative integers k1, k2 with k1 + k2 ≤ k, we have that:

gm,k(k) − gm,k(k − k2) ≥ gm,k(k1 + k2) − gm,k(k1).

(Condition (ii) in Theorem 5 is a relaxation of the convexity property for function

gm,k and is illustrated in Fig. 1; We discuss this in more detail after the proof of the

theorem.)

Proof of Theorem 5 Let fm,k be one of the committee scoring functions and gm,k be

its corresponding counting function. By Proposition 2, gm,k is nondecreasing so the

fact that it is non-constant is equivalent to gm,k(k) > gm,k(0). Moreover, we note

that conditions (i) and (ii) imply that for each k′ with 0 ≤ k′ ≤ k − 1, we have

gm,k(k) > gm,k(k
′). To see this we take k2 = 1 and note that for each k1 it holds

that gm,k(k) − gm,k(k − 1) ≥ gm,k(k1 + 1) − gm,k(k1). As gm,k(k) > gm,k(0), for
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some k1 we have that gm,k(k1 + 1) − gm,k(k1) > 0. Thus, gm,k(k) > gm,k(k − 1).

Since gm,k is nondecreasing, it is also true that gm,k(k − 1) ≥ gm,k(k
′). It follows that

gm,k(k) > gm,k(k
′).

Let us now show that if for each m and k, gm,k satisfies (ii), then R f has the fixed-

majority property. Let E = (C, V ) be an election with n voters and m candidates

for which there is a size-k committee M such that a majority of the voters rank all

members of M in the top k positions, but M loses to some committee S �= M (also of

size k). That is, we have score(S) ≥ score(M). Let ξ be a rational number, 1
2

< ξ ≤ 1,

such that exactly ξn voters rank all the members of M in the top k positions; we will

refer to these voters as M-voters and to the others as non-M-voters.

Without loss of generality, we can assume that all the non-M-voters have identical

preference orders. Indeed, if it were the case that fm,k(posvi
(S))− fm,k(posvi

(M)) >

fm,k(posv j
(S)) − fm,k(posv j

(M)) for some two non-M-voters vi and v j , then we

could replace the preference order of v j with that of vi and increase the advantage of

S over M . If for all non-M-voters this difference were the same, then we could simply

pick the preference order of one of them and assign it to all the other ones.

Let k1, k2, k3, and k4 be four numbers such that:

1. k1 is the number of candidates from S ∩ M that the non-M-voters rank among

their top k positions,

2. k2 is the number of candidates from S\M that the non-M-voters rank among their

top k positions,

3. k3 is the number of candidates from C\(S ∪ M) that the non-M-voters rank among

their top k positions, and

4. k4 is the number of candidates from M\S that the non-M-voters rank among their

top k positions.

Without loss of generality, we can assume that k4 = 0 and that |S\M | = k2 (since

m ≥ 2k, we can replace all members of M\S with candidates from C\M , and,

similarly, we can ensure that all members of S\M are ranked among the top k positions

by non-M-voters; these changes never decrease the score of S relative to that of M).

In effect, we have that k1 +k2 +k3 = k and, since |S ∩ M |+ |S\M | = k, we have that

|S ∩ M | = k − k2. We can assume that k2 > 0 as otherwise we would have S = M .

Given this notation, the difference between the scores of M and S is:

score(M) − score(S) = ξn · gm,k(k) + (1 − ξ)n · gm,k(k1) − ξn · gm,k(k − k2)

− (1 − ξ)n · gm,k(k1 + k2)

= ξn ·
(

gm,k(k) − gm,k(k − k2)
)

− (1 − ξ)n ·
(

gm,k(k1 + k2) − gm,k(k1)
)

> 0,

where the second equality holds due to rearranging of terms, and the final inequality

is an immediate consequence of the assumptions regarding the value of ξ and the

properties of gm,k (namely, that gm,k(k) − gm,k(k − k2) ≥ gm,k(k1 + k2) − gm,k(k1)

and that gm,k(k) − gm,k(k − k2) > 0). This, however, contradicts the assumption that

score(S) ≥ score(M) and, so, R f satisfies the fixed-majority criterion.
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We now consider the other direction. For the sake of contradiction, let us assume

that R f satisfies the fixed-majority criterion but that there exist m and k such that it is

not the case that conditions (i) and (ii) are both satisfied. If condition (i) is not satisfied

and gm,k is a constant function, then R f fails the fixed-majority criterion because

it always outputs all the subsets of size k, independently of the voters’ preferences.

Thus we assume that gm,k is not constant. Thus, suppose that condition (ii) does not

hold and there exist k1 and k2 with k1 + k2 ≤ k such that gm,k(k) − gm,k(k − k2) <

gm,k(k1 + k2) − gm,k(k1). We form an election with m candidates, c1, . . . , cm , and

2n +1 voters (we describe the choice of n later). The first n +1 voters have preference

order:

c1 ≻ c2 ≻ · · · ≻ cm,

and the remaining n voters have preference order:

c1 ≻ · · · ≻ ck1 ≻ cm ≻ cm−1 ≻ · · · ≻ ck1+1.

Since R f satisfies the fixed-majority criterion, in this election it outputs the unique

winning committee M = {c1, . . . , ck}. However, consider committee S:

S = {c1, . . . , ck1+k2 , cm, . . . , cm−(k−k1−k2)+1}.

Since m ≥ 2k, the difference between the scores of M and S is:

score(M) − score(S)

= (n + 1)gm,k(k) + ngm,k(k1) − (n + 1)gm,k(k1 + k2) − ngm,k(k − k2)

= n
(

gm,k(k) − gm,k(k − k2)
)

+ gm,k(k)

− n
(

gm,k(k1 + k2) − gm,k(k1)
)

− gm,k(k1 + k2).

Since gm,k(k) − gm,k(k − k2) < gm,k(k1 + k2) − gm,k(k1), we observe that for large

enough n the difference score(M)−score(S) becomes negative. This is a contradiction

showing that (ii) holds. ⊓⊔

Let us take a step back and consider what condition (ii) from Theorem 5 means

(recall Fig. 1). Intuitively, it resembles the convexity condition, but ‘focused’ on

gm,k(k) (see the explanation below).

Definition 6 Let gm,k be a counting function for some top-k-counting function

fm,k : [m]k → R+. We say that gm,k is convex if for each k′ such that 2 ≤ k′ ≤ k, it

holds that:

gm,k(k
′) − gm,k(k

′ − 1) ≥ gm,k(k
′ − 1) − gm,k(k

′ − 2).

On the other hand, we say that g is concave if for each k′ with 2 ≤ k′ ≤ k it holds

that:

gm,k(k
′) − gm,k(k

′ − 1) ≤ gm,k(k
′ − 1) − gm,k(k

′ − 2).
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Using inductive reasoning, we see that the above definition of a convex top-k-

counting function is equivalent to requiring that for each k′, k′′, and d such that

k′′ ≤ k′ ≤ k, k′′ − d ≥ 0, and k′ − d ≥ 0, it holds that:

gm,k(k
′) − gm,k(k

′ − d) ≥ gm,k(k
′′) − gm,k(k

′′ − d).

Condition (ii) of Theorem 5 is of the same form, except that we fix k′ to be k (i.e., we

‘focus on gm,k(k)’), set d = k2, and set k′′ = k1 + k2.

The notions of convexity and concavity are standard, but allow us to express many

features of top-k-counting rules in a very intuitive way. For example, the following

corollary is an immediate consequence of Theorem 5.

Corollary 6 Let f = ( fm,k)2k≤m be a family of top-k-counting committee scoring

functions with the corresponding family (gm,k)2k≤m of counting functions. The fol-

lowing statements hold:

1. if gm,k are convex, then R f satisfies the fixed-majority criterion, and

2. if gm,k are concave but not linear (that is, R f is not Bloc) then R f fails the

fixed-majority criterion.

The counting function for the Bloc rule is linear (and, thus, both convex and con-

cave), and the counting function for the Perfectionist rule is convex, so these two rules

satisfy the fixed-majority criterion. On the other hand, the counting function for αk-CC

is concave and, so, this rule fails the criterion (as we observed in Example 2). (It may

be helpful to remark here that committee scoring rules are uniquely represented by

their committee scoring functions, up to affine transformations; this result is provided

in the technical report version of the work of Faliszewski et al. (2016).)

By Proposition 3, a family of concave counting functions gm,k corresponds to a

nonincreasing OWA operator and a family of convex counting functions corresponds

to a nondecreasing one. Skowron et al. (2016) provided evidence that rules based on

nonincreasing OWA operators are computationally easier than those based on general

OWA operators (while computing the exact winning committees tends to be compu-

tationally hard in both cases, there are, for example, polynomial-time constant-factor

approximation algorithms whenever the operators are nonincreasing; unless P = NP,

such algorithms do not exist for many rules based on the other OWA operators). In

Sect. 4 we show that this seems to be the case for top-k-counting rules as well, but we

also provide a striking example highlighting a certain dissimilarity.

3.4 Characterization of Bloc within committee scoring rules

We conclude this section by noting that Theorems 4 and 5, together with a result of

Faliszewski et al. (2016), suffice to characterize Bloc within the class of committee

scoring rules. To present this result, we need the following definition of Elkind et al.

(2017):

Definition 7 A multiwinner rule R is noncrossing-monotone if the following holds:

Whenever committee W of size k is winning in some election E , then W also is winning
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in every election E ′ resulting from shifting some member c of W one position forward

in some vote (provided that c does not pass any other member of W ).

Faliszewski et al. (2016) have shown that a committee scoring rule is noncrossing

monotone if and only if it is weakly separable, that is, if and only if its scoring

functions f = ( fm,k)k≤m are of the form:

fm,k(i1, . . . , ik) = γm,k(i1) + γm,k(i2) + · · · + γm,k(ik), (1)

where γ = (γm,k)k≤m is a family of single-winner scoring functions. Since the scoring

functions of the Bloc rule are the only top-k-counting scoring functions of this form

[this also follows by uniqueness of representation of committee scoring rules (Fal-

iszewski et al. 2016)], by Theorems 4 and 5 we get the following corollary.

Corollary 7 Bloc is the only committee scoring rule that is both fixed-majority con-

sistent and noncrossing monotone.

This corollary calls for two comments. First, the reader may complain that Theo-

rems 4 and 5 assume that the number of candidates is at least twice as large as the

committee size, but in Corollary 7 we do not make this assumption. Indeed, Theo-

rems 4 and 5 suffice for Corollary 7 only for the case where 2k ≤ m. For the case

where 2k > m, one can show that the result still holds by using the fact that noncross-

ing monotonicity guarantees that our committee scoring rule have scoring functions

of the form (1). Indeed, it suffices to consider an election with:

n + 1 votes of the form c1 ≻ c2 ≻ · · · ≻ ck ≻ ck+1 ≻ · · · ≻ cm, and

n votes of the form ck+1 ≻ c1 ≻ · · · ≻ ck−1 ≻ ck+2 ≻ · · · ≻ cm ≻ ck .

If it were the case that γm,k(1) > γm,k(k) then, for sufficiently large n, candidate

ck+1 would have higher γm,k-score than ck in the above election and, in consequence,

the committee {c1, . . . , ck} would not be winning. Thus our rule would not be fixed-

majority consistent. The same would hold if we had that γm,k(1) = · · · = γm,k(k),

but γm,k(k + 1) > γm,k(m): For sufficiently large n, ck+1 would have higher γm,k

score than ck . Naturally, if γm,k(1) = · · · = γm,k(m), then all committees would

always win and the rule would not be fixed-majority consistent either. Thus the only

functions γm,k remaining are such that γm,k(1) = · · · = γm,k(k) > γm,k(k + 1) =

· · · = γm,k(m). Such functions generate exactly the Bloc rule, which is fixed-majority

consistent.

Faliszewski et al. (2016) characterize Bloc as the only committee scoring rules that

is top-k-counting and weakly separable, which is the same result as ours, but phrased

in terms of syntactic properties of scoring functions and not in terms of axiomatic

properties.

4 Complexity of top-k-counting rules

In this section, we consider the computational complexity of winner determination

for top-k-counting rules which are based on either convex or concave counting func-
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tions. Throughout this section, we focus on committee scoring functions of the form

fm,k : [m]k → N, that is, on functions that always return nonnegative integers as

scores. This is a technical assumption, motivated by the fact that representing arbi-

trary real numbers on a computer can be problematic. To avoid confusion, we mention

this assumption explicitly in each relevant theorem.

Remark 4 For a committee scoring rule R f , when we say that this rule is NP-hard to

compute, we formally mean that, given an election E = (C, V ), a committee size k,

and a nonnegative integer T , the problem of deciding if there exists a committee S of

size k whose score is at least T is NP-hard. Indeed, if we were able to compute an R f

winning committee of size k in polynomial time, then we could solve this decision

problem in polynomial time as well, by checking if the score of the winning committee

is at least T (provided that f were polynomial-time computable). Conversely, if we

knew that our decision problem were NP-hard, then we would also know that the

ability to compute winning committees under R f implies the ability to solve NP-hard

problems.

We start by considering several examples. It is well-known that Bloc winners can

be computed in polynomial time; this is so since one can compute the score of each

candidate separately. It turns out that the same holds for the Perfectionist rule, albeit

following different reasoning.

Proposition 8 Both Bloc and Perfectionist winners are computable in polynomial

time.

Proof The case of Bloc is well-known (to form a winning committee of size k it

suffices to pick k candidates with the highest k-Approval scores). To find a size-k

winning committee under the Perfectionist rule, for each voter v we consider the set

of his or her top-k candidates as a committee, and compute the score of that committee

in the election. We output those committees—among the considered ones—that have

the highest score. Correctness follows by noting that the committees considered by

the algorithm are the only ones with nonzero scores. ⊓⊔

While the above result is very simple, it is also very interesting. For example,

Perfectionist is the first example of a polynomial-time computable committee scor-

ing rule that is not weakly separable [see the discussions of Elkind et al. (2017)

and Faliszewski et al. (2016)]. Further, it stands in sharp contrast to the results of

Skowron et al. (2016). By Proposition 3, Perfectionist is defined through the OWA

operator (0, . . . , 0, 1), and Skowron et al. have shown that, in general, rules defined

through this operator are NP-hard to compute and very difficult to approximate. Their

result, however, relies on the fact that voters can approve any number of candidates,

while in our case they must approve exactly k of them. This shows very clearly that

even though top-k-counting rules are OWA-based, we cannot simply carry-over the

computational hardness results of Skowron et al. (2016) or Aziz et al. (2015) to our

framework.

We can generalize Proposition 8 to rules that are, in some sense, similar to

Perfectionist. To this end, and to facilitate our later discussion regarding the com-
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plexity of top-k-counting rules, we define the following property of counting

functions.

Definition 8 Let gm,k be a counting function for a top-k-counting function

fm,k : [m]k → N. We define the singularity of gm,k , denoted by sing(gm,k), to be

sing(gm,k) = arg min
2≤i≤k

(

gm,k(i) − gm,k(i − 1) �= gm,k(i − 1) − gm,k(i − 2)
)

.

Loosely speaking, sing(gm,k) is the smallest integer in {2, . . . , k} for which the

differential of gm,k changes. For Bloc (which is an exception) we define sing(gm,k) to

be ∞, since the differential is a constant function. Naturally, for all other non-constant

rules, the singularity is finite. For example, for Perfectionist we have sing(gm,k) = k.

We generalize the polynomial-time algorithm for Perfectionist to similar rules, for

which the value sing(gm,k) is close to k.

Proposition 9 Let R f be a top-k-counting rule for a family f = ( fm,k)2k≤m of

polynomial-time computable committee scoring functions ( fm,k : [m]k → N) with the

corresponding family of counting functions (gm,k)2k≤m . Let q be a constant, positive

integer such that k −sing(gm,k) ≤ q holds for all m and k. Then R f has a polynomial-

time computable winner determination problem.

Proof Let the input consist of election E = (C, V ) and positive integer k, and let W

be a winning committee in R(E, k). We assume that q < k
2

(if it were not the case,

then k ≤ 2q would be small and we could solve the problem using brute-force). We

consider two cases: (1) there is at least one voter that has at least sing(gm,k) of his or

her top k candidates in W ; (2) every voter has less than sing(gm,k) of his or her top k

candidates in W .

If case (1) holds, then we can compute W (or some other winning committee)

by checking, for each voter v, all the committees that consist of at least sing(gm,k)

candidates that v ranks among his or her top k positions. Since k − sing(gm,k) ≤ q,

the number of committees that we have to check for each voter is:

k
∑

t=sing(gm,k )

(
k

t

)(
m

k − t

)

≤ (q + 1) ·

(
k

k − sing(gm,k)

)(
m

k − sing(gm,k)

)

,

which is a polynomial in k and m. The above inequality requires some care: We have

that sing(gm,k) > k
2

(because k − sing(gm,k) ≤ q < k
2

) and, in effect, we have

that for each t ∈ {sing(gm,k), . . . , k} it holds that
(

k
t

)

=
(

k
k−t

)

≤
(

k
k−sing(gm,k )

)

and
(

m
k−t

)

≤
(

m
k−sing(gm,k )

)

.

If case (2) holds, then from the fact that gm,k(x) − gm,k(x − 1) is a constant for

x ≤ sing(gm,k), we infer that gm,k(x) is effectively linear. Then, it suffices to compute

the winning committee using the Bloc rule. While we do not know which of the two

cases holds, we can compute the two committees, one as in case (1) and one as in case

(2), and output the one with the higher score (or either of them, in case of a tie). ⊓⊔
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Example 3 Consider the following committee scoring function:

f ′
m,k(i1, . . . , ik) = fBloc(i1, . . . , ik) + fPerf(i1, . . . , ik)

= αk(i1) + · · · + αk(ik−1) + 2αk(ik).

As a simple application of Proposition 9, we get that the committee scoring rule R f ′

defined through f ′ is polynomial-time computable. This rule can be seen as a variant

of Bloc, where a voter gives additional one bonus point to a committee if he or she

approves of all its members. By Corollary 6, this rule is fixed-majority consistent.

It is also interesting to consider the rule which is defined through the following

committee scoring function:

f ′′
m,k(i1, . . . , ik) = fSNTV(i1, . . . , ik) + fPerf(i1, . . . , ik) = α1(i1) + αk(ik).

The corresponding rule is also polynomial-time computable (it suffices to compute an

SNTV winning committee, and compare it with such committees whose all members

stand on first k positions in some voter’s preference ranking), but it is not a top-k-

counting rule and, so, it fails the fixed-majority criterion.

Yet, as one might expect, not all top-k-counting rules are polynomial-time solvable

and, indeed, most of them are not (under standard complexity-theoretic assumptions).

For example, αk-CC is NP-hard (this follows quite easily from Theorem 1 of Procaccia

et al. (2008); we include a brief proof to substantiate the discussion and give the reader

some intuition).

Proposition 10 For αk-CC it is NP-hard to decide whether or not there exists a

committee with at least a given score (recall that k in αk-CC is the committee size and,

thus, is part of the input).

Proof sketch The NP-hardness follows easily from a standard reduction from the

Exact Cover by 3- Sets problem, abbreviated as X3C. In an instance of X3C

we are given a family of m subsets, S1, . . . , Sm , each of cardinality 3, chosen from a

given universal set U = {x1, . . . , x3n}, and we ask if there are n subsets from the family

whose union is U . Additionally, we assume that each element of U belongs to at most

three subsets [it is well-known that this variant of X3C remains NP-complete (Garey

and Johnson 1979)].

Given an instance of X3C, we create a candidate for each subset and a voter for

each element of U . Voters rank the subsets to which they belong in their top positions,

then they rank some n dummy candidates (different ones for each voter), and then all

the remaining candidates (in some arbitrary, easy to compute, order). We ask for a

committee of size k = n (and we assume that n ≥ 3; this is a technical assumption
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as for n = 1 and n = 2 our construction is formally incorrect9). There is a winning

committee with score 3n if and only if the answer for the input instance is “yes.” ⊓⊔

We generalize the above NP-hardness result to the case of convex top-k-counting

rules R f for which there is some constant c such that for each k and m it holds that

k − sing(gm,k) ≥ k/c (that is, to the case of convex counting functions for which the

differential changes ‘early’). The proof of this result is fairly technical and is available

in Appendix A.

Theorem 11 Let R f be a top-k-counting rule defined through a family f of top-k-

counting functions fm,k : [m]k → N ( fm,k : [m]k → N) with the corresponding family

of counting functions (gm,k)k≤m that do not depend on m, gm,k = gk , and such that:

1. For each x, 0 ≤ x ≤ k, gk(x) is computable in polynomial time with respect to k

(that is, there is a polynomial time algorithm that given x and k outputs gk(x)).

Moreover, for each k, gk(k) is polynomially bounded in k.

2. There is a constant c such that, for each size of committee k greater than some

fixed constant k0, gk is convex and k − sing(gk) ≥ k/c.

Then, deciding if there is a committee with at least a given score is NP-hard for R f .

Let us now discuss the assumptions of the theorem, where they come from and why

we believe they are natural (or necessary).

First, the assumption that the counting functions are computable in polynomial time

is standard and clear. Indeed, it would not be particularly interesting to seek hardness

results if already the counting functions were hard to compute.

Second, we believe that the assumption that the counting functions gm,k do not

depend on m is reasonable. For example, it is quite intuitive that adding some candi-

dates that all the voters rank last should not have any effect on the committee selected

by a top-k-counting rule. (The assumption is also very helpful on the technical level.

Our construction uses a number of dummy candidates that depends on the values of

the counting function. If the values of the counting function depended on the number

of candidates, we might end up with a very problematic, circular dependence.)

Third, the assumption that there is a constant c such that for any large enough

committee size k we have k − sing(gk) ≥ k/c says that the function “shows its convex

behavior” early enough. As shown in Proposition 9, some assumption of this form is

necessary (though there is still a gap, since the bounds from the theorem and from

Proposition 9 do not match perfectly), and it is the core of the theorem.

Finally, perhaps the least intuitive assumption in this theorem is the requirement that

for a given committee size k, the highest value of the counting function is polynomially

bounded in k. The reason for having it is that, if the highest value were extremely

large (say, exponentially large with respect to k) then, for sufficiently few voters

(for example, polynomially many), the rule might degenerate to a polynomial-time

9 This is so, because we require that each voter (i.e., each element) ranks each of the sets to which he or

she belongs among top k positions. By assumption, each element belongs to at most 3 sets, so we need

k = n ≥ 3. Given an instance of X3C where n = 1 or n = 2, we can solve it using a brute-force algorithm

(we have to either try each set or each pair of sets as a solution) and, depending on the outcome, either

output a fixed yes-instance or a fixed no-instance of our problem.
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computable one (for example, it might resemble the Perfectionist rule for this case).

Exactly to avoid such problems, in our proof we use a number of voters that depends on

gk(k). Our reduction would not run in polynomial time if gk(k) were superpolynomial.

A result similar to Theorem 11, but for concave rules, is possible as well [and, in

essence, follows from the proofs of Skowron et al. (2016) and Aziz et al. (2015)].

Thus, in general, top-k-counting functions tend to be NP-hard to compute. What can

we do if we need to use them anyway? There are several possibilities. Next we consider

approximability and fixed-parameter tractability as possible approaches.

4.1 Approximability

First, for concave top-k-counting rules we can obtain a constant-factor approxima-

tion algorithm [we deduce it from the result of Skowron et al. (2016), which—in

essence—boils down to optimizing a submodular function using the seminal results

of Nemhauser et al. (1978)]. In particular, the next result applies to theαk -PAV rule (that

is, to the top-k-counting rule based on the OWA operators of the form (1, 1
2
, 1

3
, . . . , 1

k
);

recall its discussion from Sect. 2).

Theorem 12 Let R f be a top-k-counting rule defined through a family f of

(polynomial-time computable) top-k-counting functions fm,k : [m]k → N with corre-

sponding counting functions gm,k that are concave. Then there is a polynomial-time

algorithm that, given an election E and a committee size k, computes a committee

W of size k, whose score, under R f , is at least a (1 − 1
e
) fraction of the score of the

winning committee(s) from R f (E, k).

Proof This follows from the fact that concave top-k-counting rules correspond to

OWA-based rules that use nonincreasing OWA operators. For such rules, there is a

(1 − 1
e
)-approximation algorithm for computing the score of the winning committees

and for computing a committee with such a score (Skowron et al. 2016, Theorem 4).

⊓⊔

Such a general result for convex counting functions seems impossible. Let us con-

sider a convex counting function gm,k(x) = max(x − 1, 0) that is nearly identical

to the linear counting function used by Bloc. Let us refer to the top-k-counting rule

defined by (gm,k)k≤m as NearlyBloc. If we had a polynomial-time constant-factor

approximation algorithm for NearlyBloc, we would have a constant-factor approxi-

mation algorithm for the Densest at most K Subgraph problem (abbreviated

as DamkS; see below). Taking into account the results of Khuller and Saha (2009),

Raghavendra and Steurer (2010), and Alon et al. (2011), this seems very unlikely.

Given a graph G, we refer to its sets of vertices and edges as V (G) and E(G),

respectively. The density of a graph G is defined as δ =
|E(G)|
|V (G)|

.

Definition 9 In the Densest at most K Subgraph problem, DamkS, we are given

a graph G and we ask for a subgraph of G of the highest possible density with at most

K vertices.

The proof of the next theorem is available in Appendix B.
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Theorem 13 There is no polynomial-time constant-factor approximation algorithm

for the problem of computing the score of a winning committee under NearlyBloc,

unless such an algorithm exists for the DamkS problem.

Nonetheless, for top-k-counting rules that are not too far from αk-CC, we have a

polynomial-time approximation scheme (PTAS), that is, an algorithm that can achieve

any desired approximation ratio, as long as the number of candidates is not too large

relative to the committee size. This result holds even for rules that are not concave

(provided they satisfy the conditions of the theorem); the result follows by noting that

our voters have non-finicky utilities (Skowron et al. 2016).

Theorem 14 Let R f be a top-k-counting committee scoring rule, where the family

f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of counting functions

(gm,k)k≤m that are: (a) polynomial-time computable and (b) constant for arguments

greater than some given value ℓ. If m = o(k2), then there is a PTAS for computing

the score of a winning committee under R f .

Proof We use the concept of non-finicky utilities provided by Skowron et al. (2016).

Adapting their terminology, we say that a single-winner scoring function γm : [m] →

N (for elections with m candidates) is (ξ, δ)-non-finicky for ξ, δ ∈ [0, 1], if each of

the highest ⌈δm⌉ numbers in the sequence γm(1), . . . , γm(m) is greater or equal to

ξγm(1). It is easy to see that αk is (1, k
m

)-non-finicky.

Consider an input election E = (C, V ) with m candidates, and committee size k,

such that m = o(k2). By Proposition 3, we know that fm,k is OWA-based, that it uses

some OWA operator �m,k that has nonzero entries on the top ℓ positions only, and that

it uses scoring function αk (which is a (1, k
m

)-non-finicky). Thus, due to Skowron et al.

(2016), there is a polynomial-time
(

1 − ℓ exp
(

− k2

mℓ2

))

-approximation algorithm for

computing the score of a winning committee under f . Using the assumption that

m = o(k2), the approximation ratio of the algorithm is:

α = 1 − ℓ exp

(

−
k2

mℓ2

)

= 1 − ℓ exp

(

−
k2

o(k2)ℓ2

)

= 1 − ℓ exp

(

−
1

o(1)

)

= 1 − o(1).

This completes the proof. ⊓⊔

Theorem 14 is quite remarkable even for the case of αk-CC (let alone that it

applies to a somewhat more general set of rules). Indeed, generally, variants of the

Chamberlin–Courant rule that use some sort of approval scoring function are hard to

compute (Procaccia et al. 2008; Betzler et al. 2013) and the best possible approxima-

tion ratio for a polynomial-time algorithm, in the general case, is 1 − 1
e

[this result

was observed by Skowron and Faliszewski (2017) and follows from results for the

MaxCover problem (Feige 1998)]. This upper bound, however, relies on the fact that
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there is no connection between the size of the input election, the committee size, and

the number of candidates that each voter approves. We obtain a PTAS because we

assume that for the committee size k each voter approves of k candidates, and that the

number m of candidates is such that m = o(k2).

One may ask how likely it is that this last assumption holds. As a piece of anecdotal

evidence, we mention that in the 2015 parliamentary elections in Poland, there were

k = 460 seats in the parliament and m ≈ 8000 candidates. In this case, m/k2 ≈

0.0378, which suggests that our algorithm could be effective (provided that the voters

could say which k candidates they approve of; likely, this would require some sort of

simplified ballots, for example, allowing one to approve blocks of candidates).

4.2 Fixed-parameter tractability

If one were not interested in approximation algorithms but still wanted to use

top-k-counting rules, then one might seek fixed-parameter tractable algorithms. In

parameterized complexity we concentrate on some distinguished parameter of the

problem, such as the number of candidates or the number of voters. We say that a

parameterized problem is fixed-parameter tractable (is in FPT) if there is an algorithm

that, given an instance of this problem of size n with parameter t , computes an answer

for the problem in time f (t)nO(1), where f is some computable function (such an

algorithm is also said to run in FPT time with respect to parameter t). For a detailed

description of parameterized complexity, we point the readers to the books by Downey

and Fellows (1999), Niedermeier (2006), and Cygan et al. (2015).

We start with a simple observation, namely that a winning committee can be com-

puted for every top-k-counting rule in FPT time for the parameterization by the number

of candidates.

Proposition 15 Let R f be a top-k-counting committee scoring rule, where the family

f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of counting functions

(gm,k)k≤m (that are computable in FPT time with respect to m). There is an algorithm

that, given a committee size k and an election E, computes a winning committee from

R f (E, k) in FPT time with respect to the number m of candidates.

Proof The algorithm simply computes the score of every possible committee and

outputs the one with the highest score. With m candidates and committee size k, the

algorithm has to check
(

m
k

)

= O(mm) committees, and checking each committee

requires FPT time only. ⊓⊔

For rules based on concave counting functions we can also provide a far less trivial

FPT algorithm for the parameterization by the number of voters (the proof, which

uses a somewhat technical trick on top of solving a mixed integer linear program is

available in Appendix C). The algorithm applies, for example, to the αk-PAV rule,

which uses OWA operators of the form (1, 1
2
, 1

3
, . . . , 1

k
), so its counting functions are

of the form gPAV
m,k (x) =

∑x
t=1

1
t
, and are concave. (See Sect. 2 for literature pointers

regarding the PAV rule.)
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Theorem 16 Let R f be a top-k-counting committee scoring rule, where the family

f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of concave counting

functions (gm,k)k≤m (that are polynomial-time computable). There is an algorithm

that, given a committee size k and an election E, computes a winning committee from

R f (E, k) in FPT time with respect to the number n of voters.

To summarize, it appears that most (but certainly not all) top-k-counting rules are

NP-hard to compute. For top-k-counting rules based on concave counting functions,

there are good polynomial-time approximation algorithms and some exact FPT algo-

rithms. On the other hand, for rules based on convex functions the situation is much

more difficult. Aside from several algorithms that do not depend on concavity or con-

vexity of the counting function (for instance the algorithms from Theorem 14 and

Proposition 15), so far we only have evidence for computational hardness.

5 Related literature

The rules considered in this paper form a subfamily of the OWA-based rules of

Skowron et al. (2016). A specific subclass of OWA-based rules—when voters express

their preferences in the form of approval ballots—has been already mentioned in the

early work of Thiele (1895). More recently, Aziz et al. (2017), Brill et al. (2017),

and Sánchez-Fernández et al. (2017) analyzed selected axiomatic properties of the

Thiele methods, and Aziz et al. (2015) studied their computational complexity. For

a more general overview of approval-based multiwinner rules we refer the reader to

the book by Kilgour (2010). It is also worth noting that there exist other OWA-based

approaches to multiwinner voting [see, e.g., the work of Elkind and Ismaili (2015)],

which, however, do not directly apply to our setting.

More generally, the class of OWA-based rules is a subclass of the class of committee

scoring rules (Elkind et al. 2017). Committee scoring rules have been recently axiomat-

ically characterized by Skowron et al. (2016), and Faliszewski et al. (2016) classified

voting rules within this class in the form of a hierarchy. The studies of axiomatic

properties of other committee scoring rules also include the work of Debord (1992),

who characterized k-Borda voting rule. There is also a substantial literature describ-

ing axiomatic properties of other types of multiwinner rules—for an overview of this

literature we refer the reader to the work of Elkind et al. (2017) and to the survey of

Faliszewski et al. (2017).

Establishing the complexity of winner determination under various multiwinner

rules is an active area of research. These studies were pioneered by Procaccia et al.

(2008), who proved that computing winners under the Chamberlin–Courant committee

scoring rule is NP-hard10 and, in consequence, motivated many researchers to seek

ways of circumventing this result. For example, Betzler et al. (2013) have shown

that the rule is polynomial-time computable for the case of single-peaked preferences

and Yu et al. (2013) have done the same for single-crossing ones [Elkind and Lackner

(2015), Skowron et al. (2015b), Peters (2018), and Peters and Lackner (2017) provided

further generalizations and improvements to these results]. Betzler et al. (2013) studied

10 They also considered Monroe’s rule, which is closely related but is not a committee scoring rule itself.
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the problem from the perspective of parameterized complexity theory, whereas Lu

and Boutilier (2011) analyzed the possibility of approximation and proved that a

simple greedy procedure guarantees the approximation ratio of 1 − 1/e (the ratio

relates the scores of the winning committee and the one provided by the algorithm).

Later, Skowron et al. (2015a) improved this result by showing a polynomial-time

approximation scheme. Oren and Lucier (2014) proved that if the voters arrive in a

random order then the greedy algorithm can be easily adapted to the online setting,

preserving the approximation ratio arbitrarily close to 1 − 1/e; they also observed

that for certain specific distributions of votes this approximation ratio can actually

improve. Skowron and Faliszewski (2017) studied FPT approximation algorithms of

the approval-based Chamberlin–Courant rule and Faliszewski et al. (2016) showed

that often in practice the quality of approximation can be improved by employing

certain clustering algorithms.

So far, analysis of the complexity of other committee scoring rules received far

less attention, but this seems to be changing quickly. For example, it was shown

that finding winners according to the proportional approval voting rule (the PAV rule),

another approval-based committee scoring rule, is NP-hard (Aziz et al. 2015; Skowron

et al. 2016), but there exist good approximation algorithms for the problem (Skowron

et al. 2016; Skowron 2016; Byrka et al. 2017). The complexity of other selected

subclasses of committee scoring rules has been studied by Skowron et al. (2016) and

by Faliszewski et al. (2016). There also exists a literature studying the computational

complexity of other multiwinner rules, which do not belong to the class of committee

scoring rules, such as Minimax Approval Voting (MAV): finding winners under MAV

is NP-hard (LeGrand 2004), yet there exists a PTAS for the problem (Byrka and

Sornat 2014). Parameterized complexity and parameterized approximations of the rule

were considered by Misra et al. (2015) and Cygan et al. (2017). The computational

complexity of these and other important issues pertaining to MAV were considered

by Baumeister et al. (2010, 2015, 2016), Baumeister and Dennisen (2015).

Our work regards the model of multiwinner elections where the voters rank the can-

didates and it is the voting rule’s task to (implicitly) derive rankings of the committees

(in a systematic way, according to the principles that underlie the given rule). Another

approach, pioneered by Fishburn (1981a, b), is to require that the voters rank the

committees explicitly. This approach is useful when there are dependencies between

the candidates that are hard (or impossible) to capture within simple preference orders

(e.g., when it is important that all members of an elected committee can work together),

but can be used directly only in very limited settings (for example, there are 252 com-

mittees of five out of ten candidates; it would be unreasonable to ask voters to rank

them all). In other cases, one has to rely on concise means of expressing voters’ prefer-

ences, such as the formalism of CP-nets (Boutilier et al. 2004). Multiwinner elections

of this type are often studied within the area of voting in combinatorial domains (Lang

and Xia 2015).
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6 Conclusions and further research

Aiming at finding a multiwinner analogue of the single-winner Plurality rule, we

have shown that the answer is quite involved. While it is tempting to view SNTV as

a natural analogue of Plurality, a closer look reveals that it fails the fixed-majority

criterion (which Plurality satisfies in the single-winner setting). We have found that,

among all committee scoring rules, only the top-k-counting rules—a class of rules we

have defined in this paper—have a chance of satisfying the fixed-majority criterion,

and we have characterized when this happens. Specifically, we have shown that the

committee scoring rules which satisfy the fixed-majority criterion are exactly those

top-k-counting rules whose counting functions satisfy a relaxed variant of convexity.

For example, the Bloc and Perfectionist rules both satisfy the fixed-majority crite-

rion and, so, in some sense, they are among the multiwinner analogues of Plurality

(for the Perfectionist rule this goes quite deep). On the other hand, a variant of the

Chamberlin–Courant rule based on the k-Approval scoring function is top-k-counting,

but fails the fixed-majority criterion.

We believe that it is very interesting to focus on top-k-counting rules based either

on convex or on concave counting functions. These two classes of rules are different in

some interesting ways: top-k-counting rules based on convex counting functions are

fixed-majority consistent, but seem very hard to compute (with a few exceptions); this

stands in contrast to top-k-counting rules based on concave counting functions, which

fail the fixed-majority criterion (the borderline case of Bloc rule excluded), but are

much easier to compute (typically still NP-hard, but with constant-factor polynomial-

time approximation algorithms and FPT algorithms for the parameterization by the

number of voters).

Our work leads to a number of open questions. In the axiomatic direction, it would

be interesting to consider notions analogous to the fixed-majority criterion for the

setting where voters do not provide preference orders but, instead, simply indicate

which candidates they do or do not approve. On the computational front, it would

be interesting to find more powerful algorithms for computing winning committees

under various top-k-counting rules (e.g., for the αk-PAV rule).
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A Proof of Theorem 11

We prove NP-hardness of the problem by giving a reduction from the Clique problem

on regular graphs (a graph is regular if all its vertices have the same degree). In the

Clique problem we are given a graph G and an integer h, and we ask if there exists a

set of h pairwise adjacent vertices in G (such a set of vertices is referred to as a size-h

clique). The problem remains NP-complete when restricted to regular graphs (Garey

and Johnson 1979).

Let G be the input regular graph, let h be the size of the clique sought for, and

let δ be the common degree of G’s vertices. If h > δ + 1, then, of course, the graph

does not contain a size-h clique and we output a fixed “no”-instance of our problem.

Otherwise, we output an instance according to the following construction (intuitively,

since each gk is convex, the rule promotes situations where voters rank many members

of the committee among their top k candidates; we exploit this fact).

We set the committee size k to be (c + 2)h (recall that c is defined in the theorem

statement). Since gk does not depend on the number of candidates in the election, this

fixes the counting function that we work with and we will denote it g. If k ≤ k0 (recall

that k0 is defined in the statement of the theorem), then we solve the input instance

using brute force in polynomial time and output either a fixed “yes”-instance or a fixed

“no”-instance, depending on the result.

We note that for each i , 1 ≤ i ≤ sing(g), all the values g(i) − g(i − 1) are

equal and, without loss of generality, we can assume them to either all be 0s or all

be 1s (if this were not the case, we could scale g appropriately). Similarly, since

g is convex, we can assume that g(sing(g)) − g(sing(g) − 1) > 1. We note that

k − sing(g) ≥ k/c = (c + 2)h/c > h and, so, sing(g) < k − h.

We form an election with the following candidates:

1. For each vertex v from the graph G, we create a candidate v.

2. We create a set {c1, . . . , csing(g)−2} of candidates, called the edge-filler candidates.

These candidates will be in the top-k positions of all the voters, and hence will be

chosen to every winning committee.

3. We create a set {b1, . . . , bk−h−(sing(g)−2)}of candidates, called general-filler candi-

dates. There will be sufficiently many voters who rank them in their top-k positions

so that they will also be in every winning committee.

4. We also create a set of dummy candidates, such that each dummy candidate is

ranked among the top-k positions of exactly one voter.

Let m be the total number of edges in G. For each edge e, we create a set of 2g(k)

voters corresponding to this edge; each voter in this set has the following candidates

in the top k positions of his or her preference order:

1. The two candidates corresponding to the endpoints of e.

2. All the edge-filler candidates.

3. Sufficiently many dummy candidates (such that they are ranked among top k

positions only by this voter).
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Further, we create 2g(k) · (m + h) · g(k) filler voters, who rank the following

candidates in the top k positions:

1. All the edge-filler candidates.

2. All the general-filler candidates.

3. Sufficiently many dummy candidates (different dummy candidates for each filler

voter).

(The role of the 2g(k) multiplicity factor regarding both the edge voters and the

filler voters is to ensure that the best committee does not contain any of the dummy

candidates; this will become clear later in the proof.)

We ask whether there is a committee W whose score is at least T = T1+T2+T3+T4,

where:

T1 = 2g(k) · (m + h) · g(k) · g(k − h),

T2 = 2g(k) · m · g(sing(g) − 2),

T3 = 2g(k) · δh ·
(

g(sing(g) − 1) − g(sing(g) − 2)
)

,

T4 = 2g(k) ·
(

h
2

)(

g(sing(g)) − g(sing(g) − 2)

− 2(g(sing(g) − 1) − g(sing(g) − 2))
)

.

Note that each Ti , 1 ≤ i ≤ 4, is nonnegative (for T4 this is due to convexity of g).

The meaning of these values will become clear throughout the proof. This finishes the

construction. Due to the assumptions regarding the counting function, the reduction

is polynomial-time computable.

Let us now argue that the reduction is correct. First, we claim that if a committee

W has a score of at least T , then it must contain all the edge-filler candidates and

all the general-filler candidates. We note that altogether we have k − h edge-filler

and general-filler candidates. Consider some committee W ′ that contains k − h − x

candidates of these two types, where x ≥ 1. This means that W ′ contains at most h +x

dummy candidates.

Let y be the number of filler voters that rank at least k − h members of W ′ among

their top k positions. Let us call these filler voters well-satisfied. For each of the

well-satisfied filler voters, the members of W ′ ranked on top k positions are (a) the

k − h − x edge-filler and general-filler candidates from W ′, and (b) at least x unique

dummy candidates. Thus it must hold that xy ≤ h+x and, so, y ≤ h
x
+1. If x ≥ 2, then

it must be that y ≤ h. If x = 1, then this inequality gives us that y ≤ h + 1. However,

for y to be h + 1, W ′ would have to consist of k − h − 1 edge-filler and general-filler

candidates and h +1 dummy candidates. Each of these dummy candidates would have

to be ranked among top k positions by exactly one of the y well-satisfied filler voters.

This would mean that for each edge voter, the only members of W ′ ranked by this voter

among top k positions would be (some of) the edge-filler candidates. Consequently,

all the edge voters would rank at most k − h − 1 members of W ′ among their top k

positions. In either case (that is, irrespective if x = 1 or x ≥ 2), we can upper-bound

the score of committee W ′ by assuming that there are 2g(k) · (m +h) · g(k)−h voters

that assign score g(k − h − 1) to W ′ and 2g(k) · m + h voters that assign score g(k)
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to it. In effect, we have the following inequalities (also see the explanations below):

score(W ′) ≤
(

2g(k) · (m + h) · g(k) − h)
)

· g(k − h − 1) + (2g(k) · m + h) · g(k)

= 2g(k) · (m + h) · g(k) · g(k − h − 1) − h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)

< 2g(k) · (m + h) · g(k) ·
(

g(k − h) − 1
)

− h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)

= T1 − 2g(k) · (m + h) · g(k) − h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)

= T1 − 2g(k) · (m + h) · g(k) − h · g(k − h − 1)

+ 2g(k) · m · g(k) + h · g(k)

= T1 − 2g(k) · h · g(k) − h · g(k − h − 1) + h · g(k) ≤ T1 < T .

The second inequality holds because g(k − h) > g(k − h − 1) + 1 (which holds due

to the fact that g is convex, g(sing(g)) − g(sing(g) − 1) > 1, and sing(g) < k − h).

Further inequalities hold due to simple calculations. Due to the above reasoning, we

can assume that every committee with score at least T contains all the k − h filler

candidates.

Consider some committee that contains all the k −h filler candidates. We claim that

if this committee contains some dummy candidates then there is another committee

with a higher score. Why is this so? Assume that the committee contains some z

dummy candidates (z ≤ h). If we simply removed these dummy candidates (obtaining

a smaller committee) then we would lose at most z · g(k) points. Then, we could

bring the committee back to its intended size by performing the following operations

sufficiently many times: Either adding to the committee a single vertex candidate

(already connected by an edge to one from the committee) or adding to the committee

two vertex candidates connected by an edge. Each of these actions increases the score

of the committee by at least 2g(k)
(

g(sing(g)) − g(sing(g) − 1)
)

> 2g(k) (because

for each edge there are 2g(k) corresponding edge voters). Thus, we would obtain a

committee with a score higher than the one we have started with. (Note that, technically,

there might be no sequence of operations that brings our committee back to size k,

but this would only happen if the graph had too few edges to contain a clique of size

h and we could recognize that this is the case in polynomial time.)

Let W be some winning committee that contains all the k − h filler candidates,

and some h vertex candidates (by the above paragraph, this committee cannot contain

any dummy candidates), and let r be the number of edges that connect the vertices

corresponding to the vertex candidates from W . Let us now calculate the score of W .

The filler voters provide score T1. The situation regarding the edge voters requires

more care.

Each edge voter gets score at least g(sing(g)− 2) due to the edge-filler candidates.

For each edge for which at least one endpoint is in W , we get additional g(sing(g) −

1) − g(sing(g) − 2) points, and for each edge whose both endpoints are in W , we get

yet additional g(sing(g)) − g(sing(g) − 1) points. Thus, the edge voters give W the
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following score (see detailed explanations below):

(

2g(k) · m · g(sing(g) − 2)

)

︸ ︷︷ ︸

=T2

+

(

2g(k) · δh ·
(

g(sing(g) − 1) − g(sing(g) − 2)
)
)

︸ ︷︷ ︸

=T3

+

(

2g(k) · r ·
(

g(sing(g)) − g(sing(g) − 2) − 2(g(sing(g) − 1) − g(sing(g) − 2))
)
)

︸ ︷︷ ︸

≤T4

.

The first main term corresponds to the points all the edge voters receive, the second is

the correction for edge voters that correspond to edges that have at least one endpoint in

W (note that if for some edge both its endpoints belong to W , then we add g(sing(g)−

1) − g(sing(g) − 2) twice, once for each endpoint), and the final term corresponds

to the correction for edges that have two endpoints in W . Let us now explain why

this final correction is appropriate. Consider some edge voter for an edge whose both

endpoints are in W . For this voter, we account g(sing(g) − 2) points that each edge

voter gets, we account g(sing(g)−1)−g(sing(g)−2) points for each of the endpoints,

and g(sing(g)) − g(sing(g) − 1) − 2(g(sing(g) − 1) − g(sing(g) − 2)) points of the

final correction. Altogether, this sums up to:

g(sing(g) − 2) + 2(g(sing(g) − 1) − g(sing(g) − 2)) + g(sing(g))

− g(sing(g) − 1) − 2(g(sing(g) − 1) − g(sing(g) − 2)) = g(sing(g)).

This means that, indeed, we compute the score of edge voters for edges whose both

endpoints are in W correctly. The same holds for all the other edge voters (and follows

directly from the above analysis).

Finally, we note that the score of W that we obtain from the edge voters is maximized

when r is maximized. The maximum value that r may have is
(

h
2

)

, which happens if

and only if the vertex candidates in W correspond to a clique. Then the score that the

edge voters provide equals T2 + T3 + T4 and the total score of the committee is T .

We conclude, that there exists a committee with score at least T if and only if the

input graph contains a size-h clique.

B Proof of Theorem 13

Let θ be a positive real, 0 < θ < 1. For the sake of contradiction, let us assume

that there is a polynomial-time algorithm A that, given an election E and committee

size k, outputs a committee W such that, under NearlyBloc the score of W is at

least a θ fraction of the score of the winning committee. Using A, we will derive a
θ
2

-approximation algorithm for the DamkS problem.

Let I be an instance of the DamkS problem with a graph G and an integer K .
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Our algorithm proceeds as follows. For each B, 1 ≤ B ≤ K , we form an election

EB = (CB, VB) where:

1. The set of candidates is CB = V (G) ∪
⋃

e∈E(G) De, where for each e ∈ E(G),

De = {de,1, . . . de,B−2} is the set of dummy candidates needed for our construc-

tion.

2. The collection VB of voters is such that for each edge e = {u1, u2} ∈ E(G) we

have exactly one voter with preference order of the form {u1, u2} ≻ De ≻ · · · .

For each election EB , we run algorithm A to find a committee WB of size B. Each

such committee WB generates an induced graph G B with the vertex set V (G) ∩ WB .

We let G0 be the trivial subgraph of G consisting of two vertices and their connecting

edge (if G had no edges, then we could output a trivial optimal solution at this point).

We output the densest graph among G0, G1, . . . , G K .

Let us now argue that the above algorithm is a θ
2

-approximation algorithm for the

DamkS problem. Let OPT be an optimal solution for I , with the densest subgraph G ′

consisting of B vertices and X edges. By definition, G ′ has density δ = X
B

. For each

B let us consider two cases:

Case 1: X ≤
B

θ
. In this case, the density of the optimal graph is at most equal to 1

θ
.

However, a trivial solution with two vertices connected with an edge has density

equal to 1
2

. Thus, in this case this trivial solution is θ
2

-approximate.

Case 2: X >
B

θ
. In this case we know that there exists a size-B committee for

election EB with score at least X . Indeed, the committee that consists of the

vertices from G ′ obtains one point for each edge from G ′ and has score X . Thus

A for EB and committee size B outputs a committee W ′ with score at least θ X .

Let U ′ = W ′ ∩ V (G) (that is, let U ′ be the part of this committee that consists

of the vertex candidates) and let D′ = W ′ − U ′ (that is, let D′ be the set of

dummy candidates from W ′). We observe that the graph induced by U ′ has at

least θ X −|D′| edges. To see this, note that since each dummy candidate is ranked

among top B positions by exactly one voter, removing a dummy candidate from the

committee—in effect decreasing the committee size—decreases the total score by

at most one. Thus the committee consisting only of candidates from U ′ has score

at least θ X − |D′| and each of the points obtained by this committee comes from

an edge between some members of U ′.

The graph induced by U ′ has density δ′ such that:

δ′ =
θ X − |D′|

B − |D′|
=

θ X

B
·

B(θ X − |D′|)

θ X · (B − |D′|)
= θδ ·

B(θ X − |D′|)

θ X · (B − |D′|)
≥ θδ,

where the last inequality follows from the assumption that B < θx . Indeed, note

that:

B(θ X − |D′|) = θ X B − B|D′| ≥ θ X B − θ X |D′| = θ X · (B − |D′|).

By our assumptions, one of these conditions must hold. This means that the graph

induced by U ′ is a θ -approximate solution for I .
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Since in both cases we obtain at least θ
2

-approximate solutions, our algorithm is θ
2

-

approximate. Since it is clear that it runs in polynomial time, the proof is complete.

C Proof of Theorem 16

Our algorithm is based on solving a mixed integer linear program (MILP) in FPT time

with respect to the number of integral variables. The key trick is to use non-integral

variables in such a way that in every optimal solution they have to take integral values

[this technique was first used by Bredereck et al. (2015)].

Let k be the input committee size and E = (C, V ) be the input election, where

C = {c1, . . . , cm} is the set of candidates, V = (v1, . . . , vn) is the collection of voters.

We enumerate all the nonempty subsets of V as S1, . . . , S2n−1. For each i ∈ [2n−1],

let T (Si ) denote the largest set of candidates that satisfies the following condition:

Every voter in Si ranks each candidate from T (Si ) among the top k positions and no

other voter ranks either of the candidates from T (Si ) among top k positions. Note

that T (S1), . . . , T (S2n ) is a partition of C . We illustrate this partition in the following

example.

Example 4 Consider an election E = (C, V ) with C = {a, b, c, d, e, f } and

V = (v1, . . . , v6), where the voters have the following preference orders (we set

the committee size k = 3 and, thus, we list only top k positions for each vote):

v1 : c ≻ d ≻ f ≻ · · · , v2 : c ≻ d ≻ e ≻ · · · , v3 : a ≻ b ≻ c ≻ · · · ,

v4 : c ≻ e ≻ f ≻ · · · , v5 : d ≻ e ≻ f ≻ · · · , v6 : a ≻ b ≻ e ≻ · · · .

We have the following sets: T ({v3, v6}) = {a, b} since only voters v3 and v6 rank a and

b on top three positions (and there are no other candidates they both rank among their

top three positions). Then, we have: T ({v1, v2, v3, v4}) = {c}, T ({v1, v2, v5}) = {d},

T ({v2, v4, v5, v6}) = {e}, and T ({v1, v4, v5}) = { f }. For every other subset Si of

voters, we have T (Si ) = ∅. For example, T ({v4, v5}) = ∅ for the following reasons:

The candidates that both v4 and v5 rank on top three positions are e and f . However,

each of these candidates is ranked among top three positions also by some other

voter(s).

Our algorithm forms a mixed integer linear program with the following variables.

We have 2n − 1 integer variables, z1, . . . z2n−1, where, intuitively, each zi describes

how many candidates from the set T (Si ) we take into the winning committee. For each

i ∈ [n] we also have an integer variable xi , which describes how many candidates

from the top k positions of the preference order of voter vi belongs to the winning

committee. Finally, for each variable xi , we have rational variables xi, j , 0 ≤ xi, j ≤ 1,

such that (intuitively) each xi, j is 1 if xi is at least j . We present our mixed integer

linear program in Fig. 2. To solve this program, we invoke Lenstra’s famous result in

its variant for mixed integer programming (Lenstra 1983, Section 5).

Now it remains to argue that it indeed outputs a correct solution, that is, that the

variables z1, . . . , z2n−1 describe a winning committee. If all the variables have the

intended, intuitive values (as described in the preceding paragraph), then—with our
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maximize
n
i=1

k
j=1

xi,j · (gm,k(j) − gm,k(j − 1))

subject to:

(a)

2
n
−1

i=1

zi = k,

(b) xi =
j : i∈Sj

zj i, ∈ [n]

(c)

k

j=1

xi,j = xi i, ∈ [n]

(d) 0 ≤ xi,j ≤ 1 i, ∈ [n]; j ∈ [k]

(e) 0 ≤ zi ≤ |T (Si)|, i ∈ [2n − 1]

Fig. 2 The Mixed Integer Linear Program used in the proof of Theorem 16

maximization goal in mind—one can verify that variables z1, . . . , z2n−1 describe a

winning committee. Thus we show that, indeed, all the variables have their intended

values.

Due to constraints (a) and (e), variables z1, . . . , z2n−1 certainly describe a possible

committee of size k (from each set T (Si ) we take zi arbitrary candidates). Constraints

(b) ensure the correct values of variables x1, . . . , xn . Finally, the maximization goal

and constraints (c) ensure that each variable xi, j is 1 exactly if xi ≥ j and is 0

otherwise. This is so, because gm,k is concave. Thus, if for some values j and j ′ with

j < j ′ it were the case that xi, j < 1 and xi, j ′ > 0 then increasing xi, j and decreasing

xi, j ′ by the same amount [without breaking constraint (d)] would yield a higher value

of the function to be maximized.

References

Alon N, Arora S, Manokaran R, Moshkovitz D, Weinstein O (2011) Inapproximabilty of densest k-subgraph

from average case hardness. http://www.nada.kth.se/~rajsekar/papers/dks.pdf. Accessed 15 Apr 2018

Aziz H, Brill M, Conitzer V, Elkind E, Freeman R, Walsh T (2017) Justified representation in approval-based

committee voting. Soc Choice Welfare 48(2):461–485

Aziz H, Gaspers S, Gudmundsson J, Mackenzie S, Mattei N, Walsh T (2015) Computational aspects of

multi-winner approval voting. In: Proceedings of the 14th International Conference on Autonomous

Agents and Multiagent Systems, pp 107–115

Barberà S, Bossert W, Pattanaik P (2004) Ranking sets of objects. In: Barberà S, Hammond P, Seidl C (eds)

Handbook of utility theory. Springer, New York, pp 893–977

Barberà S, Coelho D (2008) How to choose a non-controversial list with k names. Soc Choice Welfare

31(1):79–96

Baumeister D, Böhnlein T, Rey L, Schaudt O, Selker AK (2016) Minisum and minimax committee election

rules for general preference types. In: Proceedings of the 22nd European Conference on Artificial

Intelligence, pp 1656–1657

Baumeister D, Dennisen S (2015) Voter dissatisfaction in committee elections. In: Proceedings of the 14th

International Conference on Autonomous Agents and Multiagent Systems, pp 1707–1708

123

http://www.nada.kth.se/~rajsekar/papers/dks.pdf


548 P. Faliszewski et al.

Baumeister D, Dennisen S, Rey L (2015) Winner determination and manipulation in minisum and minimax

committee elections. In: Proceedings of the 4th International Conference on Algorithmic Decision

Theory, pp 469–485

Baumeister D, Erdélyi G, Hemaspaandra E, Hemaspaandra L, Rothe J (2010) Computational aspects of

approval voting. In: Laslier J, Sanver R (eds) Handbook of approval voting. Springer, New York, pp

199–251

Betzler N, Slinko A, Uhlmann J (2013) On the computation of fully proportional representation. J Artif

Intell Res 47:475–519

Boutilier C, Brafman R, Domshlak C, Hoos H, Poole D (2004) CP-nets: a tool for representing and reasoning

with conditional ceteris paribus preference statements. J Artif Intell Res 21:135–191

Bredereck R, Faliszewski P, Niedermeier R, Skowron P, Talmon N (2015) Elections with few candidates:

Prices, weights, and covering problems. In: Proceedings of the 4th International Conference on Algo-

rithmic Decision Theory, pp 414–431

Brill M, Laslier J, Skowron P (2017) Multiwinner approval rules as apportionment methods. In: Proceedings

of the 31st AAAI Conference on Artificial Intelligence, pp 414–420

Byrka J, Skowron P, Sornat K (2017) Proportional approval voting, harmonic k-median, and negative

association. Technical Report arXiv:1704.02183 [cs.DS]

Byrka J, Sornat K (2014) PTAS for minimax approval voting. In: Proceedings of the 10th Conference on

Web and Internet Economics, pp 203–217

Chamberlin B, Courant P (1983) Representative deliberations and representative decisions: proportional

representation and the Borda rule. Am Polit Sci Rev 77(3):718–733

Cygan M, Fomin F, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)

Parameterized algorithm. Springer, New York

Cygan M, Kowalik L, Socala A, Sornat K (2017) Approximation and parameterized complexity of minimax

approval voting. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp 459–465

Debord B (1992) An axiomatic characterization of Borda’s k-choice function. Soc Choice Welfare 9(4):337–

343

Debord B (1993) Prudent k-choice functions: Properties and algorithms. Math Soc Sci 26:63–77

Downey R, Fellows M (1999) Parameterized complexity. Springer-Verlag, New York

Dummett M (1984) Voting procedures. Oxford University Press, Oxford

Elkind E, Faliszewski P, Skowron P, Slinko A (2017) Properties of multiwinner voting rules. Soc Choice

Welfare 48:599–632

Elkind E, Ismaili A (2015) OWA-based extensions of the Chamberlin-Courant rule. In: Proceedings of the

4th International Conference on Algorithmic Decision Theory, pp 486–502

Elkind E, Lackner M (2015) Structure in dichotomous preferences. In: Proceedings of the 24th International

Joint Conference on Artificial Intelligence, pp 2019–2025

Faliszewski P, Sawicki J, Schaefer R, Smolka M (2017) Multiwinner voting in genetic algorithms. IEEE

Intell Syst 32(1):40–48

Faliszewski P, Skowron P, Slinko A, Talmon N (2016) Committee scoring rules: Axiomatic classification

and hierarchy. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp

250–256. For the full version, see the arXiv report arXiv:1802.06483 [cs.GT]

Faliszewski P, Skowron P, Slinko A, Talmon N (2016) Multiwinner analogues of the plurality rule: Axiomatic

and algorithmic perspectives. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence,

pp 482–488

Faliszewski P, Skowron P, Slinko A, Talmon N (2017) Multiwinner rules on paths from k-Borda to

Chamberlin–Courant. In: Proceedings of the 26th International Joint Conference on Artificial Intelli-

gence, pp 192–198

Faliszewski P, Skowron P, Slinko A, Talmon N (2017) Multiwinner voting: a new challenge for social choice

theory. In: Endriss U (ed.), Trends in Computational Social Choice, ch. 2. MIT Press, Elsevier

Faliszewski P, Slinko A, Stahl K, Talmon N (2016) Achieving fully proportional representation by clustering

voters. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent

Systems, pp 296–304

Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652

Fishburn P (1981a) An analysis of simple voting systems for electing committees. SIAM J Appl Math

41(3):499–502

Fishburn P (1981b) Majority committees. J Econ Theory 25(2):255–268

123

http://arxiv.org/abs/1704.02183
http://arxiv.org/abs/1802.06483


Multiwinner analogues of the plurality... 549

Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H.

Freeman and Company, New York

Khuller S, Saha B (2009) On finding dense subgraphs. In: Proceedings of the 36th International Colloquium

on Automata, Languages, and Programming, pp 597–608

Kilgour M (2010) Approval balloting for multi-winner elections. In: Handbook on approval voting, Ch. 6.

Springer, New York

Kleinberg J, Papadimitriou C, Raghavan P (2004) Segmentation problems. J ACM 51(2):263–280

Lackner M, Skowron P (April 2017) Consistent approval-based multi-winner rules. Technical Report

arXiv:1704.02453 [cs.GT]

Lang J, Xia L (2015) Voting in combinatorial domains. In: Brandt F, Conitzer V, Endriss U, Lang J, Procaccia

AD (eds) Handbook of computational social choice, ch. 9. Cambridge University Press, Cambridge

Laslier J (2012) And the loser is... plurality voting. In: Felsenthal D, Machover M (eds) Electoral systems:

paradoxes, assumptions, and procedures. Springer, New York, pp 327–351

LeGrand R (2004) Analysis of the minimax procedure. Technical Report WUCSE-2004-67, Department of

Computer Science and Engineering, Washington University

Lenstra H Jr (1983) Integer programming with a fixed number of variables. Math Oper Res 8(4):538–548

Lijphart A, Aitkin D (1994) Electoral systems and party systems: a study of twenty-seven democracies,

1945–1990. Oxford University Press, Oxford

Lu T, Boutilier C (2011) Budgeted social choice: From consensus to personalized decision making. In:

Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp 280–286

Lu T, Boutilier C (2015) Value-directed compression of large-scale assignment problems. In: Proceedings

of the 29th AAAI Conference on Artificial Intelligence, pp 1182–1190

Misra N, Nabeel A, Singh H (2015) On the parameterized complexity of minimax approval voting. In:

Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems,

pp 97–105

Monroe B (1995) Fully proportional representation. Am Polit Sci Rev 89(4):925–940

Nemhauser G, Wolsey L, Fisher M (1978) An analysis of approximations for maximizing submodular set

functions. Math Program 14(1):265–294

Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, Oxford

Oren J, Lucier B (2014) Online (budgeted) social choice. In: Proceedings of the 28th AAAI Conference on

Artificial Intelligence, pp 1456–1462

Peters D (2018) Single-peakedness and total unimodularity: new polynomial-time algorithms for multi-

winner elections. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (to appear)

Peters D, Lackner M (2017) Preferences single-peaked on a circle. In: Proceedings of the 31st AAAI

conference on artificial intelligence, pp 649–655

Procaccia A, Rosenschein J, Zohar A (2008) On the complexity of achieving proportional representation.

Soc Choice Welfare 30(3):353–362

Raghavendra P, Steurer D (2010) Graph expansion and the unique games conjecture. In: Proceedings of the

42nd ACM Symposium on Theory of Computing, pp 755–764

Sánchez-Fernández L, Elkind E, Lackner M, Fernández N, Fisteus JA, Val P. Basanta, Skowron P (2017)

Proportional justified representation. In: Proceedings of the 31st AAAI Conference on Artificial Intel-

ligence, pp 670–676
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